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CHAPTER XVII

REDUCTION OF THE PRINCIPLES OF THERMODYNAMICS TOTH E
GENERAL PRINCIPLES OF MECHANICS

Translated by D. H. Delphenich

309. Diverse theories— The reduction of the principle of equivalence to the
fundamental principles of mechanics encounters no difiesu As we have seen, the
hypothesis of molecular forces suffices for one to dedt=e principle of the
conservation of energy, and consequently, that of thevagquce of the general
equations of motion.

Things are different for the second principle of thedgnmamics. Clausius was the
first to attempt to reduce it to the principles of mectsrbut without success.

Helmholtz, developed a theory that was closer to petfan that of Clausius in his
paper on theeast-action principle nevertheless, he accounted for only irreversible
phenomena.

310. Foundations of Helmholtz's theory— Consider a system of material points
that are either free or subject to constraints, andsehsituation is finite for the

parametersy, Gz, O3 ..., G . Let q, o,, ..., d, denote the derivatives of these

parameters with respect to time, and Tetlenote one-half theis viva of the system.
Finally, let:

Qa+Qap+ ... +Qn A

be the expression for the work that is done by thesfote which the system is subjected
under a virtual displacement. At each instant, welvaille:

for each parameter; this is the Lagrange equation fquahemeter .

In his paper, Helmholtz routinely changed these notatidr®e letterT is preserved
in order to denote the absolute temperature; the gsmivais then represented ly
The parameters are callgd, p», ..., and their derivatives with respect to time are
represented bgp, Qp, ...
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The virtual work that is done by the internal forcestted system is distinguished
from that of the external forces. Helmholtz supposed the internal force admits a
force function — or potential energy®; the work that this force does for a variatigmn
of one of the parameters is:

do
T
As for the external force that results from thatiation, it is denoted by:

_Pad)a.

With these new notations, the Lagrange equation tleeseto the parametpys is:

dd_di__do__-

1) — =
dtdg dp dp,

311. The potential energ® depends upon only the position of the molecules in the
system; it is therefore a function of the paramgpeisit not their derivativeg.

On the contrary, the kinetic enerdly depends upon both the and theq; it is
homogeneous and of second degree with respect to thregladitities. Indeed,, which

is equal to), mv?, is of degree — 2 with respect to time; thus, if one dautile unit of
time then the value df will be quadrupled. Nowp, does not vary under that change of
unit, whileg, must double; it is therefore necessary that eachitetnmust contain the
to the second degree.

As a result of that property of the functiopwe will have:

dL
2 2= —_—
) > q, iq
312. Set:
(3) H=d-L
and
(4) U= +L;

U is then the total energy of the system.
Upon differentiating the first of these equalities witspect tq,, we will get:

dH _ d® _dL
dp, dp, dp’

the derivation with respect tp gives us:



Reduction of the principles of thermodynamics. 3

dH __di
dq,  dg
since® does not depend upon the We infer the derivatives af with respect tg, and

0. from these equalities and then substitute the valuesvihéound into equation (1); we
will then have:

5 -———+t—=-P
2 dtdq, dp
Now set:
dH _ dL
(6) ———=——=x
dg, dg,
S and the gquantities,, ..., which are defined by analogous equations, are functions of

thep andg. We can thus considés to be a function op ands, while H is always
considered to be a function of thendq. The equalities (3) and (4) give us:

U=H+2
for that functionU, or, from the relations (2) and (6):
U=H+) q,s,.

It then results from that new equality, upon taking tiital differential of the two
sides, that:

du dU . «dH dH
Z—dp+zEds—z = dp+). - dg+>’ sdar )’ qd.

However, from (6):
Y M 4g=-Y sdg;
dg

consequently, the preceding equality will reduce to:
du du dH
—dp+) —ds= ) —dp+ ds.
2 gy I g ds= 2 dp 2

We deduce from this that:

du dH
@) —=—

dp, dp,
and

du
(8) —=0a-

ds,
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313. The expression for the principle of conservation emiergy is deduced
immediately from the relations (7) and (8). Thoseti@is give us:

du_ _ds
dp,  dt
d_U_ :dpa
d T dt

Consequently:

du:zd d +z—ds
_ dp
-—Zpde dP+Z ds,
- > P.dp,.

The variation of the total energy of the systemhisstequal to the work that is done
on the system by external forces; it is indeed theestant of the principle of the
conservation of energy.

or

314. Hypotheses on the nature of the parameters. HelImholtz assumed that the
parameters that defined the situation of the systembeadivided into two classes
according to the manner by which they vary in time; thofsthe one class vary quite
slowly, while those of the other vary quite rapidly.e\dlenote the former parameters by
pa and the latter b, .

That hypothesis seems very natural. The moleculdfon® that are due to the
heating of a body have velocities that are incompariger than the ones that we can
communicate to the ensemble of the body. The parasnéhat define the relative
positions of the molecules thus vary rapidly; on thetary, the ones that fix the position
of the body in space have a slow variation.

315. Helmholtz then made another hypothesis that mighmadifficult to accept. He
assumed that the functio® did not depend upon the parametpgsand that these
parameters enter into the functibonly by their derivatives, .

One can then give come simple examples from elangmechanics in which that
hypothesis is found to be realized.

Therefore, consider a pulley that moves around its aXlse position of the pulley
can be defined by the angdg that a fixed plane in space makes with a plane thaepass
through a point of the pulley and its axm;is then a system parameter. The seisi-
viva of the system is equal to the product of the momemesfia of the pulley with the
square of its angular velocity. The moment of inediees not depend upgp. The
angular velocity i), =dp, / dt. As a result, the semis vivadepends upon only, and
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not the parametqn, . On the other hand, since the center of gravitynefgulley is on
the rotational axis, the potential energy will not vairys therefore independent of tpe

Take another example. Consider a channel that isrse/dy a liquid and suppose
that the regime is established permanently. One can dbeéngosition of the system by
the anglep, that is defined by a diameter of the channel, whiclixedfin space, and a
diameter that passes through one of the liquid moleciHesvever, neither the potential
energy not the kinetic energy will depend upon that parambecause those quantities
remain constant. Indeed, once the permanent regimstablished, a molecule will be
immediately replaced with another one once the érst is displaced; in addition, the
work that is done by internal forces is zero, and in,ttlve potential energy will preserve
the same value.

It results from these examples that the Helmhioyjzothesis is exact in the case of a
body that rotates around an axis. It then seems aplgita the vorticial motions of the
molecules. Can it then be applied to the case intwthie molecules of the body displace
rectilinearly on one side and the other of a fixed poifttat is what we shall examine
later on.

316 We assume the Helmholtz hypothesis and continue semiréhe theory of that
scholar.

Since® andL are assumed to be independent of the paranmtatswill not depend
upon them either. From equation (5), we will then have:

d dH
9 -2y,
(9) it do, b

or, from the definition of the functiorss

ds
=-Py.

dt °

The external work that corresponds to the parametesicdered is- P, dp, for a
variationdp, of that parameter. When expressed as a functioredirtte intervadt, that

variation will be%—%dt, or gp dt. Consequently, the external work can be writtd?) g
dp,. Helmholtz set:
dd=-Prp dp.

If we replaceP, with its value that is inferred from the preceding equmain that equality
then that will give:

d
(10) dQ, = quS; dt=p ds, .

This is the equation that relates to the parametersamaquite rapidly.
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We now occupy ourselves with the slowly-varying parametand show that the

derivativeid—F| can be neglected for them.
dt dg,

From the equalities (6), we have:
dH__ du
dg,  dg,
Now, L is a homogeneous function of second degree with respebetl, andqp ;

d—Hwill then be composed of terms of the foAmy g andB oy @, . As a result, the

dq,

derivative %S—H of that quantity with respect to time will contain yrierms of the
q

form:

d,
dt

d,
dt

da,

Aq, : Bqg, : Ba, ot

However, since the parametgrsvary quite slowly,gy and g.- will be very small,
and the derivatives of these quantities with respettwdl likewise be very small; we
can then neglect the terms of the first two formsces they contain the product of two
very small quantities. We can likewise neglect tewhghe third form, but on the
condition that we suppose that the derivatlg / dt of the finite quantityg, is very
small. (Therefore, if to fix ideas— we return to the pulley that just served as an
example for us then that will amount to supposing titratangular velocity of that pulley
is very large, but reasonably constant.) Having assuhadypothesis, all of the terms

in ddH will be negligible.
dt dg,

We will then have:

(11) d_H :_Pa1

dp,

which is obtained by neglecting the first term in equea(l), as the equation that relates
to the parameters.

317. Monocyclic systems- Helmholtz gave the name wionocyclic systents the
ones for which the number of rapidly-varying parametedsices to 1; in the case where
the number of these parameters is greater than lystensispolycyclic

One has thadQ/L is an exact differential in all monocyclic systems.

In order to prove that property, first consider a neyotc system whose situation is
defined by just one rapidly-varying parameter that we caantddyyp with no ambiguity.

In the relation (2):

dL
2L = _—
andoa



Reduction of the principles of thermodynamics. 7

0. denotes the derivative of an arbitrary parameter tlaates rapidly or slowly.
However, g, is very small for the latter, and the terms thatrespond to it can be
neglected. All that then remains in the right-hane $sdthe term that corresponds to the
parametep; as a result:

(12) 2=g— =gs

From the relation (10), one will have d:

dQ=qds
Consequently:
(13) @ = Zq_dS: 2d logs;
L gs

the quotient considered is then an exact diffeaéptiecisely.

318. Incomplete systems— Helmholtz divided the polycyclic or monocyclic
systems into two classesomplete systemesndincomplete systemsThe latter are the
ones for which the work P, dp, that corresponds to a non-zero variation of the @h
the parametens, is equal to zero.

For these systems, from equation (11), one wilehes many equations:

(14) aH _ 0
dp,
as there are parameteps that enjoy the preceding property. From the Helitazh
hypothesis, the functioH does not depend upon the rapidly-varying parars@terand
the derivatives of thg, can be neglected, so the equations that are anadg (14) can
be considered to be relations between the parasngiethe parameterp, , and the
derivativesq, . Since they are the same in number as the pagesypet they can then
serve for us to express those parameters as faeaiothep, andq, . These parameters
are thus not necessary in order to define thet@tuaf the system; the parametgxs
(which are deduced from the ones that we just éehbyp.) and the parameteps will
suffice for that.

Will the equations be changed when one takesthelyparametens, andp, to be the
independent variable?

Call the expression fdfl under those conditiond’. H’depends upop, andqy, ; H
depends upopa, pe, and theay, .

SinceH’” andH denote one and the same function when it is egpces different
variables, we will have:

H’=H.

Now, take the derivatives of the functions witbpect top, ; we will have:
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dH' _ dH 'y dH dp,

dp, dp, “dp dp
Now, from the relation (14):
dH
—=0;
dp.
consequently:
dH’ _ dH
dp, dp,

The Lagrange equations that relate to the slowly-vargam@meters thus keep the
same form: viz., the form (11).
Take the derivative with respectdg; we will get:

dH' _ dH +de dp, |
dp, dg “dp dq

and, in turn, for the same reason as before, wegetl

dH’ _ dH

dp, dp,

It results immediately from that equality and the eitjeal (6) that the functioms,
remains the same regardless of whether the paranmgtenser explicitly in the number
of the ones that define the situation of the systenthey do not take part in it.
Consequently, in one case or the other, the Lagrangei@ugi#htat relate to the rapidly-
varying parameters will have the form (10):

on:qdeb.

Since the form of the equations will remain the saitris,obvious that in the case of
a monocyclic system, the factor LL Will be an integrating factor faQ.

319. The incomplete systems thus differ only slightlynfrahe complete ones.
Nevertheless, it is a property that is important tardistish.

The kinetic energy is, in general, a homogeneous function of second degrée i
0o and theg, ; in addition, it depends upon the slowly-varying paranset&tow, we just
saw that in the incomplete systems, one part of thassEmeters — viz., the parametpys
— are function of the, andp, . Consequently, if we replace thewith their expressions
as functions ofy, in L thenL will cease to be of second degree indhe It can then be
of odd degree with respect to these derivatives, and inaéiodd degree with respect to
time. We will soon see the importance of that réaar
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The simplest example that one can cite is that péilley, on whose axis a regulator
with the centrifugal force is mounted. When the veéjocf the pulley increases, the balls
of the regulator will rise, and the moment of inertidhe system will increase.

Thevis vivais not proportional to the square of the angular veldben, since it is
equal to the product of that square with the moment ofigesthich varies with that
velocity.

320. Application to calorific phenomena.— Assume, with Helmholtz, that the
parameterg, refer to the molecular motions that are due to reat,the parametegs
refer to the visible motions of the system.

As a result of that distinction between these divpesameters, the equation:

du=-> p,dp,
of paragrapi813will become:

du=-> p,dp,-> ndp
or

du=-> p,dp,+> dQ.

Thus, from that relation, the variation of the it energy is equal to the signhed sum
of the external workz p, dp, that is done by the visible motion and the externakwo

ZdQD that is done by the molecular forces. Compare thategsion fordU with the

one that the principle of equivalence provides us with: Véeation of the internal
energy, when expressed in mechanical units, is the sutmeofvork and the heatQ,
when expressed in the same units, that are provided gyshem. One sees that the two
stated variations will become identical when one mesuthat:

dQ= ) dQ,;
i.e., if one assumes that the external work thabreedoy molecular forces, with the sign
changed, is equivalent to the heat that is providededdidy during the transformation.
The principle of equivalence will thus reduce to the genmaactiples of mechanics when

one considers the bodies to be composed of moledwd¢stt upon each other, but we
already know that.

321. Now, consider a monocyclic system. In that caseknow that:

(15) dTQD = exact differential.
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However,dQ, is nothing but the heat (when expressed in mechaniuts) uhat is
provided to the system, sincEdQD will reduce todQ, for a monocyclic system. In

order to account for Carnot’s principle, it will therffsre to suppose that the temperature
of the system is proportional to the kinetic enelcgySince the terms in that energy that
containg, are negligible, moreover, that energy can be codfugith the molecular
kinetic energy.

Is it possible to assume that the absolute temperafuaesystem is proportional to
the molecular kinetic energy? The kinetic theorgases shows that this is true for those
bodies. As we just saw, Helmholtz’'s theory obligesauassume that the same thing is
still true for all other bodies.

From Carnot’s principle, which is regarded as having beenegdrexperimentally,
set:

Q.
(16) =4S

in whichSis the product of the entropy with the equivalent meaadmvork. HencedQ
=dQ, dS and the differential (15) will be annulled at the saime. The latter is then a
function ofS set:

299,
We then set:
aq, _ , _ 0 dQ
oI ¢’ (S dS=¢ (S)?,
and in turn:

L=T8(9.

In order to determiné, consider two systems for which the quantitiesnd S have
the valued ; andS; andL; andS,, respectively.

We suppose that the two systems are at the same tgomedr. That is necessary,
since we would like to consider only reversible phenomemahémoment.

We will then have:

Li=T & (S), L=T & (S).

The values of these quantities for the ensemble aintbesystems will bé, + L, and
S +S . We will then have:

Li+L=T & (S +S),
and consequently:
S +e(S)=6E+S).
Differentiate the two sides of that equality &y we will then have:

g(2)=6(5+%)

and upon once more differentiating with respecto
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0=6 (S +%).
We then deduce the value &f(S, + S) from this:

&G+ =a+b(§+S),
and as a result:

6(S)=a+bs, &)=a'+bs.

The three linear functions &k, &, & thus differ by only the constant termasa’, or
a", but the coefficienb is the same for all of them.

Upon denoting the constants &yandb, we will then have that the former depends
upon the nature of the body, while the latter is timeestor all bodies:

L=T(@+b39.

We just saw that the coefficiebtmust have the same value for any body that one
considers. As a resulb, will be zero for all bodies, since that is true fosgm The
absolute temperature is thus always proportional to theaumlalr kinetic energy.

322. Helmholtz’s theory, applied to vibratory motions.— As we have remarked,
Helmholtz’'s hypothesis (n@®18) is justified only in the case of vorticial motion. oW,
molecular motions seem to be vibratory motions alomét side or the other of a fixed
point. Is the quotiendQ / T still an exact differential for this kind of motion®/e shall
show that this property persists in the case of moriocgystems, even when one
abandons the hypothesis of paragraph

If we abandon that hypothesis then the potential en@rgyll be a function of the
rapidly-varying parametgy that we can write:

2
Ap +C
2

(17) ®=

in which A and C are functions of the,. Indeed, writing that equality amounts to
neglecting the terms of higher degree than thergkend suppressing the terms of first
degree in the development @fin increasing powers qf. Now, the coefficients of the
terms of degree higher than the second are nedgssny small, and we can neglect
these terms. On the other hand, it is always plessd take the parametprin such a
way that it is zero when the molecule is at the me# its oscillation; under those
conditions,® will be of even degree with respectgpand in turn, the first term of first
degree will be zero.

The kinetic energy is homogeneous and of second degree with respecand the
Oa; We can then set:

(18) L=BT
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in which B denotes a function of thg, if we continue to suppose that thgare very
small.

323. We seek the Lagrange equation that relates to the gtmgmn From one of the
equalities (6), we will have:

and consequently, for the desired equation:

dBq, dH _ _
dt dp
However:
H=¢-L,
and in turn:
dH _ d® dL _ .
dp dp dp ’

the preceding equation can then be written:

dBq
19 —+ Ap =—-P.
(19) dt P

If we suppose that the vibratory motion is statiortagnP will be zero, andA andB
will remain constant; consequently, that equation kaitome:

dq

—+Ap =0,

at P
or

d’p

B + Ap =0.

dt? P
If we set:

A=r’B

then one solution to that equation will be:
p=hsin (it+ &;
we infer from this by derivation that:
g=hncos @t + @,

and upon substituting that valgen the right-hand side of (18), we will get:
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Bh°1? cos” (nt+ w)
> :

L=

When one considers the system during a suffigielotig time with respect to the
period of vibration, it will be the mean value d¢fat quantity that intervenes; we must

then take the expression:
2 2
(20) L = Bhr? _ Ah

2 4

to be the denominator of the rati® /L.

324. Now, suppose that the slowly-varying parametdr@nge in value; in other
words, suppose that the vibratory motion is ndiatary, soP is non-zero. Evaluate the
work:

~[Pdp

that is provided by the exterior and relates torémedly-varying parameter during a time
A that is very small in absolute value, but nonetbelvery large with respect to the
period of vibration.

From equation (19), we will then have:

6Q==I%Eqdp+j B%?dp+j Apdi.

The first of these integrals is performed easifince the functiorB depends upon
only the slowly-varying parameters, its derivatiwéh respect tat will be small and
slowly-varying; we can then consider it to be canstas the integral to be evaluated will
become:

%qup:%qudt.

Since the integration is taken over a very smailktintervald, the preceding integral can
be replaced with the product & with the mean valuk® n? / 2 ofg®; we will then have:

y—d_@&@ﬁﬁﬁa

in which B denotes the variation &f during the timeX.

In order to get the other two integrals, devefoandB in increasing powers df
upon supposing, for the moment, that we have ta@kerorigin of time to be the start of
the intervald&, we will then have:
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2
A=A+ A, D f‘tz.
dt dt

2
B:B+@t+oI E’tz..
dt dt

However, since the time intervadl during which one considers the system is very
small, it is pointless to take into account the teahsecond degree and highertinn
addition, we can regai / dt anddB / dt as constants during that interval. We then get:

J.B%dpz j Bqdq = qudq+%jtqdc,

qudqz Af pdp+z—'t6‘j tpdr

for the integrals to be evaluated.

325. We can choose the time intendlin such a manner thatis zero at the start
and finish of that interval] will then be equal tmh at those two instants. Under those
conditions:

n’h
2

qudq:Bd
and
Ajpdp:o.

Upon integrating by parts, the other two integcas be written:

- tqdq:_

dB dBE_J-idt
dt dt{ 2 2 )

dA dA o
— |tpdp = —| tp* — | —=dt |,
at) PP dtp~[2j

and one will easily see that the first of them thesvalue:

@(&ﬁ_&ﬁj :d_D,n h ,

dt 2 4 4

while the second one has the value:
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2
Aol ] =l
dt 4 4

Consequently, upon replacing t@ in the integrals with their values, we will get:

212 2
x=08"" g5 UL N
2 2 4 4

or

212 2
N=3B"" 1" " _salt
4 2 4

Divide that equalityL, whose values are given by the equalities (20)wnNethen
have:

9Q_ 498, It _SA

L B e A

Since each of the terms in the right-hand sideesderivative of a logarithm, the sum
of these terms is the derivative of the logarithivthe product; it is therefore an exact
differential. Consequently, Clausius’s theorenalso indeed proved in the case of a
vibratory state of molecules, as well as in theeaafsa vorticial state.

326. Irreversible phenomena=— Let us return to Helmholtz's theory. First dif &
seems that it cannot take irreversible phenomenaaiccount.

Consider the functiomd. As we know, it is a function of the andq; the latter
guantities enter into it in the second degree,estic= ® — L, and® does not depend
upon theg, while L contains these quantities in the second degrdegenWne changes the
sign of time — i.e., when one returns the systeistonitial state — the will not change
sign, but the derivativeg = dp/ dt will change in sign. However, since these quemstit
appear in the second degreeHinthe latter function will keep the same value. w\the
equations that define the state of the systemddt ieatant can be put into the form (5):

Its first term does not change in value wittrbecomes negative, sinde, changes in
sign at the same time, and we just saw thdteeps the same value; as for the other
terms, they will not change in value either. Thegeations will thus remain the same for
any sign ofdt. As a result, when the system returns to itsaingtate, it will again pass
through precisely the same states that it took ugt@anting in the initial state; the
transformations are thus reversible.
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327. However, we have see that in the case of incompdgstemsL can be
expressed by a function that is of third degree ingthé\s a resultL will change value
with the sign ofdt under these conditions. Irreversible phenomena cam tike place
with the incomplete systems; that is what Helmhakzumed.

However, that illustrious physicist likewise appealedmnother interpretation that is
analogous, moreover.

Suppose that the quantitiBsare zero for some of the rapidly-varying paramepgrs
we denote these parameters by the notgtioiVe will then have:

dS’;:d—Qc:_Pcdtzo.
.

Thes; are thus constants that | cgfl. The relations:

0

$= S

permit me to eliminate the quantitigs and keep only the, andqg, (but not theqe) as
independent variables.

Now, denote the partial derivatives that are calculat&th the old system of
variablespa, v, andqge by d, and letd denote the partial derivatives that are calculated
with the new variablep, andq .

Moreover, set:

H'=H+)> sq;
one will get:
6H:dH+de6qcde_zsaic_ B 0 00,
op, dp, dgop dp, op, dp, “op,
oH' _ 0 90,
—_—=— s
op, apa 2 “op,
SO
oH _dH
op, dp,

Moreover, we will have:

dq, dq, aq,
and
doH _ddH s ,dda_s.dd0q
dtoq, dtdg dtd g dto g’
and since:
_ ds _
=S, E_ )

it will become:
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doH_ddn s, ddy

dtog, dtdg, “dtaq
Likewise:
doH'_doH 5 odoa.
dt g, dtadq, dtoq,
therefore:
doH' _ doH
dtdgq, dtog,
Our equations then become:
ai:—Pa, dai:—qbon_
op, aq,

They thus keep the same form. If the number of hyviarying parameters other
than thep. is reduced by 1 then the systems will be monocyclic;evew the integrating
factor will no longer be 11, but 1 /gp & .

The relations, = s are not homogeneous with respectjtsince the left-hand side

is of first degree and second has degree 0.

It then results from the elimination of tgethatL will no longer be homogeneous of
second degree in tlgeand thatH can contain terms of odd degree with respect to these
guantities.

The equations then cease to be reversible — i.eeptain invariant when one changes
the sign of the time.

Helmholtz referred to motions that correspond to tharpatersp, for which Py is
zero ashidden motionsso the irreversibility of the phenomena must theath@buted to
the existence of hidden motions in the system. The sanpl@mple of such a system is
the Foucault pendulum. In that case, the hidden motitimatsof the Earth; that is the
motion that prevents the pendulum from passing throhglpositions that it previously
occupied in the opposite sense and destroys the reversabitlig phenomenon.

328. That explanation of irreversible phenomena mightmseatisfactory. In my
view, it does not account for all of thermodynamic mhreana. Let me show you that.

Consider a system that is devoid of any external mctla this case, thB, are zero,
and we will get:

@ ds dH g
dt dp
-_aH
dqg

for the equations that relate to one parameter, uponesgpg the indices.
From the relations (2), (3), and (4), we will have:
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dL
U=H+ —,
L9
or, upon taking (6) into account:
U=H+ ) gs.

ConsidetU as a function op ands; we will get:

du _dH
s
du _
E_q

for the partial derivatives of that function, or fr@guation (21) and the significancepf

du __ds du _ dp

(22) - TR
dp dt ds dt

Since the system is isolated, its entropy can dshijnas a resulis / dt must be
positive whert increases.
Now, we can conside3to be a function o andp. We will then have:

ds _ (dS ds, ds dﬁr

dt “~(dsdt dpadt)’

or, upon replacingls/ dt anddp / dt with their values that are inferred from equations

(22):
dS_ (S du_ ds do
dt ds ds ds dp’

Consequently, the condition that the system mustfgad:
(23) 3 dsSdu_ ds du >0,
ds ds ds dp

and that inequality must be satisfied for all valuep aids.
We shall see that this is not always true.

329. Indeed, it is possible to imagine a system for whHikpasses through a
maximum. Since cannot decrease, that quantity will remain constamtnwhattains its
maximum value, which is a value for which the system ballin equilibrium. We can
suppose that this state corresponds to zero valueanafp, since if those variables have
valuess andp' that are non-zero then it will suffice to set:
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s=S +¢, p=p +p’

and to takes” andp” be new variables for which the variables are zetberequilibrium
state. We can likewise suppose tbaandS are zero for that state, since these functions
contain an arbitrary constant.

DevelopSin increasing powers of the variables.

The first term of that development will be zeraynfr the preceding hypothesis. The
set of terms of first degree sandp is also zero, sinc8 will pass through a maximum
whens = p = 0O; for that reason, the set of terms of secondedegyrill be negative.
Consequently, if we neglect the terms of degree higiieen second theB will be a
negative quadratic form o$ andt; we can thus decompose it into squares whose
coefficients are all negative.

Likewise, develop the functiod; the constant term in the development will be zero.
The same thing will again be true for the set of teom8rst degree. Indeed, since the
system is in equilibrium:

ds =0 and dp =0,
dt dt

and as a result of equation (22):
d_U =0 and d_U =0
dp ds

Upon neglecting the terms of degree higher than secotie idevelopment) will
then reduce to a quadratic formsiandp.

330. Since the functionS andU are quadratic, their partial derivatives with respect
to the variables of first degree, and in turn, the laftehside of the inequality (23), will
be quadratic functions. In order for that inequalityakways be satisfied, it is necessary
that this quadratic function must be put into the formaosum of squares whose
coefficients are positive. It can then be annulle ovs=p = 0.

Now, consider the functiond / S It is homogeneous and of degree zerp ands.
One can then multiplg andp by the same arbitrary factor without changing the value
that function. One can take advantage of always makiese variables smaller than a
certain quantity; i.e., a finite oneU andS will then finite for any given values of the
variables, and U / S can become infinite only i is zero. However, sincB is a
negative quadratic function, it cannot be annulled. Thu$/ S cannot become infinite,
and it must present a maximum, which we denotd,ldpr some system of values fer
andp other thars=p = 0.

For these values of the variables that correspond tarizzamum, one will have:

du/ds _
ds/ ds

H:—A;
S

as a result:
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d_U: -A d_S

ds ds
One similarly has:

du dSs

—==-A—.

dp dp

If we substitute these values d) / ds anddU / dp in the left-hand side of the
inequality (23) then it will be annulled. The quadratic fiorcthat it is equal to can then
be annulled for non-zero values pands. As a result, none of the coefficients of the
squares are positive, and the function can be negative.

The Helmholtz equations can thus explain the increasatropy that is produced in
isolated systems that are subject to irreversible fvemstions.

It results from this that irreversible phenomena ammusius’'s theorem cannot be
explained by means of the Lagrange equations.

331. The explanation for reversible phenomena is stitl complete. In particular,
one must explain why there is no transfer of heanfane body to another when two
bodies at the same temperature are in contact. ©nedeed tempted to give an
explanation. One compares the two bodies with twéeysiwhose rotational velocities
are equal. When one links these pulleys, there is mmadtm and as a result, no
transmission o¥is vivafrom one to the other. When one puts the two bodiesmtact,
there are no longer any impacts between molecule€ #iey possess the same velocity
in the two bodies, since the temperatures are the saloeever, this explanation is far
from satisfactory.

332. The work of Boltzmann.— To the names of Helmholtz and Clausius, we must
add that of Boltzmann. Among the papers of the latleolar on the subject that we are
occupied with, we point out only his proof of the Helmhdlypothesis.

Boltzmann once more separated the parameters of ttearsyso two classes: viz.,
the slowly-varying parameters and the rapidly-varying pbas he no longer supposed
that H was independent of the latter. He decomposed the tggtdns into a large
number of systems for which the period was the samethleuphases were different.
Upon considering that ensemble of systems, Boltzmanneshtivat everything happens
as ifH did not depend upon the rapidly-varying parameters; thenlit#lz hypothesis
was thus found to be justified. From this viewpoint, Wk of Boltzmann must be
pointed out here.

333. All of the attempts of that nature must then be dbaad; the only ones that
have any change of success are the ones that are foupdedthe intervention of
statistical laws such as, for example, the kinetic theory of gases.

That viewpoint, which | shall not develop here, cansbmmarized in a somewhat
vulgar fashion as follows:
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Suppose that we would like to place of an oat grainenntidst of a pile of wheat;
that would be easy. Suppose that we would then like twveeat and remove it; we
could not succeed in doing that. For certain physiciststrallersible phenomena are
constructed from this model.

FIN



