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 309.  Diverse theories. – The reduction of the principle of equivalence to the 
fundamental principles of mechanics encounters no difficulties: As we have seen, the 
hypothesis of molecular forces suffices for one to deduce the principle of the 
conservation of energy, and consequently, that of the equivalence of the general 
equations of motion. 
 Things are different for the second principle of thermodynamics.  Clausius was the 
first to attempt to reduce it to the principles of mechanics, but without success. 
 Helmholtz, developed a theory that was closer to perfect than that of Clausius in his 
paper on the least-action principle; nevertheless, he accounted for only irreversible 
phenomena. 
 
 
 310.  Foundations of Helmholtz’s theory. – Consider a system of material points 
that are either free or subject to constraints, and whose situation is finite for the 
parameters q1, q2, q3, …, qn .  Let 1q′ , 2q′ , …, nq′  denote the derivatives of these 

parameters with respect to time, and let T denote one-half the vis viva of the system.  
Finally, let: 

Q1 δq1 + Q2 δq2 + … + Qn δqn  
 

be the expression for the work that is done by the forces to which the system is subjected 
under a virtual displacement.  At each instant, we will have: 
 

i i

d dT dT

dt dq dq
−

′
= 0 

 
for each parameter; this is the Lagrange equation for the parameter qi . 
 In his paper, Helmholtz routinely changed these notations.  The letter T is preserved 
in order to denote the absolute temperature; the semi-vis viva is then represented by L.  
The parameters are called pa, pb, …, and their derivatives with respect to time are 
represented by qa, qb, … 
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 The virtual work that is done by the internal forces of the system is distinguished 
from that of the external forces.  Helmholtz supposed that the internal force admits a 
force function – or potential energy – Φ; the work that this force does for a variation δpa 
of one of the parameters is: 

− 
a

d

dp

Φ δpa . 

 
 As for the external force that results from that variation, it is denoted by: 
 

− Pa δpa . 
 

 With these new notations, the Lagrange equation that relates to the parameter pa is: 
 

(1)     
a a

d dL dL

dt dq dp
− = −

a

d

dp

Φ − Pa . 

 
 
 311.  The potential energy Φ depends upon only the position of the molecules in the 
system; it is therefore a function of the parameters p, but not their derivatives q. 
 On the contrary, the kinetic energy L depends upon both the p and the q; it is 
homogeneous and of second degree with respect to the latter quantities.  Indeed, L, which 

is equal to ∑ mv2, is of degree – 2 with respect to time; thus, if one doubles the unit of 
time then the value of L will be quadrupled.  Now, pa does not vary under that change of 
unit, while qa must double; it is therefore necessary that each term in L must contain the q 
to the second degree. 
 As a result of that property of the function L, we will have: 
 

(2)      2L = a
a

dL
q

dq
∑ . 

 
 
 312.  Set: 
(3)      H = Φ – L 
and 
(4)      U = Φ + L; 
 
U is then the total energy of the system. 
 Upon differentiating the first of these equalities with respect to pa, we will get: 
 

a

dH

dp
= 

a a

d dL

dp dp

Φ − ; 

 
the derivation with respect to qa gives us: 
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a

dH

dq
= −

a

dL

dq
, 

 
since Φ does not depend upon the q.  We infer the derivatives of L with respect to pa and 
qa from these equalities and then substitute the values that we found into equation (1); we 
will then have: 

(5)      −
a a

d dH dH

dt dq dp
+ = − Pa . 

 Now set: 

(6)      −
a

dH

dq
= 

a

dL

dq
= sa ; 

 
sa and the quantities sb , …, which are defined by analogous equations, are functions of 
the p and q.  We can thus consider U to be a function of p and s, while H is always 
considered to be a function of the p and q.  The equalities (3) and (4) give us: 
 

U = H + 2L 
 
for that function U, or, from the relations (2) and (6): 
 

U = H + a aq s∑ . 

 
 It then results from that new equality, upon taking the total differential of the two 
sides, that: 

dU dU
dp ds

dp ds
+∑ ∑  = 

dH dH
dp dq s dq qds

dp dq
+ + +∑ ∑ ∑ ∑ . 

 
 However, from (6): 

dH
dq

dq
∑ = − s dq∑ ; 

 
consequently, the preceding equality will reduce to: 
 

dU dU
dp ds

dp ds
+∑ ∑  = 

dH
dp qds

dp
+∑ ∑ . 

 
 We deduce from this that: 

(7)      
a

dU

dp
= 

a

dH

dp
 

and 

(8)      
a

dU

ds
= qa . 
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 313.  The expression for the principle of conservation of energy is deduced 
immediately from the relations (7) and (8).  Those relations give us: 
 

 
a

dU

dp
= − ads

dt
− Pa , 

 

 
a

dU

ds
= qa = adp

dt
. 

 Consequently: 

 dU = 
dU dU

dp ds
dp ds

+∑ ∑  

  = − 
ds dp

P dp dp ds
dt dt

− +∑ ∑ ∑ , 

or 
dU = − a aP dp∑ . 

 
 The variation of the total energy of the system is thus equal to the work that is done 
on the system by external forces; it is indeed the statement of the principle of the 
conservation of energy. 
 
 
 314.  Hypotheses on the nature of the parameters. – Helmholtz assumed that the 
parameters that defined the situation of the system can be divided into two classes 
according to the manner by which they vary in time; those of the one class vary quite 
slowly, while those of the other vary quite rapidly.  We denote the former parameters by 
pa and the latter by pb . 
 That hypothesis seems very natural.  The molecular motions that are due to the 
heating of a body have velocities that are incomparably larger than the ones that we can 
communicate to the ensemble of the body.  The parameters that define the relative 
positions of the molecules thus vary rapidly; on the contrary, the ones that fix the position 
of the body in space have a slow variation. 
 
 
 315.  Helmholtz then made another hypothesis that might seem difficult to accept.  He 
assumed that the function Φ did not depend upon the parameters pb and that these 
parameters enter into the function L only by their derivatives qb . 
 One can then give come simple examples from elementary mechanics in which that 
hypothesis is found to be realized. 
 Therefore, consider a pulley that moves around its axis.  The position of the pulley 
can be defined by the angle pb that a fixed plane in space makes with a plane that passes 
through a point of the pulley and its axis; pb is then a system parameter.  The semi-vis 
viva of the system is equal to the product of the moment of inertia of the pulley with the 
square of its angular velocity.  The moment of inertia does not depend upon pb .  The 
angular velocity is qb = dpb / dt.  As a result, the semi-vis viva depends upon only qb and 
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not the parameter pb .  On the other hand, since the center of gravity of the pulley is on 
the rotational axis, the potential energy will not vary; it is therefore independent of the pb. 
 Take another example.  Consider a channel that is traversed by a liquid and suppose 
that the regime is established permanently.  One can define the position of the system by 
the angle pb that is defined by a diameter of the channel, which is fixed in space, and a 
diameter that passes through one of the liquid molecules.  However, neither the potential 
energy not the kinetic energy will depend upon that parameter because those quantities 
remain constant.  Indeed, once the permanent regime is established, a molecule will be 
immediately replaced with another one once the first one is displaced; in addition, the 
work that is done by internal forces is zero, and in turn, the potential energy will preserve 
the same value. 
 It results from these examples that the Helmholtz hypothesis is exact in the case of a 
body that rotates around an axis. It then seems applicable to the vorticial motions of the 
molecules.  Can it then be applied to the case in which the molecules of the body displace 
rectilinearly on one side and the other of a fixed point?  That is what we shall examine 
later on. 
 
 
 316.  We assume the Helmholtz hypothesis and continue to present the theory of that 
scholar. 
 Since Φ and L are assumed to be independent of the parameters pb, H will not depend 
upon them either.  From equation (5), we will then have: 
 

(9)      − 
b

d dH

dt dq
= − Pb , 

 
or, from the definition of the functions s: 
 

bds

dt
= − Pb .  

 
 The external work that corresponds to the parameter considered is − Pb dpb for a 
variation dpb of that parameter.  When expressed as a function of the time interval dt, that 

variation will be bdp

dt
dt, or qb dt.  Consequently, the external work can be written − Pb qb 

dpb .  Helmholtz set: 
dQb = − Pb qb dpb . 

 
If we replace Pb with its value that is inferred from the preceding equation in that equality 
then that will give: 

(10) dQb = qb
bds

dt
dt = qb dsb . 

 
 This is the equation that relates to the parameters that vary quite rapidly. 
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 We now occupy ourselves with the slowly-varying parameters, and show that the 

derivative 
b

d dH

dt dq
 can be neglected for them. 

 From the equalities (6), we have: 

b

dH

dq
= − 

b

dL

dq
. 

 
 Now, L is a homogeneous function of second degree with respect to the qa and qb ; 

a

dH

dq
will then be composed of terms of the form A qa′ qa″ and B qa′ qb .  As a result, the 

derivative 
a

d dH

dt dq
 of that quantity with respect to time will contain only terms of the 

form: 

a
a

dq
Aq

dt
′

′ , a
b

dq
Bq

dt
′ , b

a

dq
Bq

dt
′ . 

 
 However, since the parameters pa vary quite slowly, qa′ and qa″ will be very small, 
and the derivatives of these quantities with respect to t will likewise be very small; we 
can then neglect the terms of the first two forms, since they contain the product of two 
very small quantities.  We can likewise neglect terms of the third form, but on the 
condition that we suppose that the derivative dqb / dt of the finite quantity qb is very 
small.  (Therefore, if − to fix ideas − we return to the pulley that just served as an 
example for us then that will amount to supposing that the angular velocity of that pulley 
is very large, but reasonably constant.)  Having assumed that hypothesis, all of the terms 

in 
a

d dH

dt dq
 will be negligible. 

 We will then have: 

(11)     
a

dH

dp
 = − Pa , 

 
which is obtained by neglecting the first term in equation (5), as the equation that relates 
to the parameters pa. 
 
 
 317.  Monocyclic systems. – Helmholtz gave the name of monocyclic systems to the 
ones for which the number of rapidly-varying parameters reduces to 1; in the case where 
the number of these parameters is greater than 1, the system is polycyclic. 
 One has that dQ / L is an exact differential in all monocyclic systems. 
 In order to prove that property, first consider a monocyclic system whose situation is 
defined by just one rapidly-varying parameter that we can denote by p with no ambiguity. 
 In the relation (2): 

2L = a
a

dL
q

dq
∑ ; 
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qa denotes the derivative of an arbitrary parameter that varies rapidly or slowly.  
However, qa is very small for the latter, and the terms that correspond to it can be 
neglected.  All that then remains in the right-hand side is the term that corresponds to the 
parameter p; as a result: 

(12)     2L = q 
dL

dq
 = q s. 

 
 From the relation (10), one will have for dQ: 
 

dQ = q ds. 
 Consequently: 

(13)     
dQ

L
= 

2q ds

qs
= 2d log s; 

 
the quotient considered is then an exact differential precisely. 
 
 
 318.  Incomplete systems. – Helmholtz divided the polycyclic or monocyclic 
systems into two classes: complete systems and incomplete systems.  The latter are the 
ones for which the work – Pa dpa that corresponds to a non-zero variation of the one of 
the parameters pa is equal to zero. 
 For these systems, from equation (11), one will have as many equations: 
 

(14)     
a

dH

dp
= 0 

 
as there are parameters pa that enjoy the preceding property.  From the Helmholtz 
hypothesis, the function H does not depend upon the rapidly-varying parameters pb, and 
the derivatives of the qa can be neglected, so the equations that are analogous to (14) can 
be considered to be relations between the parameters pc, the parameters pa , and the 
derivatives qb .  Since they are the same in number as the parameters pc , they can then 
serve for us to express those parameters as functions of the pa and qb .  These parameters 
are thus not necessary in order to define the situation of the system; the parameters pa 
(which are deduced from the ones that we just denoted by pc) and the parameters pb will 
suffice for that. 
 Will the equations be changed when one takes only the parameters pa and pb to be the 
independent variable? 
 Call the expression for H under those conditions H′.  H′ depends upon pa and qb ; H 
depends upon pa , pc, and the qb . 
 Since H′ and H denote one and the same function when it is expressed in different 
variables, we will have: 

H′ = H. 
 
 Now, take the derivatives of the functions with respect to pa ; we will have: 
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a

dH

dp

′
= c

a c a

dpdH dH

dp dp dp
+∑ . 

 
 Now, from the relation (14): 

c

dH

dp
= 0; 

consequently: 

a

dH

dp

′
= 

a

dH

dp
. 

 
 The Lagrange equations that relate to the slowly-varying parameters thus keep the 
same form: viz., the form (11). 
 Take the derivative with respect to qb ; we will get: 
 

b

dH

dp

′
= c

b c b

dpdH dH

dq dp dq
+∑ , 

 
and, in turn, for the same reason as before, we will get: 
 

b

dH

dp

′
= 

b

dH

dp
. 

 
 It results immediately from that equality and the equalities (6) that the function sb 
remains the same regardless of whether the parameters pc enter explicitly in the number 
of the ones that define the situation of the system or they do not take part in it.  
Consequently, in one case or the other, the Lagrange equations that relate to the rapidly-
varying parameters will have the form (10): 
 

dQb = qb dsb . 
 
 Since the form of the equations will remain the same, it is obvious that in the case of 
a monocyclic system, the factor 1 / L will be an integrating factor for dQ. 
 
 
 319.  The incomplete systems thus differ only slightly from the complete ones.  
Nevertheless, it is a property that is important to distinguish. 
 The kinetic energy L is, in general, a homogeneous function of second degree in the 
qb and the qa ; in addition, it depends upon the slowly-varying parameters.  Now, we just 
saw that in the incomplete systems, one part of these parameters – viz., the parameters pc 
– are function of the qb and pa .  Consequently, if we replace the pc with their expressions 
as functions of qb in L then L will cease to be of second degree in the qb .  It can then be 
of odd degree with respect to these derivatives, and in turn, of odd degree with respect to 
time.  We will soon see the importance of that remark. 
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 The simplest example that one can cite is that of a pulley, on whose axis a regulator 
with the centrifugal force is mounted.  When the velocity of the pulley increases, the balls 
of the regulator will rise, and the moment of inertia of the system will increase. 
 The vis viva is not proportional to the square of the angular velocity then, since it is 
equal to the product of that square with the moment of inertia, which varies with that 
velocity. 
 
 
 320.  Application to calorific phenomena. – Assume, with Helmholtz, that the 
parameters pb refer to the molecular motions that are due to heat, and the parameters pa 
refer to the visible motions of the system. 
 As a result of that distinction between these diverse parameters, the equation: 
 

dU = − a ap dp∑  

of paragraph 313 will become: 
 
 dU = − a a b bp dp p dp−∑ ∑  

or 
 dU = − a a bp dp dQ+∑ ∑ . 

 
 Thus, from that relation, the variation of the internal energy is equal to the signed sum 
of the external work a ap dp∑  that is done by the visible motion and the external work − 

bdQ∑  that is done by the molecular forces.  Compare that expression for dU with the 

one that the principle of equivalence provides us with: The variation of the internal 
energy, when expressed in mechanical units, is the sum of the work and the heat dQ, 
when expressed in the same units, that are provided to the system.  One sees that the two 
stated variations will become identical when one assumes that: 
 

dQ = bdQ∑ ; 

 
i.e., if one assumes that the external work that is done by molecular forces, with the sign 
changed, is equivalent to the heat that is provided to the body during the transformation.  
The principle of equivalence will thus reduce to the general principles of mechanics when 
one considers the bodies to be composed of molecules that act upon each other, but we 
already know that. 
 
 
 321.  Now, consider a monocyclic system.  In that case, we know that: 
 

(15)    bdQ

L
 = exact differential. 
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 However, dQb is nothing but the heat (when expressed in mechanical units) that is 
provided to the system, since bdQ∑  will reduce to dQb for a monocyclic system.  In 

order to account for Carnot’s principle, it will then suffice to suppose that the temperature 
of the system is proportional to the kinetic energy L.  Since the terms in that energy that 
contain qa are negligible, moreover, that energy can be confused with the molecular 
kinetic energy. 
 Is it possible to assume that the absolute temperature of a system is proportional to 
the molecular kinetic energy?  The kinetic theory of gases shows that this is true for those 
bodies.  As we just saw, Helmholtz’s theory obliges us to assume that the same thing is 
still true for all other bodies. 
 From Carnot’s principle, which is regarded as having been proved experimentally, 
set: 

(16)     
dQ

T
= dS, 

 
in which S is the product of the entropy with the equivalent mechanical work.  Hence, dQ 
= dQb dS, and the differential (15) will be annulled at the same time.  The latter is then a 
function of S; set: 

  bQ

L
= ϕ (S). 

 We then set: 

bdQ

L
= ϕ′ (S) dS = ϕ′ (S)

dQ

T
, 

and in turn: 
L = T θ (S). 

 
 In order to determine θ, consider two systems for which the quantities L and S have 
the values L1 and S1 and L2 and S2, respectively. 
 We suppose that the two systems are at the same temperature T. That is necessary, 
since we would like to consider only reversible phenomena, for the moment. 
 We will then have: 

L1 = T θ1 (S1),  L2 = T θ2 (S2). 
 
 The values of these quantities for the ensemble of the two systems will be L1 + L2 and 
S1 + S2 .  We will then have: 

L1 + L2 = T θ3 (S1 + S2), 
and consequently: 

θ1 (S1) + θ2 (S2) = θ3 (S1 + S2). 
 
 Differentiate the two sides of that equality by S1; we will then have: 
 

1θ ′ (S1) = 3θ ′ (S1 + S2), 

 
and upon once more differentiating with respect to S2: 
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0 = 3θ ′′ (S1 + S2). 

 
We then deduce the value of θ3 (S1 + S2) from this: 
 

θ3 (S1 + S2) = a + b (S1 + S2), 
and as a result: 

θ1 (S1) = a′ + b S1 , θ2 (S2) = a″ + b S1 . 
 
 The three linear functions of θ1, θ2, θ3 thus differ by only the constant terms a, a′, or 
a″, but the coefficient b is the same for all of them. 
 Upon denoting the constants by a and b, we will then have that the former depends 
upon the nature of the body, while the latter is the same for all bodies: 
 

L = T (a + b S). 
 

 We just saw that the coefficient b must have the same value for any body that one 
considers.  As a result, b will be zero for all bodies, since that is true for gases.  The 
absolute temperature is thus always proportional to the molecular kinetic energy. 
 
 
 322.  Helmholtz’s theory, applied to vibratory motions. – As we have remarked, 
Helmholtz’s hypothesis (no. 318) is justified only in the case of vorticial motion.  Now, 
molecular motions seem to be vibratory motions about one side or the other of a fixed 
point.  Is the quotient dQ / T still an exact differential for this kind of motion?  We shall 
show that this property persists in the case of monocyclic systems, even when one 
abandons the hypothesis of paragraph 315. 
 If we abandon that hypothesis then the potential energy Φ will be a function of the 
rapidly-varying parameter p that we can write: 
 

(17)     Φ = 
2

2

Ap
+ C, 

 
in which A and C are functions of the pa.  Indeed, writing that equality amounts to 
neglecting the terms of higher degree than the second and suppressing the terms of first 
degree in the development of Φ in increasing powers of p.  Now, the coefficients of the 
terms of degree higher than the second are necessarily very small, and we can neglect 
these terms.  On the other hand, it is always possible to take the parameter p in such a 
way that it is zero when the molecule is at the mean of its oscillation; under those 
conditions, Φ will be of even degree with respect to p, and in turn, the first term of first 
degree will be zero. 
 The kinetic energy L is homogeneous and of second degree with respect to q and the 
qa; we can then set: 

(18)     L = 
2

2

Bq
, 
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in which B denotes a function of the pa, if we continue to suppose that the qa are very 
small. 
 
 
 323.  We seek the Lagrange equation that relates to the parameter p.  From one of the 
equalities (6), we will have: 

s = 
dL

dq
 = B q 

 
and consequently, for the desired equation: 
 

dBq dH

dt dp
+  = − P. 

 However: 
H = Φ – L, 

and in turn: 
dH

dp
= 

d dL

dp dp

Φ −  = A p ; 

 
the preceding equation can then be written: 
 

(19)     
dBq

Ap
dt

+  = − P. 

 
 If we suppose that the vibratory motion is stationary then P will be zero, and A and B 
will remain constant; consequently, that equation will become: 
 

dq
B Ap

dt
+  = 0, 

or 
2

2

d p
B Ap

dt
+  = 0. 

If we set: 
A = n2 B 

 
then one solution to that equation will be: 
 

p = h sin (nt + ω); 
 
we infer from this by derivation that: 
 

q = hn cos (nt + ω), 
 
and upon substituting that value q in the right-hand side of (18), we will get: 
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      L = 
2 2 2cos ( )

2

Bh n nt ω+
. 

 
 When one considers the system during a sufficiently long time with respect to the 
period of vibration, it will be the mean value of that quantity that intervenes; we must 
then take the expression: 

(20)     L = 
2 2

2

Bh n
 = 

2

4

Ah
 

 
to be the denominator of the ratio dQ / L. 
 
 
 324.  Now, suppose that the slowly-varying parameters change in value; in other 
words, suppose that the vibratory motion is not stationary, so P is non-zero.  Evaluate the 
work: 

δQ = − P dp∫  

 
that is provided by the exterior and relates to the rapidly-varying parameter during a time 
δt that is very small in absolute value, but nonetheless very large with respect to the 
period of vibration. 
 From equation (19), we will then have: 
 

δQ = 
dB dq

q dp B dp Ap dp
dt dt

+ +∫ ∫ ∫ . 

 
 The first of these integrals is performed easily.  Since the function B depends upon 
only the slowly-varying parameters, its derivative with respect to t will be small and 
slowly-varying; we can then consider it to be constant, as the integral to be evaluated will 
become: 

dB
q dp

dt ∫
 = 2dB

q dt
dt ∫

. 

 
Since the integration is taken over a very small time interval δt, the preceding integral can 
be replaced with the product of δt with the mean value h2 n2 / 2 of q2; we will then have: 
 

dB
q dp

dt∫ = 
2 2

2

dB h n
t

dt
δ = h2 n2 δB, 

 
in which δB denotes the variation of B during the time δt. 
 In order to get the other two integrals, develop A and B in increasing powers of t; 
upon supposing, for the moment, that we have taken the origin of time to be the start of 
the interval δt, we will then have: 
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 A = A + 
dA

dt
t + 

2

2

d A

dt
t2 …, 

 B = B + 
dB

dt
t + 

2

2

d B

dt
t2 … 

 
 However, since the time interval δt during which one considers the system is very 
small, it is pointless to take into account the terms of second degree and higher in t; in 
addition, we can regard dA / dt and dB / dt as constants during that interval.  We then get: 
 

dq
B dp

dt∫ = Bq dq∫  = 
dB

B q dq tq dq
dt

+∫ ∫ , 

Aqdq∫ = 
dA

A p dp tp dp
dt

+∫ ∫  

 
for the integrals to be evaluated. 
 
 
 325.  We can choose the time interval δt in such a manner that p is zero at the start 
and finish of that interval; q will then be equal to nh at those two instants.  Under those 
conditions: 

B q dq∫  = B d 
2 2

2

n h
 

and 

A p dp∫ = 0. 

 
 Upon integrating by parts, the other two integrals can be written: 
 

 
dB

tq dq
dt ∫

 = 
2 2

2 2

dB tq q
dt

dt

 
− 

 
∫ , 

 

 
dA

tp dp
dt ∫

 = 
2

2

2

dA p
tp dt

dt

 
− 

 
∫ , 

 
and one will easily see that the first of them has the value: 
 

2 2 2 2

2 4

dB n h n h
t t

dt
δ δ 

− 
 

 = δB
2 2

4

n h
, 

 
while the second one has the value: 
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2

0
4

dA h
t

dt
δ 

− 
 

 = − δA
2

4

h
. 

 
 Consequently, upon replacing the δQ in the integrals with their values, we will get: 
 

δQ = 
2 2 2 2 2 2 2

2 2 4 4

n h n h n h h
B B B Aδ δ δ δ+ + + , 

or 

δQ = 3 δB
2 2 2 2 2

4 2 4

n h n h h
B Aδ δ+ − . 

 
 Divide that equality L, whose values are given by the equalities (20); we will then 
have: 

Q

L

δ
= 3

2 2

2 2
2

B n h A

B n h A

δ δ δ+ − . 

 
 Since each of the terms in the right-hand side is the derivative of a logarithm, the sum 
of these terms is the derivative of the logarithm of the product; it is therefore an exact 
differential.  Consequently, Clausius’s theorem is also indeed proved in the case of a 
vibratory state of molecules, as well as in the case of a vorticial state. 
 
 
 326.  Irreversible phenomena. – Let us return to Helmholtz’s theory.  First of all, it 
seems that it cannot take irreversible phenomena into account. 
 Consider the function H.  As we know, it is a function of the p and q; the latter 
quantities enter into it in the second degree, since H = Φ – L, and Φ does not depend 
upon the q, while L contains these quantities in the second degree.  When one changes the 
sign of time – i.e., when one returns the system to its initial state – the p will not change 
sign, but the derivatives q = dp / dt will change in sign.  However, since these quantities 
appear in the second degree in H, the latter function will keep the same value.  Now, the 
equations that define the state of the system at each instant can be put into the form (5): 
 

− 
a a

d dH dH

dt dq dp
+  = − Pa . 

 
Its first term does not change in value when dt becomes negative, since dqa changes in 
sign at the same time, and we just saw that H keeps the same value; as for the other 
terms, they will not change in value either.  These equations will thus remain the same for 
any sign of dt.  As a result, when the system returns to its initial state, it will again pass 
through precisely the same states that it took upon starting in the initial state; the 
transformations are thus reversible. 
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 327.  However, we have see that in the case of incomplete systems, L can be 
expressed by a function that is of third degree in the q.  As a result, L will change value 
with the sign of dt under these conditions.  Irreversible phenomena can then take place 
with the incomplete systems; that is what Helmholtz assumed. 
 However, that illustrious physicist likewise appealed to another interpretation that is 
analogous, moreover. 
 Suppose that the quantities Pb are zero for some of the rapidly-varying parameters pb ;  
we denote these parameters by the notation pc . We will then have: 
 

dsc = c

c

dQ

q
= − Pc dt = 0. 

 
The sc are thus constants that I call 0

cs .  The relations: 

 
sc = 0

cs  

 
permit me to eliminate the quantities qc and keep only the pa and qb (but not the qc) as 
independent variables. 
 Now, denote the partial derivatives that are calculated with the old system of 
variables pa, qb, and qc by d, and let δ denote the partial derivatives that are calculated 
with the new variables pa and qb . 
 Moreover, set: 

H′ = H + 0
c cs q∑ ; 

one will get: 

a

H

p

∂
∂

= c

a c a

qdH dH

dp dq p

∂+
∂∑ = c

c
a a

qdH
s

dp p

∂−
∂∑ = 0 c

c
a a

qdH
s

dp p

∂−
∂∑ , 

 

a

H

p

′∂
∂

= 0 c
c

a a

qH
s

p p

∂∂ +
∂ ∂∑ , 

so 

a

H

p

′∂
∂

= 
a

dH

dp
.  

 Moreover, we will have: 

b

H

q

∂
∂

 = 0 c
c

b b

qdH
s

dq q

∂−
∂∑  

and 

b

d H

dt q

∂
∂

 = 
0

0 c c c
c

b b b

q ds qd dH d
s

dt dq dt q dt q

∂ ∂− −
∂ ∂∑ ∑ , 

and since: 

sc = 0
cs , cds

dt
= 0, 

it will become: 
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b

d H

dt q

∂
∂

= 0 c
c

b b

qd dH d
s

dt dq dt q

∂−
∂∑ . 

 Likewise: 

b

d H

dt q

′∂
∂

= 0 c
c

b b

qd H d
s

dt q dt q

∂∂ +
∂ ∂∑ ; 

therefore: 

b

d H

dt q

′∂
∂

= 
b

d H

dt q

∂
∂

. 

 Our equations then become: 
 

a

H

p

′∂
∂

= − Pa, 
b

H
d

q

′∂
∂

= − qb dQb . 

 
 They thus keep the same form.  If the number of rapidly-varying parameters other 
than the pc is reduced by 1 then the systems will be monocyclic; however, the integrating 
factor will no longer be 1 / L, but 1 / qb sc . 
 The relations sc = 0

cs  are not homogeneous with respect to q, since the left-hand side 

is of first degree and second has degree 0. 
 It then results from the elimination of the qc that L will no longer be homogeneous of 
second degree in the q and that H can contain terms of odd degree with respect to these 
quantities. 
 The equations then cease to be reversible – i.e., to remain invariant when one changes 
the sign of the time. 
 Helmholtz referred to motions that correspond to the parameters pb for which Pb is 
zero as hidden motions, so the irreversibility of the phenomena must then be attributed to 
the existence of hidden motions in the system.  The simplest example of such a system is 
the Foucault pendulum.  In that case, the hidden motion is that of the Earth; that is the 
motion that prevents the pendulum from passing through the positions that it previously 
occupied in the opposite sense and destroys the reversibility of the phenomenon. 
 
 
 328.  That explanation of irreversible phenomena might seem satisfactory.  In my 
view, it does not account for all of thermodynamic phenomena.  Let me show you that. 
 Consider a system that is devoid of any external action.  In this case, the Pa are zero, 
and we will get: 

(21)     
ds dH

dt dp
+  = 0, 

s = − dH

dq
 

 
for the equations that relate to one parameter, upon suppressing the indices. 
 From the relations (2), (3), and (4), we will have: 
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U = H + 
dL

q
dq

∑ , 

or, upon taking (6) into account: 
U = H + qs∑ . 

 
 Consider U as a function of p and s; we will get: 
 

 
dU

dp
= 

dH

dp
, 

 
dU

ds
= q 

 
for the partial derivatives of that function, or from equation (21) and the significance of q: 
 

(22)    
dU

dp
= − ds

dt
,  

dU

ds
= 

dp

dt
. 

 
 Since the system is isolated, its entropy can diminish; as a result, ds / dt must be 
positive when t increases. 
 Now, we can consider S to be a function of s and p.  We will then have: 
 

dS

dt
= 

dS ds dS dp

ds dt dp dt

 
+ 

 
∑ , 

 
or, upon replacing ds / dt and dp / dt with their values that are inferred from equations 
(22): 

dS

dt
= 

dS dU dS dU

ds ds ds dp

 
− 

 
∑ . 

 
 Consequently, the condition that the system must satisfy is: 
 

(23)    
dS dU dS dU

ds ds ds dp

 
− 

 
∑  > 0, 

 
and that inequality must be satisfied for all values of p and s. 
 We shall see that this is not always true. 
 
 
 329.  Indeed, it is possible to imagine a system for which S passes through a 
maximum.  Since S cannot decrease, that quantity will remain constant when it attains its 
maximum value, which is a value for which the system will be in equilibrium.  We can 
suppose that this state corresponds to zero values of s and p, since if those variables have 
values s′ and p′ that are non-zero then it will suffice to set: 
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s = s′ + s″, p = p′ + p″, 
 
and to take s″ and p″ be new variables for which the variables are zero in the equilibrium 
state.  We can likewise suppose that U and S are zero for that state, since these functions 
contain an arbitrary constant. 
 Develop S in increasing powers of the variables. 
 The first term of that development will be zero, from the preceding hypothesis.  The 
set of terms of first degree in s and p is also zero, since S will pass through a maximum 
when s = p = 0; for that reason, the set of terms of second degree will be negative.  
Consequently, if we neglect the terms of degree higher than second then S will be a 
negative quadratic form of s and t; we can thus decompose it into squares whose 
coefficients are all negative. 
 Likewise, develop the function U; the constant term in the development will be zero.  
The same thing will again be true for the set of terms of first degree.  Indeed, since the 
system is in equilibrium: 

ds

dt
= 0  and 

dp

dt
= 0, 

 
and as a result of equation (22): 
 

dU

dp
= 0 and 

dU

ds
= 0. 

 
 Upon neglecting the terms of degree higher than second in the development, U will 
then reduce to a quadratic form in s and p. 
 
 
 330.  Since the functions S and U are quadratic, their partial derivatives with respect 
to the variables of first degree, and in turn, the left-hand side of the inequality (23), will 
be quadratic functions.  In order for that inequality to always be satisfied, it is necessary 
that this quadratic function must be put into the form of a sum of squares whose 
coefficients are positive.  It can then be annulled only for s = p = 0. 
 Now, consider the function – U / S.  It is homogeneous and of degree zero in p and s.  
One can then multiply s and p by the same arbitrary factor without changing the value of 
that function.  One can take advantage of always making these variables smaller than a 
certain quantity; i.e., a finite one.  U and S will then finite for any given values of the 
variables, and – U / S can become infinite only if S is zero.  However, since S is a 
negative quadratic function, it cannot be annulled.  Thus, − U / S cannot become infinite, 
and it must present a maximum, which we denote by λ, for some system of values for s 
and p other than s = p = 0. 
 For these values of the variables that correspond to that maximum, one will have: 
 

/

/

dU ds

dS ds
 = 

U

S
= − λ; 

as a result: 
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dU

dS
= − λ 

dS

ds
. 

 One similarly has: 
dU

dp
= − λ 

dS

dp
. 

 
 If we substitute these values of dU / ds and dU / dp in the left-hand side of the 
inequality (23) then it will be annulled.  The quadratic function that it is equal to can then 
be annulled for non-zero values of p and s.  As a result, none of the coefficients of the 
squares are positive, and the function can be negative. 
 The Helmholtz equations can thus explain the increase in entropy that is produced in 
isolated systems that are subject to irreversible transformations. 
 It results from this that irreversible phenomena and Clausius’s theorem cannot be 
explained by means of the Lagrange equations. 
 
 
 331.  The explanation for reversible phenomena is still not complete.  In particular, 
one must explain why there is no transfer of heat from one body to another when two 
bodies at the same temperature are in contact.  One is indeed tempted to give an 
explanation.  One compares the two bodies with two pulleys whose rotational velocities 
are equal.  When one links these pulleys, there is no impact, and as a result, no 
transmission of vis viva from one to the other.  When one puts the two bodies in contact, 
there are no longer any impacts between molecules, since they possess the same velocity 
in the two bodies, since the temperatures are the same.  However, this explanation is far 
from satisfactory. 
 
 
 332.  The work of Boltzmann. – To the names of Helmholtz and Clausius, we must 
add that of Boltzmann.  Among the papers of the latter scholar on the subject that we are 
occupied with, we point out only his proof of the Helmholtz hypothesis. 
 Boltzmann once more separated the parameters of the system into two classes: viz., 
the slowly-varying parameters and the rapidly-varying ones, but he no longer supposed 
that H was independent of the latter.  He decomposed the total system into a large 
number of systems for which the period was the same, but the phases were different.  
Upon considering that ensemble of systems, Boltzmann showed that everything happens 
as if H did not depend upon the rapidly-varying parameters; the Helmholtz hypothesis 
was thus found to be justified.  From this viewpoint, the work of Boltzmann must be 
pointed out here. 
 
 
 333.  All of the attempts of that nature must then be abandoned; the only ones that 
have any change of success are the ones that are founded upon the intervention of 
statistical laws, such as, for example, the kinetic theory of gases. 
 That viewpoint, which I shall not develop here, can be summarized in a somewhat 
vulgar fashion as follows: 
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 Suppose that we would like to place of an oat grain in the midst of a pile of wheat; 
that would be easy.  Suppose that we would then like to recover it and remove it; we 
could not succeed in doing that.  For certain physicists, all irreversible phenomena are 
constructed from this model. 
 

FIN 
 

 
 
 
 


