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Hertz’'s ideas on mechanics
By Henri Poincaré

Translated by D. H. Delphenich

In 1890, the great electrician Hertz had arrived at the apoges gfony. All of the
European academies had lavished all the awards upon him that theyghed tthe entire
world hoped that there would be many years ahead for him and that they waadd be
brilliant as the ones that he began with.

Unfortunately, the iliness that was to take him from us so pregigthad already been
contracted, and his experimental activity soon slackened and akmoséd completely.
He barely had enough time to install his new laboratory in Bonn. Vanladies
impeded him, as well as depriving us of the discoveries that hegadita make.

He further contributed to the physical sciences by the enormousnicéuéat he
exerted and the advice that he gave to his students. Howevéné ikat that period was
distinguished by only a single personal discovery of surpassing importanoelynthe
transparency of aluminum to cathode rays.

However, although he was thus cruelly diverted from the studiekabldieen so dear
to him, nonetheless, he did not remain inactive. Perhaps his dsisgyed him, but his
intellect remained, and he applied it to some profound reflectioneeophilosophy of
mechanics. The results of those reflections were published inttaupasis book, and |
would like to summarize them and discuss them briefly here.

Hertz first criticized the two principal systems that haeinberoposed up to now, and
that | shall call thelassical system and theenergetic system, and he proposed a third one
that | shall call thédertzian system.

|. —THE CLASSICAL SYSTEM .
8 1. — Definition of force.

The first attempt at coordinating the facts of mechanidsisne that we shall call the
classical system. According to Hertz, it is:

“...the royal route whose principal stations bear the names of
Archimedes, Galileo, Newton, and Lagrange.”

“The fundamental notions that one finds at the point of departure are
those ofspace, time, force, andmass. In that system, force is regarded as
the cause of motion; it exists in advance of the motion and is independent
of it.”



Poincaré — Hertz's ideas on mechanics. 2

I would like to explain the reasons why Hertz was not satisfvgh that way of
considering things.

First, one has the difficulties that one encounters when one wishdsfine the
fundamental notions. Whatmsass? Newton responded, “it is the product of volume with
density.” — Thomson and Tait responded, “it would be better to say thsitydés the
guotient of mass by volume.” — Whatf@ce? Lagrange responded, “it is a cause that
produces the motion of body or tends to produce it.” — Kirchhoff said tlite product of
mass timescceleration.” But then, why does one not say that mass is the quotient of force
by acceleration?

Those difficulties are inextricable.

When one says that force is the cause of a motion, one is dedhngetaphysics, and
if one accepts that definition then it would be absolutely stetiieorder for a definition
to be useful, it must tell one how taeasure the force. If it can do that, moreover, then it
would not at all be necessary for it to tell one what foragatignsically nor whether it is
the cause or the effect of motion.

One must first define the equality of two forces then. When doessay that two
forces are equal? It is, one answers, when they are applibd saiine mass and they
impart the same acceleration upon it or when they are directly apfmeach other and it
is found to be in equilibrium. That definition is only an illusio®@ne cannot unhook a
force that is applied to one body in order to hook it up with ano#isegne unhooks a
locomotive in order to couple it with another train. It is thereimpossible to know what
acceleration a force that is applied to one body would impart upohearbmidyif it were
applied to it. Itis impossible to know how two forces that arelimettly opposed to each
other would behavd they were directly opposed.

That is the definition that one seeks to materialize, so-takspenen one measures a
force with a dynamometer or by equilibrating it with a weight.oTercesF andF , which
| shall suppose to be vertical and point from down to up, for simplaie applied to two
bodiesC andC". | first suspend the same heavy b&dyom the bodyC and then from the
bodyC". If there is equilibrium in both cases then | conclude that tbddveesF andF’
are equal to each other, since they are both equal to the wetgbthudidyP.

But am | sure that the bod® has kept the same weight when | transport it from the
first body to the second? Far from that being trwaen certain of the contrary. | know
that the intensity of gravity varies from one point to another, artdttisgastronger, for
example, at the poles than at the equator. Without a doubt, theedde is quite weak,
and in practice, | would not take it into account. However, lkawastructed definition
must be mathematically rigorous: That rigor does not exist hEnat is why | say that
weight obviously applies to the force of the spring in a dynamonieiethat temperature
and a host of circumstances can make that vary.

But that is not all. One cannot say that the weight of the Bagapplied to the body
C and equilibrates the for¢edirectly. What is applied to the bo@yis the actiorA of the
body P on the bodyC. The bodyP is, in its own right, subject to, on the one hand, its
weight, and on the other, the react®Rof the bodyC onP. By definition, the forced is
equal to the forcé, because it equilibrates it. The forkas equal taR by virtue of the
principle of the equality of action and reaction. Finally the fétee equal to the weight
of P, because it equilibrates it. It is from those three edgeslihat we deduce the equality
of F and the weight oP as a consequence.
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We are then obliged to introduce the principle of the equality afraend reaction
itself into the definition of the equality of two forcekn that respect, that principle must
not be regarded as an experimental law, but as a definition.

We then come down to Kirchhoff's definitioRorce is equal to mass, multiplied by
acceleration. That “law of Newton,” in turn, ceases to be regarded ag@arienental law,
since it is now just a definition. However, that definitionlsoansufficient, since we do
not know what mass is. Without a doubt, it permits us to caécthiatrelationship between
two forces that are applied to the same body at different instauttd, tells us nothing
about the relationship between two forces that are applied toiffecedt bodies.

In order to complete it, one must again resort to Newton’s kwvdviz., the equality
of action and reaction), which is further regarded, not as an exgmal law, but as a
definition. Two bodie#\ andB act upon each other. The acceleratioA,ahultiplied by
the mass oA, is equal to the action & onA. Similarly, the product of the acceleration
of B times its mass is equal to the reactiolAadn B. Since the action is equal to the
reaction, by definition, the massesfadindB are inversely proportional to the accelerations
of those two bodies. The ratio of those two masses is themedefand it is up to
experiments to verify that the ratio is constant.

That will indeed be the case if the two bodéeandB are the only ones present and
abstracted from the action of the rest of the world. Nothindhefsort is true: The
acceleration ofA is not due to solely the action Bf but to the action of a host of other
bodiesC, D... In order to apply the preceding rule, one must then decompose the
acceleration oA\ into several components and discern which of those components is the
one that is due to the action®&f

Furthermore, that decomposition will be possible ifasgime that the action o€ on
Ais simply added to that & onA without the presence of the bo@ynodifying the action
of B onA or the presence & modifying the action o€ onA. Consequently, if we assume
that two arbitrary bodies attract each other than their muttiahagill point along the line
that connects them and depend upon only their separation distance. th ihweassume
the hypothesis of central forces.

One knows that in order to determine the mass of celestial bodesnust appeal to
an entirely different principle. The law of gravitation tellsthat the attraction of two
bodies is proportional to their massesr i their distancen andm’ are their masses, and
k is a constant then their attraction will be:

kmm'
r2

What one measures then is not the mass — i.e., the ratio eftéoacceleration — but
the mass of attraction. That is not the inertia of the bodyit<attracting force.

That is an indirect procedure whose use is not theoreticallgpensable. It might
very well be the case that the attraction is inversely proportiondie square of the
distance without being proportional to the masses, which would megaat to:

f

r2
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but without one having:
f=kmm’

If that were true then one could nonetheless measure the méskese bodies by
observing theelative motions of the celestial bodies.

But do we have the right to assume the hypothesis of central foicés&t hypothesis
rigorously exact? Is it certain that it will never be contradidy experiments? Who dares
to assert that? Moreover, if we must abandon that hypothesis thentitieeedifice that
was raised so laboriously would collapse.

We no longer have the right to speak of the component of the adosleraA that is
due to the action d. We have no means for discerning what is due to the actiGroof
some other body. The rule for measuring the masses will then becapplicable.

What does the principle of the equality of action and reaction thenpes? If one
rejects the hypothesis of central forces then that principle ofwsbusly be stated thus:
The geometric resultant of all of the forces that are apfdidte various bodies of a system
that is isolated from any external action will be zero, ogtiver wordsthe motion of the
center of gravity of that systemwill be uniform and rectilinear.

It seems that one has a means for defining mass in that: Thierpos$ithe center of
gravity obviously depends upon the values that one attributes to the mé&ssesnust
arrange those values in such a fashion that the motion of that cegterity is uniform
and rectilinear. That will always be possible if Newton’sdaw is true, and that will be
possible in only one way, in general.

However, systems that are isolated from all external actiotexist. All of the parts
of the universe exert a more or less strong effect on all ofthiee parts.The law of motion
of the center of gravity isrigorously true only if one appliesit to the entire universe.

However, one would then have to observe the motion of the center dygrhtihe
universe in order to infer the values of the masses. The atysofdhat conclusion is
obvious. We only know about its relative motions. The motion of theicehgravity of
the universe will remain eternally unknown to us.

Nothing remains then, and our efforts have been fruitless. ¥hem forced to make
the following definition, which is only a confession of our powerlessndssses are
convenient coefficients to introduce into the calculations.

We can reconstruct all of mechanics by attributing differentegato all masses. That
new mechanics will not contradict either experiments or the ggraraiples of dynamics
(e.g., the principle of inertia, proportionality of masses andlations, equality of action
and reaction, uniform, rectilinear motion of the center of grapiiyciple of areas).

However, the equations of that new mechanics willesesimple. Note well: It will
be only the first terms that will be less simple — i.e.,ahes that experiment has already
made known to us. Perhaps one can alter the masses of smalliegiantiiout the
complete equations gaining or losing any simplicity.

| have insisted upon discussing that point much longer than Hertz hirkkaMfever,
| wanted to show that Hertz did not seek to have simply a Gegoerel with Galileo and
Newton. We must conclude that with the classical systems,impossible to give a
satisfactory conception to force and mass.
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§ 2. Various objections.

Hertz then demanded to know whether the principles of mechanicgausly true.
He said:

“In the opinion of many physicists, it would seem inconceivable that
even the most extensive experiments could ever change anything about the
unwavering principles of mechanics, and anyway that type of experiment
can always be rectified by experiments.”

From what we said, those fears seem superfluous. The prinzilgsamics initially
seem to be experimental truths to us. However, we have beerdaoligppeal to appeal
to them as definitions. It igy definition that force is equal to the product of mass times
acceleration. That is a principle that is henceforth placed belierréach of any ultimate
experiment. Similarly, it is by definition that action is equaleaction.

But then, one says, those unverifiable principles will be absolutelgidief any
significance. Experiments cannot contradict them, but they can ginethisg useful.
Why should one study dynamics then?

That condemnation very rapidly proves to be unjustified. There angerhectly
isolated systems in nature, namely, ones that are perfecthacbdtfrom any external
action. However, there aatmost isolated systems.

If one observes such a system then one can study not only the nedativa of its
various parts with respect to each other, but the motion of iteragfigravity with respect
to the other parts of the universe. One then confirms that dtiermof that center of
gravity isalmost uniform and rectilinear, which conforms to Newton’s third law.

That is an experimental truth, but it could be invalidated by expetimWhat would
we learn from a more precise experiment? It would tellhat the law was only
approximately true; however, we knew that already.

One now explains how experiments can serve as the basis for the principles of
mechanics and still never contradict them.

But let us return to Hertz's argument. The classical sysencomplete, because not
all of the motions that are compatible with the principles of dyosuarie realized in nature,
or even realizable. Indeed, is it not obvious that the principleeasaand the motion of
the center of gravity are not the only laws that govern natural phe@@mendoubtedly,
it would be unreasonable to demand that dynamics should embracetladl lafvs of
physics that were discovered or could be discovered in the samgldorHowever, it is
no less true that one must regard a system of mechanics in WRigirinciple of the
conservation of energy is passed over in silence as incomplete anctiesuff

Hertz concluded:

“It is true that our system embraaknatural motions, but at the same
time, it embraces mangther ones that are not natural. A system that
excludes some of those motions would better conform to the natunegsf th
and would consequently constitute an advance.”
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Such a thing would be, for example, the energetic system that Westak of later on,
in which the fundamental principle of the conservation of energy iednted quite
naturally.

Perhaps one can very well understand what prevents one from quite a@ding that
fundamental principle to the other principles of the classicatsyst

However, Hertz posed another question:

The classical system gives us an image of the external wiertbat imageimple? Is
one spared the existence of parasitic traits that are introdugigcudy along with the
essential traits? Are the forces that we are led to inteodattruly useless gears that turn
in a vacuum?

A piece of iron rests upon a table. An observer is not preventedoiebaeving that
since there is no motion, there is no force. How wrong he wouldPbgkics teaches us
that every atom of iron is attracted by all of the other atontkeofiniverse. Moreover,
each atom of iron is magnetic, and consequently subject to the actiththef magnets in
the universe. All of the electric currents in the world alsbupon that atom. (I shall
overlook the electrostatic forces, molecular forces, etc.)

If one of those forces were to act alone then their action viieubhormous; the piece
of iron would shatter. Fortunately, they act together, and they extaafance in such a
way that nothing of sort happens. Our observer who sees only a piece af rest will
obviously conclude that those forces exist only in our imagination.

Undoubtedly, there is nothing absurd about any of those suppositions, but ategstem
eliminates them will be better than ours, by that fact alone.

It is impossible to not be struck by the scope of that objectidoreover, in order to
show that is it not purely artificial, it will suffice fane to recall the memory of a polemic
that has existed for some years between two entirely eminenaschalamely, Helmholtz
and Bertrand — in regard to the mutual actions of currentstaBdrtwho sought to translate
Helmholtz’s theory into classical language, collided with some uld®lcontradictions.
Each element of current must be subject to a couple. Howeveupkeds composed of
two parallel forces that are equal and oppositely directedrad calculated that each of
those two components must be considerable and large enough to lead ttrticti@esf
the wire, so he concluded that one must reject the theory. Oorttiary, Helmholtz, who
was an advocate of the energetic system, did not see any difficulty.

Therefore, according to Hertz, the classical system musbdredoned, because:

1. A good definition of force is impossible.
2. ltisincomplete.

3. ltintroduces parasitic hypotheses, and those hypotheses can oftetegpuely
artificial difficulties that are meanwhile large enough to idgeven the best minds.
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. - THE ENERGETIC SYSTEM.
8§ 1. — Various objections.

The energetic system was born as a result of the discovehe gdrinciple of the
conservation of energy. It was Helmholtz who gave it its definfove.

One begins by defining two quantities that play the fundamental rotbatitheory.
Those two quantities are: On the one handkithetic energy, orvisviva, and on the other
hand, thepotential energy.

All of the changes that bodies in nature can submit to are govermed byperimental
laws:

1. The sum of the kinetic energy and the potential energy is consihat. is the
principle of the conservation of energy.

2. If a system of bodies is in the situat®mt the instant, and in the situatioB at
the instant: then it will always go from the first situation to the second one jpgth such
that themean value of the difference between those two types of energy ovéintbe
interval that separates the two instaa@ndt is as small as possible.

That is Hamilton’s principle, which is one form of the principldeast action.
The energetic theory presents the following advantages over theatlédssory:

1. It is less incomplete: i.e., the principles of the conservaof energy and
Hamilton’s principle tell us more than the fundamental principlethefclassical theory
and exclude certain motions that nature does not realize that wowdpatthle with the
classical theory.

2. It allows us to dispense with the hypothesis of atoms, whiclahwest impossible
to avoid with the classical theory.

However, it raises some new difficulties, in turn. Befopeaking of Hertz's
objections, | would like to point out two that come to my mind:

The definitions of the two types of energy raise difficulties #natalmost as great as
the ones that are raised by force and mass in the formemsy8ieanwhile, one can infer
those definitions more easily, at least in the simplest cases

Suppose that an isolated system is composed of a certain nunmbateofal points.
Suppose that those points are subject to forces that depend upon ongfdtied positions
and the mutual separation distances but are independent of their @slo@ir virtue of
the principle of the conservation of energy, one must have a masisfunc

In that simple case, the statement of the principle of cortgarvaf energy is one of
extreme simplicity. A certain quantity that is accesstioleexperiment must remain
constant. That quantity is the sum of two terms: The first onendspgpon only the
positions of the material points and is independent of their velocilibs. second one is
proportional to the square of those velocities. That decomposition eacdraplished in
only one way.
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The first of those terms, which | will cadll, will be the potential energy. The second
one, which | will callT, will be the kinetic energy.
It is true that ifT + U is constant then the same thing will be true for an arbitrary
function of T + U :
g(T+U).

However, that functiom (T + U) will not be the sum of two terms, one of which is
independent of velocities, and the other of which is proportional to theesqtiinose
velocities. Among the functions that remain constant, there isay@ythat enjoys that
property: namelyT + U (or a linear function of + U, which will change nothing, since
that linear function can always be reduced toU by a change of unit and origin). That
is what we shall call the energy. It is the first ternt thxa shall call the kinetic energy and
the second one that we shall call the potential energy. The efioftthose two types of
energy can them be pushed up to the limit with no ambiguity.

The same thing is true for the definition of mass. The kimgBrgy — ovisviva— is
expressed very simply with the aid of the masses and relatloeities of all material
points with respect to each other. Those relative velocitieacaessible to observation,
and when we have an expression for the kinetic energy as a functibasef relative
velocities, the coefficients of that expression will give usniasses.

Hence, in that simple cases, one can define the fundamentaiwith no difficulty.
However, the difficulties will reappear in the most complidatases, if, for example, the
forces depend upon the velocities, instead of upon only the distararesxafple, Weber
supposed that the mutual action of two electric molecules depends upon ynoheonl
distance between them, but their velocities and acceleratibtige rhaterial points attract
each other according to an analogous law thevill depend upon the velocity, and it can
contain a term that is proportional to the square of the velocity.

Among the terms that are proportional to the squares of the wedodibw can one
discern the ones that are providedibyr U ? How does one consequently distinguish the
two types of energy?

But there is more: How does one define energy itself? We no lbagerany reason
to takeT + U to be the definition, rather than any other functioh fU, when the property
that characterize® + U disappears, namely, that it is the sum of two terms of acphati
form.

But that is not all: One must take into account not just the mexciamergy, properly
speaking, but the other forms of energy, such as heat, chemiag/},exlectric energy, etc.
The principle of the conservation of energy is then written:

T+ U +Q = const.

in which T represents the observable kinetic eneldjyyepresents the potential energy of
position, which depends upon only the positions of the bodiesQaisdthe internal
molecular energy, which can take the form of thermal, chemicealgotrical energy.

Everything would be fine if those three terms were absolutelyndistnamely, ifT
were proportional to the square of the velocitiésyere independent of those velocities
and the state of the body, aQdwere independent of the velocities and positions of the
bodies, but dependent upon only their internal states.
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The expression for energy could be decomposed into three terms fairthan only
one way.

However, that is not the case. Consider the charged bodieslethesatic energy
that is due to their mutual action will obviously depend upon their charges upon their
states. If those bodies are in motion then they will act upon ether electrodynamically,
and the electrodynamical energy will depend upon not only their states amnohgpbut
upon their velocities.

We would no longer have any means of sorting out the terms thabetosg toT, U,
andQ then, and thus to separate the three types of energy.

If (T +U + Q) is constant then the same thing will be true for an arpiftarction:

P(T+U+Q).

If T+U +Q has the special form that | envisioned above then no ambiguityesilt.
Among the function® (T + U + Q) that remain constant, there will be only one of them
that has the special form, and that will be the one that | &gl energy.

However, as | said, that is not rigorously true. Among the functioaisremain
constant, there are none that can be put into that special forrustyor Moreover, how
does one choose the one that must be called energy? We no longer Hang émgt can
guide us in our choice.

It only remains for us to state the principle of the consemwatf energyThere is
something that remains constant. In that form, it is, in turn, found to be beyond the scope
of experiments and reduces to a sort of tautology. It is dleaiftthe world is governed
by laws then there will have to be quantities that remain constdmihgs like Newton’s
principles, and for an analogous reason, the principle of the consergbénergy, which
are based upon experiments, can no longer be confirmed by them.

That discussion shows that one has made some progress upon passingdssia
system to an energetic system. However, at the sameittish@ws that this progress is
insufficient.

Another objection seems much more serious to me: The prinfigast action applies
to reversible phenomena. However, it is not remotely satisBethraas irreversible
phenomena are concerned. Helmholtz’'s attempt to extend to thabtlasenomena did
not succeed, nor can it succeed. Everything remains to be donerigsihexit.

There are other objections of an almost metaphysical order émtt developed at
length.

If the energy isnaterialized — so to speak — then it must always be positive. Now, there
are cases in which it difficult to avoid considering negative endrgy.example, consider
Jupiter orbiting around the Sun. The total energy will have the expmessi

b
av-=+c,
Tr

in whicha, b, c are three positive constantsis Jupiter’s velocity, andis its distance to
the Sun.

Since we can choose the constante can suppose that it is large enough to make the
energy positive. That is already something arbitrary that should comeleck.
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But there is more: Now, imagine that a celestial body of an engmmass and an
enormous velocity traverses the solar system. When it hagighssegh and once more
gone out to an immense distance, the orbits of the planets will haveshbjected to
considerable perturbations. For example, we can imagine that jiveaxia of Jupiter has
become very small, but that its orbit remains reasonably circilarmatter how big the
constant might be, if the new major axis is very small then the expression:

b
av--+c
Tr

will become negative, and one will see the difficulty reappeamtbdelieve to be obvious
by giving a large value to

In summary, we cannot insure that energy will always remainiyasit

On the other hand, in order neaterialize the energy, one musbcalize it. For the
kinetic energy, that is easy, but the same thing is not truadquotential energy. Where
does one localize the potential energy that is due to the mttrafttwo stars? Is itin one
of the two stars? Is it in both of them? Is it in thermtediate medium?

The statement of the principle of least action itself inclsdesething that should come
as a shock the senses. In order to go from one point to anoth&ter@al molecule that is
free from the action of any force, but subject to move on a surfac#, take a geodesic
line; i.e., the shortest path.

That molecule seems to know the point where it must go to, pridittre that it will
take to reach it by following this or that path, and then choose thecarogtnient path.
That statement makes it sound, so to speak, like a free andtarbging. It is clear that
one would do better to replace it with a statement thatgshescking, and in which, as the
philosophers would say, the final causes do not seem to substitute &ffective causes.

§ 2. — Boule’s objection.

The final objection, which seems to be the one that is nmdahgtto Hertz, is of a
slightly different nature.

One knows what one calls a system with constraints. Figegfiima two points that are
connected by a rigid link in such a fashion that their separaticandestis always kept
invariable, or, more generally, suppose that an arbitrary mechamgntains a relation
between the coordinates of two or more points of the systemt isThze first type of
constraint, which one calls a “solid constraint.”

Now suppose that a sphere is constrained to roll on a plane. Dlegyef the point
of contact must be zero. We then have a second kind of constraiist éxgaressed by a
relation that is no longer just between the coordinates of the vaanis of the system,
but between their coordinates and velocities.

The systems in which there are constraints of the second kindaeajoious property
that | would like to explain in the simple example that | gistd, namely, that of a ball
that rolls on a horizontal plane.

Let O be a point in the horizontal plane, andQdte the center of the sphere.

In order to define the location of the moving sphere, | will thkeet fixed coordinate
axesOx, Oy, Oz, the first two of which are located in the horizontal plane uploich the
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sphere rolls, and three coordinate axes that are invariably coupteth@/spher€é, Cr,
andC¢.

The location of the sphere will be defined completely when orggven the two
coordinates of the contact point and the nine direction cosines afdheg axes with
respect to the fixed axes. L&be a position of the sphere where the contact poinOs at
the origin, and the moving axes are parallel to the fixed axes.

The coordinates of the contact point are:

x=0, y=0,
and the nine direction cosines are:
1 0 O
O 1 O
0O 0 1

Give the sphere an infinitely small rotatiearound the axi€¢. 1t will go to a position
B where the contact point will become:

x=0, y=0,
and the nine cosines will become:
1 0 0
0 cose sine
0 -SIiNnE COSE

However, that rotation is impossible, since it will makegpkere slide on the plane,
not roll. It will then be impossible to pass from the posiAdo the infinitely close position
B directly; i.e., by an infinitely small motion.

Nonetheless, we shall see that this passage can beimdadetly; i.e., by a finite
motion.

Start from the positioA. Roll the sphere on the plane in such a way that the
instantaneous axis is situated in the horizontal plane and is ptodhe axisOy at each
instant, and stop when the axig becomes vertical and parallel@z. One will arrive at
a positionD where the coordinates of the contact point have become:

R, y=0,

in whichR is the radius of the sphere, and the nine cosines are:

0O 0 -1
0O 1 O
+1 0 O

In the positiorD, the contact point is at the extremity of the &S which is vertical.
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Impart a rotatiore around the axi€é to the sphere. That rotation is a pivoting around
the vertical axis that passes through the contact point, so rtavithclude any sliding, and
it will therefore be compatible with the constraints.

The sphere then goes to a posittowhere the coordinates of its contact point are:

T
X :E R, y =0,
and the nine cosines are:
0 0 -1
sine cose 0
cose -—-sing 0

Now, roll the sphere in such a fashion that the instantaneousfaxigation remains
constantly parallel t®y, and consequently the contact will always be along theGxis
Stop when the contact point has returned to the ofgirit is easy to see that we have
arrived at the positioB.

One can then go from the positignto the positionB by passing through the
intermediate position® andE.

Hertz called the systems such that if the constraints did noitpene to pass directly
from a certain position to another infinitely close position tiey would no longer permit
one to pass from one to the other indirebtionomic. Those are the systems where there
are only solid constraints.

One sees that our sphere is not a holonomic system.

Now, it can happen that the principle of least action is not ayéicto the non-
holonomic systems.

Indeed, one can pass from the posithono the positionB by the path that | just
described, and without a doubt by many other paths. Among all of thosetlpzrhss
obviously one of them that corresponds to an action that is smallerlkiwdrthee other
ones. The sphere must then be able to follow it in order taogoArto B. Nothing of the
sort is true. No matter what the initial conditions of motiox) &he sphere will never go
from A to B.

There is more: If the sphere effectively goes from the posiitmnanother positioA’
then it does not always take the path that corresponds to the minictiom a

The principle of least action is no longer true.

As Hertz said:

“In this case, a sphere that obeys that principle would seenattvieg
being that consciously pursues a definite goal, while a sphere tmmavgoll
the laws of nature will present the impression of being an irsgimass
that rolls uniformly... However, one says, such constraints do notiexist
nature. The so-called rolling without slipping is only rolling witenaall
amount of slipping. That phenomenon enters the realm of irreversible
phenomena such as friction, which are still poorly understood, and to which
we furtherdo not know how to apply the principles of mechanics.”

“I respond: Rolling without slipping is not contrary to either the
principle of energy or any of the known laws of physics. That phenomenon
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can be realized in the observable world to such an approximation that one
can appeal to it in order to construct the most delicate integmatchines

(e.g., planimeters, harmonic analyzers, etc.) We have naeigitlude it

as impossible. However, it will be and it can be realized anly degree

of approximation such that the difficulties still do not disappéarorder

to adopt a principle, we must demand that when it is applied to aprobl
whose givens are approximately exact, it should also give resultartha
approximately exact. Furthermore, the other constraints — hi.sdlid
constraints — are also realized only approximately in nature; norsshele
one does not exclude them...”

lll. - THE HERTZIAN SYSTEM.

Now here is the system that Hertz proposed to substitute fawth#heories that he
criticized. That system is based upon the following hypotheses:

1. There are only systems with constraints in nature, whidnegré&om the action of
any external force.

2. If certain bodies seem to obey some forces then that is beébaysarecoupled by
other bodies that are invisible to us.

Meanwhile, a material point that seems free to us does natldes@ rectilinear
trajectory. The old mechanicians said that it deviated from strefeatory because it was
subject to a force. Hertz said that it deviated becausesitheiafree but was coupled to
other invisible points.

That hypothesis seems strange at first: Why introduce hypothetgsible bodies,
along with the visible ones? However, Hertz responded, the two oldebevere likewise
obliged to suppose who-knows-what sort of invisible entities, along keatkiisible ones.
The classical theory introduced forces, and the energetic theory irecbeénergy, but
those invisible entities of force and energy have an unknown and mysteriotes n@n
the contrary, the hypothetical entities that | imagine have gnsashe nature as the visible
bodies.

Is that not simpler and more natural?

We can argue that point and maintain that the entities in théhebries must be
retained precisely because of their mysterious nature. peatethat mystery is to confess
our ignorance, and since the fact of our ignorance is certain, wtontt be better to
acknowledge it than to deny it?

But let us move on, and see what Hertz inferred from his hymsthes

The motions of systems with constraints in the absence of exterces are governed
by a unique law.

Among the motions that are compatible with the constraints, th¢hahés realized
will be the one that is such that the sum of the massesttimsguare of their accelerations
IS a minimum.
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That principle is equivalent to that of least action whenyhktem is holonomic, but it
is more general, because it also applies to non-holonomic systems.

In order to better explain the scope of that principle, takenplsiexample: namely,
that of a point that is constrained to move on a surface. terbave only one material
point. The acceleration must then be a minimum. In order fortha true, it is necessary
for the tangential acceleration to be zero. Now, that aetele is equal talv / dt, where
v is the velocity, antlis the time, se is a constant, and the motion of the point is uniform.
Moreover, it is necessary that the normal acceleration shouldriseimum. Now, it is
equal tov? / p, wherep is the radius of curvature of the trajectory, onvtd (R cos ¢),
whereR is the radius of curvature of the normal section to the syréackp is the angle
between the osculating plane to the trajectory and the normal sarfaee.

Now, the magnitude and direction of the velocity is supposed to be kndvenefdre,

v andR will be known.

It will then be necessary to have gbs 1, i.e., the osculating plane must be normal to
the surface. That is, the moving point must describe a geodesic li

In order to now understand how one can explain the motion of systatssetn to be
subject to forces to us, | shall once more take a simple examgoieely, that of the
governor. That apparatus is known to consist of an articulated pagedielABCD. The
opposite angleB andD of that parallelogram carry balls whose mass is apprecidlie.
upper anglé\ is fixed. The lower angl€ carries a ring that can slide along a fixed vertical
rod AX. The entire apparatus is animated with a rapid rotationabmatbound the roAX.

A link T is suspended from the rif@

The centrifugal force tends to move the balls apart, and conseqteerdlge the ring
C and the linkT. The linkT is then subject to a traction that becomes greater as thiemota
becomes more rapid.

Now suppose that an observes sees only that link and imagines thdtsheénédaod
AX, and the parallelogram are made of a material that isilm&ito him. That observer
will confirm that traction is exerted upon the lilik However, since he will not see the
organs that produced it, he will attribute a mysterious cause -asdgrce” — to the
attraction that is experienced by the pdiran the link.

Indeed, according to Hertz, whenever we imagine a force, evbeaing duped by an
analogous illusion.

That raises the question: Can one imagine an articulated systemmitates a system
of forces that is defined by an arbitrary law or approaches onesasas one desires? The
response must be in the affirmative. | shall be content &l @etheorem of Koenigs that
can serve as the basis for a proof. This is the theorem: @nalways imagine an
articulated system such that a point of that system descriloesva or an arbitrary
algebraic surface, or more generally, one can imagine an atéidudystem such that by
virtue of its constraints, the coordinates of the various points ¢fyftem are subject to
some given, but arbitrary, algebraic relations.

Nonetheless, the hypotheses to which one will be led can be very ceghlic

That was not the first attempt that was made along those hmagover. It is
impossible to not compare Hertz's hypotheses with Lord Kelvin's thebgyrostatic
elasticity.

As one knows, Lord Kelvin sought to explain the properties of the ethikowti
introducing any forces. He even gave a definitive form to his hypothedisepresented
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the ether by a mechanical model that was like that of the Engbgimet. The English
scholars, who were satisfied to give a body to their ideas in ardeake it tangible, were
not frightened by the complexity of models in which one has a multipb€itlinks, rods,
and slides, as in the mechanic’s workshop.

To give some idea of that, let me describe the model thatsespiesl the gyrostatic
ether. The ether is composed of a sort of mesh. Each intensectthat mesh is a
tetrahedron. Each of the edges of the tetrahedron is composed rafdsy@ne of which
is solid and the other of which is hollow, and the former slidsisié the latter. That edge
is then extensible, but not flexible.

At each intersection, one finds an apparatus that is composed @frolise that are
coupled to each other invariably and form a tri-rectangular trihedgach of those three
rods is supported by two opposite edges of the tetrahedron. Firsalypéthem carries
four gyroscopes.

In the system that | just described, there is no potential ermrggnly kinetic energy,
namely, that of the tetrahedra and the gyroscopes. Meanwhileianmius constituted
will behave like an elastic medium. It will transmit tranmsesundulations absolutely like
the ether.

| shall add something more: One can not only imitate all fdr@gsare found in nature
with articulated systems of that type that contain gyroscopes, lbuihatate some other
ones that nature has not realized. That was precisely the gobhbtdaelvin proposed
to attain. He wished to explain certain properties of the ¢tia¢rthe usual hypotheses
seemed incapable of accounting for.

One knows that the axis of the gyroscope tends to preserve a fixetbdirespace.
When it deviates from it, it tends to return as if it werke@dapon by a guiding force.
Unlike the real forces, the apparent force that tends to maititaimirection of the
gyroscope is not counterbalanced by an equal and opposite reactiorthult iberated
from the law of action and reaction and from its consequenuel,as the law of areas, to
which the natural forces are subject.

One then agrees that the gyrostatic hypothesis, in which oneed from that
restrictive rule, has accounted for some fact that could not beireegblay the usual
hypotheses upon which it rests.

What must one ultimately think of Hertz's theory? It is @@ify interesting, but | do
not find it entirely satisfying, because it places too much weight hppothesis.

Hertz is protected from some of the objections that have tormesited does not seem
to have dismissed all of them.

The difficulties that we discussed at length at the beginning ofatticde can be
summarized as follows:

One can present the principles of dynamics in two ways. Howemercan never
sufficiently distinguish what is a definition, what is an experimentah, and what is a
mathematical theorem. In the Hertzian system, the distimcs still not perfectly clear,
and a fourth element is introduced, moreover: viz., hypothesis.

Nevertheless, that mode of exposition is useful due to théhkacit is new: It forces
us to reflect and to free ourselves from the old ways of asswrideas. We still cannot
see the monument in its entirety, but it is worth something to haeggerspective and
to take a new viewpoint.
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