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The work of the geometers of the last century has btogegheral mechanics to a
degree of perfection that leads one to regard thahezias having concluded and to
think that all that is left to conquer are the diffieedt in integral calculus in each
particular problem. Nonetheless, that is not true, medhanics further poses several
important questions that have not been addressed byatalog: The theory of elastic
surfaces, which | propose to consider in this paper,ofieremarkable example of that.
The differential equations of those surfaces in equiliby and more to the point, their
equations of motion, are not known, either, except inpdugicular case where one is
dealing with a cylindrical surface, which then leads bacthéoclass of ordinary elastic
strips. As one knows, Jacob Bernoulli was the fogjive the equation of equilibrium of
the elastic strip by basing it upon the hypothesis thag¢dsticity at each point is a force
that is normal to the curve whose moment is propaatidto the contingency angle or
inversely proportional to the curvature at that point. c&ithe time of that great
geometer, several other ones, and mainly Euler andeDBernoulli, have published a
great number of papers on the equilibrium conditiongfastic lines and the laws of the
vibrations. However, all that appeared were some fraitigsempts that focused on
elastic surfaces that were folded in two different dioexti Thus, Euler presented some
research into the sound of bells in his St. Petersburg papahich he confined himself
to considering the vibrations of each of the circuiags that a bell is composed of in
isolation. That reduces the problem to that of singdestic lines and leads to some
results are not at all in agreement with experimentgeaver. In the same collection
(from the year 1788), one also finds a paper by anotheb Bernoulli that was written
on the occasion of Chladni’'s experiments on the vibnabf resonant plates. That
geometer considered a rectangular plate to be composen sf/stems of parallel strips
that were parallel to the sides of the rectangle abdated as if they were glued to
together without hindering each other. Starting from #sstumption, which Euler had
already made in regard to the vibrations of drums, Bdiindarmed the partial
differential equation that would serve to determine tialloscillation of the resonant
plate. He himself then remarked that the consequdhaésan be deduced from it are
not entirely in agreement with Chladni’'s experiments] amdeed, one will see in my
article that this equation is not the true equation, taad it lacks a term that the author
could not find from his hypothesis.

About five years ago, the Institute proposed that tlpgctof a prize should be a
theory of vibrations of resonant plates that is vedifoy comparison with experiments.
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However, since that time, only one submission wagived that was worthy of the
attention of the class. At the beginning of that paper,anonymous author presented,
without proof and without saying what led him to it, a fundatal equation that included
the term that Bernoulli’'s equation was lacking. Follaywthe example of what Euler had
done in regard to the equation of vibrating strips, the authohe article satisfied the
equation that he had posed by means of some particularailstéigat were composed of
exponentials, sines, and cosines. Each of those itgefgi@rmined a particular figure of
the vibrating plate that presented a certain numbdrdasposition of nodal lines. In
general, the sound that the plate made depended upon tbemofthose lines, and the
integral established a relationship between that numbertian corresponding sound.
The author calculated the tone that related to eachefigam that relationship, and then
compared the calculated tone to the one that expetsngave for a similar figure. He
found a satisfactory agreement between those twotsesn such a way that the
fundamental equation that he had started from, and tdwwiecwill arrive directly in this
article, can be regarded as sufficiently verified by erpents, up to now. That
comparison is the part of his work that motivated the jadgegive him honorable
mention. It drew upon a great number of experiments bgdDhland many others that
the author of the cited study performed. There is antyperof comparison that is much
more difficult to undertake that relates to the figurat s produced by a given manner of
putting the plate into vibration. One might also desirat the results of the calculation
can be deduced from the general integral, and not frone g@micular integrals of the
equation of the vibrating plates. Unfortunately, that equatan be integrated in finite
form only for definite integrals that refer to imagirs,i and if one makes them
disappear, as Plana did in the case of simple strigsy time will arrive at a very
complicated equation that seems impossible to use.

Those are the only works on elastic surfaces tha¢ agypeared up to now, to my
knowledge. That theory is one of the ones that rtiegitmost attention from geometers,
since on the one hand, it is attached to general meshdnyicthe search for the
differential equations of equilibrium and motion, and lo@ dther hand, it includes one of
the most vast and curious branches of acoustics appdination. It is solely upon the
basis of the first of those two relationships thabinmunicate this article to the class
today, and in which my main goal was to arrive, with no hiypges, at the equilibrium
equations of elastic surfaces whose points are all api@ad by given forces.

This paper is divided into two parts. The first oneated to flexible, inelastic
surfaces, whose equilibrium equation Lagrange has alggady in the second edition of
his Mécanique analytique.l arrived at that equation along a different path ties the
advantage of showing the particular restriction to whicls subordinate. Indeed, it
supposes that each element of the surface is equallgestrasall directions, which is a
condition that is not fulfilled in large number of casand which will be impossible to
fulfill, for example, in the case of a ponderous stefaf unequal thickness. In order to
solve the question completely, one must pay attentiatheadifference in the tensions
that the same element will experience in two differginections. One will then find
equilibrium equations that include those of analytica&chanics, but which are more
general and also much more complicated.

In the second part, | consider elastic surfaces andndiegetthe expression for the
forces that are due to elasticity at each of theingsoi That quality of matter can be
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attributed to a repulsive force that is exerted betwkenrolecules of the body, and its
action extends over only immeasurable distances. faietion that represents the law
must become zero or negligible as the variable thaesepts the distances ceases to be
extremely small. Now, one knows that similar fuons generally disappear in the
calculations and leave only total integral or arbitrapnstants that are given by
observation in the definitive results. Indeed, thatwlsat happens in the theory of
refraction, and even more so in the theory of capillaction, which is one of the most
beautiful applications of analysis to physics to cornenfthe geometers. The same thing
is true for the present question, and that is what pgmni¢ to express the forces that are
due to the elasticity of the surface in terms of quastithat depend solely upon its
figure, such as its radii of curvature and their partghé@tives. Once those forces have
been determined, it will be easy for me to define thelibguim equation of the elastic
surface by means of the equations that were found inirstepart of the article. The
same analysis can be applied to some surfaces whokeedsscvaries according to an
arbitrary law. However, in order to not complicate theestion, | have considered only
the case of constant thickness. The equation to whidh &rrive supposes, in addition,
that the surface in question is naturally planar. Ikmat apply to elastic surfaces whose
natural form is curved, such as bells, for examplee theory that has guided me cannot
be applied to those surfaces without modifications lteaall not go into.

| have deduced the equation of motion of the elastitasirfrom its equilibrium
equation from a known principle of mechanics, and upomasguall of the limitations
that the geometers have adopted for the problems of miprstrings and strips, | found a
linear equation in four variables for vibrating plated tth@es not differ essentially from
that of the anonymous paper that | cited above.

In another paper, | shall apply the same consideratmefastic lines with simple or
double curvature and with a thickness that is constav&rggs according to a given law.
That will lead me, in a manner that is direct and freen hypotheses, to not only their
equations of equilibrium, but also to the expressionHerforces that must be applied at
their extremities in order to fix them and balance batdffect of elasticity.




CHAPTER |

EQUATION OF EQUILIBRIUM OF THE FLEXIBLE,
INELASTIC SURFACE

1. — | consider a closed surface of a perfectly-flexible emailt that is devoid of
elasticity and whose points are all acted upon by gigezes$. | will also suppose that it
is inextensible, or at least only slightly extensibtesuch a manner that the extension
that it can exhibit will not alter its thickness appadty, and that thickness can be
constant or vary from one point of the surface to lagtmoreover. If the forces that are
applied to them are given then | propose to find the d&guifn equation of the surface.

In order to do that, let, y, z be the coordinates of an arbitrary pamof that surface,
when referred to three rectangular axes that are ctaobérarily. We decompose all of
the forces that act upon the poimt along those axes and & Y, Z denote the
components that point along the coordinatey, z, respectively, and tend to increase
them. If those components are provided by gravity or oftwres of attraction or
repulsion that act upon all of the points of the mdttat the surface is composed of then
they will be proportional to its thickness, and the valuethe quantitiesX, Y, Z will
include a factor that is equal to the thickness thagperto the poinin. On the contrary,
they will be independent of each other when they areigeed with an external force,
such as the pressure of a fluid on the surface, for gheam

Divide the surface into infinitely-small elements f@ome planes that are
perpendicular to they-plane, so one of them is parallel to #zplane and the other one
is parallel to the/zplane. As one knows, the element that pertaithgg@ointm will be
expressed bl dx dy when one sets:

dz dz 2 2
—=n, —=q, 1+ + =k,
ax dy q p-+q

to abbreviate, and since the quanti¥e¥, Z are deemed to be constant over the extent of
that element, that will imply that the motivatingrées that are applied to it will be equal
to X, Y, Z, multiplied byk dx dy to to:

X k dx dy Y k dx dy Z k dx dy.

However, along with those forces, there also etisér ones that arise from the coupling
of the element under consideration with the onasahe adjacent to it, and which will be
necessary to take under consideration.

Indeed, in the equilibrium state, each of the elet® that comprise the surface is
tensedby unknown forces that are directed in the plainghat element and which act in
the opposite sense to its opposed extremities. céjetihe four sides that bound the
arbitrary elemenk dx dywill be pulled from the inside to the outside loydes that are
found in the tangent plane at the pomt Furthermore, we suppose that they are
perpendicular to the sides, but in order to embicef the cases that might present
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themselves, we shall not establish any particular oglship between the forces that act
upon two adjacent sides; i.e., we regard each elemehe &urface as experiencing two
mutually-independertiensions and one effectively agrees that the same elemenbea
for example, not under any tension in one directionjemdxperiencing a considerable
tension in the perpendicular direction.

Having said that, leT represent the force that pulls each point of the edgelglaio

theyzplane and adjacent to the poimnt The length of that side @y /1+g° . The total

force that one pulls from the inside to the outsidiéthen beT dy \/1+9°. Leta, B ¥

be the angles that its direction makes withxjw z axes, resp. Its components parallel
to those axes will be:

Tdy.1+g°cosa, Tdy.1+qg°cosB Tdy.1+q’ cosy,

and they will act in the opposite sense to the dinatesx, y, z; i.e., the forces will tend
to diminish the coordinates. Now, the variapleill stay the same when we pass from
the side that we are considering to the one thapmsite to it in the same element, and
the variablex will change tax + dx. Those quantities will then become:

d (T 1+ of Ed:osa)
dx

d (T\/ﬁ Ed:osﬁ)
dx ’

T dy./1+g° cosa + dx dyOl

T dy+/1+q° cosS+dx dyll

T dy/1+g° cosy+ dx dyO}

d (T\/ﬁ Ed:osy)
dx

relative to the second side, and since those tlorees act in the opposite sense to the
preceding ones, it will follow that the elemdntix dywill be pulled in the sense of the
coordinatey, y, z by forces:

dx dyd ,
y dx
d (T«/ 1+ of Ed:osﬁ)
dx dyr ix :

dx dy

d (T\/ﬁ [tos, )
dx ’
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which must be added to the given forces:

X k dx dy Y k dx dy Z k dx dy
respectively.
Similarly, letT’represent the force at each of its points that pldissecond adjacent
side at the poinin, which is parallel to thezplane and equal in length thx / 1+ p° .

Also, let a’, B, y denote the angles that its direction makes wighdbordinates axes.
We will find by an argument that is similar to theeceding one that the eleméntix dy
is also pulled by forces that act on the oppostess to the coordinatesy, z and equal
to:

d(T’ 1+ of Ed:osa’)
dx

d (T\/ﬁ Ed:osﬁ')
dx ’

dx dy

dx dy[

d (T\/ﬁ [cosy )
dx ’

dx dy[

respectively.

Now, if one adds the set of forces that pull thmentk dx dyparallel to that axis
and in the same sense then in order to have egumibof that element, it will be
necessary that the sums should be equal to zewthefmore, if one suppresses the
common factodx dythen one will have the three equations:

d (T 1+ @ Ed:osa) d(T' 1+ @ Ed:osa’)

X k+ + =0,
dx dx
d (T«/1+ 7 Ed:osﬁ) d(Tx/1+ 7 Ed:osﬁ’)
Y k+ + =0,
dx dx

Zk+

d (T\/ﬁ Ed:osy) d (T\/ﬁ [(cosy )
dx * dx

which must be true over the entire extent of théase, and which will be the equations
of equilibrium.

2. — In order to develop them, one must replacea;aosfS, cosy with their values,
and that determination is only a question of singgemetry.
Therefore, let:
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X'—x=a(z’- 2, y'—y=b(z'-2

be the two equations of the line that passes through tiné ipcand along which, the
forceT is directed.x’, y’, z’ are the variable coordinates of the points on ihat hnda
andb are two unknown constants that must be determined.diféetion of the forcel
lies in the tangent plane to the pamtwhose equation is:

Z'-z=p(X’ =X +a(y’'-y).

It will then be necessary that the two preceding egnatimust satisfy that equation,
which will give the first conditional equation:

l-ap-bg=0.
Furthermore, the line that we consider is assumect tpelppendicular to the side of the
elementk dx dy which is parallel to thgzplane, and the indefinite line that is the
prolongation of that side will have the equations:
zZ’—z=q(y'-Y), X'—x=0.

Now, in order for those two sides to be perpendicwlaatch other, one must have:

1+2 -0

q

One will infer from that second condition equationhen it is combined with the
preceding one, that:

b=-q, a= )

consequently, the equations of the direction offdinee T will become:

+ 2
x'—le d

(z'-2, y'-y=-q(z'-2.

From the known formulas, the cosines of the angle8 ythat the line makes with
the coordinate axes will be:

cosa = L,
J1+a?+b?
cosf= b
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1

cosy= ——— .
\J1+a?+b?

Upon replacinga andb with their values and always denoting the radidaj+ p*+
by k, we will then have:

’1 2
cosa = *q : cosﬁ:—i, cosy:L.
k ky 1+ 0P ky 1+ 0P

One will likewise find the angleg’, £, y’ that refer to the direction of the forde

from:
,___ P9 ,_ A1+ p° _ g
cosq’=-——_ cosf/=X—", cosy=———.
ky 1+ p? k ky 1+ p?

| shall substitute these values into the equatmmthe preceding section; they will
then become:
w ks ATA+ )/ K _ d[TP R _
dx dy

vk dT(Pd B AT+ P)TK _
dx dy

d(T p/ k)+d(T'q/ k)=O.

Zk+
dx dy

If one eliminates the two unknowns and T’ from those three equations, what will
remain will be an equation that will include onlyetgiven quantitie¥, Y, Z, and the
partial derivatives ofz, and it will be the general equation of a flexitdarface in
equilibrium. In addition, those equations will @erto determine the two tensiomsand
T’that an arbitrary element of that surface will@gnce as functions of the coordinates
that it corresponds to. The results of those daticins are very complicated in the
general case. However, when one supposes thatthieensions are equal, one will find
an equation that is quite simple and deserves ajpgtention.

3. — Hence, leff = T If one performs the indicated differentiationsgdaadds the
three equilibrium equations, after multiplying thest one by —p / k, the second one by
—q/ k, and the third one by 1k/ then one will get:
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T nd?z of z d 7 _
Z—pX—qY+F{(1+q)dx2 2pqudy+(1+ pz)Tﬁ—O, (1)

when one observes that:

dp_d’z  dq_dp_d’z  dg_d°z

dx dx’ dx dy dxdy ~dy dy’’

If one successively combines the first and the thirche$¢ equations, and then the
second and the fifth one, then one will also find that:

X+Zp+d—T=O, Y+Zq+d—T=O,
dx dy

and since one hakz = p dx+ q dy, at will give:
X dx+Y dy+Zdz+dT=0, (2)

which is an equation that will replace the preceding taentically, due to the
independence of the two variabkesindy. Now, that equation will present two distinct
cases to examine.

1. Ifthe formulaX dx+Y dy+ Z dzis the exact differential of a function of theer
variablesx, y, z, which are regarded as independent, in such a way thatibhave:

Xdx+Ydy+Zdz=dO(xy, 2
identically, then equation (2) will give:
T=f(x,V,2 +c,

in whichc is the arbitrary constant. Upon substituting that v&ud in equation (1), it
will be the equation of the equilibrium surface, up tcoseeorder partial derivatives.

2. If that formula is not a differential in three \&bies then one must determinim
such a way that it will become a differential in twariables in order for one to satisfy
equation (2). The value af must then fulfill the condition that is expressed thg
equation:

d(X+Zp_d(Y+zZg
dy dx

Consequently, it is necessary that it must agréle @guation (1), which will be true only
in very special cases. Therefore, in general,ilithe impossible to satisfy equation (2)
with any value of the unknowh in the second case. However, one must not coaclud
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that equilibrium will then be impossible for the flexildarface. All that has been proved
is that the hypothesi$ = T’ is not permissible, because one can always satisfy the
equilibrium equations of the preceding section by meabhsmflifferent tensions.

4. — The integrability condition for the formula:
Xdx+Ydy+Zdz

is not the only necessary condition for the assumgtie T'to be permissible. It is also
necessary for that hypothesis to agree with the givere$ that act at the free boundaries
of the surface, and which determine the boundary valudseatensiond andT’. One
must then examine whether that agreement is effectivay in each particular case.
However, the result will be a condition that retate the direction of the given forces that
one can state in a general manner.

Indeed, suppose that the arbitrary pambelongs to the free contour of the surface.
Let dsbe an element of the contour that surrounds that p&iraw a plane through that
point that is parallel to thgzplane and draw a second plane through the other exyremit
of the elementsthat is parallel to thezplane. In that way, we will define an infinitely-
small triangle in the tangent plane to the surfacé haa the elemerds for one of its

sides, and the other two will aly,/ 1+ of and dx/1+ p’, as before. Now, the boundary

tensions must bring equilibrium to the given foredich will also pull the elemerds
from the inside outward, and consequently, its comgmts must be equal and opposite.
Hence, represent that external forcePbgts In the equilibrium state, its direction will be
necessarily included in the tangent plane to theta but it might be perpendicular to
the sideds or oblique to it. If it is perpendicular and otecomposes it into two forces
that are also perpendicular to the other two sidesur triangle then we will know, from
the elements of statics, that the components wall pgpoportional to the sides and

represented by:
Pdyy 1+ and Pdx/1+ p .

Consequently, one will have=T’=P in this case. However, if the for€edsis oblique

to the sidadsthen its components, which are perpendicular eécther two sides, will no
longer be proportional to those sides, and the dayntensiond andT” will no longer
be equal to each other. Therefore, we can condhatethe hypothesis that= T’ over
the entire extent of the surface will demand thatforces that are applied to its contour
must be perpendicular to the direction of that canat each point.

There is one particular case that we shall soea @n example of (n®) in which the
force P dsis perpendicular to the sidks while the two tension$ andT’ are not equal.
That case is the one in which the sit¥as found to be parallel to one of the planesof
oryz The composition of the given force will no londee true, as we had supposed.
That force will then be equal to that of the twadiens that are directly opposite to it,
and the other one, which is perpendicular, wilebérely independent of it.

One must also point out that the parts of the meambf the surface that define lines
that are fixed and capable of taking on an indefinésistance will be pulled at each of
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their points by the resultant of the two tensidnand T’ that pertain to them, and that
force will be found to be cancelled by those fixed lingsiout resulting in any particular
condition that relates to the ratio or absolute magnitddiee boundary tensions.

5. — Equation (1) coincides with the one that Lagrange fonraddifferent way in the
new edition ofla Mécanique analytiqu¢). However, from our analysis, one will see
that it is subordinate to some special hypothesesptfeaent it from being the general
equation of the flexible surface in equilibrium. We shahetheless apply it to the most
remarkable special cases.

1. Suppose that one hxs= 0,Y = 0,Z = 0, in such a way that the points of the
surface, are not subjected to any given force excephéoones on its contour. Equation
(2) will reduce todT = 0 in that case. It will then be necessary thatdpplied force at
each point of its free contour should not vary from pa@t to another. That being the
case, the tensiohwill be equal to that constant force, and equation (the@equilibrium
surface will become:

&z oz
dxdy+ (1+ pz)Tﬁ =0.

d’z
1+9*)— -2
1+q )dx2 PG
As one knows, that is equation is the equation of asenfvhose area isnainimumfor a
given contour.

2. Consider a flexible surface that covers a solid lmd@dyrbitrary form that supports
the surface at all of its points. The fo¢geY, Z will then be equal to the components of
the unknown pressure that the surface exerts on thediattg point whose coordinates
arex, y, z Therefore, leN be that pressure; its direction will be normal te surface.
Consequently, one will have:

X:—p—N, Y:—ﬂ, Z:E
k k k

for its components along the coordinate axes. If abstgutes these values in equation
(2) then it will reduce tadT = 0. The tension will then be constant, and as in the
preceding case, it will be necessary that all of thatpaf the free contour should be
pulled by equal forces that are tangent to the surface apdrulcular to that contour.

At the same time, equation (1) will become:

T nd?z of z d 7 _
N+P{(1+q )dx2 2pq dxdy+ @+ pz)Tﬁ =0.

Hence, the surface of the solid body will then besgitay its equation, which will tell one
the pressure that exists at each point, or ratherelasionship to the tensioh. Up to

() Tome. I, pp. 149.
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sign, the coefficient of is nothing but the sunﬁlk +i,, in whichpandp’denote the two
P P

principal radii of curvature of the surface at fh@nt that one considers. It will then
follow that this sum expresses the relationshiphefforceN to the forcel. Hence, for
example, a flexible surface that extends over a&rephvill exert a pressure at each point
that is equal to the tension that it experiencesded by twice the radius of that sphere.

3. If the surface that is not defined on a solatlyy but compressed at all of its
points by a ponderous fluid then that case wilthesame as the preceding one, with the
difference that the pressukg rather than being unknown, will be given and wé#éjpend
upon the density and height of the fluid. Its eaill then have the form:

N=a+bz

if one supposes that theordinate is vertical and lets and b denote two constant
coefficients. The equation for the flexible sugfan equilibrium will then become:

T d?z of z d 7 _
a+ bz+F{(l+q )d—x2 2pqmy+ (1+ pz)Tﬁ =0,

and if one observes thdt is a constant quantity then one will see that Hysation
coincides with the one that Laplace found for theaave or convegapillary surface ).
Thus, it will result that when a ponderous liquises or falls in a capillary tube, it will
take the form of a flexible surface that is compeesby a ponderous fluid at all of its
points.

4. Finally, consider the ponderous surface ane@ tdle z-axis to be vertical and
directed in the sense of gravity. We will thené&av=0,Y = 0,Z = g ¢, if we denote
gravity byg, and lets be the thickness of the surface. Equation (2)thain become:

gedz+dT=0.

Now, if £is variable then that equation will be imposstlesatisfy unless is a function

of just the variablez i.e., unless the thickness is not constant olerentire extent of
each horizontal section of the surface. It wiknhresult that in the case of ponderous
surface of unequal thickness, the hypothesis ofdqumal tensions that we made above is
not generally permissible. The equilibrium equatad such a surface must be deduced
from the formulas in sectioB. However, if¢ is constant then upon integrating the
preceding equation and lettioglenote the arbitrary constant, we will have:

T=c-gez,
and equation (1) will become:

() Théorie de I'action capillairepp. 19.
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C-Qgez

g+t ——— K2

{(1 q) qu +(1 pz)—§j=
in this case.

That equilibrium equation for the ponderous surface of etfpgkness must include
the usual equation of theatenary which one indeed deduces by supposing rhest
independent of one of the two variablesr y, for example. One will then haeg= 0,
and upon once more replacipgvith dz/ dx, moreover, that equation will become:

ge+ (C—ng) d—ZZ:
o + dZ

If one multiplies this bylzand divides by — g& zthen one will have:

gtsdz+ dz

dz=0.
c-gez dX+ dzZ

If c”is the arbitrary constant then integration will give:

¢y d¥ +dZ = (c - ge2) dz,

and that equation is the equation of the catenary, esamfind directly’).

6. — It is good to point out that the equation of the mate is also included in the
equilibrium equations of sectiod without one being obliged to suppose that the two
tensionsT and T’ are equal to each other in order to deduce it. Indé&mhe has a
rectangle that is composed of flexible cloth of constiigkness, and one suspends it by
attaching two of its opposite sides to two fixed, horiagrparallel lines then it will be
obvious that the cloth will define a portion of a horitadrcylinder whose perpendicular
section at its edges will be an ordinary catenamythiiermore, it will also be obvious that
the surface will experience no other tension in thection of the horizontal edges and
that its elements will experience only one tension he tirection of its sections
perpendicular to the edges, which will vary from one ptawranother of the same section,
but will be the same for all points of the same edte¢he cloth is thus suspended then
one will change nothing in its figure when one appégsal and opposite forces to the
extremities of each edge whose intensities vary aptaases. The surface will then be
stressed by its new forces in the direction of its edgesich a way that each of its
elements will experience a second tension that withbesame along the length of each
edge and will vary arbitrarily from one edge to anothérom that, if one takes the¢
plane to be vertical and tlyeaxis to be parallel to the lines of suspension of theasarf
then one might satisfy the general equations of se2tlmy supposing that treordinate
and the tensiofi, which is exerted parallel to tbxxplane independently of the variable

() See myTraité mécanique. |, pp. 201.
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y, and taking the tensioh which is parallel to thgzplane, to be an arbitrary function of
X. Those assumptions must then give the equation oftleaoy catenary betweerand
X, and the known expression for the tension that theecaxperiences at each of its
various points foif.

Therefore, let:

The equations of sectidhwill then reduce to two, namely:

AT/ _ g gers ATPR _ g
, - .

dx
T=c’k= c’,/1+d—zz
dx

then, in whichc’is a quantity that is independent of batandy. If one substitutes that
value forT in the second equation then it will become:

One will first have:

' 42
ge+ cdz -0

dxy/ dX + dZ

If one multiplies this bydz integrates, and letsdenote a second arbitrary constant then

one will have:
cyd¥+dZ =(c-ge2 dz

which is an equation that is the same as the oneMdmfound in the preceding section.
The value ofT will also becomel =c — g¢ z as above. However, the tensibfwill
remain an arbitrary function afthat depends upon the forces that pull the cylinder under
consideration at the extremities of its edges and wilzéro when those forces do not
exist.

7. — When one knows the equilibrium equations of a systiematerial points that are
acted upon by arbitrary forces, one will know from thmgples of mechanics how to
deduce the equations of motion of that system immegliatel the present case, where
the points of the surface are pulled by for¥esy, Z that are parallel to the coordinate
axes, if one is to get the general equations of its maokien it will then suffice to replace
the forces in the equations of sectiwith:

x-gdu oy v S dw
at at at
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respectively, in whichu, v, w denote the velocities that are parallel to those aehe
arbitrary pointm, € is the thickness of the surface that point, &gl the variable that
represents time.

The only use that one makes of those equations is tdogntpem to the
determination of small oscillations of surface that devanly slightly from a plane, and
that will suggest a problem that is analogous to that \@brating string which is far
from having been solved completely, moreover. For @@nsuppose that the surface
deviates slightly from thgy-plane. Thez-ordinate and its partial derivatives will then be
very small, so one will neglect their squares and praduct the calculations.
Furthermore, one ignores gravity, in such a manner hlegbaints of the surface will not
be acted upon by any given force. Finally, suppose thatelbeitiesu andv, which are
parallel to thexy-plane, are zero or negligible, which amounts torgaghat each point of
the surface will constantly remain in the same lingo@edicular to that plane. All of
those restrictions are similar to the ones that asgumes in the theory of vibrating
strings. Upon adopting them, the equation of motion efstirface will be obtained by
settingX = 0,Y = 0 in those of sectiok and replacin@ with — & dw/ dt in them. If one
neglects the squares and products ofgtt@ndqg, in addition, then those equations will
reduce to:

dT _ 0 dT _

L 0. _(gd_vv+ le'p+ dT C_
dx

— 0.
dy dt dx dy

The first two show thalt is a function ofy andT’is a function ok. Furthermore, due to
the fact tha andy are regarded as constants, one will hdwe dt =d ?z/ df. If one
then replacep andq with dz/ dx anddz / dy once more then the third equation will
become:
d’z_ _d?*z &z
£ =T +T :
dt? dx’ dy’

If one desires that the two tensiohandT’should be equal in this case then it would
be necessary that they should be independent ofdznitly. If one then set§ = T’'=a?
then one will have this equation:

d’z _ dzz+ &z

“ae @ (dxz dyzj’

which coincides with the one for the propagation of sanra plane. It is the equation
that Biot and Brisson appealed to in order to determiee different properties of
vibrating surfaces). As one sees, they supposed that the surface washsettéhe same
in all directions and at all of its points. Thathe tcase, for example, witttums in such
a way that the theory of their vibration will be cainied in the preceding equation.

One will get a more general equation by supposing thatwtéensionsT andT’ are
constant, but unequal; i.e., upon setfinga®, T'=b% One will then have:

() Reports of the first Class of the Institute, totviepage 91.
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2 2 2
gd zZ_ azd z+b2 d z,

dt? dx’ dy’

which is an equation that Euler gave in his St. Petersbyrerpd) in order to determine
the vibrations of a rectangular surface that was unegs@#yched in the two directions
of its length and its width. Theandy axes are parallel to the sides of that rectanafe.
is the tension parallel to theaxis, andb? is the tension along theaxis.

Furthermore, those cases are the simplest onesribatan consider, and meanwhile
the equations that they refer to are not integrablenitefform. If one acts upon a
surface whose limits consist of a fixed part and a movimgtpat is entirely free then
one must keep the tensiohsand T’ variable and unequal, one of them being a function
of x and the other one, gf and determine those functions in such a manner thdtct al
the free limits, the tension in the direction thaperpendicular to the contour will be
equal to zero. The values DaandT " will then depend upon the form of those curves, and
the equation that one will have to treat will be evemmercomplicated.

() Novi commentarjit. X, pp. 247.



CHAPTERIII

EQUATION OF THE ELASTIC SURFACE
IN EQUILIBRIUM

8. — Having found the equations of equilibrium of a flexibteslastic surface whose
points are all acted upon by arbitrary forces, it isrdleat one will deduce the equations
of the elastic surface by including the forces that tdsoin elasticity along with those
forces. Now, no matter what the cause of that quafityatter, it consists of a tendency
of the molecules in a body to mutually repel each othied one can attribute that to a
repulsive force that is exerted between those poierding to a certain function of the
distances between them. It is natural to think that finise, as well as all other
molecular actions, is appreciable only for imperceptildtadces. We then assume that
hypothesis and consequently, we will assume that theidmnaf distance that represents
the elastic force is valid only for extremely smadlues of the variable that expresses the
distances, and that it will become zero as soon aswdriable becomes appreciable.
Furthermore, that repulsive action is assumed to adfiépints of the matter and to act
upon all points that comprise the surface, so it wilb¥o that for all equal distances, the
repulsive force between two points will become propodl to the product of the
thicknesses of the surface to which they correspond. edenvfor reasons that will soon
become clear, we confine ourselves to considering suerfaicequal thickness over their
entire extent, so the intensity of the repulsive édoetween two arbitrary points will then
be expressed by the square of the constant thickness cutfaze, multiplied by a
function of the distance between those points thatiligect to the condition that we just
supposed.

As before, letm denote the point of the surface that pertains to tihdrary
coordinates;, y, z Consider a second poimt that is located in the sphere of activity of
the first one and whose coordinates»re’, Z. Letr denote the distance from to m,
and letf r denote the function that expresses the law of thelsiee force with respect to
the distances. Finally, letbe the thickness of the surface: The intensity efrttutual
repulsion between those two poimtsandm’ will be equal tos? f r. Hence, the poinn
will be repelled by an infinitude of forces that are $amio that one, and will originate at
all points, such asi, that are found inside of its sphere of activity.

In order to get the resultant of all those forceas® must decompose each of them
along three fixed axes and then form the sum of thepooamts in each direction using
integral calculus. Now, the components of the faréé r, which are directed along the
coordinates, y, z at the pointm and tend to increase them, are equal to:

X—X

fr, Lyngr, Z;zngr,
r r

r

respectively. If one then letX’ Y’ Z’ denote the total components along those
directions, and one lets denote the surface element that pertains to the pothien,
from the principles of integral calculus, one will bav
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x=erd[* X oo

Y':gzliﬂy%yljrllq

=% 0w,

Those double integrals must be extended over all poirtiseo$urface that are situated
around the pointn and included in its sphere of activity.

It is then the forceX’, Y’, Z’that one must add to the other given forke¥, Z that
act at all points of the surface (nf). One substitutes those forces, thus-augmented, in
the equations of sectio? in order to get the equations of equilibrium of the tedas
surface. If one then eliminates the two unknoWwrand T’ from those three equations
then one will get the equation of the surface itsklbwever, since the values ¥f, Y, Z*
contain fourth-order partial derivatives, as one will $ke,result of that elimination will
lead to a very complicated equation that does not sedravie any utility. That is why
we shall consider only the case in which the two tenssao@®qual to each other, except
to prove that the forces that come from elasticiiil satisfy the condition that this
equality must exist, which consists of saying that thendda X’ dx + Y’ dy + Z” dz must
be the exact differential of a functionxfy, z

9. — In the case of = T’, the general equations of equilibrium reduce to equafibns
and (2) of sectio®. The elastic forceX’, Y’, Z’increase the left-hand side of equation
(1) by the quantit’— p X’—q Y’, which we denote by, to abbreviate, in such a way
that upon replacini’, Y, Z” with the preceding integrals, we will have:

U:g’ﬂ(z_z)_ ID(X: -Gy Y Orw

and equation (1) will become:
Z-pX-qY+U+ 01+ -2pg—+ (1+ = 1
pX-q 2 EE( q) pg d d + (1+ pz)—ﬁ (1)

At the same time, one must add the formula:
X’dx+Y'dy+2Z'dz
to the left-hand side of equation (2). Now, upon observiag th

P=x-X’+y-yyY+@z-27~
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so it will follow that:
(X=X)dx+(y=y) dy( z 2 d:d
r

rl
and we will have:
X’dx+Y’dy+Z’dz= & [jj fr Ow.

Everything will then come down to showing that this qugnist the differential of a
function ofx, y, z

In order to do that, if one represents the integrakdidr by F r, or one makefr [dr
=d [F r then one will first have:

X'dx+Y'dy+Z'dz= & [ﬂd (Fr Ow.

Now, by hypothesisf r is zero for any value of is not extremely small.F r, or
Hfrmr, will then reduce to an arbitrary constant for any ilsimvalue ofr.

Consequently, one supposes that this integral is taken Imasway that it will vanish
like f r for the values of that relate to the limits of the sphere of actigfythe pointm,
which are also those of the double integral:

j d [F r [dv.

Those limits depend implicitly upon the coordinatey, z of the pointm. However,

since the value df r that they refer to is equal to zero, it is further pssible to move
the characteristid, which indicates a differential relative xpy, z, outside of the definite
integral, in such a way that one will have:

[[dFriw=d[Fria,
and due to the fact that the facdris constant, it will follow that:
X’dx+Y’'dy+2Z’dz=d EZH Fri.
In that way, equation (2) of secti@will become:
X dx+Ydy+Z dz+d @ij Friow +dT=0.

That can be true only K dx + Y dy + Z dzis also an exact differential. Hence, liét
denote its integral, and one will have:

T:—azﬂFer—l'l,



Poisson — On elastic surfaces 20

in which one does not add an arbitrary constant, becaisassumed to be included in
M. This value of is the one that must be substituted in equation (1).

10. — It is good to observe that the formi{adx + Y’ dy + Z’” dzwill not generally
satisfy the integrability condition when the thickne$she surface is not assumed to be
constant. Indeed, upon lettiggdenote the thickness at the paimiand lettinge” denote
the one that pertains to one of the surrounding poinesyall find that:

X'dx+Y'dy+2'dz =M Fr O w.

As always,F r represents the integtfalf r [dr , which is taken in such a manner that it

will vanish at the limits of the sphere of activity tife first point. £ will now be a
function ofx, y, z, as well as the quantit'g Fr e’w. Hence, except for the very special

case in which those two quantities are functions of estwdr, the value of"dx+ Y’dy +
Z’ dzwill not be an exact differential. Consequently, the sgpjom thatT = T’ is not
generally permissible in the case of an elastic saréd unequal thickness.

It is solely for that reason that we shall confineselwes to the case of a constant
thickness, because the analysis that we just appealadotder to determine the forces
that are due to elasticity can likewise be applied &dhse of a thickness that varies
according to an arbitrary law.

11. — From what we just saw, we must determine the valligbeotwo double
integrals, namely: the integrﬂF r Ow, which enters into the value for the tensibn

and the one that expresses the quaktityn order to get the latter, it is necessary to give
particular directions to the coordinate axes. Hedcaw three rectangular axes through
the pointm, one of which is normal to the surface, and the otwerof which will be
directed in the tangent plane at that point. Wwet s’ be the coordinates of the pomg
when referred to those axes, where the one that is parallel to the normal axis. The
variablesy, s, s” will be coupled with the other coordinatesy’, z’ of the same poinn’,

and from some known formulas, one will have:

X'=X+A u+us+vs,
y'=y+A'u+u’'s +v’'s,
ZI:Z+AIIU +/,I”S+ V”S,_

In those equations, the nine coefficiedtsy, etc., are the cosines of the angles that are
subtended by the, s, s"axes and the, y, zaxes or the’, y’, z’axes.

The three cosine, A, A”are those of the angles that thaxis, or the normal to the
pointm, makes with the, y, zaxes, in such a way that one will have:
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A:—_p, A’:—ﬂ, A”:i,
k k k

in which one sets:
dz dz 2 2
—=n, —=q, 1+ p +qg =Kk,
dx p dy q p-+q

to abbreviate.

As for the other six, their values will depend opbe directions of the ands’ axes

in the tangent plane. However, some known relatioil exist between them and the
first three, but we shall dispense from using thaiues. The relations that we will need
in what follows are:

22 +,Uz +p2 = 1,

A12+ﬂ12+ V12 = 1’

A+’ +vv’ =0,

Aﬂ+Alll,+Allﬂ,,:0’

Av+ A +A7v” =0.

Upon replacingl, A", A”with their previous values, they will become:

2
pE+v? = 113 ,

2
W vt= 1‘*‘kzp ’
puevy =24,

putqu —u”"=0,
pv+qv —v”’=0.

We shall further cite another relation, which ikeeWise known, and which we wiill
also use, namely:

V4 V4 n 1
(uv' =’ v? =27 ZZF'

12. — If one replaces’, y’, 2’ with their values in terms af, s, s"in the expression for
U then one will find, by virtue of the precedingatbns, that it will reduce to:



Poisson — On elastic surfaces 22

U:—SquIfrdJr—w,

in which one might observe that when that quantity isdeiibyk, it will be, up to sign,
the normal component of the force of repulsion tletd at the poinm.
In order to perform that integration, we develop the gtiestihat are included in the

double signﬂ in powers ofs ands. We then change those variables into other ones

that are more appropriate to the limits of the doublegiratl.

The ordinates is a function o ands that is determined by the unknown equation of
the surface, and since the planes@nds is tangent to the point, it will then follow
that this function and its partial derivatives/ dsanddu / ds will be zero when one sets
s=0 ands = 0. Consequently, the first three terms of the agmént inu in powers
and products of ands will become:

U=AS+A $2+A"s S,

However, upon conveniently determining the directions efslands in the tangent
plane, one can make the teAfs s disappear. The entire development will then be a
series of the form:

Uu=AS+A S’+BS+B s +B" s +B”s®
+Cg+C'gg+C'gs?+C”s+CV s +etc,

in which the coefficient®\, A’, B, etc. depend upon the position of the pemand are
consequently functions of its coordinatey, z The first two of them can be expressed
immediately by means of two radii of principal curvatofethe surface that pertain to
that point.

Indeed, the directions that we gave toglands axes amount to supposing that they
were tangent to the two lines of principal curvature thegrgect at the poimh. If one
then letsp denote the radius of curvature of the line that igeéanto thes-axis and one
demands to know the value of that radius that retatélse pointm then from the usual
formulas, one will have:

provided that one sets= 0,s’= 0, after differentiation. That will give:

2
1_du s
o ds
Hence, one will infer that:
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and similarly, upon lettingg” denote the second radius of principal curvature thate=l
to m, one will have:

The other coefficientB, B’, etc., in the development afare expressed by means of
the partial derivatives of the first two with respeo x andy, and we will give them
values to the extent that we need them.

13. — The variables that | just substituted for therdmatess ands of the pointm
are the projection of the radius vector at thahpgie., the one with radiug onto the
plane ofs ands’ and the angle that the projection makes withstheis. | denote that
angle byg and leta denote the projected radius that corresponds towill then have:

s=alrosg, s =albing,
by means of which, the value oill become:

u=Pa?+Qa®+Ra’+etc.,
in which one sets:

P=ALtoS ¢ +A’Birf ¢,
Q =B [0S ¢ + B'[o¢ ¢ [kin ¢ + B” [tosg [kirf ¢ + B” kit @,

R=C[xos ¢ + C'koS ¢ [Bin g + C"os ¢ it ¢ + C” [Tosy [k ¢
+C" Osirf ¢,
etc.,

to abbreviate.

The values ofx are always very small, since they are limited by éxtent of the
sphere of activity at the poim, and that will imply that this series is very cengent. In
the following calculation, we will never need tonsaer terms above the third, and
generally we can neglect the fifth power of therditg o .

The projection of the elementthat pertains to the point onto the plane dof, s will
be equal tar da d¢, and that element will have the expression:

du* di?
w=adad 1+—+ .
PRI e e

du

d_s: 2A s+ etc. = 2A a [tosg + etc.

Now, one has:
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%: 2A s+etc. =2A" g [tosg + etc.

Hence, one will conclude that:

w=adadg (1+ 2P’ a®+ etc),
upon setting:
P'= A’ oS ¢ + A" [Hirf ¢

Finally, the radius will be equal to,/ @ +u®. Upon settings equal to its value and
developing it in powers af, one will get:

r=a+iP?a*+PQd" +etc.,

and upon developingr similarly, one will have:
fr=f a+%P2a3G‘¥+ PQa“deﬂ + etc.
a a

| shall now substitute those various series for thieier ofU. | shall arrange the
quantity that is found under thesign in powers ofr. | neglect the fifth power, while

preserving only the terms that are multiplied bi/deﬂ, which will have the same
a

order after integrating oves as the terms that are multiplied f f ¢ . Having
completed all calculations, | will then find that:

—_ g2 -1 3 1 = =
U=-¢ kH[Pfa+Qafa+(R+2PP L B)a® o+i Pa da}azdad¢.

14. — The limits of that integral will differ accordinto whether the poinn is very
close to the contour of the surface or at a muatetadistance than the radius of the
sphere of activity of the repulsive forces. In s$exond case, in order to extend the
double integral to all points that act on the dm&t tone considered, one must obviously
integrate over from a = 0 up toa equal to that radius, and owgfrom @ = 0to¢ = 277
where 77 denotes the ratio of the circumference to the ditam as usual. In truth, the
radius of the sphere of activity is not a well-defi quantity, but sincké a is zero or
negligible for any value ofr that is not less than that radius, it will folldivat one can
extend the integral over up to a value of that variable that as large a&smight desire,
and even infinity, and not introduce any error.

On the contrary, if the poimh is located on the contour of the surface, or ngy
slightly separated from it, then the sphere ofvagtiof the repulsive force around that
point will no longer be complete; i.e., a portionte extent will not include any points of
the surface. The integrals overand ¢ will then be taken between other limits, but in
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order to find the differential equation of the elastizface in equilibrium, it will suffice
to consider the interior points that are locatedratarbitrary distance from its contour,
and one needs to examine what happens at the boundary @alyntn order to determine
the particular forces that one must apply to the $initthe surface in order to put it into
equilibrium. That determination is very delicate, amebuld like to return to it later, but
| shall not address it in this article.

Therefore, upon considering only the points that do ed&dny to the limits of the
surface, the integrations overand ¢ will become mutually independent, and since each
of the terms that are found under fheign is the product of two factors in which those
variables are separate, nothing will be easier now tiearcomplete that double
integration.

15. — In regard to the limitg = 0 andg = 27z one will have:
jco§¢[sir?' ¢dg =0,

except when the exponentsand n” are two numbers that are even or zero. That
consideration will make the second termUndisappear, because from the form of the

quantityQ, it will follow that one will havejQ d¢ = 0. Moreover, let? andb? denote

the values of the integral§a2faﬁbla, ja“faﬁbla, when they are taken between
convenient limits, in such a way that one will have

jazfaﬁbla:aZ, ja“faEHa:bZ,
wherea® andb? represent some essentially-positive constantnlitegrating by parts,
one will get:

jasﬁbl Ofa =afa- SJa“famla,

but the termz 2f @ will vanish at the two limits. We will then hasemply:

jcf’m Ofa =- 5ja4famla: - 507,
Having done that, the value Ofin sectionl3 will reduce to:

U :—£2ka2Ede¢—£2kb2Ej R +&2 kB[j(s B-2 PP d,

in which all that remains is to perform the intdgras over the variablg.

Upon resettind®, R, andP’ equal to their values and keeping only even powérs
sing and cosp under thd sign, one will have:
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de¢: Ajco§D}5Ed¢+ A'jsirfw[u;p,
de¢:cjcos“wm¢+djco§npmsiﬁ¢m¢+ c'Vj sifig Odp

[(@P*-2PP)dp
:A3(3j cog gLt — 4 cop Eu¢)+A'3(3j sinf ¢ (el - 2f sirf g Ebl¢)
+A2A(Qjco§‘¢Dsiﬁ¢Ed¢— 4 cosp [ si?¢[d¢)
+AA'2(9jsin4¢Et:o§¢Ed¢— § codpD si%¢[u¢) .

If one integrates fromp = O up tog = 277then one will find that:

jco§¢m¢:jsin2¢m¢:n,
jco§¢[$irf¢m¢:g,
[ cos' ¢ Csirt g (21 = [ sin’ ¢ [cos p [0l = ’—8T,

jcosﬁ¢m¢: jsin6¢m¢: %’T,
from which, it will result that:
de¢: TA+A),

[Rap= ’7:(30 +C’+3C"),

J(@P°-2PP)dp =T (3A%+ A%+ BA A + BA AT,

and consequently:

U=-ZkadmA+A)-1ka m(3C+C"+3C")
+1 2k b 7m(3A% + 3A° + 5A A + 5A A?),
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16. — We can calculate the value of the integﬁFrm} that enters into the
expression fofl (no0.9) similarly. As in no13, we will first have:

w=adadg (1+ P a?+etc.),
Fr:Fa+%P2aZBdﬂ + etc.
da
Upon observing thad [F a =f a [ a, we will conclude that:
[[Frizv=[[[Fa+2Pa’*Fa+iP’a’Ofa+etc|adadg.

If we consider the points of the surface that aewvery close to its contour then, as we
saw above, the integrals must be taken fgbmO0 up tog = 277 and then frono = 0 up
to a reasonable value af Now, upon integrating by parts, we will have:

jFaWE}Ia :%azElFa——;EjazfaEia,
jFamsma: %a“[lFa—%[ja“faEia,

but the products” [F a anda” CF a will be zero at the two limits. In the former eag
is due to the factoa, and in the latter, it is becauBex will vanish for any value ofr is
not extremely small, by hypothesis (1. We will then have simply:

jFaWE}Ia :—%Ejazfamm:— 1a?,
jFams ma:—%qa“famm:— ip?.
From that, upon neglecting the fifth powerapfthe value ofﬂ F r Léo will become:
[[Friw=-1a’[dg+i07[ (P~ P) &b
Upon integrating frong = 0 to@ = 27z one will first havejd¢ = 2JT; moreover:
[(PP-P)ap = Az(jcos4¢m¢—j co§¢[d¢)+ AZ(j siflg g - | siﬁ¢Dc¢)
+ 2AA'jco§¢Dsiﬁ¢Eu¢,

and that equation is the same thing as:
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j(PZ— P)dg = (QAA - R - AZ)qco§¢Dsirf¢Dc¢

n 2
=- — (A=A,
4( )
and consequently:
2
[[Frow=-an- b?]TE(A—A')Z.
That will give:
2 2 b’ 2
T=¢a m+ OA-A)"-T11.

17. — We will soon see that we will need to know tlaue ofT that refers to the
points on the contour of the surface. That valulé differ from the one that we just
calculated for the interior points, but fortunatatyis, like the latter, independent of law
of the repulsive force, and can be determined yeadihe same thing will not be true if
we consider a point that is not located on thattamaem but is separated from it by a
distance that is less than the radius of activitthe repulsion: The value df will then
depend upon the law of that force, in such a way thcan be determined only by
making some hypothesis in regard to the form oftinetionf r.

Therefore, suppose thatis one of the points on the curve that boundssthiéace.
Draw a tangent to the curve through that point andngent plane to the surface, and to
fix ideas, suppose that tkeaxis, starting from which, one will measure thglary over
that plane, points along the same side in whichfmas the surface. Lef be the acute
angle that is subtended by that axis and the tartgethe curve. It is obvious that in

order to extend the integrﬂ Fr [ over all points of the surface that act upon thiatp

m, one must take it fronw = O up toa equal to the radius of activity of the repulsive
force, and then fronp = — Gup to g = 71— 6, which are the values of that angle that the
two extreme positions of the radiossubtend with the tangent planenat

If the limits that relate tar are the same as in the preceding section then iwe w
further have:

[[Frioo=-1a*[dp+iB°[ (P~ P) 0.
Furthermore, from the values BfandP’ (no.13), one will always have:
jj(PZ— P)dg = - (A—A)? [jco§¢tsiﬁ¢m¢.
If one integrates fromp = — Gup tog = 77— Gthen one will find that:
[dp=7, jco§¢tsiﬁ¢m¢:§,

from which, one will conclude that:
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[[Friso =-4a’m-4 0’ O0A - AY,
and for the value of the boundary tension:
— 2
T=iga’m+L e’ OA - A)* - .

On might point out that the part of this expressioat B due to elastic forces is
precisely one-half the part of the value of the irtétansion that we determined before.

18. — It is now necessary for us to express the valudiseofuantities\, A', and I +
C”+ 3C " that enter into the expressions frandT that we have found as functions of
thex, y, z coordinates of the poimh. Now, in regard to the first two, we already saw.(
12) that:

1
1 | A

2p 20

All that remains to be done then is to replaandp’with the known expressions for the
two radii of principal curvature. However, we meto determine the values AfandA’
directly by the same analysis that we appealed twder to find the value of the quantity
3C+C”+3C"

In order to do that, consider a second poinbn the surface that corresponds to the
coordinates<, y’, Z and recall the formulas for the coordinate tramsftion that were
cited in sectioril, namely:

X =X+ us+ VS—%,

y'=y+u's+v’s —%,

Z=z+Uu"Ss+V’S +E,

in which one has replacetj A', A" with their values.

The variablez is a function ofx andy, andZ is likewise a function ok’ andy".
Hence, if one develops the latter using Tayloresotlem and observes thdt / dx = p,
dz/ dy = g then one will have:

Z=z+ p(,us+|/ é—%j+ ({,u’ stV ’s—ﬂjj

1d?z puf’ 17, ., qy
—— +vs—| +—— +V' §5——
+2dx2(,us Vs j > M stv'§ ”
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2
+ d’z (,us+vé—ﬂjj(,u’ stV S—iu} etc.
dxdy Kk k

If we equate that value af to the preceding one and move all terms of the fostgp in
u, S, ands that result to the left-hand side of the equation themnvill have:

u ’
A +p*+d)  + W—pp-p DS+ =PV DS

1d%z puy 1d q
2X2(,us Vs — j 2>;,usvs kj

2
d z (,us +vg-P j(,u S S—iu} etc.
dxdy Kk k

The coefficients o ands are zero, by virtue of the condition equations of sectin
The left-hand side will then reduce kou, with 1 +p? + o° = K°. If one also replaces

with its development in powers stnds and arranges the left-hand side of that equation
similarly then it will become:

KAZ+KA €2+ etc. ( dzy, Y %Lj
2 dxdy dy 2

. Zd’_ iﬂ'ﬁjgz
2 dxdy dy 2

d?z d2 gz,
+ dszu (,uv ,L/V)+T;D1vjsé+etc.

This must be an identity mands. Hence, if one equates the coefficients of the te&rims
second power in the two sides of the equation then tiidead to these three equations:

2 2 2
dzgu_ dz _Zgu_ KA

d¢ 2 dx dy

y , & zy'?
lei E'V +T}%Z|:y?—kA

d dxdy

d?z _
dxzuz (uv ,UV)+—ZDJV
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The first two will yield the values oA and A’, and the third one will determine the
directions of thes ands axes, which were supposed to be tangent to the twodines
principal curvature that intersect at the paim{no. 12). It is true that the quantitigg 1/,

v, V" enter into those values @& and A’, but one can make them disappear in the
following manner:

1. | add the first two equations. | ldtdenote the suA + A’, and upon considering
the condition equations of sectiah, | will find that:

_1+¢® d’°z pg.dz 1+ p_d .
= -+
2k d¥ K dxdy 2R dy

2. | multiply the first two equations with each othéithen subtract the square of the
third one from the product; that gives:

CAA =2 (v — 1Y dzde2 z ( dz ’
N d dy? | dxdy |

but one will have (noll):

4 4 1
(uv'-u V)Z=F-

If one then let<s lets denote the produdt A then one will have:

1 1d%*z_d?*z ¢ 2\
= [J - )
© 4k4[%dx2 dy? (dde

The sum and the product 8fand A’ are then known, so one can form a second-
degree equation whose roots will be those two quantilies easy to verify that these
results coincide with known formulas that serve ttedeine the two radii of principal
curvature of a given surface.

Since one has:

(A-A) = (A+A)-4AA =H? - 4G,
it will then follow that the internal tension thate/determined in sectid6 will become:
T=g?dm+ie? D mH?-1e’* MG -1,
and the boundary tension (ri¥)) will become:

T=le’d m+ie’ D mH? -1’ m G-
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Hence, those two quantities are now expressed asdnaatf the coordinates of the
point mthat they describe.

19. — In order to likewise express the quantity 8 C” + 3C " that enters into the
value ofU, | let H’ denote whaH will become at the poinn’, in such a way thad " will
be the same function of’ andy’ thatH is of x andy. Upon developing that using

Taylor’'s theorem, we will have:

H'=H+ d—H(,usw é—ﬂjj+ﬁ(,u’ S é—iuj
dx k dy k

1d°H puY’ 1dH quj2
+ = StVs—— | +=——| i/ stV 5———
2 e (” g kj 2 dy (” YTk

2
+dH(,us +tvs- pj(,us+vé qj+etc.
dxdy Kk k

If one replaces with its value as a series and arranges things in goavet products of
ands then that will give:

H'=H + d—H,U'*'d—H,U'jS'*'[ﬁV'*ﬁV'jS

+ etc.

However, one can get another valueHgdiby replacing the coordinat&sy, z of the point
m with the coordinates, s, u of the pointm”in theH of the preceding section. That will
give:
1+q* Eplzu g qD fu L1+ b2

2k d¢ K® ds ds 2 K d%

g

if one sets:
du du 2 L a2
ds p P =q p-+q
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to abbreviate. If one confines oneself to terms ofsé@nd power is ands’ then the
value ofu as a series will give:

p12:4A252, q,2:4AIZS,2, p,q,:4AA'SSI,

—:,L2=1—6A252—6A’2S2,
k

2
%: 2A+6Bs+2B §+12C<¢+6C'ss+2C"s’2

2
SS’LZJ: 2A +6B"s+2B"s+12C"s’?+6C"ss+2C"s .

Using that, the second valueléf, when arranged in powers and products afds’ will

become:
H =A+A +(3B+B)s+(3B+B') s’

+(6C+C"—B6A*—2A’A) S+ (6C"Y +C"— 6A° - 2AA?) g2
+ etc.

If one compares that value to the first one and equhéesoefficients 0§ ands?
on one side and the other then one will have:

AH 2 dH A dH qﬁg
2

6c+Cr_6n2nt =K I, pdH.
2 dx dxdy dy dx d
2 2
6cv+Cro6ad_2an?= L H 0 H VEATH A p- Iy g2
2 dx dxdy 2 dy dx = d

If one adds those two equations and reduces the resmltths preceding section then
one will find that:

2 2 2
3C+C”+3C"’:1+3 Ele—p?Dd H+1+ ﬁDdzH__H _dH qu
4k* dx¥ 4K dxdy 4R dy 2 dx d

+3A°+ 3%+ (A+A)AA .

I will presently substitute that value for that dfin section15, and while always
keepingH andG in place ofA + A" andAA, it will become:
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1+0° EZH _ qud2H+1+ ;:)2Dd2 H

2k d¥ k dxdy 2k oy

—pHd—H—qu—H+3k H®-12k G H|.
dx dy

U=-£&ka mH —%Ezbzﬂ{

20. — Now recall equation (1) of secti® Upon recalling the value &f, one can
then write:
Z-pX-qY+U+2TkH=0,

and if one replaced with its value and replacdswith the first of those two expressions
in section18 then one will have:

Z-pX—qVY+(e?a& m-2A) kH+1e?b* 1 GH
(@
2 2 2
1+q® d°H_pq d'H 1+ pZDd2 H—pH dH
2k d¥ k dxdy 2k d¥

dH
dy

dx

That equation, the study of which defines the main topitis article, is that of the
elastic surface in equilibrium. From the form of the qiinarH, as one sees, it contains
fourth-order partial derivatives and is linear with resptec the highest derivatives.
Meanwhile, if one pays attentions to the nature ottwestants that are denoteddSyand
b? (no. 15), which represent the definite integrals:

jazfama, ja“fama,

then it will be obvious that the second one is ndglkg if not infinitesimal, with respect
to the first one, becau?® depends upon the fourth power of the radius of activithef
repulsive force, whil@? depends upon only its square. It might then seemvaes iifiust
neglect the terms in our equation that are multipliedyvhich will lower its order to
two. However, one must observe that the term thauuisiplied bya? will be combined
with the arbitrary constant that is containedlinand we shall prove that the former term
will disappear along with that arbitrary constant oweehave determined its value.

Indeed, that constant will depend upon the particulaefthat pull the surface to its
boundary and are equal and directly opposite to the boundasions, as one saw in
sectiond. Therefore, suppose thatis one of the points on the contour. Matlenote the
given force that acts upon that point tangentiallyh® surface and in a direction that is
perpendicular to its contour. If one equates that faocéhe boundary tension that
pertains to that point (i.e., the second valu& of sectionl8) then one will have:

V=1iga’m+ie®’mH -1 G - 1. ©)
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Now, if one applies that equation to a well-defined poihthe contour and infers the
value of the arbitrary constant that is includedinand one then eliminates it from
equation 4) then it will be obvious that the term that is mdigd by a? will
simultaneously disappear, in such a way that allwhhtemain will be the given forces
and some terms that come from the elastic forcesateamultiplied byb?.

21. — In the case where the forcesy, Z are zero and the elastic surface is a cylinder,
one must find the usual equation of giastic stripfor the section that is perpendicular to
the edges. In order to verify that, take yhaxis to be parallel to those edges, in which
casez will be independent of, and one will have:

2
q=0, k=y1+p?, :—f:?, H=(1+p 20 ;gp G=0.
X X

Moreover, the quantitil, which represents the integralXfdx+ Y dy+ Z dz will reduce
to an arbitrary constant. | letdenote a similar constant, and | put:

2N -—e?& m=Le?a’ iz,
to simplify. Equationd) will then become:
d I:E(l-*- pZ)—3/2 |ﬂp:l
dx

\/1+ p2 dx

2v-312 PP | _ p_dp —s12 AP
O e L

1 dp C
dp+ dp= 0.
2(1+ p?)*t dX P 1+ p P

One does not recognize the equation of the elastip in this. However, it is
possible to convert it into the usual form by awsewe of transformations that | shall
now indicate.

First, divide all terms by/1+ p*> and observe that:
1 d 2\-3/2 Bdi)} [ﬁ 2\-3/2 dp}
— 1+ fel [ 1+ 3—
(1+ p%) dx[( P) dx d+p) dx
:il:(l'f' p2)—5/2 |ﬂ):l|]j I:E(l'f' p )—3/2 dp:l
dx dx d

-3/2 dp 2 d
e ey e e

+
(1+ p ) dx
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so our equation will become:

i[(ﬁlﬁ pz)—5/2 [—ld—p}Ed [ﬁ(l_*_ pz)_S/ZE}d—
dx dx

dﬂ @ o7 dp[“[ﬁ(“ '&)_mg_j

5 dp’ p
d c[d[—li 0.
2(1+ p )9/2 2 p [1+ p

and due to the fact that:

2p dp -3/2 dp 1 dp
@+ Py dxm[ﬁ( P) dx} W Y aR P

=d [E p(+ pz)-m‘ij]
dx

it will change into:

[(1_*_ p2) /2 [_]di)} [F(l_*_ D )—5/2[_)_]*_5[“% p(1+ pz)—3/zﬂ}+ ad—P_-o.

dx 1+ p2

If one integrates this and denotes the arbitrangtamt byc then it will become:

i[(ﬁlﬁ p?) 52 Bdi)} 5p dﬁ cp _ _¢
dx dx '

20+ BY° &% J1r p7

| multiply this by 2dp and observe that:

dp [E(l'*_ D )—5/2[4@}_*_ 5p dp dp = d[E(l'*_ pz)—5/2£}
d dx dx

20+ @)% dx

which will reduce the preceding equation to:

2
d I:E(l_*_ pZ)—5/2 [gf()z:|+ 2Cp dp 2Cr dp

{1+ p?

| integrate a second time, and ¢étdenote the arbitrary constant; | will then have:

L 00 oo [Te P =20 dp+

@+ p?) "7 o

36
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If one solves that equation fdx then one will have:

(1+p)5/4

\/Zcp+c2 26/ 1+

If one multiplies this by and replacep dxwith dzthen it will become:

(1+p)5/4

\/Zcp+c2 26/ 1+

The last two equations are effectively the ones Hierdlastic strip in the form that
Euler found for it at the end of his treatise on th@ésonetric problem. It is easy to
reduce them to just one betweenand x, but we will not stop to perform that
transformation.

22. — If the elastic surface differs only slightly fronp&ane, which is thewy-plane,
and one consequently neglects the squares and products pértied derivatives of
ordinatez in its equations, then one will have:

1(d’z d°z
k=1, H=
¢=0 (dxz dyzj

which will reduce equatioraf to simply:

Z-pX-q¥(ie%ar- |'|)(d2 dzj 1sza2n[EdlZ+2 dz, d}z

I
o

dX dy d¥ dX dy dy

and equationk) will reduce to:
V=1gamr-1.

We can deduce the equations of motion of the elasticceurfamediately from its
equilibrium equations by using the principles of mechathat we recalled in sectiah
and if we confine ourselves to considering the case in vih&kurface makes very small
oscillations on one side and the other of a fixed plne®m one must start with the
reduced equations that we just wrote down. Suppose, in @additiat each point
oscillates along a line that is perpendicular to thahgland ignore the weight of the
surface. As in the cited section, we will then have:

() “Methodus inveniendi lineas curvas, ...,” page 249.
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2
X=0,v=0,z=-¢%%
dt
in whicht is the variable that represents time.
The quantity’1 denotes the integral &f dx+ Y dy+ Z dz so one will then have:

2 2
dn=-¢424=-fmf 2,
dt 2 dt

which is a value that one must regard as zerogsime neglects the terms of second
order inz. Hence[1 will be an arbitrary constant, and from the precgdalue ofV, that
force, which acts tangentially to the boundary e surface, must also be constant or
zero.

With those new restrictions, one will have theaten:

gdZZ_V(dzz Oezj+§£2b2n[ 4 z 4 z ﬁjz

a2V ae  ay o R

for the determination of the vibrations of the acd.

The coefficienb? depends upon the natural elasticity of the surfdtevill then vary
with the matter that comprises it, and it is assiliboebe given for each particular surface.
If one suppose that it is zero then one will haneegquation of an inelastic surface that is
acted upon by a forcé (no.7). On the contrary, if one se¥s= 0 then the equation of
motion will reduce to the simplest form that it daave in the case of elasticity, namely:

d_zz+n2 d“z+ d‘z+ ¢ —o
dt? d¥*  d¥ dy dy ’

in which n® is an essentially-positive constant coefficierattis proportional to the
thicknesse and the quantith?. It no longer contains the equation of the inédasurface
then, which can vibrate only when it is acted ugoyna force that is applied to its
boundary.

The latter equation is the one that one findsheut proof, in the anonymous piece
that | spoke of at the beginning of this articldlow that it has been deduced from a
rigorous theory, it can provide a basis for somehefstudies that one might undertake
regarding the laws of the vibrations of resonaatqd.

23. — | shall conclude this paper by exhibiting a ous property of the elastic surface
in equilibrium. The one that | shall consider iplate of equal thickness that is bent by
given forces that act upon its contour, and to &fgd shall ignore its weight. Now, |
say that in the equilibrium state, among all of skkefaces with the same area it will be
the surface for which the integral:
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H[_+—j k dx dy

is amaximumor aminimum As before,o and o’ will denote the two principal radii of
curvatures that pertain to an arbitrary poiktdx dyrepresents the element that relates to
that point, and the double integral is extended oveetitiee surface. In order to verify
that theorem, it will suffice to show that it willdd to the equation of the surface that was
found before.

Indeed, the integral that represents the area ofuttiace will be ”kdx dy. From

the rules of thecalculus of variationsthe equation of thenaximumor minimumthat is
presently at issue will then be:

5qj[%+%j2k dxdy+ L[ kdxd =0,

in which c is an arbitrary constant. Moreover, since one ordyt® to know what the
equation of the surface is without looking at what happeits Bmits, one can regardi
anddy as constants, in such a way that when one moveshtiracteristiad under the]
sign, combines the two integrals into one and sets:

l-}-_l:R

p P
to abbreviate, the preceding equation will become:

H(é[kR2+05k) dx dy= 0.

However, upon settindz= dx=p, dz/ dy =q, as always, one will have:

k=1+p*+¢f,

_1+qg® d*z 2 P o} z, 1+ ;3 d .
R= .
K? ngz K dxdy R dﬁ

Hence, one infers that:

pEpIBSZ q d@z
dx k dy

Sk = 2R 1+¢° Epl @z ZFZJqDoQ@z 1+ ﬁDdDE
k? K> dxdy dy
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+okR|Rdoz, dR1dD 3 pof PP 2 4@ |
dp dx dg dy k dx k dy

| substitute those values in the preceding equation. Upeqgraitng by parts, | will
make the first and second derivativesod disappear. | neglect the terms that can go
outside the doublf sign, which refer, as one knows, to the limits of $heface, which
we shall not consider here. Finally, upon observing tha

dR__3p 2pdzz 2q_d z

dp Kk e dy K dxdy

drR_ _3p 2qdzz 2q_d z

dq Kk k3 d¢ K dxdy

dip/k , dUd K _ o
dx dy

After some reductions, | will find that:

jj Gl P [ﬁﬂm}ziz I+ P

ae | K dxdy( K dy k

~ 49 ( jgdz_z L 'jgi-h T; g 20'54_@_3511
dx\ K ) dy  dxdyx k) dk dx %/ dxdy y ? dx

+10PR dR 10q33—+5R3 }Déz[dxdyzo
K Cax K '

Upon equating the coefficient @k to zero (i.e., the quantity that is found insitle t
brackets), one will have the equation of the swfdtat was sought. It will not be
presented in the same form as the equation ofl#stieesurface that we found in section
20, but if one performs the differentiations of th@gucts that are only indicated there,
one will find, after reducing and dividing by twibat:

1+¢® d?R 2quch 1+ ;3 di
KX dé K dxdy R df/

PR dR_ g df 2d)|_
Sy 2 Tdﬁ%f H
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It is easy to recognize the coincidence of that equatitimthe one in sectioB0 when
one suppresses the forcésY, Z in it and one replaces the quantilyby an arbitrary
constant.

Furthermore, the integraﬂR k dxdy is not the only one that enjoys the property of
being amaximumor aminimum It also belongs to the integrals:

H[%*%jzkdxdy, jj[ jkdxdy

and generally all of the integrals that can be dedufrom the first one by adding the
integral j j kdxd y

one has:

to it, multiplied by a constant coefficient. Thahounts to saying that

5[jjkdXdy ﬂé(ppjmxdy 0

identically, when one considers only the terms thidltremain under the doublg sign
after integrating by parts and one ignores the dhas pass outside of it. One will
effortlessly verify that assertion upon startingnfr the known value of the quantity

k/(pp'), namely:
k _1|dzdz [ dzY
pp K| ddé dy | dxdy |

The property of the elastic surface that we justved includes the property of the
strip, which was first imagined by D. Bernoulli anthich Euler later verified at the end
of his treatise on thisoperimetric problenthat was cited above)( Indeed, in the case
of the strip, one of the two principal radii of gature — for example, the radigs— will
become infinite. Furthermore, the surface elenwattchange into that of the elastic
curve, which we will callls and the double integral:

Hdexdy

will become the simple integrfilds/p2 , which must be effectively minimum from the
principle of D. Bernoulli.

() On that topic, also see the note that follows thEephy Laplace odouble refraction Mémoires de
I'Institut in the year 1809.



