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 The work of the geometers of the last century has brought general mechanics to a 
degree of perfection that leads one to regard that science as having concluded and to 
think that all that is left to conquer are the difficulties in integral calculus in each 
particular problem.  Nonetheless, that is not true, and mechanics further poses several 
important questions that have not been addressed by calculations: The theory of elastic 
surfaces, which I propose to consider in this paper, offers a remarkable example of that.  
The differential equations of those surfaces in equilibrium, and more to the point, their 
equations of motion, are not known, either, except in the particular case where one is 
dealing with a cylindrical surface, which then leads back to the class of ordinary elastic 
strips.  As one knows, Jacob Bernoulli was the first to give the equation of equilibrium of 
the elastic strip by basing it upon the hypothesis that the elasticity at each point is a force 
that is normal to the curve whose moment is proportional to the contingency angle or 
inversely proportional to the curvature at that point.  Since the time of that great 
geometer, several other ones, and mainly Euler and Daniel Bernoulli, have published a 
great number of papers on the equilibrium conditions for elastic lines and the laws of the 
vibrations.  However, all that appeared were some fruitless attempts that focused on 
elastic surfaces that were folded in two different directions.  Thus, Euler presented some 
research into the sound of bells in his St. Petersburg papers in which he confined himself 
to considering the vibrations of each of the circular rings that a bell is composed of in 
isolation.  That reduces the problem to that of simple elastic lines and leads to some 
results are not at all in agreement with experiments, moreover.  In the same collection 
(from the year 1788), one also finds a paper by another Jacob Bernoulli that was written 
on the occasion of Chladni’s experiments on the vibration of resonant plates.  That 
geometer considered a rectangular plate to be composed of two systems of parallel strips 
that were parallel to the sides of the rectangle and vibrated as if they were glued to 
together without hindering each other.  Starting from that assumption, which Euler had 
already made in regard to the vibrations of drums, Bernoulli formed the partial 
differential equation that would serve to determine the small oscillation of the resonant 
plate.  He himself then remarked that the consequences that can be deduced from it are 
not entirely in agreement with Chladni’s experiments, and indeed, one will see in my 
article that this equation is not the true equation, and that it lacks a term that the author 
could not find from his hypothesis. 
 About five years ago, the Institute proposed that the topic of a prize should be a 
theory of vibrations of resonant plates that is verified by comparison with experiments.  
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However, since that time, only one submission was received that was worthy of the 
attention of the class.  At the beginning of that paper, the anonymous author presented, 
without proof and without saying what led him to it, a fundamental equation that included 
the term that Bernoulli’s equation was lacking.  Following the example of what Euler had 
done in regard to the equation of vibrating strips, the author of the article satisfied the 
equation that he had posed by means of some particular integrals that were composed of 
exponentials, sines, and cosines.  Each of those integrals determined a particular figure of 
the vibrating plate that presented a certain number and disposition of nodal lines.  In 
general, the sound that the plate made depended upon the number of those lines, and the 
integral established a relationship between that number and the corresponding sound.  
The author calculated the tone that related to each figure from that relationship, and then 
compared the calculated tone to the one that experiments gave for a similar figure.  He 
found a satisfactory agreement between those two results, in such a way that the 
fundamental equation that he had started from, and to which we will arrive directly in this 
article, can be regarded as sufficiently verified by experiments, up to now.  That 
comparison is the part of his work that motivated the judges to give him honorable 
mention.  It drew upon a great number of experiments by Chladni and many others that 
the author of the cited study performed.  There is another type of comparison that is much 
more difficult to undertake that relates to the figure that is produced by a given manner of 
putting the plate into vibration.  One might also desire that the results of the calculation 
can be deduced from the general integral, and not from some particular integrals of the 
equation of the vibrating plates.  Unfortunately, that equation can be integrated in finite 
form only for definite integrals that refer to imaginaries, and if one makes them 
disappear, as Plana did in the case of simple strips, then one will arrive at a very 
complicated equation that seems impossible to use. 
 Those are the only works on elastic surfaces that have appeared up to now, to my 
knowledge.  That theory is one of the ones that merit the most attention from geometers, 
since on the one hand, it is attached to general mechanics by the search for the 
differential equations of equilibrium and motion, and on the other hand, it includes one of 
the most vast and curious branches of acoustics as an application.  It is solely upon the 
basis of the first of those two relationships that I communicate this article to the class 
today, and in which my main goal was to arrive, with no hypotheses, at the equilibrium 
equations of elastic surfaces whose points are all acted upon by given forces. 
 This paper is divided into two parts.  The first one relates to flexible, inelastic 
surfaces, whose equilibrium equation Lagrange has already given in the second edition of 
his Mécanique analytique.  I arrived at that equation along a different path that has the 
advantage of showing the particular restriction to which it is subordinate.  Indeed, it 
supposes that each element of the surface is equally stressed in all directions, which is a 
condition that is not fulfilled in large number of cases, and which will be impossible to 
fulfill, for example, in the case of a ponderous surface of unequal thickness.  In order to 
solve the question completely, one must pay attention to the difference in the tensions 
that the same element will experience in two different directions.  One will then find 
equilibrium equations that include those of analytical mechanics, but which are more 
general and also much more complicated. 
 In the second part, I consider elastic surfaces and determine the expression for the 
forces that are due to elasticity at each of their points.  That quality of matter can be 
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attributed to a repulsive force that is exerted between the molecules of the body, and its 
action extends over only immeasurable distances.  The function that represents the law 
must become zero or negligible as the variable that represents the distances ceases to be 
extremely small.  Now, one knows that similar functions generally disappear in the 
calculations and leave only total integral or arbitrary constants that are given by 
observation in the definitive results.  Indeed, that is what happens in the theory of 
refraction, and even more so in the theory of capillary action, which is one of the most 
beautiful applications of analysis to physics to come from the geometers.  The same thing 
is true for the present question, and that is what permits one to express the forces that are 
due to the elasticity of the surface in terms of quantities that depend solely upon its 
figure, such as its radii of curvature and their partial derivatives.  Once those forces have 
been determined, it will be easy for me to define the equilibrium equation of the elastic 
surface by means of the equations that were found in the first part of the article.  The 
same analysis can be applied to some surfaces whose thickness varies according to an 
arbitrary law.  However, in order to not complicate the question, I have considered only 
the case of constant thickness.  The equation to which I will arrive supposes, in addition, 
that the surface in question is naturally planar.  It will not apply to elastic surfaces whose 
natural form is curved, such as bells, for example.  The theory that has guided me cannot 
be applied to those surfaces without modifications that I shall not go into. 
 I have deduced the equation of motion of the elastic surface from its equilibrium 
equation from a known principle of mechanics, and upon assuming all of the limitations 
that the geometers have adopted for the problems of vibrating strings and strips, I found a 
linear equation in four variables for vibrating plates that does not differ essentially from 
that of the anonymous paper that I cited above. 
 In another paper, I shall apply the same considerations to elastic lines with simple or 
double curvature and with a thickness that is constant or varies according to a given law.  
That will lead me, in a manner that is direct and free from hypotheses, to not only their 
equations of equilibrium, but also to the expression for the forces that must be applied at 
their extremities in order to fix them and balance out the effect of elasticity. 
 

___________ 



CHAPTER I 
 

EQUATION OF EQUILIBRIUM OF THE FLEXIBLE, 
INELASTIC SURFACE 

 
 
 1. – I consider a closed surface of a perfectly-flexible material that is devoid of 
elasticity and whose points are all acted upon by given forces.  I will also suppose that it 
is inextensible, or at least only slightly extensible, in such a manner that the extension 
that it can exhibit will not alter its thickness appreciably, and that thickness can be 
constant or vary from one point of the surface to another, moreover.  If the forces that are 
applied to them are given then I propose to find the equilibrium equation of the surface. 
 In order to do that, let x, y, z be the coordinates of an arbitrary point m of that surface, 
when referred to three rectangular axes that are chosen arbitrarily.  We decompose all of 
the forces that act upon the point m along those axes and let X, Y, Z denote the 
components that point along the coordinates x, y, z, respectively, and tend to increase 
them.  If those components are provided by gravity or other forces of attraction or 
repulsion that act upon all of the points of the matter that the surface is composed of then 
they will be proportional to its thickness, and the values of the quantities X, Y, Z will 
include a factor that is equal to the thickness that pertains to the point m.  On the contrary, 
they will be independent of each other when they are provided with an external force, 
such as the pressure of a fluid on the surface, for example. 
 Divide the surface into infinitely-small elements for some planes that are 
perpendicular to the xy-plane, so one of them is parallel to the xz-plane and the other one 
is parallel to the yz-plane.  As one knows, the element that pertains to the point m will be 
expressed by k dx dy, when one sets: 
 

dz

dx
= p,  

dz

dy
= q,  2 21 p q+ + = k, 

 
to abbreviate, and since the quantities X, Y, Z are deemed to be constant over the extent of 
that element, that will imply that the motivating forces that are applied to it will be equal 
to X, Y, Z, multiplied by k dx dy, to to: 
 

X k dx dy, Y k dx dy, Z k dx dy . 
 
However, along with those forces, there also exist other ones that arise from the coupling 
of the element under consideration with the ones that are adjacent to it, and which will be 
necessary to take under consideration. 
 Indeed, in the equilibrium state, each of the elements that comprise the surface is 
tensed by unknown forces that are directed in the plane of that element and which act in 
the opposite sense to its opposed extremities.  Hence, the four sides that bound the 
arbitrary element k dx dy will be pulled from the inside to the outside by forces that are 
found in the tangent plane at the point m.  Furthermore, we suppose that they are 
perpendicular to the sides, but in order to embrace all of the cases that might present 
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themselves, we shall not establish any particular relationship between the forces that act 
upon two adjacent sides; i.e., we regard each element of the surface as experiencing two 
mutually-independent tensions, and one effectively agrees that the same element can be, 
for example, not under any tension in one direction, while experiencing a considerable 
tension in the perpendicular direction. 
 Having said that, let T represent the force that pulls each point of the edge parallel to 

the yz-plane and adjacent to the point m.  The length of that side is dy 21 q+ .  The total 

force that one pulls from the inside to the outside will then be T dy 21 q+ .  Let α, β, γ 
be the angles that its direction makes with the x, y, z axes, resp.  Its components parallel 
to those axes will be: 
 

T dy 21 q+ cos α, T dy 21 q+ cos β, T dy 21 q+ cos γ , 
 
and they will act in the opposite sense to the coordinates x, y, z ; i.e., the forces will tend 
to diminish the coordinates.  Now, the variable y will stay the same when we pass from 
the side that we are considering to the one that is opposite to it in the same element, and 
the variable x will change to x + dx.  Those quantities will then become: 
 

 T dy 21 q+ cos α + dx dy ⋅ 
( )21 cosd T q

dx

α+ ⋅
, 

 

 T dy 21 q+ cos β + dx dy ⋅ 
( )21 cosd T q

dx

β+ ⋅
, 

 

 T dy 21 q+ cos γ + dx dy ⋅ 
( )21 cosd T q

dx

γ+ ⋅
 

 
relative to the second side, and since those three forces act in the opposite sense to the 
preceding ones, it will follow that the element k dx dy will be pulled in the sense of the 
coordinates x, y, z by forces: 

dx dy ⋅ 
( )21 cosd T q

dx

α+ ⋅
, 

 

dx dy ⋅ 
( )21 cosd T q

dx

β+ ⋅
, 

 

dx dy ⋅ 
( )21 cosd T q

dx

γ+ ⋅
, 
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which must be added to the given forces: 
 

X k dx dy, Y k dx dy, Z k dx dy, 
respectively. 
 Similarly, let T′ represent the force at each of its points that pulls the second adjacent 

side at the point m, which is parallel to the xz-plane and equal in length to dx 21 p+ .  

Also, let α′, β′, γ′ denote the angles that its direction makes with the coordinates axes.  
We will find by an argument that is similar to the preceding one that the element k dx dy 
is also pulled by forces that act on the opposite sense to the coordinates x, y, z and equal 
to: 

dx dy ⋅ 
( )21 cosd T q

dx

α′ ′+ ⋅
, 

 

dx dy ⋅ 
( )21 cosd T q

dx

β′ ′+ ⋅
, 

 

dx dy ⋅ 
( )21 cosd T q

dx

γ′ ′+ ⋅
, 

respectively. 
 Now, if one adds the set of forces that pull the element k dx dy parallel to that axis 
and in the same sense then in order to have equilibrium of that element, it will be 
necessary that the sums should be equal to zero.  Furthermore, if one suppresses the 
common factor dx dy then one will have the three equations: 
 

X k + 
( )21 cosd T q

dx

α+ ⋅
+ 

( )21 cosd T q

dx

α′ ′+ ⋅
 = 0, 

 

Y k +
( )21 cosd T q

dx

β+ ⋅
+

( )21 cosd T q

dx

β′ ′+ ⋅
 = 0, 

 

Z k +
( )21 cosd T q

dx

γ+ ⋅
+

( )21 cosd T q

dx

γ′ ′+ ⋅
= 0, 

 
which must be true over the entire extent of the surface, and which will be the equations 
of equilibrium. 
 
 
 2. – In order to develop them, one must replace cos α, cos β, cos γ with their values, 
and that determination is only a question of simple geometry. 
 Therefore, let: 
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x′ – x = a (z′ – z), y′ – y = b (z′ – z) 
 
be the two equations of the line that passes through the point m and along which, the 
force T is directed.  x′, y′, z′ are the variable coordinates of the points on that line, and a 
and b are two unknown constants that must be determined.  The direction of the force T 
lies in the tangent plane to the point m, whose equation is: 
 

z′ – z = p (x′ – x) + q (y′ – y) . 
 
It will then be necessary that the two preceding equations must satisfy that equation, 
which will give the first conditional equation: 
 

1 – a p – b q = 0. 
 
Furthermore, the line that we consider is assumed to be perpendicular to the side of the 
element k dx dy, which is parallel to the yz-plane, and the indefinite line that is the 
prolongation of that side will have the equations: 
 

z′ – z = q (y′ – y),  x′ – x = 0. 
 
Now, in order for those two sides to be perpendicular to each other, one must have: 
 

1 + 
b

q
 = 0. 

 
One will infer from that second condition equation, when it is combined with the 
preceding one, that: 

b = − q, a = 
21 q

p

+
; 

 
consequently, the equations of the direction of the force T will become: 
 

x′ – x = 
21 q

p

+
(z′ – z),  y′ – y = − q (z′ – z) . 

 
 From the known formulas, the cosines of the angles α, β, γ that the line makes with 
the coordinate axes will be: 

cos α = 
2 21

a

a b+ +
, 

 

cos β = 
2 21

b

a b+ +
, 
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cos γ = 
2 2

1

1 a b+ +
. 

 

Upon replacing a and b with their values and always denoting the radical 2 21 p q+ +  

by k, we will then have: 
 

cos α = 
21 q

k

+
, cos β = −

21

q p

k q+
, cos γ = 

21

p

k q+
. 

 
 One will likewise find the angles α′, β′, γ′ that refer to the direction of the force T 
from: 

cos α′ = −
21

p q

k p+
, cos β′ = 

21 p

k

+
, cos γ′ = 

21

q

k p+
. 

 
 I shall substitute these values into the equations of the preceding section; they will 
then become: 

  X k + 
2[ (1 ) / ]d T q k

dx

+ − 
[ / ]d T p q k

dy

′
 = 0, 

 

  Y k +
[ ( / ]d T p q k

dx
+

2[ (1 ) / ]d T p k

dy

′ + ⋅
 = 0, 

 

  Z k +
( / )d T p k

dx
+

( / )d T q k

dy

′
= 0 . 

 
If one eliminates the two unknowns T and T′ from those three equations, what will 
remain will be an equation that will include only the given quantities X, Y, Z, and the 
partial derivatives of z, and it will be the general equation of a flexible surface in 
equilibrium.  In addition, those equations will serve to determine the two tensions T and 
T′ that an arbitrary element of that surface will experience as functions of the coordinates 
that it corresponds to.  The results of those calculations are very complicated in the 
general case.  However, when one supposes that the two tensions are equal, one will find 
an equation that is quite simple and deserves special attention. 
 
 
 3. – Hence, let T = T′.  If one performs the indicated differentiations and adds the 
three equilibrium equations, after multiplying the first one by – p / k, the second one by 

/q k− , and the third one by 1 / k, then one will get: 
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Z – p X – q Y + 
2 2 2

2 2
2 2 2(1 ) 2 (1 )

T d z d z d z
q pq p

k dx dx dy dy

 
+ − + + 

 
 = 0,  (1) 

 
when one observes that: 
 

dp

dx
= 

2

2

d z

dx
,  

dq

dx
= 

dp

dy
=

2d z

dx dy
, 

dq

dy
 = 

2

2

d z

dy
. 

 
 If one successively combines the first and the third of these equations, and then the 
second and the fifth one, then one will also find that: 
 

X + Z p +
dT

dx
= 0, Y + Z q +

dT

dy
= 0, 

 
and since one has dz = p dx + q dy, at will give: 
 

X dx + Y dy + Z dz + dT = 0,    (2) 
 
which is an equation that will replace the preceding two identically, due to the 
independence of the two variables x and y.  Now, that equation will present two distinct 
cases to examine. 
 
 1. If the formula X dx + Y dy + Z dz is the exact differential of a function of the three 
variables x, y, z, which are regarded as independent, in such a way that one will have: 
 

X dx + Y dy + Z dz = d ⋅⋅⋅⋅ f (x, y, z) 
 
identically, then equation (2) will give: 
 

T = f (x, y, z) + c, 
 
in which c is the arbitrary constant.  Upon substituting that value for T in equation (1), it 
will be the equation of the equilibrium surface, up to second-order partial derivatives. 
 
 2. If that formula is not a differential in three variables then one must determine z in 
such a way that it will become a differential in two variables in order for one to satisfy 
equation (2).  The value of z must then fulfill the condition that is expressed by the 
equation: 

( )d X Z p

dy

+
= 

( )d Y Z q

dx

+
. 

 
Consequently, it is necessary that it must agree with equation (1), which will be true only 
in very special cases.  Therefore, in general, it will be impossible to satisfy equation (2) 
with any value of the unknown T in the second case.  However, one must not conclude 
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that equilibrium will then be impossible for the flexible surface.  All that has been proved 
is that the hypothesis T = T′ is not permissible, because one can always satisfy the 
equilibrium equations of the preceding section by means of two different tensions. 
 
 
 4. – The integrability condition for the formula: 
 

X dx + Y dy + Z dz 
 
is not the only necessary condition for the assumption T = T′ to be permissible.  It is also 
necessary for that hypothesis to agree with the given forces that act at the free boundaries 
of the surface, and which determine the boundary values of the tensions T and T′.  One 
must then examine whether that agreement is effectively true in each particular case.  
However, the result will be a condition that relates to the direction of the given forces that 
one can state in a general manner. 
 Indeed, suppose that the arbitrary point m belongs to the free contour of the surface.  
Let ds be an element of the contour that surrounds that point.  Draw a plane through that 
point that is parallel to the yz-plane and draw a second plane through the other extremity 
of the element ds that is parallel to the xz-plane.  In that way, we will define an infinitely-
small triangle in the tangent plane to the surface that has the element ds for one of its 

sides, and the other two will be 21dy q+ and 21dx p+ , as before.  Now, the boundary 
tensions must bring equilibrium to the given force, which will also pull the element ds 
from the inside outward, and consequently, its components must be equal and opposite.  
Hence, represent that external force by P ds.  In the equilibrium state, its direction will be 
necessarily included in the tangent plane to the point m, but it might be perpendicular to 
the side ds or oblique to it.  If it is perpendicular and one decomposes it into two forces 
that are also perpendicular to the other two sides of our triangle then we will know, from 
the elements of statics, that the components will be proportional to the sides and 
represented by: 

P 21dy q+  and  P 21dx p+ . 
 
Consequently, one will have T = T′ = P in this case.  However, if the force P ds is oblique 
to the side ds then its components, which are perpendicular to the other two sides, will no 
longer be proportional to those sides, and the boundary tensions T and T′  will no longer 
be equal to each other.  Therefore, we can conclude that the hypothesis that T = T′ over 
the entire extent of the surface will demand that the forces that are applied to its contour 
must be perpendicular to the direction of that contour at each point. 
 There is one particular case that we shall soon give an example of (no. 6) in which the 
force P ds is perpendicular to the side ds, while the two tensions T and T′ are not equal.  
That case is the one in which the side ds is found to be parallel to one of the planes of xz 
or yz.  The composition of the given force will no longer be true, as we had supposed.  
That force will then be equal to that of the two tensions that are directly opposite to it, 
and the other one, which is perpendicular, will be entirely independent of it. 
 One must also point out that the parts of the contour of the surface that define lines 
that are fixed and capable of taking on an indefinite resistance will be pulled at each of 



Poisson – On elastic surfaces 11 

their points by the resultant of the two tensions T and T′ that pertain to them, and that 
force will be found to be cancelled by those fixed lines without resulting in any particular 
condition that relates to the ratio or absolute magnitude of the boundary tensions. 
 
 
 5. – Equation (1) coincides with the one that Lagrange found in a different way in the 
new edition of la Mécanique analytique (*).  However, from our analysis, one will see 
that it is subordinate to some special hypotheses that prevent it from being the general 
equation of the flexible surface in equilibrium.  We shall nonetheless apply it to the most 
remarkable special cases. 
 
 1. Suppose that one has X = 0, Y = 0, Z = 0, in such a way that the points of the 
surface, are not subjected to any given force except for the ones on its contour.  Equation 
(2) will reduce to dT = 0 in that case.  It will then be necessary that the applied force at 
each point of its free contour should not vary from one point to another.  That being the 
case, the tension T will be equal to that constant force, and equation (1) of the equilibrium 
surface will become: 

2 2 2
2 2

2 2(1 ) 2 (1 )
d z d z d z

q pq p
dx dx dy dy

+ − + +  = 0. 

 
As one knows, that is equation is the equation of a surface whose area is a minimum for a 
given contour. 
 
 2. Consider a flexible surface that covers a solid body of arbitrary form that supports 
the surface at all of its points.  The force X, Y, Z will then be equal to the components of 
the unknown pressure that the surface exerts on the body at the point whose coordinates 
are x, y, z.  Therefore, let N be that pressure; its direction will be normal to the surface.  
Consequently, one will have: 
 

X = − 
p N

k
,  Y = − 

q N

k
,  Z = 

N

k
 

 
for its components along the coordinate axes.  If one substitutes these values in equation 
(2) then it will reduce to dT = 0.  The tension will then be constant, and as in the 
preceding case, it will be necessary that all of the points of the free contour should be 
pulled by equal forces that are tangent to the surface and perpendicular to that contour. 
 At the same time, equation (1) will become: 
 

N + 
2 2 2

2 2
2 2 2(1 ) 2 (1 )

T d z d z d z
q pq p

k dx dx dy dy

 
+ − + + 

 
 = 0. 

 
Hence, the surface of the solid body will then be given by its equation, which will tell one 
the pressure that exists at each point, or rather, its relationship to the tension T. Up to 

                                                
 (*) Tome. I, pp. 149.  
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sign, the coefficient of T is nothing but the sum 
1 1

ρ ρ
+

′
, in which ρ and ρ′ denote the two 

principal radii of curvature of the surface at the point that one considers.  It will then 
follow that this sum expresses the relationship of the force N to the force T.  Hence, for 
example, a flexible surface that extends over a sphere will exert a pressure at each point 
that is equal to the tension that it experiences, divided by twice the radius of that sphere. 
 
 3. If the surface that is not defined on a solid body, but compressed at all of its 
points by a ponderous fluid then that case will be the same as the preceding one, with the 
difference that the pressure N, rather than being unknown, will be given and will depend 
upon the density and height of the fluid.  Its value will then have the form: 
 

N = a + b z, 
 
if one supposes that the z ordinate is vertical and lets a and b denote two constant 
coefficients.  The equation for the flexible surface in equilibrium will then become: 
 

a + bz +
2 2 2

2 2
2 2 2(1 ) 2 (1 )

T d z d z d z
q pq p

k dx dx dy dy

 
+ − + + 

 
 = 0, 

 
and if one observes that T is a constant quantity then one will see that this equation 
coincides with the one that Laplace found for the concave or convex capillary surface (*).  
Thus, it will result that when a ponderous liquid rises or falls in a capillary tube, it will 
take the form of a flexible surface that is compressed by a ponderous fluid at all of its 
points. 
 
 4. Finally, consider the ponderous surface and take the z-axis to be vertical and 
directed in the sense of gravity.  We will then have X = 0, Y = 0, Z = g ε, if we denote 
gravity by g, and let ε be the thickness of the surface.  Equation (2) will then become: 
 

g ε dz + dT = 0. 
 
Now, if ε is variable then that equation will be impossible to satisfy unless ε is a function 
of just the variable z; i.e., unless the thickness is not constant over the entire extent of 
each horizontal section of the surface.  It will then result that in the case of ponderous 
surface of unequal thickness, the hypothesis of two equal tensions that we made above is 
not generally permissible.  The equilibrium equation of such a surface must be deduced 
from the formulas in section 2.  However, if ε is constant then upon integrating the 
preceding equation and letting c denote the arbitrary constant, we will have: 
 

T = c – g ε z , 
and equation (1) will become: 

                                                
 (*) Théorie de l’action capillaire, pp. 19.  
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g ε + 
2 2 2

2 2
2 2 2(1 ) 2 (1 )

c g z d z d z d z
q pq p

k dx dx dy dy

ε  − + − + + 
 

 = 0 

in this case. 
 That equilibrium equation for the ponderous surface of equal thickness must include 
the usual equation of the catenary, which one indeed deduces by supposing that z is 
independent of one of the two variables x or y, for example.  One will then have q = 0, 
and upon once more replacing p with dz / dx, moreover, that equation will become: 
 

g ε + (c – g ε z) 
2

2 2

d z

dx dz+
= 0. 

 
If one multiplies this by dz and divides by c – g ε z then one will have: 
 

2

2 2

g dz d z
dz

c g z dx dz

ε
ε

+
− +

= 0. 

 
If c′ is the arbitrary constant then integration will give: 
 

2 2c dx dz′ + = (c – g ε z) dz , 

 
and that equation is the equation of the catenary, as one can find directly (*). 
 
 
 6. – It is good to point out that the equation of the catenary is also included in the 
equilibrium equations of section 2 without one being obliged to suppose that the two 
tensions T and T′ are equal to each other in order to deduce it.  Indeed, if one has a 
rectangle that is composed of flexible cloth of constant thickness, and one suspends it by 
attaching two of its opposite sides to two fixed, horizontal, parallel lines then it will be 
obvious that the cloth will define a portion of a horizontal cylinder whose perpendicular 
section at its edges will be an ordinary catenary.  Furthermore, it will also be obvious that 
the surface will experience no other tension in the direction of the horizontal edges and 
that its elements will experience only one tension in the direction of its sections 
perpendicular to the edges, which will vary from one point to another of the same section, 
but will be the same for all points of the same edge.  If the cloth is thus suspended then 
one will change nothing in its figure when one applies equal and opposite forces to the 
extremities of each edge whose intensities vary as one pleases.  The surface will then be 
stressed by its new forces in the direction of its edges in such a way that each of its 
elements will experience a second tension that will be the same along the length of each 
edge and will vary arbitrarily from one edge to another.  From that, if one takes the zx-
plane to be vertical and the y-axis to be parallel to the lines of suspension of the surface 
then one might satisfy the general equations of section 2 by supposing that the z-ordinate 
and the tension T, which is exerted parallel to the xz-plane independently of the variable 

                                                
 (*) See my Traité mécanique, t. I, pp. 201.  
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y, and taking the tension T, which is parallel to the yz-plane, to be an arbitrary function of 
x.  Those assumptions must then give the equation of the ordinary catenary between z and 
x, and the known expression for the tension that the curve experiences at each of its 
various points for T. 
 Therefore, let: 
 

X = 0,  Y = 0,  Z = g ε, q = 
dz

dy
 = 0, 

dT

dy
= 0, 

dT

dy
= 0. 

 
The equations of section 2 will then reduce to two, namely: 
 

( / )d T k

dx
= 0, g ε k + 

( / )d T p k

dx
 = 0. 

One will first have: 

T = c′ k = 
2

2
1

dz
c

dx
′ +  

 
then, in which c′ is a quantity that is independent of both x and y.  If one substitutes that 
value for T in the second equation then it will become: 
 

g ε + 
2

2 2

c d z

dx dx dz

′

+
= 0. 

 
If one multiplies this by dz, integrates, and lets c denote a second arbitrary constant then 
one will have: 

2 2c dx dz′ +  = (c – g ε z) dz, 

 
which is an equation that is the same as the one that was found in the preceding section.  
The value of T will also become T = c – g ε z, as above.  However, the tension T′ will 
remain an arbitrary function of x that depends upon the forces that pull the cylinder under 
consideration at the extremities of its edges and will be zero when those forces do not 
exist. 
 
 
 7. – When one knows the equilibrium equations of a system of material points that are 
acted upon by arbitrary forces, one will know from the principles of mechanics how to 
deduce the equations of motion of that system immediately.  In the present case, where 
the points of the surface are pulled by forces X, Y, Z that are parallel to the coordinate 
axes, if one is to get the general equations of its motion then it will then suffice to replace 
the forces in the equations of section 2 with: 
 

X − du

dt
ε , Y − dv

dt
ε , Z − dw

dt
ε , 
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respectively, in which u, v, w denote the velocities that are parallel to those axes at the 
arbitrary point m, ε is the thickness of the surface that point, and t is the variable that 
represents time. 
 The only use that one makes of those equations is to employ them to the 
determination of small oscillations of surface that deviate only slightly from a plane, and 
that will suggest a problem that is analogous to that of a vibrating string, which is far 
from having been solved completely, moreover.  For example, suppose that the surface 
deviates slightly from the xy-plane.  The z-ordinate and its partial derivatives will then be 
very small, so one will neglect their squares and products in the calculations.  
Furthermore, one ignores gravity, in such a manner that the points of the surface will not 
be acted upon by any given force.  Finally, suppose that the velocities u and v, which are 
parallel to the xy-plane, are zero or negligible, which amounts to saying that each point of 
the surface will constantly remain in the same line perpendicular to that plane.  All of 
those restrictions are similar to the ones that one assumes in the theory of vibrating 
strings.  Upon adopting them, the equation of motion of the surface will be obtained by 
setting X = 0, Y = 0 in those of section 2 and replacing Z with – ε dw / dt in them.  If one 
neglects the squares and products of the p and q, in addition, then those equations will 
reduce to: 

dT

dx
= 0, 

dT

dy
= 0, − dw d Tp d T q

dt dx dy
ε ′⋅ ⋅+ + = 0. 

 
The first two show that T is a function of y and T′ is a function of x.  Furthermore, due to 
the fact that x and y are regarded as constants, one will have dw / dt = d 2 z / dt2.  If one 
then replaces p and q with dz / dx and dz / dy once more then the third equation will 
become: 

2

2

d z

dt
ε = 

2 2

2 2

d z d z
T T

dx dy
′+ . 

 
 If one desires that the two tensions T and T′ should be equal in this case then it would 
be necessary that they should be independent of both x and y.  If one then sets T = T′ = a2 
then one will have this equation: 

2

2

d z

dt
ε = 

2 2
2

2 2

d z d z
a

dx dy

 
+ 

 
, 

 
which coincides with the one for the propagation of sound in a plane.  It is the equation 
that Biot and Brisson appealed to in order to determine the different properties of 
vibrating surfaces (*).  As one sees, they supposed that the surface was stretched the same 
in all directions and at all of its points.  That is the case, for example, with drums, in such 
a way that the theory of their vibration will be contained in the preceding equation. 
 One will get a more general equation by supposing that the two tensions T and T′ are 
constant, but unequal; i.e., upon setting T = a2, T′ = b2.  One will then have: 
 

                                                
 (*) Reports of the first Class of the Institute, tome IV, page 91.  
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2

2

d z

dt
ε = 

2 2
2 2

2 2

d z d z
a b

dx dy
+ , 

 
which is an equation that Euler gave in his St. Petersburg papers (*) in order to determine 
the vibrations of a rectangular surface that was unequally stretched in the two directions 
of its length and its width.  The x and y axes are parallel to the sides of that rectangle.  a2 
is the tension parallel to the x-axis, and b2 is the tension along the y-axis. 
 Furthermore, those cases are the simplest ones that one can consider, and meanwhile 
the equations that they refer to are not integrable in finite form.  If one acts upon a 
surface whose limits consist of a fixed part and a moving part that is entirely free then 
one must keep the tensions T and T′ variable and unequal, one of them being a function 
of x and the other one, of y, and determine those functions in such a manner that at all of 
the free limits, the tension in the direction that is perpendicular to the contour will be 
equal to zero.  The values of T and T′ will then depend upon the form of those curves, and 
the equation that one will have to treat will be even more complicated. 

 
___________ 

                                                
 (*) Novi commentarii, t. X, pp. 247.  



CHAPTER II 
 

EQUATION OF THE ELASTIC SURFACE  
IN EQUILIBRIUM 

 
 

 8. – Having found the equations of equilibrium of a flexible, inelastic surface whose 
points are all acted upon by arbitrary forces, it is clear that one will deduce the equations 
of the elastic surface by including the forces that result from elasticity along with those 
forces.  Now, no matter what the cause of that quality of matter, it consists of a tendency 
of the molecules in a body to mutually repel each other, and one can attribute that to a 
repulsive force that is exerted between those points according to a certain function of the 
distances between them.  It is natural to think that this force, as well as all other 
molecular actions, is appreciable only for imperceptible distances.  We then assume that 
hypothesis and consequently, we will assume that the function of distance that represents 
the elastic force is valid only for extremely small values of the variable that expresses the 
distances, and that it will become zero as soon as that variable becomes appreciable.  
Furthermore, that repulsive action is assumed to affect all points of the matter and to act 
upon all points that comprise the surface, so it will follow that for all equal distances, the 
repulsive force between two points will become proportional to the product of the 
thicknesses of the surface to which they correspond.  However, for reasons that will soon 
become clear, we confine ourselves to considering surfaces of equal thickness over their 
entire extent, so the intensity of the repulsive force between two arbitrary points will then 
be expressed by the square of the constant thickness of the surface, multiplied by a 
function of the distance between those points that is subject to the condition that we just 
supposed. 
 As before, let m denote the point of the surface that pertains to the arbitrary 
coordinates x, y, z.  Consider a second point m′ that is located in the sphere of activity of 
the first one and whose coordinates are x′, y′, z′.  Let r denote the distance from m′ to m, 
and let f r denote the function that expresses the law of the repulsive force with respect to 
the distances.  Finally, let ε be the thickness of the surface: The intensity of the mutual 
repulsion between those two points m and m′ will be equal to ε 2 f r.  Hence, the point m 
will be repelled by an infinitude of forces that are similar to that one, and will originate at 
all points, such as m′, that are found inside of its sphere of activity. 
 In order to get the resultant of all those forces, one must decompose each of them 
along three fixed axes and then form the sum of the components in each direction using 
integral calculus.  Now, the components of the force ε 2 f r, which are directed along the 
coordinates x, y, z at the point m and tend to increase them, are equal to: 
 

x x

r

′− ε 2 f r, y y

r

′− ε 2 f r, z z

r

′− ε 2 f r, 

 
respectively.  If one then lets X′, Y′, Z′ denote the total components along those 
directions, and one lets w denote the surface element that pertains to the point m then, 
from the principles of integral calculus, one will have: 
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 X′ = ε 2 ⋅⋅⋅⋅ x x

r

′−
∫∫ ⋅⋅⋅⋅ f r ⋅⋅⋅⋅ ω, 

 

 Y′ = ε 2 ⋅⋅⋅⋅ y y

r

′−
∫∫ ⋅⋅⋅⋅ f r ⋅⋅⋅⋅ ω, 

 

 Z′ = ε 2 ⋅⋅⋅⋅ z z

r

′−
∫∫ ⋅⋅⋅⋅ f r ⋅⋅⋅⋅ ω . 

 
Those double integrals must be extended over all points of the surface that are situated 
around the point m and included in its sphere of activity. 
 It is then the forces X′, Y′, Z′ that one must add to the other given forces X, Y, Z that 
act at all points of the surface (no. 1).  One substitutes those forces, thus-augmented, in 
the equations of section 2 in order to get the equations of equilibrium of the elastic 
surface.  If one then eliminates the two unknowns T and T′ from those three equations 
then one will get the equation of the surface itself.  However, since the values of X′, Y′, Z′ 
contain fourth-order partial derivatives, as one will see, the result of that elimination will 
lead to a very complicated equation that does not seem to have any utility.  That is why 
we shall consider only the case in which the two tensions are equal to each other, except 
to prove that the forces that come from elasticity will satisfy the condition that this 
equality must exist, which consists of saying that the formula X′ dx + Y′ dy + Z′ dz must 
be the exact differential of a function of x, y, z. 
 
 
 9. – In the case of T = T′, the general equations of equilibrium reduce to equations (1) 
and (2) of section 3.  The elastic forces X′, Y′, Z′ increase the left-hand side of equation 
(1) by the quantity Z′ − p X′ − q Y′, which we denote by U, to abbreviate, in such a way 
that upon replacing X′, Y′, Z′  with the preceding integrals, we will have: 
 

U = 
( ) ( ) ( )z z p x x q y y

r
ε ′ ′ ′− − − − −′∫∫  ⋅⋅⋅⋅ f r ⋅⋅⋅⋅ ω, 

 
and equation (1) will become: 
 

Z − p X − q Y + U + 
2 2 2

2 2
2 2 2(1 ) 2 (1 )

T d z d z d z
q pq p

k dx dx dy dy

 
⋅ + − + + 
 

 = 0.  (1) 

 
 At the same time, one must add the formula: 
 

X′ dx + Y′ dy + Z′ dz 
 
to the left-hand side of equation (2).  Now, upon observing that: 
 

r2 = (x – x′)2 + (y – y′ )2 + (z – z′)2, 
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so it will follow that: 
( ) ( ) ( )x x dx y y dy z z dz

r

′ ′ ′− + − + −
 = dr, 

and we will have: 

X′ dx + Y′ dy + Z′ dz = f rε ′ ⋅ ∫∫  ⋅⋅⋅⋅ ω . 

 
Everything will then come down to showing that this quantity is the differential of a 
function of x, y, z. 
 In order to do that, if one represents the integral of f r ⋅⋅⋅⋅ dr by F r, or one makes f r ⋅⋅⋅⋅ dr 
= d ⋅⋅⋅⋅ F r then one will first have: 
 

X′ dx + Y′ dy + Z′ dz = d F rε ′ ⋅ ⋅∫∫  ⋅⋅⋅⋅ ω . 

 
Now, by hypothesis, f r is zero for any value of r is not extremely small.  F r, or 

f r dr⋅∫∫ , will then reduce to an arbitrary constant for any similar value of r.  

Consequently, one supposes that this integral is taken in such a way that it will vanish 
like f r for the values of r that relate to the limits of the sphere of activity of the point m, 
which are also those of the double integral: 
 

d F r ω⋅ ⋅∫∫ . 

 
Those limits depend implicitly upon the coordinates x, y, z of the point m.  However, 
since the value of F r that they refer to is equal to zero, it is further permissible to move 
the characteristic d, which indicates a differential relative to x, y, z, outside of the definite 
integral, in such a way that one will have: 
 

d F r ω⋅ ⋅∫∫  = d F r ω⋅ ⋅∫∫ , 

 
and due to the fact that the factor ε 2 is constant, it will follow that: 
 

X′ dx + Y′ dy + Z′ dz = 2d F rε ω⋅ ⋅∫∫ . 

 
 In that way, equation (2) of section 3 will become: 
 

X dx + Y dy + Z dz + 2d F rε ω⋅ ⋅∫∫  + dT = 0. 

 
That can be true only if X dx + Y dy + Z dz is also an exact differential.  Hence, let Π 
denote its integral, and one will have: 
 

T = − 2 F rε ω⋅∫∫  − Π, 
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in which one does not add an arbitrary constant, because it is assumed to be included in 
Π.  This value of T is the one that must be substituted in equation (1). 
 
 
 10. – It is good to observe that the formula X′ dx + Y′ dy + Z′ dz will not generally 
satisfy the integrability condition when the thickness of the surface is not assumed to be 
constant.  Indeed, upon letting ε denote the thickness at the point m and letting ε′ denote 
the one that pertains to one of the surrounding points, one will find that: 
 

X′ dx + Y′ dy + Z′ dz = ε ⋅⋅⋅⋅ d ⋅⋅⋅⋅ F r∫∫ ⋅⋅⋅⋅ ε′ ω . 
 

As always, F r represents the integralf r dr⋅∫ , which is taken in such a manner that it 

will vanish at the limits of the sphere of activity of the first point.  ε will now be a 

function of x, y, z, as well as the quantity F r∫∫ ⋅⋅⋅⋅ ε′ ω .  Hence, except for the very special 

case in which those two quantities are functions of each other, the value of X′ dx + Y′ dy + 
Z′ dz will not be an exact differential.  Consequently, the supposition that T = T′ is not 
generally permissible in the case of an elastic surface of unequal thickness. 
 It is solely for that reason that we shall confine ourselves to the case of a constant 
thickness, because the analysis that we just appealed to in order to determine the forces 
that are due to elasticity can likewise be applied to the case of a thickness that varies 
according to an arbitrary law. 
 
 
 11. – From what we just saw, we must determine the values of the two double 

integrals, namely: the integral F r∫∫ ⋅⋅⋅⋅ ω , which enters into the value for the tension T, 

and the one that expresses the quantity U.  In order to get the latter, it is necessary to give 
particular directions to the coordinate axes.  Hence, draw three rectangular axes through 
the point m, one of which is normal to the surface, and the other two of which will be 
directed in the tangent plane at that point.  Let u, s, s′ be the coordinates of the point m, 
when referred to those axes, where u is the one that is parallel to the normal axis.  The 
variables u, s, s′  will be coupled with the other coordinates x′, y′, z′ of the same point m′, 
and from some known formulas, one will have: 
 
 x′ = x + λ  u + µ  s  + ν  s′, 
 y′ = y + λ′ u + µ′ s  + ν′ s′, 
 z′ = z + λ″ u + µ″ s + ν″ s′ . 
 
In those equations, the nine coefficients λ, µ, etc., are the cosines of the angles that are 
subtended by the u, s, s′ axes and the x, y, z axes or the x′, y′, z′ axes. 
 The three cosines λ, λ′, λ″ are those of the angles that the u-axis, or the normal to the 
point m, makes with the x, y, z axes, in such a way that one will have: 
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λ = − p

k
, λ′ = − q

k
,  λ″ = 

1

k
, 

in which one sets: 
dz

dx
= p,  

dz

dy
= q,  2 21 p q+ + = k, 

to abbreviate. 
 As for the other six, their values will depend upon the directions of the s and s′ axes 
in the tangent plane.  However, some known relations will exist between them and the 
first three, but we shall dispense from using their values.  The relations that we will need 
in what follows are: 
 λ2   + µ 2  + ν 2   = 1, 
 
 λ′ 2 + µ′ 2 + ν′ 2  = 1, 
 
 λλ′ + µµ′  + ν ν′    = 0, 
 
 λµ  + λ′µ′ + λ″ µ″  = 0, 
 
 λν + λ′µ′  + λ″ ν″  = 0. 
 
Upon replacing λ, λ′, λ″ with their previous values, they will become: 
 

 µ 2  + ν 2  = 
2

2

1 q

k

+
, 

 

 µ′ 2 + ν′ 2 = 
2

2

1 p

k

+
, 

 

 µ µ′ + ν ν′  = 
2

pq

k

−
, 

 
 p µ + q µ′  – µ″ = 0, 
 
 p ν + q ν′  – ν″ = 0 . 
 
 We shall further cite another relation, which is likewise known, and which we will 
also use, namely: 

(µ ν′ – µ′ ν)2 = λ″2 = 
2

1

k
. 

 
 
 12. – If one replaces x′, y′, z′ with their values in terms of u, s, s′ in the expression for 
U then one will find, by virtue of the preceding relations, that it will reduce to: 
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U = − ε 2 k ⋅⋅⋅⋅ u
f r

r

ω⋅∫∫ , 

 
in which one might observe that when that quantity is divided by k, it will be, up to sign, 
the normal component of the force of repulsion that acts at the point m. 
 In order to perform that integration, we develop the quantities that are included in the 

double sign ∫∫ in powers of s and s′.  We then change those variables into other ones 

that are more appropriate to the limits of the double integral. 
 The ordinate u is a function of s and s′ that is determined by the unknown equation of 
the surface, and since the plane of s and s′ is tangent to the point m, it will then follow 
that this function and its partial derivatives du / ds and du / ds′ will be zero when one sets 
s = 0 and s′ = 0.  Consequently, the first three terms of the development in u in powers 
and products of s and s′ will become: 
 

u = A s2 + A′ s′ 2 + A″ s s′. 
 
However, upon conveniently determining the directions of the s and s′ in the tangent 
plane, one can make the term A″s s′ disappear.  The entire development will then be a 
series of the form: 
 

u = A s2 + A′ s′ 2 + B s3 + B′ s2 s′ + B″ s s′2 + B″′ s′ 3 
 

+ C s4 + C′ s3 s′ + C″ s2 s′2 + C″′ s s′3 + C iv s′4 + etc., 
 
in which the coefficients A, A′, B, etc. depend upon the position of the point m and are 
consequently functions of its coordinates x, y, z.  The first two of them can be expressed 
immediately by means of two radii of principal curvature of the surface that pertain to 
that point. 
 Indeed, the directions that we gave to the s and s′ axes amount to supposing that they 
were tangent to the two lines of principal curvature that intersect at the point m.  If one 
then lets ρ denote the radius of curvature of the line that is tangent to the s-axis and one 
demands to know the value of that radius that relates to the point m then from the usual 
formulas, one will have: 

1

ρ
= 

3/22 2

2 2
1

d u d u

ds ds

−
 

+ 
 

, 

 
provided that one sets s = 0, s′ = 0, after differentiation.  That will give: 
 

1

ρ
= 

2

2

d u

ds
= 2 A. 

Hence, one will infer that: 

A = 
1

2ρ
, 
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and similarly, upon letting ρ′ denote the second radius of principal curvature that relates 
to m, one will have: 

A′ = 
1

2ρ′
. 

 
 The other coefficients B, B′, etc., in the development of u are expressed by means of 
the partial derivatives of the first two with respect to x and y, and we will give them 
values to the extent that we need them. 
 
 
 13. – The variables that I just substituted for the coordinates s and s′ of the point m 
are the projection of the radius vector at that point (i.e., the one with radius r) onto the 
plane of s and s′ and the angle that the projection makes with the s-axis.  I denote that 
angle by ϕ and let α denote the projected radius that corresponds to it.  I will then have: 
 

s = α ⋅⋅⋅⋅ cos ϕ, s′ = α ⋅⋅⋅⋅ sin ϕ , 
 
by means of which, the value of u will become: 
 

u = P α 2 + Q α 3 + R α 4 + etc. , 
in which one sets: 
 
 P = A ⋅⋅⋅⋅ cos2 ϕ + A′ ⋅⋅⋅⋅ sin2 ϕ , 
 
 Q = B ⋅⋅⋅⋅ cos3 ϕ + B′ ⋅⋅⋅⋅ cos2 ϕ ⋅⋅⋅⋅ sin ϕ + B″ ⋅⋅⋅⋅ cos ϕ ⋅⋅⋅⋅ sin2 ϕ + B″′ ⋅⋅⋅⋅ sin3 ϕ, 
 
 R = C ⋅⋅⋅⋅ cos4 ϕ + C′ ⋅⋅⋅⋅ cos3 ϕ ⋅⋅⋅⋅ sin ϕ + C″ ⋅⋅⋅⋅ cos2 ϕ ⋅⋅⋅⋅ sin2 ϕ + C″′ ⋅⋅⋅⋅ cos ϕ ⋅⋅⋅⋅ sin3 ϕ  
  + Civ ⋅⋅⋅⋅ sin4 ϕ, 
 etc., 
 
to abbreviate. 
 The values of α are always very small, since they are limited by the extent of the 
sphere of activity at the point m, and that will imply that this series is very convergent.  In 
the following calculation, we will never need to consider terms above the third, and 
generally we can neglect the fifth power of the quantity α . 
 The projection of the element ω that pertains to the point m onto the plane of s, s′ will 
be equal to α dα dϕ, and that element will have the expression: 
 

ω = α dα dϕ ⋅⋅⋅⋅
2 2

2 2
1

du du

ds ds
+ +

′
. 

Now, one has: 
du

ds
= 2 A s + etc. = 2 A α ⋅⋅⋅⋅ cos ϕ + etc. , 
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du

ds′
= 2 A′ s + etc. = 2 A′ α ⋅⋅⋅⋅ cos ϕ + etc.  

 
Hence, one will conclude that: 
 

ω = α dα dϕ (1 + 2 P′ α 3 + etc.), 
upon setting: 

P′ = A2 ⋅⋅⋅⋅ cos2 ϕ + A′ 2 ⋅⋅⋅⋅ sin2 ϕ . 
 

 Finally, the radius r will be equal to 2 2uα + .  Upon setting u equal to its value and 

developing it in powers of α, one will get: 
 

r = α + 1
2 P 2 α3 + P Q α4 + etc. , 

 
and upon developing f r similarly, one will have: 
 

f r = f α + 2 3 41
2

d f d f
P PQ

d d

α αα α
α α

⋅ + ⋅  + etc. 

 
 I shall now substitute those various series for the value of U.  I shall arrange the 
quantity that is found under the ∫∫ sign in powers of α .  I neglect the fifth power, while 

preserving only the terms that are multiplied by 3 d f

d

αα
α

⋅ , which will have the same 

order after integrating over α as the terms that are multiplied by α4 f α .  Having 
completed all calculations, I will then find that: 
 

U = − ε 2 k ( )2 3 2 31 1
2 22

d f
P f Q f R PP P f P

d

αα α α α α α
α

 ′+ + + − +  
∫∫  α2 dα dϕ . 

 
 
 14. – The limits of that integral will differ according to whether the point m is very 
close to the contour of the surface or at a much larger distance than the radius of the 
sphere of activity of the repulsive forces.  In the second case, in order to extend the 
double integral to all points that act on the one that one considered, one must obviously 
integrate over α from α = 0 up to α equal to that radius, and over ϕ from ϕ = 0 to ϕ = 2π, 
where π denotes the ratio of the circumference to the diameter, as usual.  In truth, the 
radius of the sphere of activity is not a well-defined quantity, but since f α is zero or 
negligible for any value of α that is not less than that radius, it will follow that one can 
extend the integral over α up to a value of that variable that as large as one might desire, 
and even infinity, and not introduce any error. 
 On the contrary, if the point m is located on the contour of the surface, or it is only 
slightly separated from it, then the sphere of activity of the repulsive force around that 
point will no longer be complete; i.e., a portion of its extent will not include any points of 
the surface.  The integrals over α and ϕ will then be taken between other limits, but in 
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order to find the differential equation of the elastic surface in equilibrium, it will suffice 
to consider the interior points that are located at an arbitrary distance from its contour, 
and one needs to examine what happens at the boundary points only in order to determine 
the particular forces that one must apply to the limits of the surface in order to put it into 
equilibrium.  That determination is very delicate, and I would like to return to it later, but 
I shall not address it in this article. 
 Therefore, upon considering only the points that do not belong to the limits of the 
surface, the integrations over α and ϕ will become mutually independent, and since each 
of the terms that are found under the ∫∫ sign is the product of two factors in which those 
variables are separate, nothing will be easier now than to complete that double 
integration. 
 
 
 15. – In regard to the limits ϕ = 0 and ϕ = 2π, one will have: 
 

cos sinn n dϕ ϕ ϕ′⋅ ⋅∫ = 0, 

 
except when the exponents n and n′ are two numbers that are even or zero.  That 
consideration will make the second term in U disappear, because from the form of the 

quantity Q, it will follow that one will have Q dϕ∫  = 0.  Moreover, let a2 and b2 denote 

the values of the integrals 2 f dα α α⋅∫ , 4 f dα α α⋅∫ , when they are taken between 

convenient limits, in such a way that one will have: 
 

2 f dα α α⋅∫ = a2, 4 f dα α α⋅∫  = b2, 

 
where a2 and b2 represent some essentially-positive constants.  Upon integrating by parts, 
one will get: 

5 d fα α⋅ ⋅∫  = α5 f α − 5 4 f dα α α⋅∫ , 

 
but the term α 2 f α  will vanish at the two limits.  We will then have simply: 
 

5 d fα α⋅ ⋅∫  = − 5 4 f dα α α⋅∫ = − 5b2. 

 
Having done that, the value of U in section 13 will reduce to: 
 

U = − ε 2 k a2 ⋅⋅⋅⋅ 2 2 2 2 2(3 2 )P d k b R d k b P PP dϕ ε ϕ ε ϕ′− ⋅ + ⋅ −∫ ∫ ∫ , 

 
in which all that remains is to perform the integrations over the variable ϕ. 
 Upon resetting P, R, and P′ equal to their values and keeping only even powers of 
sinϕ  and cos ϕ under the ∫ sign, one will have: 
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 P dϕ∫ = 2 2cos sinA d A dϕ ϕ ϕ ϕ′⋅ ⋅ + ⋅ ⋅∫ ∫ , 

 

 R dϕ∫ = 4 2 2 iv 4cos cos sin sinC d C d C dϕ ϕ ϕ ϕ ϕ ϕ ϕ′′⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅∫ ∫ ∫ , 

 

 3(3 2 )P PP dϕ′−∫  

 = ( )3 6 43 cos 2 cosA d dϕ ϕ ϕ ϕ⋅ − ⋅∫ ∫ + ( )3 6 43 sin 2 sinA d dϕ ϕ ϕ ϕ′ ⋅ − ⋅∫ ∫  

 + ( )2 4 2 2 29 cos sin 2 cos sinA A d dϕ ϕ ϕ ϕ ϕ ϕ′ ⋅ ⋅ − ⋅ ⋅∫ ∫  

 + ( )2 4 2 2 29 sin cos 2 cos sinA A d dϕ ϕ ϕ ϕ ϕ ϕ′ ⋅ ⋅ − ⋅ ⋅∫ ∫  . 

 
If one integrates from ϕ = 0 up to ϕ = 2π then one will find that: 
 

 2cos dϕ ϕ⋅∫ = 2sin dϕ ϕ⋅∫ = π, 

 

 2 2cos sin dϕ ϕ ϕ⋅ ⋅∫ = 
4

π
, 

 

 4 2cos sin dϕ ϕ ϕ⋅ ⋅∫ = 4 2sin cos dϕ ϕ ϕ⋅ ⋅∫ = 
8

π
, 

 

 6cos dϕ ϕ⋅∫ = 6sin dϕ ϕ⋅∫ = 
5

8

π
, 

 
from which, it will result that: 
 

 P dϕ∫ = π (A + A′ ), 
 

 R dϕ∫ = 
4

π
(3C + C′ + 3C″ ), 

 

 3(3 2 )P PP dϕ′−∫  =
8

π
(3A3 + 3A′3 + 5A A′ + 5A A′2), 

 
and consequently: 
 

U = − ε2 k a2 π (A + A′) – 1
4 ε2 k a2 π (3C + C″ + 3C iv) 

+ 1
8 ε2 k b2 π (3A3 + 3A′3 + 5A A′ + 5A A′2). 
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 16. – We can calculate the value of the integral Fr ω⋅∫∫  that enters into the 

expression for T (no. 9) similarly.  As in no. 13, we will first have: 
 
 ω = α dα dϕ (1 + 2P′ α 2 + etc.), 
 

 F r = F α + 2 21
2

d F
P

d

αα
α

⋅⋅  + etc. 

 
Upon observing that d ⋅⋅⋅⋅ F α = f α ⋅⋅⋅⋅ d α , we will conclude that: 
 

F r ω⋅∫∫  = 2 2 31
22 etc.F P F P fα α α α α′ + ⋅ + ⋅ + ∫∫ α d α dϕ . 

 
If we consider the points of the surface that are not very close to its contour then, as we 
saw above, the integrals must be taken from ϕ = 0 up to ϕ = 2π, and then from α = 0 up 
to a reasonable value of α.  Now, upon integrating by parts, we will have: 
 

 F dα α α⋅ ⋅∫  = 2 21 1
2 2F f dα α α α α⋅ − ⋅ ⋅∫ , 

 

 3F dα α α⋅ ⋅∫ = 4 41 1
4 4F f dα α α α α⋅ − ⋅ ⋅∫ , 

 
but the products α2 ⋅⋅⋅⋅ F α and α4 ⋅⋅⋅⋅ F α will be zero at the two limits.  In the former case, it 
is due to the factor α, and in the latter, it is because F α will vanish for any value of α is 
not extremely small, by hypothesis (no. 9).  We will then have simply: 
 

 F dα α α⋅ ⋅∫  = − 21
2 f dα α α⋅ ⋅∫ = − 21

2 a , 

 

 3F dα α α⋅ ⋅∫ = − 41
4 f dα α α⋅ ⋅∫ = − 21

4 b . 

 

From that, upon neglecting the fifth power of α, the value of F r ω⋅∫∫  will become: 

 

 F r ω⋅∫∫  = − 2 2 21 1
2 2 ( )a d b P P dϕ ϕ′+ −∫ ∫ . 

 

 Upon integrating from ϕ = 0 to ϕ = 2π, one will first have dϕ∫  = 2π ; moreover: 

 
2( )P P dϕ′−∫  = ( ) ( )2 4 2 2 4 2cos cos sin sinA d d A d dϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ′⋅ − ⋅ + ⋅ − ⋅∫ ∫ ∫ ∫  

  

+ 2 22 cos sinA A dϕ ϕ ϕ′ ⋅ ⋅∫ , 

 
and that equation is the same thing as: 
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 2( )P P dϕ′−∫  = 2 2 2 2(2 ) cos sinA A A A dϕ ϕ ϕ′ ′− − ⋅ ⋅ ⋅∫  

  = − 
4

π
(A – A′)2, 

and consequently: 

F r ω⋅∫∫ = − a2 π − 
2

8

b π ⋅⋅⋅⋅ (A – A′)2 . 

That will give: 

T = ε 2 a2 π +
2 2

8

bε π ⋅⋅⋅⋅ (A – A′)2 − Π . 

 
 
 17. – We will soon see that we will need to know the value of T that refers to the 
points on the contour of the surface.  That value will differ from the one that we just 
calculated for the interior points, but fortunately, it is, like the latter, independent of law 
of the repulsive force, and can be determined easily.  The same thing will not be true if 
we consider a point that is not located on that contour, but is separated from it by a 
distance that is less than the radius of activity of the repulsion: The value of T will then 
depend upon the law of that force, in such a way that it can be determined only by 
making some hypothesis in regard to the form of the function f r. 
 Therefore, suppose that m is one of the points on the curve that bounds the surface.  
Draw a tangent to the curve through that point and a tangent plane to the surface, and to 
fix ideas, suppose that the s-axis, starting from which, one will measure the angle ϕ over 
that plane, points along the same side in which one finds the surface.  Let θ be the acute 
angle that is subtended by that axis and the tangent to the curve.  It is obvious that in 

order to extend the integral Fr ω⋅∫∫  over all points of the surface that act upon the point 

m, one must take it from α = 0 up to α equal to the radius of activity of the repulsive 
force, and then from ϕ = − θ up to ϕ = π – θ, which are the values of that angle that the 
two extreme positions of the radius α subtend with the tangent plane at m. 
 If the limits that relate to α are the same as in the preceding section then we will 
further have: 

Fr ω⋅∫∫  = − 2 2 21 1
2 2 ( )a d b P P dϕ ϕ′+ −∫ ∫ . 

 
Furthermore, from the values of P and P′ (no. 13), one will always have: 
 

2( )P P dϕ′−∫∫ = − (A – A′)2 ⋅⋅⋅⋅ 2 2cos sin dϕ ϕ ϕ⋅ ⋅∫ . 

 
If one integrates from ϕ = − θ up to ϕ = π – θ then one will find that: 
 

dϕ∫ = π , 2 2cos sin dϕ ϕ ϕ⋅ ⋅∫ =
8

π
, 

 
from which, one will conclude that: 
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Fr ω⋅∫∫  = − 2 21 1
2 16a bπ π− ⋅⋅⋅⋅ (A – A′)2, 

 
and for the value of the boundary tension: 
 

T = 2 2 3 21 1
2 16a bε π ε π+ ⋅⋅⋅⋅ (A – A′)2 − Π. 

 
 On might point out that the part of this expression that is due to elastic forces is 
precisely one-half the part of the value of the internal tension that we determined before. 
 
 
 18. – It is now necessary for us to express the values of the quantities A, A′, and 3C + 
C″ + 3C iv that enter into the expressions for U and T that we have found as functions of 
the x, y, z coordinates of the point m.  Now, in regard to the first two, we already saw (no. 
12) that: 

A = 
1

2ρ
, A′ = 1

2ρ′
. 

 
All that remains to be done then is to replace ρ and ρ′ with the known expressions for the 
two radii of principal curvature.  However, we prefer to determine the values of A and A′ 
directly by the same analysis that we appealed to in order to find the value of the quantity 
3C + C″ + 3C iv. 
 In order to do that, consider a second point m′ on the surface that corresponds to the 
coordinates x′, y′, z′ and recall the formulas for the coordinate transformation that were 
cited in section 11, namely: 

  x′ = x + µ s + ν s′ − pu

k
, 

  y′ = y + µ′ s + ν′ s′ − qu

k
, 

  z′ = z + µ″ s + ν″ s′ + u

k
, 

 
in which one has replaced λ, λ′, λ″ with their values. 
 The variable z is a function of x and y, and z′ is likewise a function of x′ and y′.  
Hence, if one develops the latter using Taylor’s theorem and observes that dz / dx = p, 

/dz dy = q then one will have: 
 

  z′ = z +
pu qu

p s s q s s
k k

µ ν µ ν   ′ ′ ′ ′+ − + + −   
   

 

 

 + 
2 22 2

2 2

1 1

2 2

d z pu d z qu
s s s s

dx k dy k
µ ν µ ν   ′ ′ ′ ′+ − + + −   
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 + 
2d z pu qu

s s s s
dx dy k k

µ ν µ ν  ′ ′ ′ ′+ − + −  
  

+ etc. 

 
If we equate that value of z′ to the preceding one and move all terms of the first power in 
u, s, and s′ that result to the left-hand side of the equation then we will have: 
 

 (1 + p2 + q2) 
u

k
+ (µ″ – µ p − µ′ q) s + (ν″ – ν p – ν′ q) s′  

 

 = 
2 22 2

2 2

1 1

2 2

d z pu d z qu
s s s s

dx k dy k
µ ν µ ν   ′ ′ ′ ′+ − + + −   
   

 

 

 +
2d z pu qu

s s s s
dx dy k k

µ ν µ ν  ′ ′ ′ ′+ − + −  
  

+ etc. 

 
The coefficients of s and s′ are zero, by virtue of the condition equations of section 11.  
The left-hand side will then reduce to k u, with 1 + p2 + q2 = k2.  If one also replaces u 
with its development in powers of s and s′ and arranges the left-hand side of that equation 
similarly then it will become: 
 

 k A s2 + k A′ s′2 + etc. = 
2 2 2 2 2

2
2 22 2

d z d z d z
s

dx dx dy dy

µ µµ µ
′ ′⋅ + ⋅ + ⋅ 

 
 

 

  + 
2 2 2 2 2

2
2 22 2

d z d z d z
s

dx dx dy dy

ν νν ν
′ ′ ′⋅ + ⋅ + ⋅ 

 
 

 

  + 
2 2 2

2 2( )
d z d z d z

s s
dx dxdy dy

µν µν µ ν µ ν ′ ′ ′ ′ ′⋅ + + + ⋅ 
 

+ etc. 

 
This must be an identity in s and s′.  Hence, if one equates the coefficients of the terms of 
second power in the two sides of the equation then that will lead to these three equations: 
 

  
2 2 2 2 2

2 22 2

d z d z d z

dx dxdy dy

µ µµ µ
′′⋅ + ⋅ + ⋅ = k A, 

 

  
2 2 2 2 2

2 22 2

d z d z d z

dx dxdy dy

ν νν ν
′′⋅ + ⋅ + ⋅ = k A, 

   

  
2 2 2

2 2( )
d z d z d z

dx dx dy dy
µν µν µ ν µ ν′ ′ ′ ′⋅ + + + ⋅ = 0. 
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The first two will yield the values of A and A′, and the third one will determine the 
directions of the s and s′ axes, which were supposed to be tangent to the two lines of 
principal curvature that intersect at the point m (no. 12).  It is true that the quantities µ, µ′, 
ν, ν′ enter into those values of A and A′, but one can make them disappear in the 
following manner: 
 
 1. I add the first two equations.  I let H denote the sum A + A′, and upon considering 
the condition equations of section 11, I will find that: 
 

H = 
2 2 2 2 2

3 2 3 3 2

1 1

2 2

q d z p q d z p d z

k dx k dxdy k dy

+ +⋅ − ⋅ + ⋅ . 

 
 2. I multiply the first two equations with each other.  I then subtract the square of the 
third one from the product; that gives: 
 

k2 A A′ = 
22 2 2

21
4 2 2
( )

d z d z d z

dx dy dx dy
µν µ ν

  ′ ′− ⋅ −  
   

, 

but one will have (no. 11): 

(µ ν′ – µ′ ν)2 = 
2

1

k
. 

 
If one then lets G lets denote the product A A′ then one will have: 
 

G = 
22 2 2

4 2 2

1

4

d z d z d z

k dx dy dxdy

  
⋅ ⋅ −  
   

. 

 
 The sum and the product of A and A′ are then known, so one can form a second-
degree equation whose roots will be those two quantities.  It is easy to verify that these 
results coincide with known formulas that serve to determine the two radii of principal 
curvature of a given surface. 
 Since one has: 

(A − A′)2 = (A + A′)2 − 4AA′ = H2 – 4G, 
 
it will then follow that the internal tension that was determined in section 16 will become: 
 

T = ε 2 a2 π + 1
8 ε 2 b2 π  ⋅⋅⋅⋅ H 2 − 1

2 ε 2 b2 π  ⋅⋅⋅⋅ G − Π, 

 
and the boundary tension (no. 17) will become: 
 

T = 1
2 ε 2 a2 π + 1

16 ε 2 b2 π  ⋅⋅⋅⋅ H 2 − 1
4 ε 2 b2 π  ⋅⋅⋅⋅ G − Π . 
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 Hence, those two quantities are now expressed as functions of the coordinates of the 
point m that they describe. 
 
 
 19. – In order to likewise express the quantity 3C + C″ + 3C iv that enters into the 
value of U, I let H′ denote what H will become at the point m′, in such a way that H′ will 
be the same function of x′ and y′ that H is of x and y.  Upon developing that using 
Taylor’s theorem, we will have: 
 

 H′ = H + 
dH pu dH qu

s s s s
dx k dy k

µ ν µ ν   ′ ′ ′ ′+ − + + −   
   

 

 

 + 
2 22 2

2 2

1 1

2 2

d H pu d H qu
s s s s

dx k dy k
µ ν µ ν   ′ ′ ′ ′+ − + + −   
   

 

 

 + 
2d H pu qu

s s s s
dx dy k k

µ ν µ ν  ′ ′ ′ ′+ − + −  
  

 + etc. 

 
If one replaces u with its value as a series and arranges things in powers and products of s 
and s′ then that will give: 
 

 H′ = H + 
dH dH dH dH

s s
dx dy dx dy

µ µ ν ν   ′ ′ ′+ + +   
   

 

 

 + 
2 2 2 2 2

2
2 22 2

d H d H d H A p dH Aq dH
s

dx dx dy dy k dx k dy

µ µµ µ
′ ′⋅ + ⋅ + ⋅ − ⋅ − ⋅ 

 
 

 

 + 
2 2 2 2 2

2
2 22 2

d H d H d H A p dH A q dH
s

dx dx dy dy k dx k dy

ν νν ν
′ ′ ′ ′ ′⋅ + ⋅ + ⋅ − ⋅ − ⋅ 

 
 

 
 + etc. 
 
However, one can get another value for H′ by replacing the coordinates x, y, z of the point 
m with the coordinates s, s′, u of the point m′ in the H of the preceding section.  That will 
give: 

H′ = 
2 2 2 2 2

3 2 3 3 2

1 1

2 2

q d u p q d u p d u

k ds k ds ds k ds

′ ′ ′ ′+ +⋅ − ⋅ + ⋅
′ ′ ′ ′ ′

, 

if one sets: 
du

ds
= p′, du

ds′
= q′, 2 21 p q′ ′+ + = k, 
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to abbreviate.  If one confines oneself to terms of the second power in s and s′ then the 
value of u as a series will give: 
 
 p′ 2 = 4 A2 s2, q′ 2 = 4 A′ 2 s′ 2, p′ q′ = 4 A A′ s s′, 
 

 
2

1

k′
= 1 – 6 A2 s2 – 6 A′2 s′2, 

 

 
2

2

d u

ds
= 2 A + 6 B s + 2 B′ s′ + 12 C s2 + 6 C′ s s′ + 2 C″ s′ 2, 

 

 
2

2

d u

ds′
= 2 A′ + 6 B″ s + 2 B″ s + 12 C″ s′ 2 + 6 C″ s s′ + 2 C″ s2 . 

 
Using that, the second value of H′, when arranged in powers and products of s and s′ will 
become: 
 H′  = A + A′ + (3B + B) s + (3 B + B′) s′ 
 
 + (6C + C″ – 6 A3 – 2 A2 A′) s2 + (6C iv + C″ – 6 A′3 – 2 A A′2) s′2 
 
 + etc. 
 
 If one compares that value to the first one and equates the coefficients of s2 and s′2 
on one side and the other then one will have: 
 

 6C + C″ – 6 A3 – 2 A2 A′ = 
2 2 2 2 2

2 22 2

d H d H d H A dH dH
p q

dx dx dy dy k dx dy

µ µµ µ
′  ′⋅ + ⋅ + ⋅ − + 

 
, 

 

 6C iv + C″ – 6 A′3 – 2 A A′2 = 
2 2 2 2 2

2 22 2

d H d H d H A dH dH
p q

dx dx dy dy k dx dy

ν νν ν
′ ′  ′⋅ + ⋅ + ⋅ − + 

 
 . 

 
If one adds those two equations and reduces the result as in the preceding section then 
one will find that: 
 

 3C + C″  + 3C iv = 
2 2 2 2 2

2 2 2 2 2

1 1

4 4 4 2

q d H p q d H p d H H dH dH
p q

k dx k dx dy k dy k dx dy

 + +⋅ − ⋅ + ⋅ − + 
 

 

 
 + 3A3 + 3A′3 + (A + A′) A A′ . 
 
  
 I will presently substitute that value for that of U in section 15, and while always 
keeping H and G in place of A + A′ and AA′, it will become: 
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 U = − ε2 k a2 π H −
2 2 2 2 2

2 21
8 2 2

1 1

2 2

q d H p q d H p d H
b

k dx k dxdy k dy
ε π  + +⋅ − ⋅ + ⋅


 

  − 33 12
dH dH

p H qH k H k G H
dx dy


− + − 


. 

 
 
 20. – Now recall equation (1) of section 9.  Upon recalling the value of H, one can 
then write: 

Z – p X – q Y + U + 2 T k H = 0, 
 
and if one replaces U with its value and replaces T with the first of those two expressions 
in section 18 then one will have: 
 

Z – p X – q Y + (ε 2 a2 π – 2Π) k H + 1
2 ε 2 b2 π  GH 

(a) 

−
2 2 2 2 2

2 2 31
8 2 2

1 1

2 2

q d H p q d H p d H dH dH
b pH qH kH

k dx k dxdy k dy dx dy
ε π  + +⋅ − ⋅ + ⋅ − − + 

 
 = 0. 

 
 That equation, the study of which defines the main topic of this article, is that of the 
elastic surface in equilibrium.  From the form of the quantity H, as one sees, it contains 
fourth-order partial derivatives and is linear with respect to the highest derivatives.  
Meanwhile, if one pays attentions to the nature of the constants that are denoted by a2 and 
b2 (no. 15), which represent the definite integrals: 
 

2 f dα α α⋅∫ , 4 f dα α α⋅∫ , 

 
then it will be obvious that the second one is negligible, if not infinitesimal, with respect 
to the first one, because b2 depends upon the fourth power of the radius of activity of the 
repulsive force, while a2 depends upon only its square.  It might then seem as if we must 
neglect the terms in our equation that are multiplied by b2, which will lower its order to 
two.  However, one must observe that the term that is multiplied by a2 will be combined 
with the arbitrary constant that is contained in Π, and we shall prove that the former term 
will disappear along with that arbitrary constant once we have determined its value. 
 Indeed, that constant will depend upon the particular forces that pull the surface to its 
boundary and are equal and directly opposite to the boundary tensions, as one saw in 
section 4.  Therefore, suppose that m is one of the points on the contour.  Let V denote the 
given force that acts upon that point tangentially to the surface and in a direction that is 
perpendicular to its contour.  If one equates that force to the boundary tension that 
pertains to that point (i.e., the second value of T in section 18) then one will have: 
 

V = 2 2 2 2 2 21 1 1
2 16 4a b H b Gε π ε π ε π+ ⋅ − ⋅  − Π.    (b) 
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Now, if one applies that equation to a well-defined point of the contour and infers the 
value of the arbitrary constant that is included in Π, and one then eliminates it from 
equation (a) then it will be obvious that the term that is multiplied by a2 will 
simultaneously disappear, in such a way that all that will remain will be the given forces 
and some terms that come from the elastic forces that are multiplied by b2. 
 
 
 21. – In the case where the forces X, Y, Z are zero and the elastic surface is a cylinder, 
one must find the usual equation of the elastic strip for the section that is perpendicular to 
the edges.  In order to verify that, take the y-axis to be parallel to those edges, in which 
case, z will be independent of y, and one will have: 
 

q = 0, k = 21 p+ , 
2

2

d z

dx
= 

dp

dx
, H = (1 + p) −3/2 ⋅⋅⋅⋅ 1

2

dp

dx
, G = 0. 

 
Moreover, the quantity Π, which represents the integral of X dx + Y dy + Z dz, will reduce 
to an arbitrary constant.  I let c denote a similar constant, and I put: 
 

2Π – ε 2 a2 π = 1
16 ε 2 a2 π  ⋅⋅⋅⋅ c, 

 
to simplify.  Equation (a) will then become: 
 

2 3/ 2

2 3/ 2 2 3/ 2
2 3/22

(1 )
1

(1 ) (1 )
(1 )1

dp
d p

dp p dp dpdx
d p d p

dx dx p dx dxp

−

− −

 ⋅ + ⋅       ⋅ + ⋅ − ⋅ ⋅ + ⋅   +   +
 

 

+ 
2

2 4 2 2

1

2(1 ) 1

dp c
dp dp

p dx p
+

+ +
= 0. 

 
 One does not recognize the equation of the elastic strip in this.  However, it is 
possible to convert it into the usual form by a sequence of transformations that I shall 
now indicate. 

 First, divide all terms by 21 p+  and observe that: 

 

 2 3/2 2 3/2
2

1
(1 ) (1 )

(1 )

d dp dp
p d p

p dx dx dx
− −   + ⋅ ⋅ ⋅ + ⋅   +    

 

 

 = 2 5/ 2 2 3/2(1 ) (1 )
d dp dp

p d p
dx dx dx

− −   + ⋅ ⋅ ⋅ + ⋅      
 

 

 + 2 3/2
2 2 2 9/2

6 2
(1 )

(1 ) (1 )

p dp dp dp
p dp

p dx dx p dx
− ⋅ + ⋅ + ⋅ + + 

, 
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so our equation will become: 
 

2 5/2 2 5/ 2 2 3/ 2
2 2

5
(1 ) (1 ) (1 )

(1 )

d dp dp p dp dp
p d p d p

dx dx dx p dx dx
− − −     + ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅     +     

 

 

+
2

2 9/ 2 2 2

5

2(1 ) 1

dp p
dp c d

p dx p
+ ⋅ ⋅

+ +
= 0. 

 
and due to the fact that: 
 

2
2 3/ 2

2 2 2 9/ 2 2

2 1
(1 )

(1 ) (1 )

p dp dp dp
d p dp

p dx dx p dx
− ⋅ ⋅ + ⋅ + ⋅ + + 

 

 

= 
2

2 7/ 2
2(1 )

dp
d p p

dx
− 

⋅ + ⋅ 
 

, 

it will change into: 
 

2
2 5/2 2 5/ 2 2 3/ 2

2 2

5
(1 ) (1 ) (1 )

2 1

d dp dp dp p
p d p d p p c d

dx dx dx dx p

− − −    + ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅        + 
= 0. 

 
If one integrates this and denotes the arbitrary constant by c then it will become: 
 

2
2 5/2

2 7/ 2 2 2

5
(1 )

2(1 ) 1

d dp p dp c p
p

dx dx p dx p

− + ⋅ + +  +  +
= c′. 

 
I multiply this by 2 dp and observe that: 
 

2
2 5/2

2 7/ 2 2

5
2 (1 )

2(1 )

dp dp p dp
d p dp

dx dx p dx
− ⋅ ⋅ + ⋅ +  + 

 = 
2

2 5/2
2(1 )

dp
d p

dx
− 

⋅ + ⋅ 
 

, 

 
which will reduce the preceding equation to: 
 

2
2 5/2

2 2

2
(1 )

1

dp cp
d p dp

dx p

− 
⋅ + ⋅ + 

+ 
 = 2c′ dp . 

 
I integrate a second time, and let c″ denote the arbitrary constant; I will then have: 
 

2
2

2 5/ 2 2

1
2 1

(1 )

dp
c p

p dx− + +
+

= 2c′ dp + c″. 
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If one solves that equation for dx then one will have: 
 

dx = 
2 5/4

2 2

(1 )

2 2 1

p
dp

c p c c p

−+

′ + − +
. 

 
If one multiplies this by p and replaces p dx with dz then it will become: 
 

dz = 
2 5/4

2 2

(1 )

2 2 1

p
p dp

c p c c p

−+

′ + − +
. 

 
 The last two equations are effectively the ones for the elastic strip in the form that 
Euler found for it at the end of his treatise on the isoperimetric problem (*).  It is easy to 
reduce them to just one between z and x, but we will not stop to perform that 
transformation. 
 
 
 22. – If the elastic surface differs only slightly from a plane, which is the xy-plane, 
and one consequently neglects the squares and products of the partial derivatives of 
ordinate z in its equations, then one will have: 
 

k = 1, G = 0, H = 
2 2

2 2

1

2

d z d z

dx dy

 
+ 

 
, 

 
which will reduce equation (a) to simply: 
 

Z – p X – q Y + ( )
2 2 4 4 4

2 2 2 21 1
2 322 2 4 2 2 42

d z d z d z d z d z
a a

dx dy dx dx dy dy
ε π ε π   

− Π + − ⋅ + +   
   

 = 0, 

 
and equation (b) will reduce to: 

V = 2 21
2 aε π − Π . 

 
 We can deduce the equations of motion of the elastic surface immediately from its 
equilibrium equations by using the principles of mechanics that we recalled in section 7, 
and if we confine ourselves to considering the case in which the surface makes very small 
oscillations on one side and the other of a fixed plane then one must start with the 
reduced equations that we just wrote down.  Suppose, in addition, that each point 
oscillates along a line that is perpendicular to that plane and ignore the weight of the 
surface.  As in the cited section, we will then have: 
 

                                                
 (*) “Methodus inveniendi lineas curvas, …,” page 249.  
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X = 0, Y = 0, Z = −
2

2

d z

dt
ε , 

 
in which t is the variable that represents time. 
 The quantity Π denotes the integral of X dx + Y dy + Z dz, so one will then have: 
 

d Π = −
2

2

d z

dt
ε dz = −

2

22

d z
d

dt

ε ⋅ ⋅ , 

 
which is a value that one must regard as zero, since one neglects the terms of second 
order in z.  Hence, Π will be an arbitrary constant, and from the preceding value of V, that 
force, which acts tangentially to the boundary of the surface, must also be constant or 
zero. 
 With those new restrictions, one will have the equation: 
 

2 2 2 4 4 4
2 21

322 2 2 4 2 2 4

d z d z d z d z d z d z
V b

dt dx dy dx dx dy dy
ε ε π   

− + + + +   
   

 = 0 

 
for the determination of the vibrations of the surface. 
 The coefficient b2 depends upon the natural elasticity of the surface.  It will then vary 
with the matter that comprises it, and it is assumed to be given for each particular surface.  
If one suppose that it is zero then one will have the equation of an inelastic surface that is 
acted upon by a force V (no. 7).  On the contrary, if one sets V = 0 then the equation of 
motion will reduce to the simplest form that it can have in the case of elasticity, namely: 
 

2 4 4 4
2

2 4 2 2 4

d z d z d z d z
n

dt dx dx dy dy

 
+ + + 

 
= 0, 

 
in which n2 is an essentially-positive constant coefficient that is proportional to the 
thickness ε and the quantity b2.  It no longer contains the equation of the inelastic surface 
then, which can vibrate only when it is acted upon by a force that is applied to its 
boundary. 
 The latter equation is the one that one finds, without proof, in the anonymous piece 
that I spoke of at the beginning of this article.  Now that it has been deduced from a 
rigorous theory, it can provide a basis for some of the studies that one might undertake 
regarding the laws of the vibrations of resonant plates. 
 
 
 23. – I shall conclude this paper by exhibiting a curious property of the elastic surface 
in equilibrium.  The one that I shall consider is a plate of equal thickness that is bent by 
given forces that act upon its contour, and to simplify, I shall ignore its weight.  Now, I 
say that in the equilibrium state, among all of the surfaces with the same area it will be 
the surface for which the integral: 
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2
1 1

k dxdy
ρ ρ

 + ′ 
∫∫  

 
is a maximum or a minimum.  As before, ρ and ρ′ will denote the two principal radii of 
curvatures that pertain to an arbitrary point.  k dx dy represents the element that relates to 
that point, and the double integral is extended over the entire surface.  In order to verify 
that theorem, it will suffice to show that it will lead to the equation of the surface that was 
found before. 

 Indeed, the integral that represents the area of the surface will be k dx dy∫∫ .  From 

the rules of the calculus of variations, the equation of the maximum or minimum that is 
presently at issue will then be: 
 

2
1 1

k dxdy c k dx dyδ δ
ρ ρ

 ⋅ + + ⋅ ′ 
∫∫ ∫∫  = 0, 

 
in which c is an arbitrary constant.  Moreover, since one only wants to know what the 
equation of the surface is without looking at what happens at its limits, one can regard dx 
and dy as constants, in such a way that when one moves the characteristic δ under the ∫∫  
sign, combines the two integrals into one and sets: 
 

1 1

ρ ρ
+

′
= R 

 
to abbreviate, the preceding equation will become: 
 

2( )k R c kδ δ⋅ +∫∫  dx dy = 0. 

 
However, upon setting dz = dx = p, dz / dy = q, as always, one will have: 
 

k = 2 21 p q+ + , 
 

R = 
2 2 2 2 2

3 2 3 3 2

1 2 1q d z p q d z p d z

k dx k dxdy k dy

+ +⋅ − ⋅ + ⋅ . 

Hence, one infers that: 

δ k = 
p d z q d z

k dx k dy

δ δ⋅ ⋅⋅ + ⋅ , 

 

δ ⋅⋅⋅⋅ k R2 = 
2 2 2 2 2

2 2 2 2 2

1 2 1
2

q d z p q d z p d z
R

k dx k dx dy k dy

δ δ δ + ⋅ ⋅ + ⋅⋅ − ⋅ + ⋅ 
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+ 2k R 2dR d z dR d z p d z q d z
R

dp dx dq dy k dx k dy

δ δ δ δ   ⋅ ⋅ ⋅ ⋅⋅ + ⋅ + ⋅ + ⋅   
   

. 

 
I substitute those values in the preceding equation.  Upon integrating by parts, I will 
make the first and second derivatives of δ z disappear.  I neglect the terms that can go 
outside the double ∫∫ sign, which refer, as one knows, to the limits of the surface, which 
we shall not consider here.  Finally, upon observing that: 
 

 
dR

dp
= −

2 2

3 2 3

3 2 2p p d z q d z
R

k k dy k dxdy
⋅ + − ⋅ , 

 

 
dR

dq
= −

2 2

3 2 3

3 2 2p q d z q d z
R

k k dx k dxdy
⋅ + − ⋅ , 

 

 
( / ) ( / )d p k d q k

dx dy

⋅ ⋅+ = R . 

 
After some reductions, I will find that: 
 

2 2 2 2 2

2 2 2 2 2

1 1
2 2 2

d q d p q d p
R R R

dx k dx dy k dy k

    + + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅     
    

∫∫  

 

− 
2 2 2 2 2

2 2 2 2 2 24 4 4 4
d pR d z d q R d z d qR d z d pR d z

dx k dy dx dy k dx dx k dxdy dy k dx dy
       ⋅ − ⋅ + ⋅ + ⋅       
       

 

 

+ 310 10
5

pR dR qR dR
R cR

k dx k dy


⋅ + ⋅ + − 


 ⋅⋅⋅⋅ δz ⋅⋅⋅⋅ dx dy = 0. 

 
 Upon equating the coefficient of δz to zero (i.e., the quantity that is found inside the 
brackets), one will have the equation of the surface that was sought.  It will not be 
presented in the same form as the equation of the elastic surface that we found in section 
20, but if one performs the differentiations of the products that are only indicated there, 
one will find, after reducing and dividing by two, that: 
 

 
2 2 2 2 2

2 2 2 2 2

1 2 1q d R p q d R p d R

k dx k dxdy k dy

+ +⋅ − ⋅ + ⋅  

 

− 
22 2 2

2
4 2 2

( )
2 2

pR dR qR dR R R d z d z d z
R c

k dx k dy k dx dy dx dy

  
⋅ − ⋅ + − − ⋅ −  

   

 = 0. 
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It is easy to recognize the coincidence of that equation with the one in section 20 when 
one suppresses the forces X, Y, Z in it and one replaces the quantity Π by an arbitrary 
constant. 

 Furthermore, the integral R k dxdy∫∫  is not the only one that enjoys the property of 

being a maximum or a minimum.  It also belongs to the integrals: 
 

2
1 1

k dx dy
ρ ρ

 + ′ 
∫∫ ,  

2 2

1 1
k dx dy

ρ ρ
 + ′ 

∫∫ , 

 
and generally all of the integrals that can be deduced from the first one by adding the 

integral 
k dxdy

ρ ρ ′∫∫  to it, multiplied by a constant coefficient.  That amounts to saying that 

one has: 

k dx dyδ
ρ ρ

⋅
′∫∫ = 

k
dxdyδ

ρ ρ
 

⋅ ′ 
∫∫  = 0 

 
identically, when one considers only the terms that will remain under the double ∫∫ sign 
after integrating by parts and one ignores the ones that pass outside of it.  One will 
effortlessly verify that assertion upon starting from the known value of the quantity 

/ ( )k ρ ρ′ , namely: 

k

ρ ρ′
= 

22 2 2

3 2 2

1 d z d z d z

k dx dy dxdy

  
−  

   

. 

 
 The property of the elastic surface that we just proved includes the property of the 
strip, which was first imagined by D. Bernoulli and which Euler later verified at the end 
of his treatise on the isoperimetric problem that was cited above (*).  Indeed, in the case 
of the strip, one of the two principal radii of curvature – for example, the radius ρ′ – will 
become infinite.  Furthermore, the surface element will change into that of the elastic 
curve, which we will call ds, and the double integral: 
 

R k dxdy∫∫  

 

will become the simple integral 2/ds ρ∫ , which must be effectively a minimum, from the 

principle of D. Bernoulli. 
  

___________ 
 

                                                
 (*) On that topic, also see the note that follows the paper by Laplace on double refraction.  Mémoires de 
l’Institut in the year 1809. 


