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Summary.

Let U andV be Abelian groups with finitely many generators, and/die a (finite or infinite) cyclic
group. The group¥ andV define agroup pairrelative toM when any two elementsandv of U andV,
resp., are associated with an elenmnsf M — viz., theproductof the two elements andv — and the
distributivity law for addition (as a group couplinghandV) is valid; i.e., the relationsi{ + ) v =u, O
v+u,vanduO(v, +Vv,) =u D +ulv, . The group paid, V is calledprimitive when for any non-zero
element of the one group an element of the second amde found such that the product of the two
elements is non-zero.

One then has the followinglgebraic duality theoremTwo groups that define a primitive pair are
isomorphic.

If U andV are ther and 6-r)-dimensional Betti groups of a closedlimensional manifold, and one
understandsi [V to mean the intersection number (the intersection nynupeto some fixed modulys,
resp.) of the associated cycles theandV define a primitive group pair (wheh is either the group of all
whole numbers or the residue classes modo they are isomorphic (Poincaré duality theorem).

When one choosdd andV to be ther-dimensional [§ — r —1)-dimensional, resp.] Betti groups of a
complexk O R" and its complementary set —K, resp., and fixes one’s attention on the linking numbers
instead of the intersection numbers, then the gréb@sdV, in turn, define a group pair, so they are
likewise isomorphic (Alexander duality theorem).

In an analogous way, one obtains all of the topologicalitguheorems that are known up to now (that
are expressed as generalizations of the two above).



Preface

In 1895, in his celebrated paper “Analysis Sitljs"Poincaré discovered the duality
theorem that bears his name today, namely, theHatfdr anyr ther™ and @ - r)" Betti
numbers of an oriented-dimensional manifold are equal. At roughly the same time,
Jordan expressed his curve theorem for the first tin@wener, at that time, nobody had
any idea that these two totally different theoremstgdd to the same circle of ideas,
and in particular, that the second one would lead to beavadextremely significant
generalizations. The path to these generalizations adl, brevity, the one that follows.

In 1912, Brouwef) proved the theorem of the invariance of a closede;umhich
included Jordan’s theorem as a very special case and dgresdrted that the number
of regions that a closed set determines in the plane depgron only the topological
properties of the set itself. In this way, the possybwas first suggested of separating
the concept of a closed curve from that of the plamkedad defining it invariantly. Thus,
the path to adopting the invariants of the so-calledbmoatorial topology to the most
general closed sets was already suggested, a path tHat hasthe last five years, to a
volume of new knowledge for which one has mainly has Aldsaif, Lefschetz, and
Vietoris to thank®. All of these results can be associated with the general duality
theorem for closed sets, which the third chapter of the present apedicated to.

However, in this examination, one deals with not @ahé/adaptation of theorems that
were proved in an elementary context to more genevategts, but also with a
generalization in regard to the dimensional relationsWsat Jordan’s theorem states in
relation to dimension 2 (the plane) and 1 (the curve) bellformulated and proved,
mutatis mutandisfor n andr, resp. One has Lebesgue to thank for taking the feptis
this direction, who, in 1911, was the first to recogrizehat the property of an-
dimensional manifold (thus, far = 1, it is a Jordan curve) separatimgl space is a
special case of the property of ardimensional manifold inn-dimensional space
admitting am —r — 1-dimensional linking. In this way, Lebesgue proved a patieat-
dimensional Jordan theorem; at the same time, Browamgred at the proof of the
remaining parts, as well as a complete and invarianfipetetheory of linking’).

One can thank Alexand&y for advancing the field in an essentially new way that
opened up the widest perspective, who proved in an extraolgisenple and elegant
way that the if — r — 1) Betti number of the complementary space to an arpitra
complex (inR") ) equaled the™ Betti number of the complex itseldlexander duality
theoren). That was a tremendous generalization of all tlewkntheorems at the time on
the circle of ideas of Jordan’s theorems, insofaihay related to the topological images

) Journ. Ec. Poly. 1895.

)
%) Math. Ann.72(1912), 422-425.

% Alexandroff, “Gestalt und Lage abgeschlossener Mengenii. of Math. (2)30 (1928), 101-187.
There, one will also find references to the incigapers of Lefschetz, Vietoris, et. al.

%) Comptes rendus Acad. Sciences PH5i4 session on 27 March 1911.

%)  Brouwer, “Beweis des Jordanschen Satzes{Dimensionen,” Math. Annalefl (1911), 314-319,
and “On looping coefficients,” Proc. Akad. Amsterdafi(1912), 113-122.

6 “A proof and Generalization of the Jordan-Brouweeditem,” Trans. Amer. Math. Sc23 (1922),
333-349.

" In this paper, the-dimensional Euclidian space, when extended by an infiniiskgnt point, was
denoted byR" throughout.
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of polyhedra (and not to more general closed sets). dhptation of Alexander’s
duality theorems to arbitrary closed sets was then daori¢ by Alexandroff), in 1927
and, at roughly the same time, by Lefschetz and Fr3nklIn this way, Lefschetz
obtained results that related to the case of closedess of arbitrary manifolds; the
essential tool that he used is a further constructioimkihg theory- i.e., in the final
analysis, the theory of the so-called Kronecker rggetion numbers- which he
developed in sufficient generality as one might possibfiredor the new problems of
topology.

On the other hand, in 1923, Vebl¥h had already applied the theory of intersection
numbers to the proof and generalization of Poincaré’ditdutieorems: Namely, he
showed that one could always choose theand 6 — N Betti bases for a closent
dimensional manifold so that the matrix of intersmcthumbers of the elements of the
two bases would be the identity matrix, a fact timafudes the Poincaré theorem and
generalizes it essentially. When one compares the®@-Veblen duality theorem, thus
formulated, with a generalization of the Alexander dyahieorem, which states that one
can always choose thedimensional Betti basis of a compl&xin R" and then —r — 1-
dimensional Betti basis of the complementary sgRice K so that the matrix of linking
numbers of the elements of the two bases would bedewtity matrix''), a certain
analogy emerged between these two theories with neefuadsumptions.

In the present paper, this analogy will be explained completely, by wihiehwo
duality theorems — viz., those of Alexander, as well as Poiéeléen — will follow from
the application of one and the same purely algebraic principle to the @ettps of the
corresponding dimensions.This algebraic principle consists of the idea thmat tivo
Abelian groupsJ andV (which one thinks of as additive groups; i.e., the group operati
is interpreted as addition), one introduces a new opearathe multiplication of an
arbitrary elementi of U with an arbitrary element of V, for which, the product [ is
alway?zan element of a third group of moduisM is therefore a finite or infinite cyclic
group™).

The introduction of the just-described multiplicatioanverts the system of two
groupsU andV into agroup pair for the modulusM. Thus, a group pair is called
primitive when for any non-zero elemanty, resp.) of the one group there is an element
w of the other group such thativ (w O/, resp.) is non-zero.

The main theorem of primitive group pairs consists in dlea ithat the two groups of
such a pair are isomorphic to each other. Now, inntegears it is indeed generally
recognized that it is not the Betti numbers, but ratherBetti groups, that define the
main focus of algebraic-topological investigatidis and that one must therefore also
consider the so-called Betti groups, moduylo In order to avoid confusion of
terminology, | will briefly summarize these basiotions here. The-dimensional,

8 Gétt. Nachr., Math.-Phys. KI. 25 Nov. 1927.

Lefschetz, Ann. of Math. (29 (1928), 232; Frankl, Wien. Ber., Dec. 1927, pp. 689.
Trans. Amer. Math. So@5 (1923), 540.
Pontrjagin, Gott. Nachr., Math.-Phys. KI., 25 Nov. 198d Brankl,loc. cit.®).
The infinite cyclic group (thus, the group of all waaeiumbers) will occasionally be referred to as
the cyclic group of order zero. This manner of speakinigrepleatedly prove to be very convenient in the
course of this paper.

13 On this, cf., e.g., H. Hopf, “Eine Verallgemeinerutey Euler-Poincaréschen Formel,” Gétt. Nachr.,
Math.-Phys. KI., 1928.
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oriented sub-complexes of a given complex are lineamdowith whole number
coefficients in the-dimensional elements of the complex; they define baliAn group
with finitely many generators (relative to addition)ttimight be called.". When one
reduces the coefficients in the aforementioned lin@and, modulo a whole numbgr>

1, the groupL), arises, which is the group of all sub-complexes, moguléor any sub-

complex, its boundary is defined to be the algebraicsltine boundaries of its elements
1%, and the boundary, modujg of a sub-complex, modula, is defined likewise. Sub-

complexes with boundary zero are callegcles and similarly for sub-complexes,
modulo . The cycles (cycles, moduja resp.) define a subgroup (Z!, resp.) ofL'

(L,, resp.). The groug' (Z;, resp.) includes a subgroup’ (H', resp.) of those
cycles that take the form of boundaries (boundaries, roogulresp.) of ( + 1-
dimensional) sub-complexes (sub-complexes, moguloesp.). The group—AIr (ﬁr,
resp.) shall be called simply the group of boundirgimensional cycles (bounding
cycles, moduloy, resp.). The factor grouf | H' is called ther-dimensional Betti
group of the given complex, while the grouf, | I:IL is called theBetti group, modulo

M. The complete Betti group is the direct sum ob tsubgroups: Théorsion group
which is generated by all elements of finite orderd thereducedBetti group, which is
generated by all elements of the complete Bettugrof infinite order. For the sake of
simplicity, we refer to the reduced Betti grouptlasBetti group, modulo zersuch that
now the numbers 0, 2, 3, ... can appear as valugs?f

With these preliminaries, we can express the gdimation of the Poincaré duality
theorem that we achieved quite simplyte " and(n —r)" Betti groups, mod, define a
primitive group pair relative to the cyclic grougf order i as its modulus?. The
intersection number of the cycles in question idbaoregarded as the product of two
elements, where in the cgge 0, this intersection number is to be reduced moguldn
an entirely analogous way, one also obtains thexaklder duality theorem in the
following form: WhenK is a complex that lies iR", ther™ Betti group oK and the it —

1% See the literature below fr).

15 ; an : nooan L —
) Obviously, the groupk”, 2", H" can then be considered to be the groups Z,, H, with =0

(i.e., sub-complexes, cycles, boundaries, modulo zeno)thd caseu = 0, it is recommended that one
further introduce the groug’ = H; of all those cycle§" for which there is a positive, whole numiet O
such thak I'" bounds (so it is included i = I:|; ). When one, in full generality, calls a subgrdlmf
an Abelian groups a subgroup with divisionin which case, the inclusidex [0 U (x is an element db, k is
a positive, whole number) implies the inclusiofl U, one can defingd, to be the smallest subgroup with
division in I:|;. One easily sees that the reduced Betti group (heneeBdtti group, modulo zero) is

nothing but the factor groug; | H;. By definition, foru# 0, we now setH, = I-A|/’1, and in the case of
anarbitrary 1= 0, 2, 3, ... we introduce the tetmmologous to zer@n symbols, ~ 0) for all elements of
H/’j . In the casg/# 0, a cycle is homologous to zero if and only if itbds (modulqy), while in the case

1 =0, we say that' is homologous to zero when there is a non-zero whetgoerk such thak I'" bounds.
Therefore, the'? Betti group, modulg/ (the case ofs= 0 is not excluded) can be defined for everas

the factor groupZ, | H .
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r — 1)" Betti group ofR" — K define a primitive group pair, if one regards the linking
number of the cycles in question as the product. Thessdéme arrangement is true
relative to the various moduli that is true in theecakthe Poincaré duality theoréf.

| call the aforementioned theorefAlexander’'s theorem in the restricted senge;
relates to complexes that lie B. However, we shall also examine the more general
case of a complex that is embedded in an arbitkélly One also obtains a complete
solution to the problem here; I call the correspondmagpremAlexander’s theorem in the
broader sense It can be regarded as a generalization of the fomhkt | already gave
before for the case of “modulo 2*). By the way, let it be remarked that in all of the
present paper the concept of manifold is understood in a maoh general sense than
the usual one up to now. Namely, the so-callechanifolds will be considered
throughout, whose definition was found at roughly theeséime by various authors —
among them, Alexander, van Kampen, Vietoris, and the autho be generalization of
the classical concept of a manifold that rested upon lomigological notions, and for
that reason, was recognized to be invariant, and whicéstated in 8 1 of the second
chapter.

After the so-to-speak classical case of the comiplakis embedded in a manifold is
dealt with, I turn to the case of an arbitrary closdad $¢ere, one can also immediately
treat the general case of a closed set in an arbitnanjifold (“the case oF in M™).
However, since the main difficulties of an algebna&ture already appear in the case of
“K in M™, and all of the set-theoretic difficulties appear e tase ofF in R, | have
restricted myself to the latter case, in order tached technical complications. The case
of the closed sets will make the algebraic methodshisf paper accessible, so one
consequently appeals to the representation of a closdxy seeans of the Alexandroff
projection spectra®). In this way, for any dimension one has, in place of a single
Abelian group, a sequence of groups that each posses$/fmaey generators; these
groups are the™ Betti groups of the approximate complexes that enter imtthe
projection spectrum; the groups are linked to each digehomomorphic maps that
correspond to the simplicial maps in the projection spatt In this way, the so-called
“inverse sequences of homomorphisms” arise, which areitldi for the connectivity
properties of closed sets. Indeed, these sequences ofrtwrphisms are defined with
the aid of an arbitrarily chosen projection spectruat,dne finds that projection spectra
that define homomorphic sets possess, in a certain segeejalent sequences of
homomorphisms, such that one is justified in introducing titality of all mutually
equivalent sequences of homomorphisms as a new togalagvariant, namely, the
dimensional cyclosisf the set. One further finds that thdimensional cyclosis, which

% In the casg/ = 0, one can even prove a sharper result, namelgoticalled orthogonality of the two
groups, which is a stronger property than primitivity, addch shall not, however, come under further
consideration for us. Let it be remarked here thahénformulation of the two duality theorems one is
necessarily compelled to regard the definitions of thé Beoups, modulo O, as the reduced groups here.
In fact, by the same method, one can show that'thersion group oR" - K is not isomorphic to then(-

r)" torsion group, but to th@r — 1§ one; similarly, the™ torsion group oK is isomorphic to then(—r

— 1)" torsion group oR” —K (whenK is a complex that lies iR"). As a consequence, in general, either the
(n - r) ™ complete Betti group of aM" is isomorphic to the™ complete Betti group of the same manifold,
or the i —r — 1)™ complete Betti group d®" —K is isomorphic to the" Betti group ofK.

1y Gétt. Nachr. 1927, pp. 323.

18 Alexandroff,loc. cit, ¥), pp. 107.
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is indeed not itself a group, defines a group in a unique wanelgathe group that is
dual to the cyclosisFurthermorethis group is isomorphic to th@ — r —1)-dimensional
Betti group of the complementary space-RF. The entire investigation may be again
carried out for an arbitrary modulys, where, as always, in the cage= 0, one
understands the Betti group, modulo zeroRbf F to be the reduced Betti group. The
most important consequence of this theory is undoubtedlyproof that it contains the
fact thatthe reduced Betti group of the complementary space to a closed sget is
topological invariant of this setMoreover, with the help of the same methods, one can
also prove the invariance of the torsion grouRdf- F; by contrast, the question of the
invariance of the complete Betti group df-RF under topological transformations Bf
remains undecided. Indeed, in general, a Betti grouR'ef F does not have finitely
many generators, and it also does not need to be reptdseasathe direct sum of its
reduced groups and the torsion groups.

The invariance of the Betti groups, modulo 2, of Bie- F was proved already by
Alexandroff *%). The proof was also true verbatim for an arbitrargnprnumber as
modulus. For the case of modulus zero, a proof of invegias included in the theorems
of Lefschetz®®), which is, however, true only when the groups have finitely many
generators;in the cases mentioned, in fact, the invariance @fjtioups follows from the
invariance of their ranks (Indeed, in the case of moain@, considers only the reduced,
hence, only the free, groups)By contrast, in the general case of infinitely many
generators the isomorphism of the groups in no way follows from the ecpfatheir
ranks even in the case where there are no elements @& éirder. The (additive) groups
of all rational numbers, as well as the group of allditydractions, already provide an
example of two non-isomorphic groups whose rank is afiepugh they contain no
element of finite order. Moreover, it will be proved Appendix Il thatany Abelian
group that consists of countably many elements with laments of finite order can
appear as the Betti group of soRle— F (even forn = 3). The invariance of this group
cannot be proved mainly by methods that consider onl\B#tg numbers- hence, the
ranks— such that our theorem is not in the slightest aesgifanatory extension of the
known invariance of the Betti numbers, but lies fundanligntdaeper. It is all the more
interesting to also prove the invariance of the cotefetti groups oR" — F.

In conclusion, | would like to mention that this papes, to a large degree, inspired
by a lecture of Alexandroff on combinatorial topology arldcure of Emmy Noether on
abstract algebra (both lectures were taught in the wiaofed928/29 at Moscow
University). | also thank Alexandroff for much advice e final editing of the present
treatise.

9 loc. cit.?).
2y Lefschetz]oc. cit, °)



Chapter I.

Chapter II.

Chapter IIl.

Appendix I.

Appendix I1.

Appendix 111

Table of Contents
The algebraic fundamentals.

The general duality theorems of Poincaré-\edhal Alexander:
I. Geometric preliminaries.
[I. Formulation and proof of the two duality theorems.

The general duality theorem for closed sets:
I. Direct and inverse sequences of homomorphisms.
[I. Formulation and proof of the general duality theore

The duality theorem for continuous compleXes

Relationship between the Lefschetz dualitptém for closed sets and the
theory of chap. Ill.

Example of a curve iR® whose complementary space has an arbitrary,
countable, Abelian group with no elements of finite ofderts first Betti

group.

2 The things that are done in chap. Il relate to polyiledomplexes; the case of continuous

complexes (i.e.

, topological images of polyhedral complexékpe treated in Appendix .



Chapter I.
The algebraic fundamentals.

1. LetU andV be two Abelian groups with finitely many generators, letdl be a
cyclic group of ordery; in the event thay = 0, this shall mean thél is the infinite
cyclic group — i.e., the free (Abelian) group with one gatwe. We think of the groups
U, V, M as being written additively. Sind¢ can be replaced by an arbitrary isomorphic
group in this investigation, we introduce, once and forthd, abbreviation that in the
caseu = 0, M will be represented by the (additive) group of all whalenbers, while for
1> 0 the groupM will be represented by the system of the smallestnemative residues
modulo /. In this sense, an elementM\fis always a whole number.

2. Definition 1. Two groupsU andV define agroup pair relative toM (the
modulug when any ordered pair of elemerty — wherex is an element df) andy is an
element ofV — is associated with an elemdnbf M, namely, theproduct of the two
elements< andy:

k=x0,

(x+x)Oy=x0y + X0y (first distributivity law)

such that one always has:

and
xQy+y) =x0y + xG/ (second distributivity law)

(from this, it follows, in particular, that:

(1) x[D=0=00/
for any choice ok (y, resp.)).

3. Definition Il. Let A be an arbitrary subgroup of;the totality of all elements y
of V with the property that for any x in A one has:

xy=0
will be called the annihilator of A in V, and will be denoted\4yA).

One defines the annihilatod( B) for an arbitrary subgroup of V in an analogous
way.
It then follows from the first (second, resp.) distitivity law that for any choice of
andy one has:
x[D=0=00/
X =-x0,  xU-y)=-x0,resp,

such that at the same time that one>hai = 0, one also has-(x) Oy andx (- y) equal
to zero; in other words, an annihilator includeslong with -, y, along with -y, and
the zero element also belongs to it. One then habdoeem:
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|. The annihilator is a subgroup of (¥, resp).

Definition Ill. A group pair U, V is called primitive when the annihilator of each of
the two groups in the other consists of only the zero element:

(U,V)=0, M U)=0.

We also often say that andV aremutually primitive(relative toM). One then has the
following theorem:

Il. In the event that U and V define a primitive group pair, these groupshma
decomposed into direct sums of cyclic subgroups:

(2) U=A+A+ ... +A,,
(3) V=B +B,+ ... +B,,

such that for the generators,ay, ..., a, and b, by, ..., b, of the groups Aand B, resp.,
one has the relations:

@ alb =0 (fori# j)

a = k>0,
with k+1 = 0 (modk;); thus, kare the divisors of;, andu/ k; is the order of Aand B .

Before we go into the proof of theorem II, we remdrkttas a result of it, one can
represent the group$ andV as direct sums of one and the same number of qydigps
(of equal order, resp.), such that one can formulatétloeving corollary:

Mutually primitive groups are isomorphic.

4. Proof of theorem Il. One letsa; (bs, resp.) denote those elementdJofV, resp.)

(i.e., those “values” ok andy) such that the number Oy contains a smallest possible
value ofk; .

Then, for any choice of (x, resp.) ki is a divisor ofa; Oy andx [b; ; namely, if, e.g.:

a1 y=qk +r =qg(as [by) +r,

with r > 0, then one would have:

a [y -gby) =r, r<ki,

sob; would have been chosen incorrectly.

One letsA; (B,, resp.) denote the cyclic group that is generated, lflg;, resp.) and
considers an arbitrany ] U. From what we just proved, one infers the existencemf
such thaix [, = gk = g(a [b), so one hasx(— ga) b; = 0; thusx — ga is an elemernt”
of (U, By), and one has:
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(5) X=X +X,

with X' 0 Aq, X" O (U, By). Likewise, any elementof V can be represented in the foym
=y +y', withy By, y' O (V, A)). Letabe acommon element &f and U, B;) =U; ;
we choose any [1V such thay =y +y"'. Therefore, one hasy =a 0/ + a y'. Now,
one has, howeveg Oy = 0 whena is in (U, B;) andy’' is contained irB; . On the other
hand, sinca [ A;,y" O (V, A1), one also haa 0/'. Therefore, for any [V, one has
Oy = 0, from which, the identitg = O follows, by means of the primitivity of the group
pair. With that, we have proved thatis the direct sum o&; andU; . In the same way,
one can prove that is the direct sum d8; and ¥, A1) = Vi .

We now prove that the order &f (Bi, resp.) equalg// k; . Lets be the smallest
positive number with the property thels = 0 (mody); i.e.,sa by = 0. The product of
sa with an arbitrary element &; is then zero. I O (U, By) then it follows thata =
0, sinceA; and [, B1) have only zero in their intersection. Therefdhe order ofA is
the smallest numberwith the property that/ goes intosk ; however, sincg/= 0 (mod
ki) #%), this number is equal 1@/ k; .

As one easily recognizes, the grolghsandV again define a primitive group pair,
and the process above yields the decompositions:

Ui =A2+ Uy Bz), Vi=B2+ (Vi A)).
Proceeding in this way, we obtain the direct sum decsitpos:

U=A+A+ ... +A,+U,,
V=B;+B,+ ... +B,+V,,
with
Uir1 = (Ui, Bi+1), Visr = Vi, Ajsg); Ui = A+ + Uis1, Vi = Bisr + Visg,

where for anyi, U; andV; are mutually primitive. The process terminates aftatefly
many steps (sincel andV indeed have finitely many generators); i.e., for aasert,
perhapsv, is the zero group. However, sindg andV, define a primitive group pailj,
must also be the zero group. Thus, the process terminbeld; andV; simultaneously
and one must ultimately get=A; +Ax + ... +A,,V=B1+Bx + ... +B,.

It only remains for us to show thiat; = 0 (modk;). Now, however, it would follow
fromkis; = ai+1 bi+1 =d Ok +r, with O <r <k; that ¢ da + a;+1) b + bi+1) =— d(a )
+ aj+1 bi+1 = — dk + k.1 =1, which contradicts the definition af andb; .

All of the parts of Theorem Il are then proved.

5. Definition IV. The sum decompositions (2), (3) — in the event they Hatisfy
the conditions of Theorem H define acharacteristic representation of the group pair U,
V. The constantk that thus appear are called theariant factors of the group pair.

The term “invariant factors” will be justified by thellbwing remark: Letx, Xz, ...,

Xn andys, Yo, ..., Yo be two linearly independent systems of generators of thepgt)

2 Whenyu # 0 modk,, so perhapg =gk, —r (with a positiver < k), one hasjk, = q(a; ) = g+
—i.e.,ga [, =r <k; — and the elemeiat [b; would have been chosen incorrectly.
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andV. Theorem Il states that one can go fromXhendy; to new generatorg andb;
such that one thus haso; = 0 (fori # j), & o = ki, andki+1 = 0 (modk;). However,
since the transition from one system of generatorarnother one results from a
unimodular substitution, this means nothing but the following:

Corollary 1l to Theorem Il. The numbers;kare the elementary divisors of the
matrix (x; Oy;), where the x(y;, resp.)define an arbitrary linearly independent system of
generators of U (V, resp.).

The invariant factors of the group pair are then determimeguely by the group
pair.

6. One now considers a group pdirV, a subgrou of U, and a subgroup of V.
WhenA [0 (U, V) andB [ (V, U), and the elementsandx’ of U, as well as the elements
y, Yy of V belong to the same residue clasé&d@B, resp.), one has (when one sgtsx' —
xOAandg=y —-yUB):

xBP=ay=alf=0,

Xy=Kx+a)Qy+p=xy.

and therefore:

In the case of Al (U, V), B O (V, U), the multiplication law for the group pair U, V
induces a multiplication law (of the same modulus) for the factor groups @hd V| B.
In particular, when A= (U, V) and B= (V, U), the group pair U | A, V | B is primitive.

7. We now consider the cage= 0 in detail and introduce the following definition:

Definition V. In the caseu = 0, a primitive group pair is called orthogonal when its
invariant factors are all equal ta.

A simple calculation shows that wheh V are orthogonal to each other, in the sense
that we just formulated, and one has a linearly indepérsystem of generators — say,
X2, ..., Xn — Of the one group — say,— then one can find a system of generayarg, ...,
yn of the other group such thaty; = g;, where — as usualég; = 0 when # j andd = 1.

(If & andb; are the generators of the characteristic represemtandx = )Iijaj

expresses the in terms of they then one has the following defining equation forye
Hhy:
z/]ij:ukj = &,

(1

which (since”/lﬂ” = 1) is single-valued and soluble by whole numbers).

One can also naturally introduce the concept of odhalify in precisely the same
way for the casg/ > 0; however, it will be show that this is undesiralblecause in this
case, the usual primitive group pairs already serve the gampose as the orthogonal
group pairs inu = 0. In the majority of the following theorems, pitive group pairs
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with ¢ > 0 will thus appear in parallel with the orthogonal grpaps withy = 0, which
will be expressed by saying that we write “primitive” andthogonal” in brackets,
where the convention will be introduced for all casest the former adjective refers to
the casgqu > 0 and the latter, to the cage 0.

Definition VI. When the factor groups YU, V) and V |(U, V) for a group pair U,
V with ¢ = 0 are not only mutually primitive, but also orthogonal, one calls U, V a
conjugate group pair.

In the caseu > 0, all group pairs already serve the same purpose atijiggate
group pairs do in the cage= 0. Correspondingly, in the sequel, we will speak of
“properties of (conjugate) group pairs” in the sense that tbeepty in question is
present for all group pairs in the case 0, but generally only for conjugate group pairs
in the casg/= 0.

We finally remark that in the cage= 0, we always understand the term “subgrdup
of U” to mean a subgroupith division®3).

8. Let U, V be a (conjugate) group pair, and |é¥)zoe a homomorphic map of V
into the group M, under which all elementqdfU) are mapped onto the zero element of
M. This homomorphism can then be generated by an elegeht)x in the sense that
forallvOV:

Z(V) =X O

Thus, in the case where the group fé&lr V) is primitive (orthogonal, resp, the element
Xo can be determined in only one way.

One first assumes thatandV are mutually primitive (orthogonal, resp.).

Let ai, ap, ..., ay (b1, by, ..., by, resp.) be the generators of the characteristic
representation df andV, and letky, kp, ..., k, be its invariant factors. One séts= z(by)
and then proves th&t goes toh, . This is clear fogz = 0, and indeed thie = 1 in this
case. When > 0, one has — singe/ k; is the order ob;:

0= Z[fbj =1 2b)= A (mody),

from which it follows thaf goes tqu h / ki, and therefore thdt / k; is a whole number.
One now sets:

n
If v= Z:“jbi is an arbitrary element &fthen one has:
j=1

%) Subgroups with division are defined in footntje
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xoD/:ZHayEuibJ :Zﬁ | J)=ZHM(aEﬂ?)
i K K K
-Zhu— Z[Z bj 2(v),

with which, our assertion is proved.

If there are two elementsandx that satisfy the condition above then one would
have & — x') v = 0 for anyv, which is only consistent with the primitivity ¢fie group
pair whenx = x'.

Now, letU, V be a (conjugate) — but not necessarily primitivggeup pair. From the
conditions of our theorem, it follows immediatelyat all v that belong to the same
residue class oM, U) have the same value, such that the mdpfines a homomorphic
map of the factor groups =V | (V, U) that satisfies our conditions. Howev¥f, is
primitive (orthogonal, resp.) td; =U | U, V), so it follows that there exists an element
Xo of Uy such that for any;y in Vi one has 07 = z(n7). From the definition of the
multiplication of residue classes, (8 6) it thetiolws that for all elementg, of U that
belong to the residue claggsand for any elementofV one has:

Xo By = $o 07 = 2(17) = Ay),
wheren means the residue class that belongs t@ur theorem is thus proved:

9. Lemma. When U, V are a primitive (orthogonal, resp.) grgogar and A is a
subgroup of U then A, V is a (conjugate) group pair

The lemma is trivial forz # 0. In the casg/ = 0, letus, u, ..., U, be a linearly
independent system of generatordJothat are so arranged that, perhapsu,, ..., U
generates the subgroup From § 7, the system of generatois v, ..., Vo can be
determined in such a way that one balS; = g; . Sinceu; O = O for arbitraryi <r and
h>r, thev.y, ..., v, all belong to ¥, A); on the other hand, whan= c' v is any element
of V such thatc" is non-zero for soma < r, u, Ov is non-zero. Therefore, all of the
elements that are generated by justvthe ..., vobelong to V, A); in other wordsy; .1,

., Vn define an independent system of generatorsvioh)

Since @, V) obviously consists of only the zero element, \@eehto show thaf, V |
(V, A) is an orthogonal group pair. From what we justvpd, under the homomorphic
map ofV ontoV | (V, A), the elements that are generated byvhg ..., v, go to zero,
while thevs, ..., v, by contrast, go to elemengs, ..., 5 that are all different from each
other and from zero and define a system of genexddoV | (V, U). Furthermore, since
one shall set; O3 = u Ov; = g (for i, j <), the groupsA andV | (V, A) are mutually
orthogonal, and the lemma is proved.

10. Theorem 1ll. If U, V is a primitive (orthogonal, resp.) group ipaA is a
subgroup of U, and B €V, A) then A =(U, B).
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One denotes the group,(B) by A’; it then follows from the definition dB that for
any choice of elementsl] A, y [0 B, one hax Oy = 0, such that in any case the relatdon
0 A" is valid. In order to prove the converse inclusione @onsiders — under the
assumption that it is not applicable — any elenenf A — A'. The productz [v is
determined uniquely for this elemenand an arbitrary in V, so for ally in B one must
havez Oy = 0. Therefore, a homomorphic mafy) = z [v is defined, to which the
theorem of § 6 can be applied, whé&raow takes on the role &f (which is permissible
if the groupsA andV are indeed conjugate to each other, as in the lemmiagrefbre,
there exists an elemexy of A such that for aly 0 V one hasg Oy =z 03/, so & —x) Oy =
0; since the groupd andV are mutually primitive, it follows from the latter eqioeat that
Xo —X [J A, contrary to the definition & Theorem lll is then proved by contradiction.

11. As a generalization of the lemma of § 9, we then @tbe following:

Theorem IV. U and V might define a (conjugate) group pair; if A and B are the
subgroups of U and V that contain the annihilatots=AU, B) and B = (V, A), resp.,
then (on the basis of the multiplication law that is defined for U and ¥hd B also
define (conjugate) group pair.

Proof. In the casg:/# 0O, the assertion is trivial. Therefore, et 0. We next prove
our theorem under the assumption tdandV are not only conjugate, but orthogonal.
Let:
(1) all a21 "'laklak+1l ---,ak+r,ak+r+1, an1
(2) bll b21 ey bkl bk+1l ey bk+r, bk+r+1, bn

be two systems of generatorslb{V, resp.) withe; [ = ;. We enumerate the elements
of the systems (1) and (2) such that..., ax is a system of generatorsAfanday, ...,
a+1 IS a system of generatorsAf

Since, by definitionA’ = (U, B), one then has, by means of Theorem Ill 8at (V,
A'). An elemenb of V then belongs t® if and only if for alla; with i < k one hasy Ob
= 0; however, this condition is satisfied only for Blmeombinations of the; with j > k.
As a result, the aforementionéddefine a system of generators fr In an analogous
way, b belongs tdB' = (V, A) when for alla; withi <k +r one has; Ob= 0, from which
it follows, in turn, that théy.,.1, ... by define a system of generatorsBf

We now consider the factor groups | A and B | B' and the associated
homomorphisms. Letr be the image o& and let3 be the image ob; under these

homomorphisms. Therefore; = ... = ak = 0, while thedi.s, ..., ak+r are different from
each other and non-zero and define an independent systgenefators folA | A'.
Likewise, L1 = ... = G = 0 and theB.1, ..., G« define an independent system of

generators foB | B'. Furthermoreg; 03 = a [ = §; , such tha# | A" is orthogonal to
B |B'. The theorem is thus proved in the special casetlodgonal group pairg, V.

Now, letU, V be a conjugate group pair for which orthogonality will betassumed.
We let A" (B", resp.) denote the annihilatond, (V) [(V, U), resp.]. One then has the
inclusions:

A'OA OA, B'OB OB,
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from which, all of these groups are subgroups with division.

We now define the factor groupg$= U | A" andV =V | B", and consider the
associated homomorphisrandg:

U =f(U), V =g(V).
Therefore, let:

A =f(A), A =f(A) and B =gB), B =gB);

these groups are once more subgroups with division.
Due to the isomorphism theoreif), A|A is isomorphic toA | A and B|B is

isomorphic toB | B'. FurthermorelJ andV are mutually orthogonal, and one has the
relations:

A =(U,B)0A, B' = (V,A O B.
From the orthogonality olU, V, it then follows, on the basis of the just-proved
orthogonality of A| A and B| B - by means of the isomorphisms betweghA andA

| A and betweenB|B andB | B’ - thatA | A and B|B are orthogonal. With that,
Theorem IV is proved completely.

# Cf., say, E. Noether, Math. Ze®&0, pp. 648.



Chapter I
The generalized duality theorems of Poincaré-Veblen and ékander.

1. Geometric preliminaries®).

1. LetK" be a simplicial complex, l& be a simplex oK, and letal', a7, ..., a" be
the simplexes oK" that thea' carry on their boundaries; these simplexes definesttre

ofd’. The totality of the opposite sides of the for a simplexa’ defines theneighboring
complextUmgebungskomplex” ™ *(a") of a" in K".

A connected compleM" is called ananifoldwhen all of the neighboring complexes
in it are homeomorphic to spheres of the correspondingrdiime. Since the topological
invariance of the definition that was just formulatec.( its independence of the
particular simplicial decomposition that is presenM®) is unproved up to now, in the
sequel, we will appeal to the more general concept afdhmallech-manifolds®).

A connected compleM" will be called arh-manifoldwhen anyn — 1-dimensional
element of M" is linked with precisely twon-dimensional simplexes, while the
neighboring complex of ang® (k < n — 1) has the following property"™ (@) is a
connected complex in which tmedimensional cycle (0 € <n -k - 1) bounds and for
the most part a single— k— 1-dimensional cycle exists that is not homologous to aer
that place. The invariance of this concept may be pressitly?°).

An h-manifold (which is usually always a pseudo-manifold, inBheuwer sense) is
calledorientablewhen itsn-dimensional elements can be oriented such thatlglebraic
sum of its oriented boundaries is equal to zero. latvdillows, we will allow only such
orientations.

2. Let M" be ann-dimensionah-manifold. One considers a barycentric subdivision
of M" and orients the elements of it as follows: b&t gao, ay, ..., a,) be a positively-
oriented n-dimensional simplex oM" and leta’ = n(ay, ai, ..., &) be a likewise
positively-oriented side of. Finally, let43 be the center of mass @(ay, ..., &) (thus,

i is arbitrary, hence, independent f The positive orientation of the barycentric
simplex that is determined by the verticegsof5+1, ..., 5 is then, by definitiong Op(5

, B+, ..., ). When one permutes the sequence of veréices 1, ..., a, in all possible
ways, one obtainsn(-r)! different barycentric simplexes; they lie @ and are called
dualto a’. When one carries out this construction for all serpsa’” that are connected
to a, one obtains the totality of all barycentric singgle that are dual ta'. The

%) For basic concepts of the topology of complexes and oldsjfcf., say, E. R. van Kampen, “Die
kombinatorische Topologie und die Dualitatssatze,” Diafiert, Leiden (1929), as well as Alexander,
“Combinatorial Analysis Situs,” Trans. Amer. Math.cS@8 (1926), 301-329 and Ann. Math. (2L
(1930), 292-320 and Lefschetz, “Intersections and transformationemplexes and manifolds,” Trans.
Amer. Math. Soc28 (1926), 1-49. Further literature is in van der WaerdeoniKinatorische Topologie,”
Jahresber. d. Deutsche Math. V&®8.(1930), pp. 121. In the sequel, one will observe the teiwgical
conventions of the preface, in particular, footride

25 Cf., Ann. Math. (2)31, pp. 307 and Vietoris, Monat. f. Math. u. Ph$5.(1927), pp. 165, as well as
van Kampenloc. cit,, pp. 13.
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algebraic sum of these simplexes (when oriented Wwélptescription above) defines the
barycentric star that is dual td’;awe denote it by"™(a").

One easily sees that the boundary of-@limensional barycentric star is composed of
barycentric stars of dimensiorn- 1. Sign convention: If:

a o oedty

bn—k (bn —«+1

and , resp.) are the barycentric stars duat@™?, resp.) then:

bn—k+1 . (_1)k I:bn—k +

3. We now consider two kinds of “building blocks,” from whiale will construct
sub-complexes d¥1™: The building blocks of the first kind (which lead to sulbrpdexes
of the first kind) are the elements of the given siaipl decomposition oM"; i.e., the

simplexes of various dimensions; for dimensiofiet them be, saya , &, ..., &, . A
sub-complex of the first kind is, correspondingly, relgal as a linear form of the form
A'a’ . The building blocks of the second kind are the baryicestars. Since the-

dimensional barycentric stars correspond torther-dimensional simplexes dfl" in a
one-to-one way, they may be enumerated thus:

b, b, b

therefore,b” = b'(d'"). Anr-dimensional sub-complex of the second kind is then, by
definition, a linear form of the form'y .

Now, let two sub-complexes=A" = A'a’ andB =B"" = 4/b"™" of the first (second,
resp.) kind be given. The number:

XAB) =Y AU

is called theKronecker characteristior theintersection numbeof the two complexea
andB.

4. One now considers twoontinuous complexes AndB"™ that are embedded in
M" (with possible singularities?). It will be assumed that none of the two compleXes
andB"”" meet the boundary of the other one, so the mininséhnice from one complex
to the boundary of the other one is a positive numabe©One can then assume that the
simplexes ofM" are all smaller than;o. The complexesA’ and B"" can be
approximated arbitrarily well by sub-complexes of thstfisecond, resp.) kind M".

One proves the following facts with no effort:

2"y A single-valued (but not necessarily one-to-onejtinoious image of a polyhedral complexvii is
called an embedded complexM' (with possible singularities). In the event that thap is one-to-one,

one speaks of a singularity-free embedding.
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1. WhenA' is a sub-complex of the first kin@®' is a sub-complex of the second
kind, andA’ (B', resp.) approximates the complexdsandB"™" sufficiently well, the
number (A, B') has a value that is independent of the particular ehoic the
approximating complexe#\' and B'; it is called theKronecker characteristic (the
intersection numbery(A’, B"™) of the complexed’ andB"™.

2. The Kronecker characteristic of two compleAéandB"™ does not depend upon
the choice of simplicial approximation df"; it thus represents a relative invariantfof
andB relative toM".

3. X(Ar, Bn—r) — (_1)r(n—r) X(Bn—r, Ar).

Remark. We denote the (oriented) boundary of the (ed@momplexx” by K'™.
One then has:

Theorem I. If A" is disjoint fromB"" then one has:
(1) X(Ar, B‘n—r) — (_1)rX(Ar—1, Bn—r+l).

It suffices to prove this assertion for the case whéris a simplex and” ™! is a
barycentric star. The assertion is then trivialhie évent thaf\” andB"™* are disjoint.
One assumes tha&' and B"™! have a non-vacuous intersection. In this case, the
barycentric staB" ™! is dual to a sid&* of A"; therefore, if, perhaps:

A L e+, B =p7"A)
then one has:

X(Ar_l, Bn—r+1) =g Bn—r+1 . (_1)r I}.EBI‘]—I’ + . X(Ar, B‘n—r) — (_1)r £
from which, the assertion follows.
Theorem II. If A" and B are two cycles, at least one of which bounds frnti\én
one has:
XA, B") =0.

Proof. In fact, let, e.gB8' — B"™". One then has:

0 ED XA, B") = x(A',B) =+ (A", B).

4. Let A andB°® be two disjoint cycles iM withr + s=n— 1. These cycles might,
moreover, bound iM", and indeed let:

A S A, B - B.
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The numbery(A', B) is called thdinking numberof A" with B® and will be denoted by
v(A", BY. It does not depend upon the choice gftigcause iB” is a second complex

that is bounded b°® thenB' — B” is a cycle and\' is a bounding cycle. It then follows
from Theorem Il that:

o XA B -B)=0, e, xA,B)=xA,B".
.E.D.

Theorem Ill. Again, let AandB?® be two disjoint bounding cycles in"Mith r + s=
n —1. One then has:
0(A", BY) = (-1)"u(BS, A).

Proof. As always, led' — A", B' - B°. By using what was already proved, one has:

o(A,BY) = X(A, B) = (/" x(A, B) = (1) (LB, A) = (L)X A)
= (1) (B°, A).
Q. E. D.

If the cyclesA" andB®, r + s =n — 1 are disjoint and are homologous to zertin
such that, e.ggA” anddB’® bound inM" (wherec andd are suitably chosen whole number
o(cA, dB’) . in

cd
general, one obtains rational linking numbers is tay. In our later presentation, the
ratios will be so arranged that we can always aratvwhole number linking numbers.

coefficients) then one can define the linking numbgX’, B to be

5. We conclude these preliminaries with the followaigsely-related theorem:

Theorem IV. Let M' be an h-manifold, K, a complex composed of singlax M,
L, the complex that composed of all of the barytestars (= building blocks of the
second kinylthat are disjoint to K, and Idf be an arbitrary cycle that lies in 'M- K.
Under these conditior, is a sub-cyclé\ that is homologous {which is therefore a sub-
complex of the second kind ifMn M" — K. In the event thdt is a sub-cycle of L that
bounds in M- K, T is the boundary of a sub-complex of L (that is cosep of building
blocks of the second kind).

Proof. We first prove the following lemma:

Any closed seF [0 M" — K may be converted into a g€tthat lies inL by means of a
continuous deformation inside bf" — K, and indeed, in such a way that throughout the
entire deformation process all of the points tlelbbg toL remain fixed.

Let R be the system of all barycentric stars M that have a non-vacuous

intersection withK, so they are dual to the simplexeskof We lets denote the highest
dimension of the stars in the syst&trthat contain points d¥ in their interiors; letS be
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one of these stars. Singas dual to a simplex that contains no poinEpbne transports
all of the points of that belong td onto the boundary of the star by central projection
from the center of mass of the simplex (“the cenfahe star”). This “cleaning out” is a
deformation off that fixes all of the points of this set that areeert to it or on the
boundary of§ and during the entire tinfeandK stay disjoint. A repeated application of
this cleaning process conveRsnto a closed sdéf' that possesses no point in the interior
of a star that belongs t8. Letx be an arbitrary point d¥'; it is an interior point of a
barycentric star that — since it is disjoint Ko from what was just proved — must be
contained i, with which the lemma is proved.

Now, let L be the complex of the first kind (which coincideshnlit geometrically)
that one obtains when one again breaks up the buildingbéfche second kind thatis
composed of into simplexes. From the lemma, it thidows that each cycl€' that
belongs taVI" - K lies in L, so it can be further converted into a cygldhat is built up
from simplexes ofL by a homotopy. One now considers the simplexgs ¢6 be sub-
simplexes of the building blocks of the second kind théheehe complex. If such a
building blockS" were only partially contained iy’ then one would be able to remove it
in such a way that one would carry the part pfthat lies in it to the boundary &
(which always happens effortlessly). After one hasatgukthis finitely many timeg, is
converted into a cycle that is constructed from buildirggchkd of the second kind, and

thus, into a sub-cycle of . Precisely the same process can be applied to theltgyn
carrier that was mentioned in the conclusion of TaeolV, which then yields the proof
of the two assertions of this theorem.

Il. Formulation and proof of the two duality theorems.

1. LetM" be an orientable and orientbemanifold. Leta, &, ..., &, be ther-
dimensional elements of the given simplicial decontmsbdfM", and letb]™", 65", ...,

by " be the barycentric stars that are dual to them; weyég ,b]™) = g . LetK be a

complex that is constructed out of simplexed/8f where the simplexes that appeakin
might bea/, &, ..., a,. Then, among thé; ", the ones wittk < hr, and only these

ones, have a non-vacuous intersection With
The entire investigation that follows is based updimed numbery as modulus that

is equal to zero or greater than 1. Let the gralpsZ,, HAL, H/, that pertain tK be

denoted simply by", Z', H', H" . Let the Betti groups madof K be denoted simply by
B, where the conventions that were made in the peefn particular, the ones in
footnote™)] will preserve their validity throughout.

We further let" denote the Abelian group that is generated byetbmentsb; , k =
1, 2, ...,h"" with the single relatiopsb;, = 0. The boundary mod of an element of'
(which is indeed a complex of the second kind) lmamvritten as a linear form in thé™.
When we keep only the terms wite h"™** in the linear form, we get a complex of the
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second kind: theeduced boundarpf the chosen elements 8f. The complexes that
appear as the reduced boundaries of the complexes thainefistiefine a subgroup of

£ that we denote by})r‘l; analogous to the previous notations, wesset ) whenu
# 0, while in the casgr = 0, 9" will be defined as the smallest subgroup with division of

€' over §'. Furthermore, there exists a homomorphic magafnto 5. Thekernel
28 of this homomorphism shall be denoted3yone easily sees thaf is a subgroup of
3.

2. A multiplication law shall now be established for tiweo groupsL’ and £".
This happens simply by setting the product of the elemént" andb 0O £"" equal to
the intersection numbey(a, b) mod & By means of this multiplication, the group's
and£"™" define a primitive (orthogonal, resp.) group pair iftWe groups indeed possess
some system of generataas (b7, resp.) witha b} ™= g; .

3. We now prove the relations:
1) L 9" =2, (", H) =3",
from which, due to chap. I, 8 10, Theorem lll, the relaithen follow:
2) €, Z)=9"", (L, 3") =H"

A. LetaOZ andb O $"™; we prove thaj(a, b) = 0 (modg). Whenu # 0, there
exists a 0 £""*! whose reduced boundarytis It follows that:

¢ - b+b', b isdisjoint toK;
kb+ b’ is again homologous to zero, g@, kb + b') = 0, which, sincg(a, b) = 0, yields:

0 = x(a, kb) =kx(a, b),
and ultimately yieldg(a, b) = 0.

B. Let a be an element of" that does not belong t&; we propose to find an
element ofpy"™ that possesses a non-zero intersection numberawitBincea does not

belong toZ' — hence, it is not a cycleone has:

%) 'When a group is mapped homomorphically onto a grdypthe subgroup o that consists of all
elements that are mapped to the identity (or zero)-elenfeB is called thekernel of the homomorphic
map.
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a-bOHT b#0:;

L"* and£"*, however, define a primitive (orthogonal, resp.) group [itaiollows that
there exists @ 0 £""** such thaty(b, ¢) # 0. If we let¢ denote the boundary and let
denote the reduced boundarycpfind remark that due to Theorem | of this chaptbr
¢) =+ x(a,¢), while, on the other hand, one obviously ¥é&¢) = x(a, ¢), then we see

that x(a, ¢) # 0. The element thus satisfies our requirements, and the firgheftwo
formulas (1) is therefore proved; the second omedsed in precisely the same way.
We connect these procedures with the followingadSincel" and £"" define a

primitive (orthogonal, resp.) group pair and:
(Lr, Sn—r) |:| Zr, (Sn—r, ZI‘) |:| Bn—r,

it follows from chap. I, § 6 that the factor groufis| H" and3"™" | §"™ are likewise
mutually primitive (orthogonal, resp.).

4. We now obtain the theorem of Poincaré-Veblen whersetK = M". In this case,
the groupZ | H" is ther-dimensional Betti group ang"™ | " and is then - r-
dimensional Betti group dfl". We thus obtain:

The generalized Poincaré-Veblen duality theorem:The reduced Betti groups of
dimension r and n —r of an n-dimensional h-manifold are mutually prin{itrteogonal,
resp.) as long as one considers the image of the intersection numbes tbe
multiplication law; in particular, the two groups are isomorphic to eachothe

5. We now go on to the Alexander duality theorem. k& prove the Alexander
theorem in the restricted sense (which actuallyndsfa generalization of the result that
Alexander himself proved), when we assume thatlinyales bound in thé-manifold
M". We call sucth-manifolds (generalizedyoincaré-Veblen spacesThen, letk be a
complex (that is constructed from the elementshefdiven simplicial decomposition),
for which, we assume only that it does not coineidt@ M".

In the following investigation of the bounding agbns inM" — K, we can restrict
ourselves to the consideration of the complexeisateabuilt up from barycentric stass
We shall do this without mentioning it.

Let a be ans-dimensional cycle itM" —K. Sincea bounds inM", there exists a -

a; ¢ is a linear form in theé™™* and can be represented in the farmb + 0, whereb is an
element of3*"* ando is disjoint toK. Furthermore, one has:

0=b-¢o ¢-b=a-0,
soa~b inM" =K.



Pontrjagin — On the algebraic content of the topologicality theorems. 23

Let a' be any other cycle iM" — K that is homologous tae in that space. Ifn# 0
then there is anJ M" —K such that:

¢ - da—a.
On the other han@' is contained iM", which leads to:

¢ - d, ¢ =b" +0.
Furthermore, one has:
c—-c¢+e-sa—-a+ad —-a=0,

such that — ¢’ + ¢ is a cycle (that bounds M"). As a result, there is drwith:
f o c—c +e, f=f +§",

wheref' 0 £7°, §" O M"—K. As one easily sees, the reduced boundafyisb —o'. In
other words:From the homology ~ a' in M" — K, it follows that the corresponding
complexes$ and b’ (whose boundaries and a’, resp., are homologous in"M- K) are
elements op*" that belong to the same residue class relativgo. One also finds the
same result in the cage= 0: In fact, one then has (for a certlam 0):

e - k(a' —a) (inM" —K),
f o k(c—¢)+e, f=f+1", 1 0ers, " OM"—K;

this time, the reduced boundary pfis k(b — b'), and the assertion above keeps its
validity.

We once more summarize: Asydimensional cycles 0 M" —K is homologous to the
boundary of an elementof 3! in that space, where,dfanda’ are homologous imM" —
K thenb and b’ belong to the same residue class relativents’. However, an
isomorphism follows from this between tkelimensional Betti group dfl" — K, namely,
BYM" —K), and the group®* | H°*. Nevertheless, thedimensional Betti group df —
i.e., the groupZ' | H" — is primitive (orthogonal, resp.) t3"" | "7, and the
multiplication is then given by the intersection mdpfollows thatZ’ |H" and8" " *(M"
—K) also define a primitive (orthogonal, resp.) group pair,revliee intersection number
of the corresponding with ther-dimensional cycle ik defines nothing but the linking
number of this cycle with the corresponding cyeléin M" — K. We thus obtain the
following generalized:

Alexander duality theorem in the restricted sense. Let M' be a generalized
Poincaré space of dimension n. If K means a compleX ithé the r-dimensional Betti
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group of K is primitive (orthogonal, resp.) to the n —t-dimensional Betti group of M
— K, as long as one regards the map of the linking nhumbers of correspondieg agcl
the multiplication; in particular, the two groups are isomorphic to eachrothe

6. Now, let M" be an arbitraryh-manifold. We consider any complék that is
constructed from simplexes ®", for which we shall assume only that it does not
coincide withM". LetB', B", W be ther-dimensional Betti groups &, M" —K, andM",

resp. Sinc& O M", B" will be mapped homomorphically onto a subgratpof W and
B" will be mapped to a subgroup'; let the kernels of these homomorphismsAband

A", Foru#0,we sel =V' and®B’ = 8", while for z= 0V (B, resp.) will denote the

smallest subgroup with division ¥ overV' (', resp.). ObviouslyA consists of all
those elements — i.e., residue classeZ ahod H" — that only contain cycles that are

O
homologous to zero iM". Correspondingly, we leA” denote the group of all those
elements oB' that are residue classes that contain cyclesbtiatd inM". Obviously,

O
A’ is a subgroup oA’ that coincides witid\' in the casgs# 0; moreover, in the cage=
O
0, A" is the smallest supergroUpwith division for the groupA’ that is contained iB".

|
The group®l" is also defined analogously. The generalized #@eber duality theorem
can then be expressed in the form of the follovasgertion:

Alexander duality theorem in the broader sense.
Preliminary remark. Due to the Poincaré-Veblen theoramh, W' is a group pair.

First statement:
(3) w, 8" =V, W', V) =8"";

Second statement:

O O
Aland 2" (A" and2" ", resp) define a primitive (orthogonal, resp.) group pair
(where the linking number of the corresponding ey@ppears as the multiplication).

Proof of the first statement: By means of Theorem Ill of chap. | (8 10), it faxds
to prove one of the two formulas (3); e.g., theoselcone. To that end, we next remark
that anyn — r-dimensional cycle that lies outside Kf(as well as any cycle that is
homologous to it inM") obviously has an intersection number of zero wetty r-
dimensional cycle irK. From this, it follows immediately tha"™ O (W', V). In

order to verify the converse inclusion, we consideyn — r-dimensional cycle: of M"
and show that in the event thathas an intersection number of zero with =ll

") [Trans. note: as opposed to a subgroup; from the GeBbergruppd.
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dimensional cycles df, there exists a cycle in M" —K that is homologous ta in the
caseu # 0 and toka, k # 0 in the casg/= 0. One can then restrict oneself to the case in

which a is a linear form in the barycentric stars that are doathe r-dimensional
simplexes oM". One then has:

a=b+0b, bOZ", b’ OM"—K.
Since the intersection number ofvith all of the cycles irK is zero, one has 0 §",
and as a result, there exists an elemesft£""** and a positive whole numbkrthat is
different from 1, at most in the cage= 0, such thakb defines the reduced boundarycof
However,a' = ka — ¢ is then a cycle that lies M" —K (since obviously¢ ~ 0 inM"):

a’ ~ka (in M.
Q.E. D.

O
Proof of the second statement:First and foremost, we prove thtand 2 "™ are
mutually primitive (orthogonal, resp.). It is then cléaat anys-dimensional cycle om"
— K that bounds iM" is homologous to the boundary of an elemen3*%fin M" — K.

For that reason, it suffices to consider those cytllas are boundaries of elements in
3", We further letH" ($°, resp.) denote the subgroupf(3°, resp.) that consists of

all elements that are homologous to zerdviih (whose boundaries are homologous to
zero inM" —K, resp.). We shall now prove the formula:

(4) G", H)=9"".

The inclusion$™" O (3", H") is again trivial. In order to prove the converse, one
must show that whenever there is sanié 3" such that for alyin H' one hasy(a, J) =

0 (mody), a is necessarily homologous to zerdMA — K. To that end, for any element
a 03", we define the produgth to be the intersection number (mapof an arbitrary

cycle of the residue clagswith a. From this definition, it then follows that for tigeoup
(residue classA', when regarded as an elemgnof B, one has, [h = 0, which yields a
natural definition of the product Oa whenx means an arbitrary element of the factor
groupB’ | A" = V'. In the cases # 0O, there is thus a multiplication lawOa that is
automatically defined for the elemenbf V" (in this case) is then indeed identical to
\7r). By contrast, whew = 0, one defines the analogous multiplication &sfollows:

Let x be an arbitrary element df. There then exists a0 V" with h Ok = z, and we set

X[ = % Thus, fractions can appear, but siNcpossesses finitely many generators,

all of the denominators are restricted such thatfeuitable choick, any choice ok [J
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V', x [k a is a whole number. For the sake of unity in the fdasyuve also introduce the

coefficientk in the casgu # 0, except that, by definition, it shall then be sel.toSince
W andW'™" are mutually primitive (orthogonal, respyf, andW'™" (by the force of the
lemma in § 9, of chap. |) are a conjugate group pair. Sineeéhas, moreover\{, W'™)
= 0, the assumptions of § 8 of chap. | are abundanfifldd| and there is an elemelnt]
W' such that for anx O V' one has [k a = x [, but this means that whehis an

arbitrary cycle oK, x(x, ka — 8 = 0 is no longer true. We now decompose the cgcle
as usual, into the sum of two complexésnda”, wherea' is an element g3"™ anda” is
disjoint toK. From what was just proved, it then follows that— a' is an element of
(3", Z"). Thus (for &' that is possibly different from 1 only in the case 0) K (ka —
a') is the reduced boundary of a certain £""**.We further have the bounding relation:

(5) Kka—¢-KB - Kka,

but, on the other hand, from the definition @dfand ¢, the left-hand side of (5) is a
complex that lies iM" —K, such that the homology:

Kka ~0 inM" =K

follows from (5), as we would like to prove.
After formula (4) is proved, it only remains for us tké a simple step, and the
second statement of Alexander duality theorem will lspaBed of. Next, from 8§ 2 of

this sectionL" is primitive (orthogonal, resp.) t6"". Since [due to § 3, formula (22)],

one has:
(Lr’ 3n—r) - Hr |:| Zr’ (Sn—r, Zr) :ﬁn—r |:| 3n—r,

from Theorem IV of chap. 7' and3"™ is a conjugate group pair. Furthermore, since
(Z',3"")=H" O H", due to Theorem IV, chap. |, the groud$ and3"™ are conjugate,
such that the factor groups of the annihilatdfs (3"™) =H" and 3", H') = §"" are
primitive (orthogonal, resp.) to each other. In otherds: The group$’, H and3"™ |
$H"" are mutually primitive (orthogonal, resp.). Howevég first of these groups is, by
definition, the groupA"; an element of the second group is a residue clas$bt, mod
$H"". Any elemeng of this residue class will be associated with its loiaupa""**, and
all of the boundaries are homologous to each othéf"ia- K (the residues are indeed
taken modul®""!). Thus, the entire residue cladsvill be associated with an element

|
of B"" and in turn, an element & " (which certainly bounds"" ™ in M", by its
construction, because it was defined to be a bounda@gnversely, if an element of

O
2" is given then it is a residue class modglb'™ in the group of all cycles iM" —
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K, and this residue class contains a cycle that boundis™;irit is homologous to the
boundary of an element @&'™. In this, cycles that originate from one and theesa

O
element of2 " are associated with elements33f' that belong to the same residue
class modulo$™", and, as a result, one and the same elemedit’of H" . Thus, one

D .
can exhibit an isomorphism betwe@n™"™ and3"™ | $"", which allows one to carry
over immediately the multiplication that was defifedA" = H'|H" and3"™" | §"" to

O
A" and 2", This multiplication law yields the linking number afcycle in the
residue clasa with one in the residue classas the product of the elemeat§ A" anda

O
|:| 52[ n—r—l.

|
7. It is thus proved thaA" and A" define a primitive (orthogonal, resp.) group
pair. One can regard this as a statement that rétateth the complexds andL if any
boundary that is found k" —K can be taken away from Now, however, the elements
(of the first kind) ofK and the elements (of the second kind). @ppear in our proof in a
symmetric fashion, such that one can exchange the&s.rol Then, however, the
arguments of the last paragraphs would lead to the prooé girimitivity (orthogonality,

O
resp.) of the group paird’ and2""™*. Q.E.D.

8. In conclusion, we would like to show how one derigtaality formulas from the
previous proofs that were previously presented in the cas®0df2?). Therefore, we
understand that we are considering modulowhich is zero or an arbitrary prime
number.

If one letst(G) generally denote the rank of the Abelian gr@ihen one has:

6) (@2 = ) = e(A) = (A)
and i
(6) t(B") =¢(B"),  (V)=r(V).

Furthermore, sincel(, B"™") =V, while (8", W) consists of the zero elemeWy, | V'
is isomorphic td3"™, which yields, if one observes the general relat{o) = (W | V)
+t(V):

(7) (W) =¢(V) +¢(B").
We thus have:
(8) t(;Bn—r—l) — t(an—r—l) + t(an—r—l |Q[n—r—l) — t(an—r—l) + t(%n—r—l) .

) Pontrjagin, “Zum Alexanderschen Dualitatssatz, zwiititeilung,” Gott. Nachr., 1927, pp. 446.
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From (8) and (7), it further follows that:
(9) (B = oW — (VY.
If one substitutes this in (6) and (8) and observes that:

o(B") = t(A) +¢(B" |A) =t(A) + (V)
then one finally obtains:

(B ) = ¢(A) + (W) = (V) — (VY.

Q. E.D.

28



Chapter Il
The general duality theorem for closed sets.
|. Direct and inverse sequences of homomorphisms.

1. Let:
(1) Uy, Uy, ..., Unm, ...

be an infinite sequence of groups, each of whighis mapped to it successOg.1 by
means of a homomorphisgh, *9); the sequence:

(2 o1, @o, ..., B, ...

is then called direct sequence of homomorphisnisdetermines a new group — viz.,
thelimit of the sequencgl) relative to the sequendg), or, more briefly, thémit group
— as follows: First, one calls any sequence of the:form

(3) X1, X2y «vey Xmy e

afundamental sequeneehenx,, is an element df,, , and therefore one always has:
= Pm(Xm). Two fundamental sequences (3) and:

(4) Vi, Yty ooy Ymy -o-

are calledccofinal when there is & such that fom > «, one hay = ym . Obviously, the
totality of all fundamental sequences decomposes iregset of mutually cofinal
fundamental sequences. These classes will be compbsddnments of the group.
The group operations id will then be defined as follows: Let and S be two classes.
One chooses a fundamental sequence in each of them, say:

A= (X, Xty ooy Xmy -v2)
and

b= (yh,Yh+1, I VA §

with perhap$ > k. The clasg/that is determined by the fundamental sequence:

c= (XhEyh,Xh+1|:yh+1, ---,XmEym, )

is then called the@roduct (in the sense of the group operationsJinof the elementsr
and . Obviously,yis uniguely determined by and /S (i.e., ydoes not depend upon the
choice of the sequencasandb in the classea andf). If ey is the identity element of

3 If any elementa of a setA is associated with an elemebtof a setB, and therefore anp
corresponds to at least oagthen one speaks of a mapfobnto B A map ofA onto a proper or improper
subset oM is called (following van der Waerden) a mapahto B.
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Um then the element o that is defined bye, e, ..., en, ...) is the identity element for
the group operations thus defined. Moreover, one gets arséa/" to any elemena of

U when one replaces all of the elements in the seqseocéhe classy with their
inverses. Since our operation satisfies the associdiwe in addition, all group
postulates are fulfilled, antd is a group. Before we go further, we introduce the
following notation: ¢ shall mean the maps1 (...(¢-1(¢r)) of U, into Us (thus, one

naturally has >r).
If:

(5) Uy Up oo U s oo

is a subsequence of the sequence (1) then it correspondke tesequence of
homomorphisms:

(6) A with ¢, = g1

and the groupJ’, which appears as the limit of (5) relative to (6gasily recognized to
be isomorphic to the limit of (1) relative to (2). this case, we say of the direct
sequence of homomorphisms (2) thaintorporates(umfasse) the sequence (6). Two
direct sequences of homomorphisms are catpdvalent moreover, when one can find
two subsequences in each of them that are incorporatetiiml &equence. This concept
of equivalence satisfies the equality axioms (viz., xefley, symmetry, and transitivity)
31, so one can speak of classes of mutually equivatempmorphisms. Furthermore,
since two sequences, one of which incorporates the otier determine isomorphic
groups in the limit, this yields the following theorem:

I. Equivalent sequences of homomorphisms have isomorphic limit groups.

From now on, a direct sequence of homomorphisms (1)wilRalways be denoted
by F(Um , @)

2. We again consider a sequence:

31 The fact that our notion of equivalence is transittemes from the following two remarks, of which

the first one is self-explanatory, and the second camtied effortlessly:

1.When Ell and one has O I, II' O Il, one then has E II'.
2.1f1=1land Il O Il then one has EIl".

It then follows from I= 1l and Il = Ill that there exists subsequencesahd Ik, II' and IIf, as well as
sequences IV and V, with:
L+ 10,0 1V, n-+n'agv.

By means of remarks 1 and 2, this then yields, in turn:

EINENAEITNEL
Q. E.D.
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(1) U]_, U2, ...,Um,...,

but we now assume thatn.; is mapped intdJ, by means of the homomorphism, .
The sequence:

(7 TE, 7B, ..., Thn, ...

[in this, the mapr (...,762 (7&1)) of Us into U, (s > r) will be demoted byrz ] is then

called aninverse sequence of homomorphismPBrecisely as before, one can also
introduce the concepts of incorporated (equivalent, regpences of inverse sequences
of homomorphisms. There is then no analogue to Thegrsimce an inverse sequence

of homomorphisms certainly possesses no limit group.

An inverse sequence of homomorphisms (1), (7) will alwaysldnoted byF (U,
7). A sequence of homomorphisms in (1), of which, one do¢know whether it is

direct or inverse, shall be loosely denotedAynm).

3. From now on, we restrict ourselves to commutativeugs and thus avail
ourselves of the additive notation, as before.

Lemma. Let U, A(V, B, resp. be two primitive(orthogonal, resp. group pairs
relative to the modulus M. Furthermore, let a homomorphisof U into V be given.
There is then one and only one homomorphic mapf B into A that satisfies the
following condition: If u(b, resp) is any element of (B, resp) then one has:

(8) u Oxb) = ¢(u) Db.
Proof. If u runs through the entire grolpthen g(u) b assumes certain values for

which one always hag(u) [b + ¢(u') [b = ¢(u + u') [D.
One now considers the homomorphic map:

Z(u) = ¢(u) b
of U into M. From chap. |, 8 9, it then follows that there siragle elemena of A such
that for allu one has
u [h =2z(u) = ¢(u) [b.
We denote this by (Ab). From:

u O(b) + (b)) = u Yb) +u YL’ = g(u) [b + ¢(u) o' = ¢(u) Ob + b)
= u OYb +b),

u (D) + ¢b)) - Yb + b)) =0,

so (from the primitivity of the group pdit, A):

it follows that:

) + Yb') = Yb +b);
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Y is then a homomorphism. Q. E. D.

4. Definition. Let A(Um , @) and F (Vi , 7) be given. These two sequences of

homomorphisms will be calleshutually orthogona(relative to the modululs) when the
following conditions are fulfilled:

1. Uy andVy, define a primitive (orthogonal, resp.) group pair (rei@atoM).

2. Whenu andv are arbitrary elements &k, (Vin, resp.) one has:

Pm(u) OV = u (V).

From the lemma of § 3, the theorem follows immediate

Theorem Il. Let F(Un) be given, where the Jare so arranged that for any group
Un there exists a group ,Vthat is primitive (orthogonal, resp.to it (which is then
determined uniquely up to isomorphjsmA sequence of homomorphismgV,) in the
Vi can be defined uniquel§n any event, up to isomorphismsuch thatF and F are
mutually orthogona(relative to the modulus M

Remark. When two sequences of homomorphisms are mutually orthbdbe
same thing is true of two subsequences that consist of lgutmaresponding (i.e.,
provided with the same inde®) terms of the two sequences.

Theorem Ill. Let A(Un) and F(Vim) be mutually orthogonal, just liké='(U,) and
F'(V,); if F(Umw) is equivalent to F'(U,), moreover, thenF(Vy) is equivalent to
F'(V) -

Proof. There exist subsequencé&y and F, in F(Um) and F'(U,) that are
subsequence of one and the safe. We may then assume of the sequence of
homomorphismsF; that it consists of only elements & and F (when we simply
delete all of the possible remaining elements). Wehdurthoose the subsequencgs
and %' in (V) and F'(V.)) that correspond to the subsequenggand 7, . Since one
can construct an element primitive (orthogonal, retspgny element of;, by the force
of Theorem II, there exists a sequence of homomorphigthat is orthogonal toF; .
Foand ' can be regarded as subsequence p$oF(Vm) and F'(V!) are equivalent.

5. We especially emphasize: An inverse sequence of homphisms F (U, , 73
uniquely defines — under the assumption that there is a dfgtherefore, essentially
only one) that is primitive (orthogonal, resp.) to ady — a direct sequence of
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homomorphismsF(Vm, @) that is orthogonal to (Un, , 73, and it defines the limit group
V uniquely. This group that is determined uniquely by the sequence of homomorphisms

F(Unm , 7) is called the group that is dual t& (Uy , 7). Equivalent sequences of
homomorphisms possess isomorphic dual groups.

Il. Formulation and proof of the general duality theorem.

6. Let F be a closed, compact set that liesRh. One considers any projection
spectrunt?):
(1) A:(Al,Az, ...,An“ )

of F and the associated simEIiciaI Ma@sof Amer ONOAY, .
Let By = B'(An) be ther™ Betti group ofA, . A homomorphism 0B into Bn
(which we likewise denote byg,) arises by means of the simplicial magp, and it

follows that there is an inverse sequence of homomsmehi (B, 7). One then has:

Lemma. Let two different projection spect(a) and:
(2) A=(AA, ... A, ..)

be given on a set F. The sequences of homomorpl#s(Bs, 7) and F (B, 7) that
correspond to these spectra are equivalent.

For the moment, we assume that the lemma has beeadpalready.

The totality of all mutually equivalent sequences of homgiisms F (Bm, 7) that
are determined by the projection spectr&a$ obviously a topological invariant of the
setF. We call it the-dimensional cyclosis of the set Ahe cyclosis determines a group
uniquely, namely, the unique (up to isomorphism) group that istdual sequences of
homomorphisms of the cyclosis, which we briefly calke throup dual to the r-
dimensional cyclosis. This group obviously has a likewise topologically invarian
meaning for the set. Now, the main point of this chapter consists in tl@pof the
following theorem:

General duality theorem. If F is a closed, compact set i Ben the group that is
dual to the r-dimensional cyclosis of F is isomorphidrie- r —1)" Betti group of the
complementary spac€'R F.

From this, one finds, with no further assumptions, the

Invariance theorem. The Betti groups®) of the complementary space to a closed set
F in R" are topological invariants of the set F.

3 Alexandroff, loc. cit.?), pp. 107.

¥ cf., footnote®) and Appendix III.



Pontrjagin — On the algebraic content of the topologicality theorems. 34

Proof. We carry out the proof of the lemma and the dualitgrise simultaneously.
Let:

(3 Qu, Qs ... Qi ...

be a decreasing sequence of polyhedral neighborhoods of thelsgtconverge to that
set.

Let G; be the open set that is complementar@to This set increases withand the
union of these sets is identical wih= R"—F. We let/3 denote the™ Betti group ofQ;,

and let3 denote ther(— r —1)" Betti group ofG;. A homomorphic mag from 5.1 to
3 follows from the fact tha® 0 Qi.1, and a homomorphic mag of 3 into3,, follows

from the fact thaGi.; 0 G;. The sequences of homomorphisfig4, @) andF( 3, @)
that arise in this way are mutually orthogona8iis indeed primitive (orthogonal, resp.)
to 4. The limit groupS that is determined by the sequence of homomorphisy,
@), as one easily recognizes, is isomorphiate I — 1) Betti group ofG. We thus need
only to show the following if we are to prove everything:

For any choice of projection spectrurfl) for the set F the sequence of
homomorphismsF (43, 7) is equivalent taF( 3, ¢).

8. We now turn to the proof of the latter assertion.

First, it is advantageous to arrive, by a slight giokpat the idea that the compléx
is geometric, and indeed realized without singularitid® this end, we consider the
topological producZ = R" x E of R" with a sufficiently high-dimensional simpléx Let
the center of mass & be & We assume th&" is identical withR" x & and consider a
sequence of concentric simplexes E,, ..., En, ... abouté that converge to that point.
The:

QuxE, QxEz, ...,QnxEn, ...

then define a sequence of polyhedral neighborhoo#sin¥ that converge t&. Since
Q: x Ei can be continuously taken @ inside of itself (such thad; remains point-wise
fixed in the process), the Betti groups @f x E; are isomorphic to those @), , the
corresponding homomorphisms are then the same, andanrguetly replac€); with Q;
x E;, and thus replace a neighborhoodrFaf R" with a neighborhood d¥ in Z. In theQ,
x E;, however, one can — as long as the dimensidh isfsufficiently large — realize all
of the A, (with the possible exception of finitely many of themifhout singularities.
From now, we simply denot@; x E; the byQ;.

Leti be arbitrary and let| be large enough th#; lies inQ; . The existence of a
homomorphic ma of By into 4 follows from this. We write it thus:

fi(Bg) U 3.

Now, it is known that when a compl&xlies in a sufficiently close neighborhood of
F and is constructed from sufficiently small simplexese can map this complex
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simplicially by means of a small displacement ofitstices intoA, *). When one takes
] to be sufficiently large and the simplexespto be sufficiently small); can be chosen
for such aK. One denotes the aforementioned simplicial ma@,ohto Aq by g; we
would like to construct it as follows: First, Istbe sufficiently large thads lies in Q; .

One now chooses a simplicial decompositiarf Q; such that a certain subdivisio®' of
As can be regarded as a sub-complex of the decompaogitibhe simplicial mag of Q;
into Aq shall be based upon the simplicial decomposgioiihus, leta be any vertex of.

First and foremost, we examine the case whésesimultaneously a vertex &%’. In the
casea is an interior point of a certain (possible alscozéimensional) simpleX of As .
A vertexa' shall be chosen to be the imagep$uch that under the projectionAfonto
Aq any vertex ofT will be mapped to it. The remaining (hence, not belmgo A)

vertices of; might be mapped into any one of the next-lying vertioethém inA; . As

one easily recognizes, the thus-defined mgapnto the compleXAs agrees with the
projection of As onto Aq algebraically®®). Finally, it can still be assumed thgtis
realizable by means of a continuous deformation insidg o

One thus obtains the following homomorphisms:

fa(By) O 5
(Asis then indeed contained @)):

fa(B) U By,
(by means of the magof Q; in A);

w(B) UA,
(Qy is then contained i@,):

7€Bs) U By
(projection). One thus has:
(4) f1fa(B) = w(B),
(5) f3 f2(Bs) = 7(By),

such that the groups are mapped to each other as follows:

ﬁﬁBqﬁﬁﬁBs.

When one begins this process wiith 1 and advances ever further, one effortlessly
obtains a sequence of homomorphisms that, due to (4) 9ndn¢orporate certain
subsequences of the two sequende&B,, 7) and F (B, &@). Therefore, the latter
sequences of homomorphisms are equivalent. Q. E. D.

3 Alexandroff, loc. cit.®), pp. 117 (cor. 1).
%) The proof is by induction on the dimension of the elets of the complex; cf., e.g., Alexandroff,

Trans. Amer. So@8.



Appendix |
The duality theorem for continuous complexes.

Let K be a (singularity-free) continuous complex®h One considers a polyhedral
complexQ that is homeomorphic i in a sufficiently high-dimension&". SinceK and
Q are homeomorphic closed sets, the %roups that are dtred tadimensional cycloses
of them, and therefore also the+ r —1)™ Betti groups oR" —K and the ifh — r —1)"
Betti group ofR" — Q are isomorphic to each other. However, the latteumris
isomorphic to theé-dimensional Betti group @@ (hence, also to that é&).

In other words:

If K O R is a continuous complex then tfre — r —1)" Betti group of R— K is
isomorphic to the r-dimensional Betti group of K.

In order to derive this isomorphism from the basic.,(igerived from linking)
primitivity (orthogonality, resp.)®® of the two groups, one considers a polyhedral
neighborhood/ of K that satisfies the following two conditions:

a) Any cycle oK that is homologous to zeroYhalso has that property Kitself.

b) For any cycle 0 R" — Kthere is a cycle O R' — Fwith the property that ~ Z
inR"—K

Furthermore, let O V be a polyhedral neighborhoodkfiuch that for any cyclel]
U there is a cycle'l] K such thaz~Z in V.

We letB (B', resp.) denote thedimensional Betti group & (U, resp.) and lef (5,
resp.) denote the — r —1-dimensional Betti group & (U, resp.). Due to condition a), it
follows fromK [0 U that there is an isomorphic mapB®bnto a subgroup @' that we
will likewise denote byB. We next prove that in the caseof 0 this subgroup is a
subgroup with division of ‘B In fact, letz [0 B, y [0 B, x = ky, k # 0; we will show that
one also hag J B. To that end, we lek (Y, resp.) denote cycles k (U, resp.) that
belong to the homology classxfy, resp.). One then has:

X ~Ky (in U).

From the definition ob, it then follows that there is a cyclg inK that is ~y inV,
such that:

~ky (in'V),

|

so (due to a)):
~ky' (in K).

|

3 Cf., the formulation of the Alexander duality theorenttie restricted sense (chap. II, II, § 5).
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If we lety denote the element &fthat is generated by the cycje thenx = ky; on the
other hand, since = ky and the grou@' is free, one hag=y', and thereforg [ B.

The groupsB' and B’ are mutually primitive (orthogonal, resp.), whit.eand 5 are
isomorphic. From the inclusioR" — U 0 R' — K and condition b), this yields a
homomorphic map of5” onto the entire groug8. We denote the kernel of this
homomorphism by, perhap&,and prove thaf = (£’ B). Now, it is clear thaf [J (3
B) since a cycle oR" — K that links with a cycle oK cannot be homologous to zeroRh
— K. However A can also not be a proper subgroup/fB), since otherwise the group
L’ | A= B (according to whethew # 0 or = 0) would have a higher order (rank, resp.) than
the groupf’ | (8, B), which would contradict the isomorphism betweg€rand B.
Therefore A = (£, B), and sinceB = S’| (8 B), B and define a primitive (orthogonal,
resp.) group pair. Q. E. D.



Appendix Il

Relationship between the Lefschetz duality theorem forlased sets
and the theory of Chapter IlI. *")

Definition I. Let F (V,, 7) be an inverse sequence of homomorphisms. A sequence:

(1) Vic s Vkt1y coes Yy -nn

wherey, is an element o, is called achain (Kette) when for any = k one has:

TH(Yn+1) =th Yo,
and therefore, is a positive whole number.

Definition Il. A system of chains is calldaiearly independenivhen corresponding
(i.e., having the same index) elements of this chainnhvdogsidered as elements of the
groups to which they belong, are linearly independent in thesgps. When one can
find arbitrarily many mutually independent chains in a given sequeote
homomorphisms, we say that this sequence of homomorphamsaninfinite rank
while otherwise the highest number of independent chaatsagipear in the sequence of
homomorphisms is called iteank. The rank of a direct sequence of homomorphisms
shall be defined to be the rank of its limit group.

The relationship between Lefschetz's theorem and loewry is thus given by the
following theorem:

Two (modulo zerporthogonal sequences of homomorphisms have the same rank.

We next remark thagéquivalent sequences of homomorphisms have the same rank
For direct sequences of homomorphisms, this follows fthen fact that equivalent
sequences have the same limit group. As far as invegeersges of homomorphisms are
concerned, our assertion follows from the analogowertass for two sequences, the first
of which is a subsequence of the second one. Howéwerthis special case, the
assertion can be established immediately.

We now call an inverse sequence of homomorphisonspletewhen for anyn the
only subgroup with division o¥, that containgz(Vn+1) is the group/, itself.

When F (V,, 7) is a complete sequence of homomorphisms anis any free
element ofV, , there is an eleme,.; of V,.1 such thatrn(an1) =t a, for a suitably
chosen whole numberz 0. However, that means that for any free elenagraf an
arbitrary groupV,, in F (V,, 7) one can find at least one chain that begins aith If one
has a system of linearly-independent elemeitsa?, ..., a¢ of Vi, , moreover, then the

chains that begin with it are also linearly independémwbom this, it follows that the rank

3 We consider only the case in whikt! is a generalized Poincaré space. The case of a mueeage

M" can be disposed of in an analogous manner.
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of a complete sequence of homomorphisms is equal tniteeor infinite upper limit of
the ranks of the individual groups .
We now prove the following two lemmas.

Lemma |. To any inverse sequence of homomorphign{¥,, 7) there is a complete
sequence of homomorphisms that is equivalent to it.

In fact, letVq« be smallest subgroup with divisionVf that containsz™™V_... When

k increasesYnk can only decrease. As a resMt (ndeed has finitely many generators),
amongst th&/n (n fixed!) there exists a smallest subgroup, and it shalabecV.. One
now setsV, = Vi, so one also ha¢, =V, and one assumes thét has already been
found. By definition,V, is the smallest of the groupg,, so it is a well-defined group
Vi We setV, =V, . Foranyh>s.,V, is the smallest subgroup with division of
V, that containgzV, or also only7zV; . From this, it follows that:

o {v;l,v;z,...,v;

is a complete sequence of homomorphisms. Howevergamalso describe:

(3) Vo VLV VL Y

1 S s, !ttt

as a sequence of homomorphisms when one rfapmto V, by means of the maps
njﬂ”_l andV, into V, by means of the identity map. The sequence (3) incagm(a)
and the subsequensg, V, , ..., V, , ... of the originally-given sequencg (Vy, 7), SO

k) Sﬂ )
(2) is equivalent taF (V,, 7), with which Lemma | is proved.

Lemma ll. If F(V,, 7) is a complete sequence of homomorphismsA&bl, ¢) is a

sequence of homomorphisms that is orthogonaFt®/,, 7) then the homomorphisngs
are all isomorphisms.

In fact, leta be a non-zero element 0f, that gets mapped to the zero element pf
by means ofp, . As a result of the orthogonality of the group palrsV,, there is an
elementb of V, such thaiab # 0. Since F (V,, 7) is complete, there existstal Vi1
such thatg(b') =tb (witht > 0). Now, one has, howevaf,(a) b’ =a 77(b") =tab# 0, so
it also follows thaig,(a) # 0. Lemma Il is proved by this contradiction.

If one now has two orthogonal sequences of homomorgi#sand F then one next

replaces them with two likewise orthogonal sequetfgesnd 7, that are equivalent t&
(F, resp.), of which, the first one is a complete seqaarfchomomorphisms and the
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second one is then a direct sequence of isomorphisnie rdnk of a sequence of
isomorphisms is obviously equal to the upper bound of thesrafkthe groups in

guestion. Since the analogous statement is also truecdimplete sequences of
homomorphisms and the mutually corresponding groups of tlee sequences are
orthogonal, hence, isomorphic, the two sequences hawsathe rank. Q. E. D.



Appendix 111

Example of a curve inR® whose complementary space has an arbitrary countable
Abelian group with no elements of finite order for its first Betti group.

Let U be an arbitrary Abelian group that consists of countablyynfree elementay,
a, ...,an, ... LetU,be the subgroup &f that is generated k4, a,, ..., a,. SinceU,
is a subgroup df,+1, one has a homomorphisp of U, into U,.1, and therefore a direct

sequence of homomorphisi#U, , ¢). The corresponding limit group is, as one easily

recognizes, isomorphic 19.
SinceU, is a free group with finitely many generators, therstexa group/, that is
orthogonal toU, , and as a consequence, an (inverse) sequence of hopmsnts

F (Va, 7 that is orthogonal tF(Un, ¢). If X, %2, ..., X is a system of free generators
for the groupV,, then (for a suitably-chosen whole numpe‘[) one has:

(1) n;w(xinﬂ) = nCij)gi '

Now, letK, be the line segment complex that one obtains whendamtifies all of
the vertices of amm,-vertex figure with each other. We lef, x*, ..., xX» denote the

system of one-dimensional cycleskgfthat are chosen in the simplest manner and define
a one-dimensional basis for this complex. Now, @tioaous mag, of K, into K, can
be easily be given for which:

fn (Xin+1) - nCij )¢1 '

One now embed&; as a singularity-free polygonal line segment compteRi and
chooses a polyhedral neighborhd@gdof K; such that any cycle @), is homologous to a
cycle ofK; there and thus arrives at an isomorphism between thegBatps ofK; and
Q: . The imagédi(Ks) of Kz lies inK; , and one can, by an arbitrarily small changg in

take that map to one that mags onto a polygonal complexX, that lies inQ;
singularity-free and is homeomorphic t§, . One now chooses a polyhedral
neighborhood, of K, such that any cycle that lies@ is homologous to a cycle d€,

there and the Betti groups @b andK; are isomorphic, and then begins this process. A
sequence of connected polyhedral regi@asQ-, ..., Q,, ... that are nested inside of
each other thus arises that can be chosen such thatintieesection is a curvé-.
Therefore, the Betti groups @.1 will be homomorphically mapped into those @f
according to formulas (1). The group that is dual to the-#rising inverse sequence of
homomorphisms (which coincides with the group that is doighé cyclosis of) is
obviously the group, which is therefore isomorphic to the first Betti gpoof R — F.

In conclusion, it might be remarked that already $bt of Abelian groups of rank 1
that consist of countably many free elements and areypse different from each other,
in the sense of isomorphism, has the cardinality otdmtinuum. One sees from this the
high degree to which the theorem of the invariance oB#&té groups is much richer in
content than the invariance theorem for the Bettilens

(Received on 24-12-1930.)



