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 Let q1, q2, …, qn be the n true coordinates of a system, and let: 

 

(1)  i = 1 1 2 2i i in nq q q  + + +   (i = 1, 2, …, n) 

 

be linear, non-integrable combinations of their derivatives with respect to time. Solving (1) for the 

iq  will give: 

 

(2)  iq  = 1i 1 + 2i 2 + … + ni n  (i = 1, 2, …, n). 

 

We formally set i = di / dt and regard the i, which do not exist in reality, as quasi-coordinates. 

 The equations of motion of that system, which are expressed in terms of the qi and i , result 

from Hamilton’s principle: 

(3)   I = 
2

1

( )

t

t

T U dt+  = min., 

 

when one defines the variations of the  according to equations (1). We will then get: 

 

(4)  I = 
( ) i
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in which 
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 denotes the symbolic derivative, i.e., i

f
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 . However, it will follow from 

(1) and (2) that: 
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in which: 
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When the integration by parts is applied to the term id

dt


  in (4), that will obviously produce the 

equations for the non-holonomic system in the Lagrange-Euler form (according to G. Hamel): 

 

(5)  
,
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  = 0 . 

 

 We introduce the new variables: 

pi = 
i

T






 

here, express T in terms of qi and pi, and set: 

 

K = 
i ip q T − . 

We will then obtain: 
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i
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 , i = 

i

K

p
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Equations (5) get: 

,
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dp K T
g
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 . 

Finally, will let: 

H = K – U = i ip q T U − −  = 2T – T – U = T – U . 

 

The following form for the equations will result, which corresponds to the canonical equations: 

 

(6)   
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 If the constraints do not contain time then those equations will admit the vis viva integral: 

 

H = h , 

 

in which h is an integration constant, because it will follow immediately that since gi = − g i , 

one has: 
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dH

dt
 = i

i

i i i

dpH H

p dt




   
+  

   
  = 0 . 

 

 A development of this with some extensions and applications of equations (6) to various 

examples will be given in a more detailed article. 
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