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INTRODUCTION 
 

 1. Scope of the book. Historical preliminaries. – In the plan of this Encyklopädie, Article 

12, together with Article 13, shall define a continuation of Article 6 (P. Stäckel) in a certain sense. 

Whereas Article 6 was concerned with dynamics, to the extent that it dealt with the “elementary” 

methods of analysis, here, we shall report on the “advanced” methods that lead to an Ansatz for 

the equations of motion of mechanical systems with finite degrees of freedom and are otherwise 

meaningful in their integration. 

 In order to arrive at an Ansatz for the equations of motion, one must obviously go back to the 

principles of mechanics that were summarized in Article 1 (A. Voss), and here they will be given 

only a formal reshaping of their details. In that way, generalized coordinates [cf., IV 1 (A. Voss), 

no. 37] will be introduced from the outset in order to characterize the configuration of a mechanical 

system, in which it will prove convenient to interpret the motion of a mechanical system with n 

degrees of freedom as the motion of the individual mass-points (the so-called “representative” 

points) in a space of n dimensions [cf., IV 6 (P. Stäckel), no. 2]. Of course, it is simplest for one 

to regard such an Rn as a general (in the simplest case, Riemannian) manifold [cf., III D 11 (L. 

Berwald), no. 17] whose arc-length element is inferred from the kinetic energy of the systems by 

means of (1): 
2ds  = 

22T dt . 

 

 We do not need to go further into the details of how one makes that convenient choice of 

general coordinates for the individual systems at this point, since that is treated in Article 11 (K. 

Heun), and on the same grounds, despite their importance for all applications, the concomitant 

determination of the reaction forces of the constraints can also be left out of consideration. 

 If one initially makes no restricting assumptions on the constraints of the system but lets them 

be holonomic or non-holonomic constraints [cf., IV 1 (A. Voss), nos. 37 and 38] then the 

differential principles will prove to be the most far-reaching ones for defining an Ansatz for the 

equations of motion. In the normal cases, it would be simplest to start from the Lagrange 

formulation of d’Alembert’s principle [cf., IV 1 (A. Voss), no. 36], and one needs to appeal to 

Gauss’s principle of least constraint [cf., IV 1 (A. Voss), no. 39] only in those few cases in which 

the Lagrange formula is not sufficient. 

 If one could arrive at the Ansatz for the equations of motion by differential principles alone in 

that way then it would be, however, exceptionally significant that variational principles were 

introduced into mechanics on the basis of teleological-philosophical speculations, even if the 

original teleological basis for those principles is generally borrowed from the exact natural 

sciences today (2). That is because the fact that the equations of motion arise as the Euler equations 

of a variational problem proves to be fundamental in their integration, as W. R. Hamilton first 

recognized. Namely, when he started from the variational problem for Fermat’s principle for the 

 
 (1) Cf., on this, P. Stäckel, “Bericht über die Mechanik mehrfacher Mannigfaltigkeiten,” Jahresber. d. Deutsch. 

Math.-Vereinig. 12 (1903), pp. 469, as well as J. L. Synge, “On the geometry of dynamics,” Trans. London Phil. Soc. 

(A) 226 (1927), pp. 31. 

 (2) Cf., e.g., M. Planck, in “Die Kultur der Gegenwart,” III 3 1 (Physik), pp. 698. 
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shortest light path in his investigations into ray optics, he thought it would be obvious for him to 

focus upon the entire bundle of light rays that are emitted from a luminous point, rather than an 

individual light ray. He only needed to observe that in the sense of the wave theory of light, the 

propagation of light for the light path along the individual light ray that is taken, one can see that 

the wave surfaces of the bundle are nothing but those surfaces that are bounded by all individual 

rays of the bundle with the same light path, so the relationships between wave surfaces and rays 

that optics develops are just the relationships between the rays (viz., the extremals of the variational 

problem) and the surfaces of constant light path that are associated with the bundle by the 

variational problem. Hamilton likewise saw that this could be adapted to any variational problem, 

and in particular, applied his methods to mechanics by combining the trajectories (space-time lines, 

resp.) of the motion into suitable bundles and associated such bundles with the characteristic 

function (principal function, resp.) with the help of the extremal integral of the variational problem. 

In that way, he arrived at a representation of the integral of the equations of motion that proved to 

be so significant that since then that principle of varying action has competed with the principle 

of least (or better yet, stationary) action as an Ansatz for the integration of the equations of motion. 

 The representation of the integrals of the equations of motion that Hamilton arrived at with 

the help of the functions that he introduced made it possible for him to present the perturbation 

calculations [cf., VI2, 15 (Karl F. Sundmann), no. 4] for the so-called many-body problem (in 

particular, in the three-body problem), which he constructed in an exceptionally clear way using 

the process of L. Euler by J. L. Lagrange, P. S. Laplace, and S. D. Poisson, and to also extend 

them. At the same time, that consideration led him to give the equations of motion the general 

form of the canonical system, which is a form that had already been arrived at in some special 

cases of the perturbation calculations, but its proper meaning was still not appreciated. 

 The research of C. G. J. Jacobi was connected with first-order partial differential equations 

that the characteristic (principle, resp.) function satisfied, and he constructed a systematic theory 

of the integration of the canonical system from that. It is especially significant in it that he drew 

attention to the so-called Poisson theorem that Poisson had observed before in perturbation theory 

and that he could make it the center of the theory of integration, which is a result that found its 

coronation in the theory of function groups that S. Lie addressed. Meanwhile, the formulation of 

that theory of integration by the Jacobi school threatened to degenerate into pure formalism. 

However, its close contact with the computational astronomy always hindered the overgrowth of 

formulas. 

 When one starts from the boundary formulas of the variational problem, which already defined 

the starting points for Hamilton’s arguments, one will further arrive, with no further analysis, at 

the theory of integral invariants that H. Poincaré addressed. On the other hand, the boundary 

formula can be interpreted as a Pfaffian expression, which makes the canonical system take the 

form of the Pfaffian system of that expression and the Hamilton-Jacobi partial differential 

equation will take the form of the partial differential equation of the Pfaff problem. In that way, 

the analytical tools of the theory of the Pfaff problem will be beneficial in the definition of the 

Ansatz for the equations of motion, as well as their integration. 

 Another starting point for the systematic integration of the equations of motion is the concept 

of cyclic coordinates, which was first employed by W. Thomson (Lord Kelvin) and then, above 

all, by H. von Helmholtz. Now, the associated impulse coordinate is constant for a cyclic 
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coordinate, while the equations of motion will go to themselves when a cyclic coordinate is present 

when one performs a “parallel displacement” in the direction of that coordinate. One 

correspondingly casts a glance to the connection between an integral of the equation of motion and 

an associated one-parameter group of transformations that take the system of equations of motion 

into itself, which is connected with S. Lie’s ideas about the integration of differential equations. 

 The variation of constants that is used in perturbation theory makes contact with the ideas of 

S. Lie in a different way. The introduction of the constants of the “unperturbed problem” as the 

coordinates of the “perturbed problem” can, in fact, be interpreted as the introduction of new 

coordinates into the canonical system. When one now seeks to choose the constants (which was 

first achieved by W. R. Hamilton by appealing to his characteristic function) in such a way that 

the perturbation equations will again have the canonical form, one will arrive at a simple 

generalization of the idea of the general canonical transformation, whose systematic formulation 

was first taken up by E. Schering, and which S. Lie could then identify as a special case of his 

general theory of contact transformations. 

 Finally, Lie’s theory of transformation groups led to the question of the equivalence of two 

mechanical problems, which was taken up from various angles and posed by P. Painlevé 

especially. 

 However, the meaning of those general theories for the treatment of the individual problems 

was unfortunately restricted by the fact that they were, as a rule, applicable to only integration “in 

the small.” That is because, for example, the integrals of the equations of motion are, as a rule, 

infinitely multi-valued, such that they will say something essential about the motion only in the 

neighborhood of an isolated space-time point. Thus, H. Poincaré showed for the three-body 

problem that, aside from the ten elementary integrals (viz., center of mass integrals, area integrals, 

and energy integral), there were no other single-valued analytic integrals [cf., IV2, 12 (E. T. 

Whittaker), no. 4]. Moreover, analogous statements are true for the equivalence of two 

mechanical problems. They can be equivalent “in the small,” without needing to be 

correspondingly equivalent “in the large.” 

 For the treatment of individual problems, everything will then come down to what goal one 

has in mind. If one restricts oneself to following the evolution of an individual process of motion 

then one can exploit the general theory, and one will go down that path especially when one tries 

to adapt the method of variation of constants that was introduced into astronomy to “terrestrial” 

mechanics [cf., IV 11 (K. Heun), no. 17]. By contrast, if one would like to survey the totality of 

all possible forms of motion (i.e., integration “in the large”) then deeper problems will present 

themselves. Here, as a preparation, one must look for the singularities of the equations of motion 

(cf., no. 7) and investigate the motion more closely in the neighborhood of those special places. 

Above all, what has been treated more precisely in that sense is the motion in the neighborhood of 

the equilibrium point, which gave rise to the theory of small oscillations and is connected to the 

examination of stability. As a generalization, one must then take up the investigation of periodic 

solutions, etc., which represent “the first breach” (to use H. Poincaré’s term), through which one 

can find access to the integration “in the large.” In fact, with those results (which will, however, 

no longer be discussed here), one seeks to gain a glimpse of the totality of all possible forms of 

motion and the total course of a particular one of those forms of motion. It is in the nature of things 

that one can next take up only entirely specialized problems that one must choose to be as simple 
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as possible. One thus confines oneself to problems of motion with two degrees of freedom and 

chooses the simplest such problem that is not trivial to be the so-called restricted three-body 

problem [cf., VI2, 12 (E. T. Whittaker), no. 2]. Along with that, the problem of force-free motion 

on a two-dimensional surface (at rest or in motion) in ordinary Euclidian space will also appear, 

which will come down to the determination of the geodetic lines [cf., III D 3 (R. von Lilienthal), 

nos. 14-18] for surfaces at rest, in particular. The work of G. D. Birkhoff (3) and his school is 

connected with those two problem statements, which employed a continuation of H. Poincaré’s 

ideas, and in particular, the topological methods. In order to lay the foundation for such a 

theoretical investigation of the restricted three-body problem, numerous periodic orbits of that 

problem were calculated numerically at the instigation of E. Strömgren. The next problem was to 

employ that material for the construction of the theory, for which individual Ansätze were 

proposed in recent times (4). 

 

___________ 

 
 (3) G. D. Birkhoff, Dynamical Systems.  

 (4) That work is compiled under the title: Publikationer og mindre Meddelelser fra Köbenhavns Observatorium. 



CHAPTER I 

 

THE DIFFERENTIAL EQUATIONS OF MOTION AND THEIR 

DEFINITION IN TERMS OF DIFFERENTIAL PRINCIPLES. 
 

 

 2. Concept of a mechanical system with finitely-many degrees of freedom. – Celestial and 

terrestrial mechanics can describe the simplest mechanical processes (falling and throwing, 

relative motion of a planet) by developing the equations of motion for an isolated mass-point. If 

one turns one’s gaze from the motion of isolated planets to the total system of the Sun and its 

planets, along with their satellites, then one will be dealing with a system of mass-points whose 

individual points interact with each other according to Newton’s law of gravitation. On the other 

hand, such a simple problem as the mathematical pendulum yields an example of the motion of a 

mass-point with a constraint on the motion, and indeed, one that can be given very simply in terms 

of mathematical formulas. One needs only to combine the two together in order to arrive at the 

concept of a system of material points on whose individual points forces act, while on the other 

hand, those points are coupled with each other by some sort of links that can be expressed 

mathematically by a number of equations (or inequalities) for the evolution of certain quantities 

(position and velocity) (5). That concept became all the more necessary due to the fact that the 

results of celestial mechanics, in conjunction with the resurrection of the atomistics of antiquity, 

brought the concept into physics that one must reduce all natural phenomena to the motion of 

material points that interact with each other by central forces [cf., IV 6 (P. Stäckel), no. 2]. 

According to that conception of things, solid bodies and fluids can also be regarded as systems of 

mass-points, and indeed as systems of infinitely-many mass-points. For example, the rigid body 

can be regarded a system of infinitely-many mass-points whose individual points are continually 

kept at the same distance from each other by some sort of coupling. Similarly, by introducing 

somewhat-more-complicated constraints, the elastic solid body and the fluid can be called systems 

of infinitely-many mass-points [cf., IV 6 (P. Stäckel), no. 22]. However, whereas a system of 

finitely-many mass-points can naturally always have finitely-many degrees of freedom, for systems 

that consist of infinitely-many points, either infinitely-many degrees can appear, as with fluids and 

solid (elastic) bodies, or one will arrive at a restriction to finitely-many degrees of freedom by 

introducing sufficiently-many constraints, as in the case of the rigid body or the chain that is 

constructed from rigid bodies. The latter are then associated with the mechanics of systems with 

finitely-many degrees of freedom that are treated here, while the mechanics of elastic solid bodies 

fall within the scope of the mechanics of continua [cf., IV 6 (P. Stäckel), no. 22]. The bridge 

between the two domains is defined by statistical mechanics [IV 32, P and T. Ehrenfest], for 

which the methods that are discussed in this article will naturally take on their special meaning. 

 The spatial position of a system that consists of finitely-many (say r) mass-points with masses 

m1, m2, …, mr is established, perhaps relative to a three-axis coordinate system, when one knows 

 
 (5) The example of the physical pendulum was of fundamental significance in the development of dynamics. Cf., 

J. L. Lagrange, Mécanique 2, sect. I, nos. 7-9, (Œuvres, 11, pp. 248).   
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the 3r coordinates of the individual xi, yi, zi (i = 1, 2, …, r), and the motion of the system will be 

known when one has determined those 3r coordinates as functions of time t: 

 

(1)     xi = xi (t),      yi = yi (t),      zi = zi (t) . 

 

In so doing, those functions must be continuous functions of time that are assumed to be 

differentiable sufficiently often, which is obviously physically plausible. 

 The general couplings in such a system will be represented by a number of equations (and 

possibly inequalities, but they will not be considered in what follows) between the position 

coordinates xi, yi, zi at time t and the velocity components ix  = idx

dt
, iy  = idy

dt
, iz  = idz

dt
 of the 

r mass-points of the system. Let there be, say, l such equations: 

 

(2)     

1

1

( , , , , , , ) 0,

........................................

( , , , , , , ) 0

i i i i i i

i i i i i i

f x y z x y z t

f x y z x y z t

=


 =

  (l < 3r) . 

 

According to H. Hertz, one must then distinguish whether the velocity components do or do not 

appear in those constraint equations. H. Hertz called the constraint equation holonomic when the 

velocity components are missing and non-holonomic in the other case [cf., IV 1 (A. Voss), no. 37, 

as well as IV 6 (P. Stäckel), no. 4]. Holonomic and non-holonomic systems are very different from 

each other accordingly. According to L. Boltzmann (5.a), each of those two classes can be further 

subdivided when one decides whether the time t does or does not appear explicitly in the constraint 

equations. If the variable t is absent then the constraints will be called scleronomic, while it if does 

appear then one will have rheonomic constraints. 

 One arrives at the equations of motion for such constrained systems in such a way that one 

expresses the influence of the constraints by suitable reaction forces and then treats the mass-points 

of the system as free mass-points [cf., IV 6 (P. Stäckel), no. 4 and no. 7]. The Ansatz of the reaction 

forces is thus required by the special nature of the constraints. Meanwhile, analytical mechanics is 

generally restricted to the case of frictionless constraints, for which the reaction forces are subject 

to the condition that they must do no work under a virtual displacement (cf., no. 3). Therefore, the 

Ansatz for reaction forces with holonomic constraints is given immediately, and likewise for non-

holonomic constraints, when the constraint equations are linear in the components of the velocity, 

which is almost the only case that appears in the applications, moreover. In the scleronomic cases 

of such linear non-holonomic constraints, the constraint equations will always have the form: 

 

1

[ ( , , ) ( , , ) ( , , ) ]
n

i i i i i i i i ia x y z x b x y z y c x y z z     
 =

+ +  = 0 

 

 
 (5.a) Cf., L. Boltzmann, Prinzipe II, § 4, pp. 16. 
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in applications, i.e., they are homogeneous in the velocity components. As C. Carathéodory had 

remarked, that homogeneity is necessary in the spirit of vanishing friction since the reaction forces 

can also do no work under actual motions in the scleronomic case. As a generalization of that 

argument, it also seemed to C. Carathéodory that non-holonomic constraints that were not linear 

in the velocity components would also be required in order for the constraint equations: 

 

  ( , , , , , )i i i i i if x y z x y z  = 0  ( = 1, …, l) 

 

to be homogeneous in the velocity components in the scleronomic case, in contrast to the Ansätzen 

that one finds in the literature (6). The dependency of the functions (2) on the velocity components 

is also subject to certain restrictions in rheonomic cases, even though those functions no longer 

need to be homogeneous. 

 

 a) Holonomic systems. – For holonomic constraints, equations (2) will simplify to: 

 

(3.a)     

1( , , ) 0,

.........................

( , , ) 0

i i i

l i i i

f x y z

f x y z

=


 =

 

in the holonomic case and to: 

(3.b)     

1( , , , ) 0,

.........................

( , , , ) 0

i i i

l i i i

f x y z t

f x y z t

=


 =

 

 

in the case of rheonomic constraints, resp. The number of degrees of freedom is restricted to: 

 

(4)       n = 3r – l 

 

by those constraint equations (3.a) [(3.b), resp.]. 

 One does not necessarily need to begin with the determination of the reaction forces in order 

to derive the equations of motion. That is because in generalizing a process that has proved very 

 
 (6) For practical examples of such general constraints, cf., P. Appell, “Exemple de movement d’un point assujetti 

à une liaison exprimée par une relation non linéaire entre les composantes de la Vitesse,” Palermo Rend. 32 (1911), 

pp. 48, as well as P. Appell, “Sur les liaisons non linéaire par rapport aux vitesses,” Palermo Rend. 33 (1912), pp. 

259. Cf., also É. Delassus, “Sur la realization matérielle des liaisons,” C. R. Acad. Sci. Paris 152 (1911), pp. 1739, as 

well as “Sur les liaisons non linéaire,” C. R. Acad. Sci. Paris 152 (1911), pp. 626; “Sur les liaisons non linéaire et les 

mouvements étudiés par M. Appell,” C. R. Acad. Sci. Paris 152 (1911), pp. 707, and furthermore “Sur les liaisons 

liaisons d’ordre quelconque des systèmes matériels,” An. Éc. Norm. (3) 29 (1912), pp. 305, cf., also É. Delassus, 

Dynamique des systèmes matériels, Paris, 1913, esp. pp. 26, et seq. 

 For the Ansatz of the equations of motion when completely-general constraints are present, in which acceleration 

components can also appear, cf., A. Przeborski, “Die allgemeinsten Gleichungen der klassischen Dynamik,” Math. 

Zeit. 36 (1933), pp. 184. 
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fruitful in the special cases, J. L. Lagrange (7) has shown that, in general, in the case of 

scleronomic conditions (3.a), one can dispense with those forces in such a way that the x1, …, zr 

are expressed as functions of n parameters q1, …, qn, viz., the generalized coordinates, in such a 

way that the latter are chosen in such a way that equations (3.a) will be fulfilled identically when 

one introduces them. One then finds that: 

 

(5.a)     

1

1

1

( , , ) ,

( , , ) ,

( , , ) ,

i i n

i i n

i i n

x q q

y q q

z q q







=


=
 =

 

 

and the motion will be known when one has determined the q1, …, qn as functions of time [cf., IV 

1 (A. Voss), no. 37]. If one regards the functions: 

 

(6)    q1 = q1 (t) ,  q2 = q2 (t) , …,  qn = qn (t) 

 

as representing a curve in the n-dimensional (q1, q2, …, qn)-space then one can interpret the motion 

of the system as a motion of one material point in n-dimensional space, and one must refer to the 

curve (6) as the trajectory of the material “representative point.” If one would also like to 

geometrically represent the temporal course of the motion then one would have to interpret 

equations (6) as an analytical representation of a curve in the (n + 1)-dimensional (q1, …, qn, t)-

manifold that one can also call the (q1, …, qn, t)-world, as a generalization of the usual terminology 

in the theory of relativity [cf., also IV 6 (P. Stäckel), no. 2]. 

 In general, one is also dealing with the case of holonomic constraints when a system of 

infinitely-many points is reduced to finitely-many degrees of freedom by infinitely-many 

constraints. One example is, say, the free rigid body, which possesses six degrees of freedom. As 

a generalization of that special case (e.g., by going to a chain of rigid bodies), one can also imagine 

that a system with n degrees of freedom is given here in general. The coordinates of each point of 

the system are then expressed by relations of the form (5) as functions of the generalized 

coordinates and possible time. In that way, the isolated points, as they would naturally appear in 

continuously-extended bodies, will be characterized by suitable parameters instead of one number. 

In rigid bodies, one cares to introduce, e.g., a coordinate system that is fixed in the body, in which 

the individual points of the rigid body might perhaps have the coordinates (a, b, c). One can then 

imagine that the the orientation of that comoving coordinate system with respect to the (x, y, z)-

system is given by, e.g., the coordinates of the initial point and the Euler angles. If one denotes 

the former by q1, q2, q3, and the latter by q4, q5, q6 then the coordinates x, y, z of any point (a, b, c) 

of the system relative to the given reference system will be given by formulas of the form: 

 

 
 (7)  J. L. Lagrange, Mécanique 2, sect. IV (Œuvres 11, pp. 325). 
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(7)  

1 6

1 6

1 6

( , , , , , ) ,

( , , , , , ) ,

( , , , , , ).

x a b c q q

y a b c q q

z a b c q q







=


=
 =

  

 

The motion of the rigid body is known when one knows the q1, …, q6 as functions of time [cf. IV 

11 (K. Heun), no. 2]. 

 Moreover, the replacement of the original rectangular coordinates by general coordinates is in 

no way the only convenient one when there are a number of holonomic constraint equations to 

eliminate. Many times, the introduction of general coordinates (whose number naturally amounts 

to 3r again) offers certain advantages in the treatment of a system that is not restricted by constraint 

equations when one wishes to achieve an analytic representation that is suited to the special 

structure of the system. In that case, the relations between the xi, yi, zi, and the q1, …, q6 will possess 

the form (5.a), in which n = 3r. 

 

 b) Non-holonomic systems. – If the constraint equations (2) include a number of holonomic 

constraints along with the non-holonomic ones then one can eliminate the former, as was just done. 

In order to describe the system, one might then once more appeal to n generalized coordinates q1, 

…, q6 again, but between which k non-holonomic constraints exist: 

 

(8)     

1 1 1

1 1

( , , , , , , ) 0,

..............................................

( , , , , , , ) 0,

n n

k n n

g q q q q t

g q q q q t

=


 =

  (k < n) 

 

and none of which should be representable as equations that are free of the 1q , …, nq . 

Corresponding to C. Carathéodory’s remark, those functions must be homogeneous in the q  in 

the scleronomic case and must also satisfy certain conditions with regard to the dependency of the 

q  in the rheonomic case, in general. 

 The problem in which the constraint equations (2) are linear in the velocity components, which 

is the most important for applications, and is essentially the only problem that has been considered 

up to now, will also be linear in the q  then, and can then be written in the form of Pfaff equations: 

 

(9)    

11 1 12 2 1 1, 1

1 1 2 2 , 1

0,

....................................................................

0

n n n

k k kn n k n

a dq a dq a dq a dt

a dq a dq a dq a dt

+

+

 + + + + =


 + + + + =

 

 

a = a (q1, …, qn, t) . 

 

In the scleronomic case, in which time t does not appear explicitly, one must have a, n+1  0, such 

that the system of Pfaff equations will possess the form: 
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(9.a) 

11 1 12 2 1

1 1 2 2

0,

......................................................

0,

n n

k k kn n

a dq a dq a dq

a dq a dq a dq

+ + + =


 + + + =

 

 

a = a (q1, …, qn) . 

 

Such non-holonomic constraint equations give a restriction on the freedom of motion only 

infinitesimally. Indeed, q1, …, qn, t can be chosen freely, while only the choice of the velocity 

components q  is restricted. That is a fundamental difference from the holonomic constraints, 

because it is therefore impossible to employ non-holonomic constraints for a further reduction of 

the number of coordinates. Nonetheless, one can also drop the auxiliary conditions, in a certain 

sense, in the definition of the equations of motion by further generalizing the concept of 

coordinates. Namely, since velocity components appear in the constraint equations (9), as well as 

the position coordinates, one can introduce the velocity components 1q , …, nq  as independent 

variables, along with the q1, …, qn, t. The 1q , …, nq  can then be replaced with new variables – 

say 1, …, n – without altering the q1, …, qn, and in that way one can choose the new variables 

in such a way that the equations (9) [(9.a), resp.] will take on the simple form: 

 

(10)     n−k+1 = 0 , …, n = 0 . 

 

In that way, the  will be represented as linear functions of the 1q , …, nq , say in the form: 

 

(11)    

1 11 1 1 1, 1

1 1 , 1

,

.................................................

.

n n n

n n nn n n n

q q

q q

   

   

+

+

 = + + +


 = + + +

 

 

 Moreover, one often conveniently introduces such expressions in place of the  q  without the 

appearance of non-holonomic constraints, e.g., in the motion of a rigid body, when one prefers to 

operate with the components of the instantaneous rotation vector, instead of the time derivatives 

of the Euler angles [cf. IV 6 (P. Stäckel), no. 16]. In that case, it frequently happens that t does 

not appear in the , and one has , n+1  0, such that the  will be homogeneous in the 1q , …, 

nq . 

 In many situations, infinitesimal quantities d =  dt are also introduced in place of the   

that are coupled with the differentials of the position coordinates and time by relations of the form: 

 

(11.a)    d = 1 dq1 + … + n dqn + , n+1 dt. 

 

Naturally, one cannot determine, say, the quantities  as functions of the q1, …, qn, t from that. 

Nevertheless, the formulation of the argument will occasionally simplify when one speaks of the 
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 as if they were coordinates. One then refers to them as quasi-coordinates (8). The solution of 

equations (11) for the q  might be: 

 

(11.b)    q  = B1 1 + … + Bn n + Bn+1,  , 

 

1

n

B 



=

  = 
0 ,

1 ,

 

 




=
   Bn+1,  = − , 1

1

n

n B 


 +

=

 , 

 

from which it naturally emerges that: 

 

(11.c)    dq = B1 d1 + … + Bn dn + Bn+1,  dt . 

 

 With the introduction of quasi-coordinates, as in (11.a), the non-holonomic constraint 

equations (9) will take on precisely the form: 

 

(10.a) dn−k+1 = 0 ,      …,       dn = 0 . 

 

If one then further sets: 

 = 1q   n−k = n kq −  

 

then one can keep the q1 = 1, …, qn−k = n−k as ordinary coordinates. 

 

 

 3. Virtual displacements in generalized coordinates. – If one would like to arrive at an 

Ansatz for the equations of motion of a mechanical system without having previously determined 

the reaction forces of the constraints then one must start from the Lagrange formulation of 

d’Alembert’s principle and operate with the concept of the virtual displacement of the system [cf., 

IV 1 (A. Voss), nos. 30 and 36]. One understands a virtual displacement of the system to mean a 

conversion of its individual mass-points at their positions that are given by xi, yi, zi to xi + xi, yi + 

yi, zi + yi , in which the infinitesimal quantities xi, yi, zi are chosen in such a way that the 

neighboring positions in the case of scleronomic conditions likewise satisfy the condition 

equations, while in the rheonomic case, they must fulfill the condition equations for fixed values 

of t, i.e., for the virtual displacements, rheonomic constraints must become scleronomic with the 

form that they have at the instant t considered (8.a). For holonomic constraints, the infinitesimal 

coordinate variations xi, yi, zi must satisfy the condition equations: 

 
 (8) Cf., E. T. Whittaker, Dynamics, pp. 41. G. Hamel employed the less-concise term “non-holonomic 

(generalized) coordinates.” G. Hamel, “Über die virtuellen Verschiebungen in der Mechanik,” Math. Ann. 59 (1904), 

pp. 416, esp. pp. 421. 

 (8.a) One correspondingly cares to define the virtual displacements as “compatible with the condition equations” 

and “timeless.” Geometrically, one can regard the virtual displacement for holonomic constraints in such a way that 

one interprets equations (3.a) [(3.b), resp.] as an (n + 1 = 3r – l + 1)-dimensional manifold in the (3r + 1)-dimensional 

space-time manifold. In the scleronomic case of equations (3.a), that Mn+1 is, in particular, a “cylindrical” manifold 
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(12)    
1

n

i i i

i i i i

f f f
x y z

x y z

  
  

=

   
+ + 

   
  = 0  ( = 1, …, l), 

 

regardless of whether one is dealing with scleronomic constraints (3) or rheonomic ones (3.a). 

Obviously, those equations will be nonetheless fulfilled when one chooses the infinitesimal 

variations q1, …, qn of the general coordinates (5.a) [(5.b), resp.] completely arbitrarily and then 

sets: 

(13)   

1 2

1 2

1 2

1 2

1 2

1 2

,

,

.

i i i
i n

n

i i i
i n

n

i i i
i n

n

x q q q
q q q

y q q q
q q q

z q q q
q q q

  
   

  
   

  
   

   
= + + +

  
   

= + + +
  

   
= + + +

  

 

 

 For non-holonomic constraints, a virtual displacement can be defined only when the condition 

equations are Pfaff equations. In that case, the infinitesimal quantities q1, …, qn will represent 

a virtual displacement of the system with the non-holonomic conditions in the form (9), as well as 

(9.a), when they satisfy the equations: 

 

(14)   

11 1 12 2 1

1 1 2 2

0,

......................................................

0.

n n

k k kn n

a q a q a q

a q a q a q

  

  

+ + + =


 + + + =

 

 

 The explanation of virtual displacements that is then given for all cases was completely 

sufficient for one to apply the Lagrange formulation of d’Alembert’s principle. However, if one 

would later like to convert that formulation into Lagrange’s central equation and then go on to 

Hamilton’s principle then one must not consider an isolated state of motion of the system at a 

fixed time, but a motion of the system during its temporal evolution: 

 

(15)   q1 = 1 ( )q t , q2 = 2 ( )q t , …, qn = ( )nq t , 

 

which is a representation that one can interpret as either the trajectory of the system in Mn with the 

parametric representation q1, …, qn or also as a space-time line of the system in the Mn+1 of (q, t). 

If one now chooses the components of the virtual displacement q1, …, qn to be arbitrary 

 
with generators that are parallel to the t-axis. In the case of rheonomic constraints, one intersects the Mn+1 with the 

manifold t = const. and lays a cylindrical Mn+1 with generators parallel to the t-axis through the section Mn. A 

neighboring position of the system that is generated by a virtual displacement must belong to the cylindrical Mn+1 in 

both cases. 
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functions of time that are naturally continuous and differentiable sufficiently often then one will 

have constructed a neighboring curve in the Mn of q by way of: 

 

(15.a)  q1 = 1 ( )q t  + q1 (t) , q2 = 2 ( )q t  + q2 (t) , …, qn = ( )nq t  + qn (t) 

 

that relates to the trajectory (15) point-wise. On the other hand, any point of the new curve is also 

assigned a time, namely, since: 

 

(15.b)  t = 0 , 

 

it will be the same time as the associated point on the initial trajectory (15), such that (15.a) can 

also be regarded as the representation of a neighboring space-time curve that likewise relates to 

the space-time curve (15) point-wise. 

 For holonomic constraints, the neighboring curve (15.a) that is created by the virtual 

displacement will determine a motion of the system in its own right, under which the values of the 

coordinates x  + x , y  + y , z  + z  of the individual system points and the associated value 

of the time t will likewise satisfy the condition equations, as in the case of the motion that was 

represented by (15) itself. The curve (15.a) then represents a motion of the system that is 

compatible with the conditions that can be compelled by the application of suitable supplementary 

forces, or as one says, the neighboring curve (15.a) is a kinematically-possible trajectory of the 

system (9). 

 Things are different for non-holonomic constraints. One then constructs a neighboring curve 

to the initial curve (15) with the help of the virtual displacements in such a way that one chooses 

the q1, …, qn to be functions of time that fulfill the conditions (14) identically and each point of 

the neighboring curve is assigned the same time that the associated point initial curve (15) has 

attained, moreover. However, if one would now like to imagine that the motion that is given by 

the temporal association is realized along that neighboring curve then that “neighboring motion” 

would neither satisfy the conditions equations (9) in the rheonomic case or the conditions (9.a) in 

the scleronomic case. The neighboring motion is not kinematically possible (9.a). Namely (and this 

will be true in the holonomic, as well as the non-holonomic case), when one denotes the variation 

in the velocity vector of the neighboring motion in comparison to its magnitude at the 

corresponding point of the initial motion by 1q , …, nq  then the relation will follow immediately 

from the given definition of the neighboring motion that: 

 

(16)     q = 
d q

dt


, 

which one ordinarily writes in the form: 

 
 (9) Cf., e.g., Müller-Prange, Allg. Mech., Chap. VI, no. 9, pp. 520.  

 (9.a) Cf., L. Boltzmann, Prinzipe II, pp. 31, or also Müller-Prange, Allg. Mech., Chap. VI, no. 10, pp. 531. 

 H. Hertz was the first to refer to that distinction in Prinzipien, Ges. Werke III, pp. 23. A further clarification was 

then achieved by O. Hölder, “Über die Prinzipien von Hamilton und Maupertuis,” Gött. Nachr. (1896), pp. 122. 
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(16.a)      dq = d q , 

 

and which one cares to refer to as the commutation of the operator symbols d and . Now, if the 

neighboring motion is kinematically possible in the non-holonomic case then since equations (14) 

are fulfilled for every point of the neighboring curve, one must also have: 

 

d (a11 q1 + … + a1n qn) = 0 , 

……………………………… 

d (ak1 q1 + … + akn qn) = 0 . 

 

On the other hand, varying (9) will give the equations: 

 

 (a11 dq1 + … + a1n dqn + a1,n+1 dt) = 0 , 

………………………………………… 

 (ak1 dq1 + … + akn dqn + ak,n+1 dt) = 0 . 

 

Those two systems of equations must be compatible with each other, and it will then follow from 

this that the left-hand sides of (9) must be complete differentials. The same conclusions will be 

true in the case of equations (9.a). 

 The commutation relations (16) between d and , which arise immediately from the definition 

of the q as functions of time, will be true only as long as one has actual coordinates. When one 

is dealing with quasi-coordinates (cf., no. 2), d () −  (d) will no longer be equal to zero, but 

rather one will get from (11.a) that: 

 

 = 1 q1 + … + n qn , 

and therefore: 

 

(17) d () −  (d) = 
, 1

, 1 1

( )
n n

n
dq q q dq dt q

q q t q

   

    

    

   
  

+

= =

     
− − + −         

  , 

 

in which the right-hand side vanishes only when the right-hand sides of (11.a) are complete 

differentials. From (11.c), one can also write (17) as: 

 

(17.a)     d () −  (d) 

 

 = 
, ,

( )B B d d
q q

 

     
     

 
   

   
− −       

   

+ 
, 1

1, 1,

,

( )
n

n ndt B B B B
q q t q

   

    
     

   


+

+ +

      
− − + −            

    
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= 1,

,

( ) nd d dt 

      
  

      +− +  , 

 

in which the second term will be missing when the term with dt does not appear in the definition 

(11.a) of quasi-coordinates. K. Heun (10) referred to those relations as the transitivity equations 

(transition equations) (10.a). 

 Moreover, one will obviously have: 

 

(17.b)    


  = − 


  ,  so 


  = 0 . 

 

In particular, as G. Hamel showed (11), the 

  can be related to the theory of continuous groups 

[cf., II A 6 (L. Maurer and H. Burkhardt)]. Namely, if one regards each of the formulas (11.c) 

(in which t might not appear explicitly) as an infinitesimal transformation and writes: 

 

X f = 1

1

n

n

f f
B B

q q
 

 
+ +

 
 

 

correspondingly then the formulas for the bracket expression [cf., II A 6 (L. Maurer and H. 

Burkhardt), no. 5] will be: 

(X X) = X

 



 . 

 

The 

  are constant if and only if the n infinitesimal transformations generate an n-parameter 

continuous group. 

 Along with the virtual displacements, as they were explained here, variations of a different 

type are also applied to the trajectories (space-time curves, resp.) of the motion in mechanics, and 

the problem then remains of recognizing the connection between those variations and the 

components of the virtual displacement. In general, a space-time line of the motion will go to a 

neighboring one when one shifts each space-time point xi, yi, zi, t to a neighboring one xi + xi, yi 

+ yi, zi + zi, t + t . 

 
 (10) K. Heun, “Die Bedeutung des d’Alembertschen Prinzips für starre Systeme und Gelenkmechanismen,” Arch. 

Math. Phys. (3) 2 (1901), pp. 57 and pp. 298, esp., pp. 300. Lagrange had already treated the case of a rigid body that 

can rotate about a fixed point in the second edition of Mécanique analytique, t. II, 2, sect. IX, Chap. 1, § 1 (end) = 

Œuvres 12, pp. 216. 

 (10.a) They were expressed in G. Hamel, “Die Lagrange-Eulerschen Gleichungen der Mechanik,” Zeit. Math. Phys. 

50 (1904), pp. 1, esp. pp 10, in which one should observe that one can set dt = dqn+1 = dn+1 . Cf., also V. Volterra, 

“Sopra una classe di equazioni dinamiche,” Turin Atti dell’acc. delle scienze 33 (1897), pp. 451. 

 (11) G. Hamel, Zeit. Math. Phys. 50 (1904), pp. 1, esp. pp. 10, also G. Hamel, “Über die virt. Versch. in der 

Mech.,” Math. Ann. 59 (1904), pp. 416. The parallel between the virtual displacements and the infinitesimal 

transformations of a transitive continuous group was also employed by H. Poincaré in a passing remark about the 

way that one presents the equations of motion. H. Poincaré, “Sur une forme nouvelle des équations de la méc.,” C. 

R. Acad. Sci. Paris 132 (1901), pp. 369. 
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 In so doing, for holonomic conditions, one chooses the variations xi, yi, zi, t in such a way 

that the varied space-time coordinates also satisfy the condition equations for the system (3.a) 

[(3.b), resp.]. In the case of scleronomic conditions, the system of xi, yi, zi represents a virtual 

displacement of the system for each individual position of the system, with no further discussion, 

such that the set of all systems of values xi, yi, zi will yield a variation of the trajectory that 

satisfies the demand that it should be a virtual displacement at each individual point. However, if 

one regards the time evolution of the motion on the neighboring trajectory that is determined by 

t then as a result of the variation of time, the course of the motion on the varied trajectory will be 

different from what it must be if the neighboring motion is to satisfy the condition t = 0 of the 

virtual displacement. 

 For rheonomic constraints, the xi, yi, zi that one obtains, when considered by themselves, 

would not represent virtual displacements either. If one would like to obtain virtual displacements 

in the form of the xi, yi, zi then one would not have to preserve the condition for the variations 

xi, yi, zi, t in the original form: 

 

f (xi + xi, yi + yi, zi + zi, t + t) = f (xi, yi, zi, t) = 0 , 

 

but must be replaced with: 

(18)     f (xi, yi, zi, t) − 
f

t
t





 = 0 . 

 

O. Hölder (12) had, in fact, prescribed that condition for the variation. 

 Correspondingly, for non-holonomic conditions (which are linear in the differentials), one will 

not demand that the values xi + xi, yi + yi, zi + zi, t + t must satisfy the prescribed condition 

equations either, but rather one prescribes equations (14) for the spatial coordinates instead of them 

and then imagines that t is added arbitrarily. As a result of that temporal ordering, one will get: 

 

(19) 
idx

dt

 
  

 
 = 

( ) ( )i
i

d x d t
x

dt dt

 
− , etc. 

 

for the change in the velocity components ix , iy , iz . 

 Another way of looking at things is the following one, which goes back to E. J. Routh (13) in 

the literature. One considers the xi, yi, zi, t to be variations that make the varied space-time 

curves satisfy the condition equations, and one then asks whether the points of the varied space-

time curve that belong to the same value of the time coordinate belong to the starting point of the 

actual space-time curve considered. The transition to that point will be mediated by (14): 

 
 (12) O. Hölder, “Über die Prinzipien von Hamilton and Maupertuis,” Gött. Nachr. (1826). pp. 122. Naturally, the 

xi, yi, zi thus-defined, together with an arbitrary t, do not fulfill the condition equations, but only when t = 0. 

 (13) E. J. Routh, Dynamics of a system of rigid bodies, German translation by A. Schepp, Leipzig 1898, Bd., II, 

Chap. 10, pp. 327.  

 (14) Correspondingly, for the difference between the velocity of the neighboring curve and the initial curve at points 

with the same value of t, one will have: 
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(20)    xi − ix t ,  yi − iy t ,  zi − iz t . 

 

For holonomic constraints, those are certainly virtual displacements, because in the scleronomic, 

as well as rheonomic, case, it likewise follows from f = 0 that: 

 

(20.a)   
1

( ) ( ) ( )
n

i i i i i i

i i i i

f f f
x x t y y t z z t

x y z=

   
 −  +  −  +  −  

   
  = 0 . 

 

 If one produces the variations xi, yi, zi, t in such a way that one gives the variations q1, 

…, qn (
15), t to the parameters q1, …, qn, and t then for scleronomic conditions, the: 

 

(21.a)     xi = 
1

n
i q

q


 



=





  ,  etc., 

 

that arise from (7.a) will naturally be virtual displacements. By contrast, for rheonomic constraints, 

one will get virtual displacements from (16): 

 

(21.b)    xi − ix t  = 
1

( )
n

i q q t
q

 
 



=


 − 


  . 

 

 On the other hand, for non-holonomic conditions, it is never possible to produce variations 

such that the varied trajectories (space-time lines, resp.) will satisfy the prescribed conditions and 

go to the virtual displacements in the sense of the definition above in a simple way (17). 

 

(20)     ( )
i i i i

i
i i

d x d t d
x x t x x t x x t

dt dt dt
=

 
 −  − −  =  −  ,  

 

such that the change in the velocity components will be precisely the time derivative of the change in the position 

coordinates. 

 (15) Naturally, the qi can always be regarded as virtual displacements (just like the xi, yi, zi in the scleronomic 

case) since one indeed says nothing at all about a time ordering for them. For example, one can always take t = 0. 

 (16) When one has variations xi, yi, zi, t such that the rheonomic conditions are fulfilled, one will get the 

Hölder variations from them in the form: 

 

1

n
i i i

i i

x
q t x t

q t t


 

 


=

=
  

 =  −   − 
  

  , 

 

which should not be confused with (21.b). Cf., Ph. E. B. Jourdain, “On those principles of mechanics which depend 

upon processes of variation,” Math. Ann. 65 (1908), pp. 513. That paper was the last word in a discussion between 

M. Rethy and Ph. E. B. Jourdain in Math. Ann. 62 and 64 (1906 and 1907). 

 (17) Here, one tries to introduce variations qi, t that will satisfy the condition equations (9) when dqi is replaced 

with qi and dt is replaced with t. Cf., A. Voss, “Über die Prinzipe von Hamilton und Maupertuis,” Gött. Nachr. 

(1900), pp. 322. However, the varied curve will naturally by no means satisfy the prescribed conditions equations in 

that way. 
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 The viewpoint that G. Hamel (18) introduced rests upon a different basis. Here, as well, the 

variations of the position coordinates are initially determined in such a way that they are virtual 

displacements, but then, along with those variations q of the position coordinates, arbitrary 

variations of the velocity components q  will be imposed that are completely independent of the 

latter. 

 The individual “elements” q , q  of the initial trajectory will go to neighboring elements q + 

q , q q + , each of which will determine its own trajectory in its own right, moreover. 

However, only the individual element itself will come into question here. On the other hand, if one 

now focusses on only the variations q (t) then they will yield a neighboring curve in the 

parametric representation (but not the trajectory of the system that G. Hamel spoke of), and the 

tangent direction to that curve is determined by 
d q

q
dt





 
+ 

 
. Since the increase has nothing at all 

to do with the variation of the velocity 
d q

dt


, one will naturally have: 

(22)      q   
d q

dt


, 

in general, or as one can also write (19): 

 

(22.a)  dq  d q . 

 

For the xi, yi, zi, it will then follow accordingly that  dxi  d  xi , etc., and indeed, for scleronomic 

conditions, one will have: 

 

(22.b) d  xi −  dxi = 
1

( )
n

i d q dq
q

 
 


 

=


−


  . 

 

Hamel considered the rheonomic case by setting t = qn + 1, dt = dqn+1 , and  t = 0 (20). 

 

 

 4. Defining the equations of motion on the basis of Lagrange’s formulation of 

d’Alembert’s principle and Lagrange’s central equation. – If forces are applied to the r mass-

points whose resultant possesses the components X i, Y i, Z i for the individual mass-points then the 

 
 (18) G. Hamel, “Über die virt. Versch. in der Mech.,” Math. Ann. 59 (1904), pp. 416. Cf., also K. Heun, Kinematik, 

Leipzig, 1906, pp. 94. 

 (19) Since Hamel’s variation of the elements q , q


 does not produce a trajectory (a varied space-time line, 

either, when one adds  t = 0, resp.) , it would be useless as long as one applies it to the variational problems. It is only 

applicable to Lagrange’s central equation since only the variation of the velocity components enter into it above and 

beyond the virtual displacements. 

 (20) One must have dt = 0 for the virtual variation, so when one advances along the initial curve, one must also have 

d  t = 0.  
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virtual work that is performed by the forces under a virtual displacement of the system will be 

equal to: 

(23) 
1

( )
r

i i i i i i

i

X x Y y Z z  
=

+ + . 

 

If one introduces the general coordinates into that while eliminating all holonomic conditions then 

that will give the expression for the virtual work in the form: 

 

(23.a) Q1 q1 + … + Qn qn , 

 

in which: 

(23.b)    Q = 
1

r
i i i

i i i

i

X Y Z
q q q  

  

=

   
+ +     

  , 

 

regardless of whether the i, i, i do or do not include t explicitly. One refers to those Q as the 

generalized forces that act on the system. [Cf., IV 1 (A. Voss), no. 37] When one represents the 

motion of the system with the picture of the motion of a mass-point in an n-dimensional space, 

one will have to speak of the Q1, …, Qn as the components of the applied force that acts on that 

mass-point. If one assumes that the force components X i, Y i, Z i are completely-general functions 

of time t, the position coordinates x i, y i, z i, and the velocity components ix , iy , iz  [cf., IV 6 (P. 

Stäckel), no. 4] then the force components Q will take the form of functions of t, q1, …, qn, 1q , 

…, nq . It is important to observe that when one goes from one system of general coordinates to 

another: 

(24) 

1 1 1

1

( , , ) ,

..............................

( , , ) ,

n

n n n

q q q

q q q





=


 =

 

 

the virtual work, as a scalar quantity, will be invariant: 

 

Q1 q1 + …+ Qn qn = 
1 1 n nQ q Q q + +  , 

 

so the displacement components and the force components must transform contragrediently to 

each other [cf., III D 10 (R. Weitzenböck), Part 2, no. 11]. The transformation formulas for the 

(contravariant) displacement vector: 

 

(24.a)    q  = 1

1

n

n

q q
q q

  
 

 
+ +

 
 ( = 1, …, n) 

 

will then imply the conversion formula for the components of the covariant force vector: 
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(24.b)    
1

1
n

n nQ Q q
q q 





+ +

 
= Q  ( = 1, …, n). 

 

 In order to exhibit the equations of motion of the system, one can now start from the Lagrange 

formulation of d’Alembert’s principle [cf., IV 1 (A. Voss), no. 36] and demand that: 

 

(25)   {( ) ( ) ( ) }i i i i i i i i i i i iX m x x Y m y y Z m z z  − + − + −  = 0 

 

for all virtual displacements of the system. For holonomic constraints, as well as for non-

holonomic constraints in the form of Pfaff expressions, one can generally obtain the equations of 

motion in that way (21). Moreover, it is not convenient to introduce the general coordinates q into 

formula (25) directly since one will have to perform the laborious calculation of the second 

derivatives. Therefore, J. L. Lagrange (22) had already put that formula into another form to which 

K. Heun gave the name of the central equation. Namely, if one regards the virtual displacements 

xi, etc., as functions of time that satisfy conditions ix  = d xi / dt, etc., that correspond to (16) 

then one will get from (25) that: 

 

1

{( ) ( ) [ ( )]}
r

i i i i i i i i i i i i i i i i i i i i

i

d
X x Y y Z z m x x y y z z m x x y y z z

dt
        

=

+ + + + + − + +  = 0 , 

 

or when one introduces the kinetic energy of the system: 

 

(26)     T = 
2 2 21

2

1

( )
r

i i i i

i

m x y z
=

+ + , 

that 

(27)  
1

( )
r

i i i i i i

i

T X x Y y Z z   
=

+ + +  = 
1

( )
r

i i i i i i i

i

d
m x x y y z z

dt
  

=

 
+ + 

 
  , 

 

in which the expression to the right of the time derivative represents the virtual work done by 

impulse. (It is work done by impulse, since it emerges from the expression for the work done by 

the applied forces when one replaces the force components Xi, etc., with the impulse components 

i im x , etc.) 

 If one now introduces the general coordinates into the kinetic energy (26) by means of (5.a) 

[(5.b), resp.] then in the scleronomic case, T will become a quadratic form in q , say: 

 

 
 (21) J. Hadamard, “Sur la mise en équation des problèmes de mécanique,” Nouvelles annales de math. (4) 6 (1906), 

pp. 97 pointed out that when one knows the kinematical mobility of constrained systems, one can see immediately 

whether a system of equations of motion whose number of equations equals the number of degrees of freedom consists 

of independent equations and is then sufficient to determine the motion. 

 (22) J. L. Lagrange, Mécanique, 2 part., 4 sect. = Œuvres 11, pp. 325.  
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(26.a)   T = 1
2

, 1

n

g q q  
 =

 ,  g = g (q1, …, qn) , 

 

while, in the rheonomic case, it will be a quadratic function, in which, along with the terms that 

are quadratic in q , terms that are linear in them and a term that is free of the q  will appear: 

 

(26.b)   T = 1 1
00 02 2

1 , 1

n n

g g q g q q    
  = =

+ +   = T0 + T1 + T2 , 

 

in which the g00, g , g  can include time t explicitly, in addition to q (23): 

 

(26.b*)     g = g (q1, …, qn, t) . 

 

The introduction of the general coordinates into the virtual work done by impulse yields: 

 

(28) 
1

( )
r

i i i i i i i

i

m x x y y z z  
=

+ +  = 
1

r

i i i

i i i i

T T T
x y z

x y z
  

=

   
+ + 

   
  

 

= 
1 1

n r
i i i

i i i i

x y zT T T
q

x q y q z q


   


= =

      
+ +           

   = 
1

n T
q

q


 


=




  = 

1

n

p q 



=

 , 

 

in which the relations ix

q




 = ix

q




 were used. [Cf., IV 1 (A. Voss), no. 37]. The quantities: 

(29) p = 
T

q




 

 

in that are the general impulse components. Since the work done by impulse is also invariant under 

the introduction of new coordinates, the general impulse coordinates will transform in the same 

way as the general force components: 

 

(29.a) 1
1

n
np p

q q 

 
+ +

 
 = p  ( = 1, …, n), 

 

i.e., the impulse is a covariant vector, like the applied force. 

 
 (23) That form was given before, e.g., R. Lehmann-Filhès, “Über einige Fundamentalsätze der Dynamik,” Astr. 

Nachr. 125 (1890), pp. 49. 



22 The General Integration Methods for Analytical Mechanics. 

 

 If one appeals to (23.a) and (28) then Lagrange’s central equation (27) will take the form (24): 

 

(27.a)    T + (Q1 q1 + … + Qn qn) = 
1

1

n

n

d T T
q q

dt q q
 

  
+ + 

  
 

or 

(27.b) 1 1

1

n n

n n n

d T T d T T
Q q Q q

dt q q dt q q
 

        
− − + + − −                 

 = 0 . 

 

 If there are no non-holonomic constraints present, and if the holonomic constraints are 

eliminated by introducing the general coordinates then the q will be completely arbitrary, and 

one can then conclude the Lagrange equations (art. 2) of motion: 

 

(30)     
1 n

T T

q q

  
− 

  
 = Q  ( = 1, …, n)  

 

from the central equation. [Cf., IV 1 (A. Voss), no. 37 and IV 6 (P. Stäckel), no. 7]. The left-hand 

sides of these equations transform in the same way as the components Q of the covariant force 

vector on the right-hand sides under the introduction of new coordinates. One then has the 

transformation formulas: 

 

(30.a)  
1

1

n

n n n

d T T d T T

dt q q q dt q q q 

          
− + + −                   

 = 
d T T

dt q q 

  
− 

  
, 

 

as one also easily confirms by direct calculation. Therefore, the left-hand sides of (30) are the 

components of a covariant vector, namely, the general acceleration vector. The great significance 

of the Lagrange equations (30) is based in that invariance under the introduction of new 

coordinates. 

 If non-holonomic constraints in the form of Pfaff equations then one can consider the 

conditions (14) with the help of Lagrange factors and obtain the equations of motion in the form: 

 

 
d T T

dt q q 

  
− 

  
 = Q + 

1

k

a 



=

   ( = 1, …, n), 

 
 (24) Under the assumption that d q   dq , G. Hamel wrote the so-called central equation in its place, which 

reads: 

(27.c)    
d q dqT

T Q q
q dt dt

 

 
  


  

 
+ + − 

  
   = 

d T
q

dt q


 


 
   
  . 

 

Cf., G. Hamel, “Über die virt. Verschieb. i. d. Mechanik,” Math. Ann. 59 (1904), pp. 416, see esp. pp. 424. 
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which determine the (n + k) unknowns q1, …, qn, 1, …, k , together with the k equations (9) 

[(9.a), resp.]. 

 On the other hand, for non-holonomic constraints, one can avoid the appearance of Lagrange 

factors in the equations of motion completely by introducing quasi-coordinates and exploiting the 

equations of motion in them in such a way that the number of equations of motion will take the 

least-possible value. That is because, from (11.c), the virtual displacements q are expressed in 

terms of the  of the quasi-coordinates in the form: 

 

(31) q = B1  + … + Bn n . 

 

If one then introduces the quasi-coordinates in such a way that the non-holonomic constraints 

impose simply the conditions: 

n−k+1 = 0 , …, n = 0 

 

on the virtual displacements  then one will get: 

 

q = B1  + … + Bn−k,  n−k , 

 

in which the , …, n−k are quantities that can be chosen arbitrarily. If one then substitutes those 

values in the form (27.b) of Lagrange’s central equation then that will give: 

 

1 1

n k n d T T
B Q

dt q q
  

   


−

= =

    
− −         

   = 0 , 

 

and one finds the equations of motion from that in the form: 

 

 
1

n d T T
B

dt q q


  =

   
−      

  = 
1

n

B Q 
 =

  ( = 1, …, n – k) 

 

that G. A. Maggi gave (25), which determine the coordinates q1, …, qk as functions of t, together 

with the k equations (9) [(9.a), resp.], but likewise possess an even-more complicated form. 

 One will come to an essentially clearer form for the equations of motion when one introduces 

the quasi-coordinates into the central equation (27.a) immediately. However, since the use of 

quasi-coordinates in the equations of motion can also be of value when no non-holonomic 

constraints are present (as the Euler equations of motion of the top show), the introduction of 

quasi-coordinates into Lagrange’s central equation will be possible in full generality. From (11.b), 

the kinetic energy T will be a function of degree two in the  : 

 

 
 (25) G. A. Maggi, “Di alcune nuove forme delle equ. della dinam. applicabili ai sistemi anolonomi,” Rom. Acc. 

Linc. Rend. (5) 102 (1901), pp. 287. 
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(32)    T   = 1 1
00 02 2

1 , 1

n n

c c c    
  

  
= =

+ +  , 

 

in which the c are once more functions of the q1, q2, …, qn, t (
26). The recalculation of the virtual 

work done by impulse in quasi-coordinates then gives: 

 

(33) 
T

q
q



 





  = 

T
q

q




  






  
 

  
   = 

T
q 

 

 


  
 

  
   = 

T


 







 . 

 

Corresponding to the interpretation of the p = /T q

   as the impulse components that belong 

to the general coordinates q , the quantities: 

(33.a)      J = 
T






 

 

will be referred to as the quasi-impulses of the system. In the same way that the general impulses 

p are linear functions of the general velocity components 1q , …, nq , the quasi-impulses J are 

linear functions of the quasi-components of the velocity 1, …, n . 

 Analogously, one will get the recalculation of the virtual work done by the applied forces: 

 

(34)  Q1 q1 + … + Qn qn = 
1

n

Q B  
 


=

 
 
 

   = 
1 1

n n

Q B  
 


= =

 
 
 

   

= K1 1 + … + Kn n , 

in which one sets: 

 

(34.a) K = B1 Q1 + B2 Q2 + … + Bn Qn , 

 

or 

 

 
 (26) In particular, one has: 

 

(32.a)    

00 00 0 1, 1,

,

0 0 1, 1,

,

,

,

( ) ,

.

n n

n n

c g g B g B

c g B g B B B B

c g B B

   
  

       
  

   
 

+ +

+ +


= + +




= + +

 =


 

 



 

 

If T were originally a quadratic form in q
  and one expresses the  as linear forms in the q

  then T


 will become 

a quadratic form in the  . 
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(34.b) Q = 1 K1 + 2 K2 + … + n Kn , 

 

resp. (27), and the K1, …, Kn can perhaps be referred to as the quasi-components of the applied 

force. 

 The Lagrange central equation will then take on the following form for quasi-coordinates (28): 

 

(35)   1 1( )n nT K K   + + +  = 
1

1

n

n

d T T

dt
 

 

   
+ + 

  
 , 

which can be regarded as a generalization of (27.a). 

 In order to arrive at the equations of motion from that, one replaces the q in T   with  

by means of: 

T
q

q


 





  = 

T
B

q
 

 


   

  
    

   = 
T

B
q

 
  


 

   
  . 

 

Here, one can symbolically denote (29): 

 

(36)     
T

B
q


 




  by 

T



 
 

 
, 

which will make: 

T 
 = 

T T
 

  

 
 

    
+       

 = 
T

J  

 

 


  
+      

 . 

 

With that, the central equation (35) will then take on the form: 

 

1

n d dd T T T
K

dt dt dt

 

 
   

 
 

  

  

=

         
 − − + −                   

  = 0 

 

 
 (27) Since the work is a scalar, the force components must be substituted contragrediently to the displacement 

components.  

 (28) Cf., V. Volterra, “Sopra una classe di equ. din.,” Turin Atti 33 (1897), pp. 451, as well as G. Hamel, “Die 

Lagrange-Eulerschen Gleichungen der Mechanik,” Zeit. Math. Phys. 50 (1904), pp. 1, esp. pp. 15. 

 (29) If the components of the virtual displacements define the infinitesimal transformations of a transitive 

continuous group then H. Poincaré [cf., (11)] obtained the equations of motion in the form: 

 

s

d T

dt 





 
 
 

 = 
ski k i si

i ii i

T T
c Q B

q




  
+ + 

  
   , 

 

which are included in the equation above as a special case. N. Četajew, C. R. Acad. Sci. Paris 185 (1927), pp. 1577 

has rewritten it by introducing the quasi-impulses.  
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in which the second terms in the individual summands are converted with the help of the 

transitivity equations (17.a). That will ultimately give: 

 

(37)  1,

1 , 1 1

n n n

n

d T T T T
K

dt

 

    
      

   
   

   

+

= = =

        
+ + − −               

    = 0 

 

then. Now, when there are no auxiliary conditions, the  will be completely arbitrary quantities, 

and that will give the following n relations as the equations of motion for the quasi-coordinates: 

 

(38)   1,

, 1 1

n n

n

d T T T T
K

dt

 

   

     

  
   

   

+

= =

      
+ + − −            

   = 0 , 

 

and together with the n equations (11): 

 

 = 1 1 , 1n n nq q     ++ + +  

 

that represents a system of 2n first-order differential equations for the 2n unknown functions q1, 

…, qn, 1, …, n . Those equations will be even more useful in the applications when one 

introduces the quasi-impulses J1, …, Jn in place of the 1, …, n in them by means of (33.a), in 

which one naturally has to replace the relations (11) with relations between the J and q . One 

will then get 2n first-order differential equations in the 2n unknowns J1, …, Jn, q1, …, qn . Since 

they were given before by Euler in the case of rigid bodies and further analyzed by Lagrange [cf., 

IV 6 (P. Stäckel), nos. 29 and 30], G. Hamel gave them the name of the Lagrange-Euler equations 

of mechanics. 

 On the grounds of the form (37) of Lagrange’s central equation, non-holonomic constraints 

that are represented by Pfaff equations in the form (9) can be exploited to reduce the number of 

equations of motion. Corresponding to the system (9), one introduces: 

 

(39)    1 = 1q , …, n−k = n kq −  

 

and further sets: 

(39.a) 

1 11 1 1 1, 1

1 1 , 1

,

......... ...........................................

.

n k n n n

n k kn n k n

a q a q a

a q a q a





− + +

+

 = + + +


 = + + +

 

 

The auxiliary conditions will then be simply: 

 

(39.b)  n−k+1 = 0 , …, n = 0 , 
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and the conditions for the virtual displacement will read: 

 

(39.c)  n−k+1 = 0 , …, n = 0 

 

in the associated quasi-coordinates, such that the sum runs from only 1 to n – k in the variational 

formula (37). Since the remaining quantities 1, …, n−k remain completely arbitrary, one will 

get the (n – k) equations: 

 

(40) 1,

1 1 1

n n k n

n

d T T T T

dt

 

  

     

  
   

   −

+

= = =

       
+ + −              
    = K ( = 1, …, n – k) 

 

(in which the n−k+1, …, n are set equal to zero in the differentiation), which determine the 2n – 

k unknowns 1, …, n−k, q1, …, qn along with the n equations (39) and (9). 

 However, when one now recalls (39), the 1 = q1, …, n−k = qn−k are not quasi-coordinates at 

all, but actual coordinates. One then sees from (17.a) that one has: 

 

(39.d)    


   0 , 1,n



 +   0    ( = 1, 2, …, n – k), 

 

along with (39.b), i.e., that the equations of motion (40) read, more simply (30): 

 

(40.a) 1,

1 1 1

n n k n

n

n k n k

d T T T T

dt

 

  

     

  
   

   −

+

= − + = = − +

       
+ + −              

    = K ( = 1, …, n – k), 

 
 (30) Now, in that way, from (34.b), the K are coupled with Q1, …, Qn by the equations: 

 

(40.b)     Q = K + a1 Kn−k+1 + a2 Kn−k+2 + … + ak Kn ( = 1, …, n – k), 

 

and analogously, from (36), the derivatives 
T

q






 and 

T



 
 
 
 




 are coupled by: 

(40.c)    
T

q






 = 1

1
k

n k n

a a
T T T

 

  

  

− +

     
     + + +

    
    

  

  
 ( = 1, …, n – k) , 

while for r > n – k, one has: 

 

(40.b*)    Q = a1 Kn−k+1 + … + ak Kn , 

 

(40.c*)  
T

q






 = 1

1
k

n k n

a a
T T

  

 

− +

   
   + +
   
   

 

 
 . 

The 



  and 1,n






+  are also greatly simplified in comparison to the general formula (17.a). Cf., G. Hamel, “Die 

Lagrange-Eulerschen Gleichungen der Mechanik,” Zeit. Math. Phys. 50 (1904), esp., pp. 21. 
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in which one sets 1 = 1q , …, n−k = n kq − , n−k+1 = 0, …, n = 0 after the differentiation. They 

are (n – k) second-order differential equations for the q1, …, qn . The q1, …, qn can be determined 

as functions of time t from them and the k first-order differential equations that the conditions (9) 

produce. The equations of motion will have been reduced to the least-possible number then. 

 All sorts of flawed arguments were then made in regard to exhibiting the least-possible number 

of equations of motion for non-holonomic constraints. The correct form was then achieved almost 

simultaneously by several parties. The representation that is given here is closely connected with 

G. Hamel (31). Hamel’s general representation was already the basis for the arguments of P. 

Woronetz (32), who solved the k non-holonomic conditions (9) for 1n kq − + , …, nq : 

 

(41)    

1 11 1 1, 1

1 21 1 2, 2

1 1 ,

,

,

......... .............................................

,

n k n k n k

n k n k n k

n k k n k n k n

q b q b q b

q b q b q b

q b q b q b

− + − −

− + − −

− −

= + + +


= + + +


 = + + +

 

 

and eliminated the 1n kq − + , …, nq  from the kinetic energy T corresponding to the ideas that were 

expressed in (39), so from (32), it then took the form: 

 

(42)    T   = 1 1
00 02 2

1 , 1

n k n k

c c q c q q    
  

− −

= =

+ +  , 

 

in which the c00, c0, and c are functions of q1, …, qn, t . The variational formula (35) then reads: 

 

(43)   1 1 1 1( )n k n k n k n k n nT Q q Q q Q q Q q    

− − − + − ++ + + + + +  = 
1

1

n k

n k

d T T
q q

dt q q
 

 

−

−

  
+ + 

  
, 

in which: 

 

 
 (31) L. Boltzmann, Prinzipe II, § 27, pp. 104 replaced the rectangular coordinates with quasi-coordinates and 

interpreted the additional terms that arose from the transitivity equation in rectangular coordinates. Cf., also L. 

Boltzmann, “Über die Form der Lagrangeschen Gleichungen für nichtholonome generalisierte Koordinaten,” Wien 

Sitzungsber. 111, IIa (1903), pp. 1603 – Ges. Abh. III, pp. 682. 

 For the older literature, which was initially oriented towards individual problems, cf., IV 1 (A. Voss), no. 88. A 

summary of the results of the older work can be found in J. Quanjel, “Les équat. gén. de la mécanique dans le cas 

des liaisons non holonomes,” Palermo Rend. 22 (1906), pp. 293. A direct recalculation of the Lagrange equations of 

the first kind was given by P. Burgatti, Rom. Acc. Linc. Rend. (5) 182 (1909), pp. 135 and 340. Direct calculation 

was also employed by J. Tzenoff, J. de math. (8) 3 (1920), pp. 245 and Math. Ann. 91 (1924), pp. 161, without 

achieving anything essentially new. On that, cf., G. Hamel, Math. 92 (1924), pp. 33. 

 (32) P. Woronetz, Moscow Math. Collection 22 (1901), pp. 659 (Russian). A representation of the process is also 

in P. Woronetz, “Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt,” 

Math. Ann. 70 (1911), pp. 410, esp., in Chap. II, §§ 5 – 8. 
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T   = 
1 1 1

1 1 1

n k n k n k n

n k n k n k n

T T T T T T
q q q q q q

q q q q q q
     

     

− − − +

− − − +

     
+ + + + + + + +

     
 . 

 

From (41), one has to set: 

 

(41.a) 

1 11 1 1,

1 1 ,

,

........... ..........................................

n k n k n k

n k k n k n k

q b q b q

q b q b q

  

  

− + − −

− −

 = + +


 = + +

 

 

in that, and one will then get the (n – k) equations of motion that determine the q1, q2, …, qn as 

functions of time, along with the k equations (41) (33). 

 One must investigate whether the (n – k) equations of motion that one gets from (43) [the (n – 

k) equations of motion (40.a), resp.] include ones that take the form of the ordinary Lagrange 

equations: 

d T T

dt q q

  
− 

  
 = Q , 

 

or how many of the equations of motion can assume that simple form for the most favorable choice 

of parameter, resp. To P. Appell, the least-possible number of equations that cannot read that way 

determines the order of non-holonomity of the system. E. B. Schieldrop has developed a method 

that allows one to decide whether the simple Lagrange equation will occur for a general coordinate 

on the basis of kinematical arguments in which he introduced a new concept, namely, the so-called 

“non-holonomic deviation,” and with whose help one can likewise arrive at a kinematical 

interpretation of the additional terms (34). 

 

 

 5. The principle of least constraint and the definition of the equations of motion. – For 

non-holonomic constraints in the general nonlinear form (2), one cannot arrive at an Ansatz for 

the equations of motion from the principle of virtual displacements (Lagrange’s central equation, 

resp.). Ordinarily, one then cares to appeal to the principle of least constraint [cf., IV 1 (A. Voss), 

no. 39]. C. F. Gauss defined the constraint by the expression: 

 

(44)   Zw = 
2 2 2

1

1
[( ) ( ) ( ) ]

r

i i i i i i i i i

i i

X m x Y m y Z m z
m=

− + − + −  , 

 

 
 (33) P. Woronetz is connected with: A. Bilimowitsch, C. R. Acad. Sci. Paris 156 (1913), pp. 381 and ibid., pp. 

1216. 

 (34) Cf., P. Appell, “Sur une forme gén. des équ. de la dyn.,” Mém. des scienc. math. fasc. 1, Paris 1925), pp. 13, 

as well as P. Appell, “Sur l’ordre d’un système non holonome,” C. R. Acad. Sci. Paris 179 (1924), pp. 549 and 

furthermore E. B. Schieldrop, “Sur une notion de déviation non holonome,” Skand. Matematiker Kongressen 6 

(Kopenhagen) Beretning (1925), pp. 281. 
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which can be regarded as a function of the acceleration components ix , iy , iz  (i.e., the position 

coordinates xi, yi, zi the velocity components ix , iy , iz , and time t are regarded as constant) The 

rectangular coordinates in that expression shall next be replaced with the general coordinates (35), 

in which the condition equations are ignored completely for the time being, i.e., the 3r rectangular 

coordinates xi, yi, zi are replaced with 3r general parameters by means of the formulas: 

 

(45) 

1 3

1 3

1 3

( , , ) ,

( , , ) ,

( , , ).

i i r

i i r

i i r

x q q

y q q

z q q







=


=
 =

 

 

Moreover, one can even assume (without needing to the change the argument essentially) that the 

transformation formulas for the introduction of general parameter include time explicitly, so they 

will read: 

(46) 

1 3

1 3

1 3

( , , , ) ,

( , , , ) ,

( , , , ).

i i r

i i r

i i r

x q q t

y q q t

z q q t







=


=
 =

 

 

Since the direct recalculation of the expression (44) into the new coordinates would be quite 

tiresome, due to the appearance of the second derivatives, along with the constraint (44), R. 

Lipschitz represented the kinetic energy as: 

 

(47)     T = 
2 2 21

2

1

( )
r

i i i i

i

m x y z
=

+ + , 

which will go to (36): 

(47.a)   T = T0 + T1 + T2 = 
3 3

1 1
00 02 2

1 , 1

r r

g g q g q q    
  = =

+ +  , 

 

g = g (q1, …, q3r, t) 

 

under the transformation (46), and based the recalculation of (44) on the argument that an 

expression that is covariant under the transformation (46) with the kinetic energy (47) must be the 

desired recalculation of the constraint (44) in the event that it goes to the expression (44) for q1 = 

x1, q2 = y1, …, q3r = zr .  

 
 (35) R. Lipschitz, “Bemerkungen zu dem Prinzip des kleinsten Zwanges,” J. f. Math. 82 (1877), pp. 316. 

 (36) In particular, T would yield the quadratic form: 

 

T = T2 = 
3

1
12

, 1

( , , )
r

ng q q q q  
  =

  

under the transformation (45). 
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 Now, the expressions: 

d T T
Q

dt q q


 

    
 − −         

 

 

will go to ( )i i iX m x− , etc., resp., for q1 = x1, …, q3r = zr, but otherwise they will transform 

contragrediently to the coordinate differentials dq1, …, dq3r according to (24.b) and (30.a). If one 

then introduces the associated quantities g  , which transform cogrediently to the coordinate 

differentials, to the coefficients g in the quadratic form T2 in (47.a), which transform 

contragrediently to the coordinate differentials (37), then one will get a covariant of the kinetic 

energy (47.a) in the expression: 

 

3

, 1

r d T T d T T
g Q Q

dt q q dt q q



 
     =

             
− − − −                      

  . 

 

Since the g assume the values: 

g = 0  (  ), 

 

g3i−2, 3i−2 = g3i−1, 3i−1 = g3i, 3i = mi , 

 

moreover, for q1 = x1, …, q3r = zr , the g   will take the values: 

 

g 
 = 0 (  ), 

 

3 2,3 2i ig − −
 = 

3 1,3 1i ig − −
 = 

3 ,3i ig  = 
1

im
, 

 

in this case, i.e., precisely the values that appear in (44). It then follows from this that the constraint 

in general coordinates will be represented by the expression (38): 

 

(44.a)  Zw = 
3

, 1

r d T T d T T
g Q Q

dt q q dt q q



 
     =

             
− − − −                      

  , 

 
 (37) In particular, T will be given as the quadratic form: 

 

T = T2 = 
3

1
12

, 1

( , , )
r

ng q q q q  
  =

  

under the transformation (45). 

 (38) R. Lipschitz, loc. cit. (35), gave a more general expression, in that he based the arc-length element ds, not on 

the square root of a quadratic form in the coordinate differentials, but the 
th

p  root of a form of order p. 



32 The General Integration Methods for Analytical Mechanics. 

 

which can now be regarded as a function of the second derivatives 1q , …, 3rq , in the sense that 

time t, the position coordinates q, and the velocity components q  are thought of as fixed (38.a). 

 The differential of the constraint, when regarded in that way, is (39): 

 

(48)     Zw = 
3

1

r d T T
Q q

dt q q
 

  


=

     
− −          

  , 

 

which is a formula that takes the form of the variational formula for (44): 

 

(49)  Zw = 
1

[( ) ( ) ( ) ]
r

i i i i i i i i i i i i

i

m x X x m y Y y m z Z z  
=

− + − + −  

 

 
 (38.a) That can also be shown by direct calculation: A. Voss, “Bemerkungen über die Prinzipien der Mechanik,” 

31 (1901), pp. 167. Voss emphasized that such a calculation is possible only when the number of parameters q1, …, 

q3r is the same as the number of rectangular coordinates. In that way, he was of the opinion that the constraint could 

be equal to zero for only free systems. By contrast, if one also wants to speak of the constraint for a system in a space 

with a general metric then one must define it by expressions of the form (44.a) [(44.b), resp.] in that case. 

 For the calculations in the case where the number of general parameters is less than the number of rectangular 

coordinates, cf., A. Wassmuth, “Über die Transformation des Zwanges in allgemeine Koordinaten,” Wien 

Sitzungsber. 104, IIa (1895), pp. 281, as well as M. Radakovic, “Über die analyt. Darst. des Zwanges eines mater. 

Syst. in allg. Koordin.,” Monatsh. Math. Phys. 7 (1896), pp. 27. In that case, it will be: 

 

Zw = 
3

1 1

, 1

( , , , , , , )
r

n n

d T T d T T
g Q Q t q q q q

dt q q dt q q



 
     =

             
− − − − +                       

  , 

 

in which the g


 refer to the quadratic form T2 in n variables. The form of the function  was determined by A. 

Wassmuth, “Das Restglied bei der Transformation des Zwanges in allgemeine Koordinaten,” Wien Sitzungsber. 110, 

IIa (1901), pp. 387. A calculation of the constraint that started from the Lagrange equations in general coordinates 

was given by R. Leitinger, “Über die Ableitung des Gaußschen Prinzips des kleinsten Zwanges aus den allgemeinsten 

Lagrangschen Gleichungen zweiter Art,” Wien Sitzungsber. 116, IIa2 (1907), pp. 1321. 

 (39) That is because, from (44.a), one has: 

 

Zw

q





 = 

3 3

1 1

r r d T T d T T
g Q Q

dt q q q dt q q



 
      = =

                
 − − − −                          

   , 

or since: 

d T T
Q

q dt q q


  

      
− −          

 = − 
d T

q dt q 

    
  

    

 = − g , 

 

and because of (47.c), one has: 

Zw

q





 = 

3 3

1 1

r rd T T
Q g g

dt q q



 
  = =

      
 − −            

   = 
d T T

Q
dt q q



 

     
− −         

. 
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in rectangular coordinates, in particular. 

 From Gauss’s principle of least constraint, one must have: 

 

(50)   Zw = 0 

 

for all variations of the acceleration components that are compatible with the condition equations 

(40). Now, if holonomic constraints are present then, regardless of whether they are scleronomic 

or rheonomic, one can introduce the general coordinates in such a way that the associated condition 

equations will take the form: 

 

(51)     qn+1 = 0 , …, q3r = 0 . 

 

Equations (51) imply the relations: 

 

(51*)     1nq +  = 0 , …, 3rq  = 0 

 

as conditions for the acceleration components, such that the variational formula (48) will lead to 

 

1

n d T T
Q q

dt q q
 

  


=

     
− −         

  = 0 , 

 

and since the 1q , …, nq  are arbitrary infinitesimal quantities, the equations: 

 

 
d T T

Q
dt q q



 

   
− −      

 = 0   ( = 1, …, n) 

 

will yield equations of motion after introducing (51). 

 If non-holonomic constraints appear (along with any holonomic ones that might possible exist) 

then one can imagine that they are represented by equations of the form [possibly by appealing to 

(51)]: 

 

(51.a)    
1 1( , , , , , , )n nf q q q q t  = 0    ( = 1, …, k), 

 

from which, the conditions for the q  will emerge: 

 

  1

1

n

n

f f
q q

q q

 
 

 
+ +

 
 = 0  ( = 1, …, k) . 

 
 (40) Those conditions can possibly be first converted into conditions on the acceleration components by 

differentiation. 
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The variational formula (50.a) then implies the equations of motion in the form: 

 

d T T

dt q q 

  
− 

  
 = 

1

k f
Q

q



 
 


=


+


  . 

 

 If there are no applied forces then the principle of least constraint can be connected with the 

principle of the straightest path that H. Hertz exhibited [cf., IV 1 (A. Voss), no. 28 and no. 39]. 

The expression (44.a) for the constraint will then, in fact, become: 

 

Zw = 
, 1

n d T T d T T
g

dt q q dt q q



     =

        
− −               

  , 

 

and when the kinetic energy possesses the form: 

 

  T = 1
2

, 1

n

g q q  
  =

   [g = g (q1, …, qn)], 

 

such that the manifold of q1, …, qn can be referred to as a Riemannian space (cf., no. 6), it will be 

precisely the expression for the geodetic curvature of the trajectory (40.a). The trajectories are then 

given as the curves whose geodetic curvature has the smallest value that is compatible with the 

constraints (40.b). 

 As J. W. Gibbs (41) first emphasized, the variational formula (49) can also be written in the 

form: 

(52)   
2 2 21

2

1 1

( ) ( )
r r

i i i i i i i i i i

i i

m x y z X x Y y Z z   
= =

+ + − + +   = 0 . 

 

 
 (40.a) With the notation that will be introduced in no. 6, the expression can be immediately converted into: 

 

Zw = 

, 1

n

g L L 


  =

 , 

 

which is ordinarily given as a representation of the geodetic curvature. [Cf., (48.a)]. 

 (40.b) Let it be mentioned that Ph. E. B. Jourdain, “Note on an analogue of Gauss’s principle of least constraint,” 

Quart. J. of math. 40 (1909), pp. 153, pointed out that it would suffice to employ the variational formula: 

 
3

1

[( ) ( ) ( ) ]
r

i i i i i i i i i i i i

i

X m x x Y m y y Z m z z  
=

− + − + −  = 0 

 

as the Ansatz the equation of motion for general non-holonomic constraints, instead of the variational formula (49) 

for the principle of least constraint. 

 (41) J. W. Gibbs, “On the fundamental formulae of dynamics,” Amer. J. of math. 2 (1879), pp. 49 = Scient. 

Papers II, pp. 1.  



Chapter I – The differential equations of motion and their definition in terms of differential principles. 35 

 

If one now introduces any new parameters q1, …, qn such that the virtual displacements xi, yi,  

zi can be expressed by linear homogeneous functions of the independent variations q1, …, qn 

then (52) will read: 

(52.a)    2 2 21
2

1 1

( )
r r

i i i i

i

m x y z Q q 


 
= =

+ + −   = 0 , 

 

or since the Q are free of 1q , …, nq  : 

 

(52.b)    2 2 21
2

1 1

( )
r r

i i i i

i

m x y z Q q 



= =

 
+ + − 

 
   = 0 . 

 

Here, the parameters q1, …, qn are also incorporated in the first term in the brackets, which is the 

so-called Appell acceleration energy (42): 

 

(52.c)     S = 
2 2 21

2

1

( )
r

i i i i

i

m x y z
=

+ +  

 

[cf., IV 1 (A. Voss), no. 38], from which one will get the equations of motion in the form: 

 

(52.d) 
S

Q
q






−


 = 0 . 

 

From that point onward, when non-holonomic constraints appear (43), one will arrive at the least 

number of equations of motion, just as when one starts from the general Ansatz for the equations 

of motion in quasi-coordinates. 

 
 (42) The term acceleration energy was proposed by A. de Saint-Germain, C. R. Acad. Sci. Paris 130 (1900), pp. 

1174, who showed that an analogue of König’s theorem on kinetic energy is true for it.  

 (43) That is the path that P. Appell went down as an Ansatz to the equations of motion in the case of non-holonomic 

constraints. P. Appell, “Sur une forme générale des équations de la dynamique et sur le principe de Gauß,” J. f. Math. 

122 (1900), pp. 205. There is a survey presentation in P. Appell, “Les mouvements de roulement en dynamique,” 

Paris 1899 (Scientia 4) and P. Appell, “Sur une forme générale des équations de la dynamique,” Paris 1925 (Mémorial 

des scien. math., fasc. 1). 

 If one has represented the xi, yi, zi as functions of q1, q2, …, qn, t in the form (5.a) or (5.b) then one defines the 

expressions dxi, dyi, dzi and employs any Pfaff equations (9) that might be present in order to eliminate the dqn-k+1, …, 

dqn such that: 

  
i

x  = 
1 1 21 2 ,i i n k i n k i

a q a q a q a
− −

+ + + +  , 

  
i

y  = 
1 1 21 2 ,i i n k i n k i

b q b q b q b
− −

+ + + +  , 

   
i

z  = 
1 1 21 2 ,i i n k i n k i

c q c q c q c
− −

+ + + +  . 

 

i
x , 

i
y , 

i
z  are then obtained by repeated differentiation and are then substituted in (52.b). Naturally, qn−k+1, …, qn, as 

well as t, also appear in the coefficients. Further developments, with applications are in P. Appell, “Développements 

sur une forme nouvelle des équations de la dynamique,” J. de math. (5) 6 (1900), pp. 5 and P. Appell, “Remarques 
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 6. The Lagrange equations and their solutions. – In the case of holonomic constraints, the 

Lagrange equations read: 

(53)     
d T T

dt q q 

  
−    

 = Q  ( = 1, 2, …, n). 

 

These are second-order differential equations that are linear in the second derivatives and can be 

easily solved for them. The general solution of such a system will include 2n arbitrary constants 

1, …, n, 1, …, n : 

 

(54)  q1 = q1 (t, 1, …, n, 1, …, n) , …, qn = qn (t, 1, …, n, 1, …, n) . 

 

One separates the individual solutions from that when one fixes the constants, perhaps by 

prescribing the position coordinates and the velocity components a certain time t = t0 : 

 

(54.a)   t = t0 
(0) (0)

1 1

(0) (0)

1 1

, , ,

, , ,

n n

n n

q q q q

q q q q

 = =


= =
 

 

and if one interprets such an individual solution as either a space-time curve in the (n + 1)-

dimensional space-time manifold of the (q1, …, qn, t) or when one regards time as a parameter, as 

a trajectory in the n-dimensional spatial manifold (q1, …, qn). The totality of space-time lines 

represents a 2n-parameter family of curves, and the same thing is also generally true for the 

trajectories since every space-time line belongs to a trajectory and conversely. A bundle of space-

time lines goes through every prescribed space-time point since the individual space-time line is 

determined by its “direction” dq1 : … : dqn : dt, i.e., by the n components of the initial velocity. 

The bundle defines an n-parameter family of curves. One and only one space-time line of the 

family of curves goes through every space-time point that is sufficiently close to the center of the 

bundle. As one says, the family defines a field in a sufficiently close proximity to the center of the 

bundle and associates each point of the field with the corresponding velocity components 1q , …, 

.nq  Things are different for the trajectories. A trajectory through a spatial point is still not 

determined when one gives the direction dq1 : … : dqn, but only when one is given the velocity 

components 1q , …, nq . Therefore 1 trajectories go through a spatial point in a prescribed 

direction. Moreover, that is the reason why there are n trajectories. 

 
d’ordre analytique sur une nouvelle forme des équations de la dynamique,” J. de math. (5) 7 (1901), pp. 5. One also 

obtains the Ansatz for the equations of motion for constraints of the general form (2) in that way, P. Appell, “Sur les 

liasons exprimées par des relations non linéaires entre les vitesses,” C. R. Acad. Sci. Paris 152 (1911), pp. 1197. 

According to Appell, the second terms in the bracket in (52.b) will still remain when a further condition is added. P. 

Appell, “The principe du minimum de l’énergie d’accélérations et la substitution des liaisons aux forces,” C. R. Acad. 

Sci. Paris 159 (1914), pp. 989. The connection between the principle of least constraint and Appell’s argument was 

also treated by H. Brell, “Über eine neue Form des Gaußschen Prinzips des kleinsten Zwanges,” Wien Sitzungsber. 

122, IIa2 (1913), pp. 1531. The inverse problem of calculating the acceleration energy from the equations of motion 

was treated by E. Cotton, “A propos des équations de M. Appel,” Nouv. Ann. de math. (4) 7 (1907), pp. 539. Cotton 

also treated the kinetostatic problem of calculating the reactions of non-holonomic constraints there. 
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 The number of trajectories will then amount to 2n−1 only when the force components Q1, …, 

Qn , which could generally be functions of t, q1, …, qn, 1q , …, nq  up to now, do not depend upon 

the velocity components and time, but are functions of only the position coordinates and when, at 

the same time, the kinetic energy does not include time t explicitly. Namely, a space-time curve 

will always go to another space-time curve of the system under the one-parameter group of 

“parallel translations” in the t-direction. All space-time curves of the one-parameter family that is 

generated by the group are the “parallel curves” in a cylindrical M2 with generators that lie parallel 

to the t-direction, but they belong to one and the same trajectory, which is obtained from a section 

of the cylindrical M2 by the Mn of (q1, …, qn). The motion therefore possesses only 2n−1 

trajectories, each of which can be specified in 1 ways, and indeed one will get all other trajectories 

from the course of motion along one trajectory when one increases the times at which the 

individual spatial points are attained by that specification by the same constant (cf., also no. 10). 

 Far-reaching investigations were then carried out in that case. Let the kinetic energy be a 

quadratic form in the velocity components whose coefficients do not contained time explicitly: 

 

(55)   T = 1
2

,

g q q  
 

 ,  g = g (q1, …, qn) . 

 

Now, using the kinetic energy, one can associate an arc-length element (44): 

 

(55.a)    
2ds  = 

22T dt  = 
, 1

n

g dq dq  
  =

 , 

 

such that this Mn will be regarded as an n-dimensional Riemannian space [cf., III D 11 (L. 

Berwald), no. 17]. The distinction between contravariant and covariant vectors will disappear in 

a Riemannian space. There are only vectors, per se. However, there are two types of components 

for every vector, which are distinguished by referring to them as the contravariant and covariant 

components (45). Thus, along with the n contravariant components 1q , …, nq  that were employed 

up to now, the velocity vector also has n covariant components that are calculated from the 

contravariant components by means of: 

   

 
 (44) The convention generalizes the relation: 

 

T = 
21

2
s  =  

2 2 21

2
( )x y z+ + , 

 

which couples the kinetic energy of an isolated mass-point of mass 1 with the arc-length element 
2

ds  = 
2 2 2

dx dy dz+ +  in three-dimensional Euclidian space. 

 (45) In the notation of Ricci’s absolute differential calculus, one cares to distinguish the covariant and contravariant 

components of a vector by lower (upper, resp.) indices. It should be observed that the contravariant components of the 

velocity vectors are therefore “falsely” denoted as 
1

q , …, 
n

q . 
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(56)     
1

n

g q 
 =

 = 
T

q




 = p . 

 

The covariant components of the velocity vector are then precisely the impulse components (no. 

4). In that sense, the Q1, …, Qn are the covariant components of the applied force vector, moreover, 

and one will get their contravariant components by means of: 

 

(56.a) 
1

n

g Q


 =

  = Q , 

 

in which the g   are explained correspondingly (37). If one defines the following differential 

equations from the Q : 

1

1

dq

Q
 = 2

2

dq

Q
 = … = n

n

dq

Q
 

 

then they will determine an (n – 1)-parameter family of curves in the Rn of q1, …, qn , namely, the 

lines of force of the field of the applied forces that point in the direction of the applied force at the 

individual points of the Rn . 

 The left-hand sides of the Lagrange equations of motion (53) (46): 

 

(57)   
d T T

dt q q 

  
− 

  
= 

1 , 1

n n

g q q q   
  

 

= =

 
+  

 
   

 

are referred to as the covariant components of the acceleration vector. If one goes from the 

covariant components of both sides of the Lagrange equations, which now read: 

 

(57.a)   
1 , 1

n n

g q q q   
  

 

= =

 
+  

 
   = Q  ( = 1, 2, …, n) 

 

to the covariant ones then one will ultimately obtain the equations of motion in the form (47): 

 
 (46) The square Christoffel three-index symbols [cf., III D 10 (R. Weitzenböck), Part 2, no. 19] were introduced 

here: 

 



 
 
 

 = 
1

2

g g g

q q q
  

  

   
+ −     

 . 

  

 (47) The curly Christoffel three-index symbols that are employed here are defined by: 

 

  


 = 

1

n

g 



 

=

 
 
 

  

[cf., loc. cit.  (46)].  
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(57.b) 
, 1

n

q q q  
 

 

=

 
+  

 
  = Q   ( = 1, 2, …, n), 

 

when one likewise solves for the second derivatives q . The contravariant components of the 

acceleration vector that appears on the left-hand side are the so-called covariant derivatives [cf., 

III D 10 (R. Weitzenböck), Part 2, no. 19] of the contravariant components 1q , …, nq   of the 

velocity vector, in the sense of Ricci’s absolute differential calculus. 

 In order to integrate those equations (57.b), it is obvious that one must first determine the 

trajectories in the Riemannian space of the q1, …, qn , and determine the course of the motion 

along the individual trajectories afterwards. However, instead of establishing the individual 

members among those 2n−1 trajectories by way of the initial position (0)

1q , …, (0)

nq  and the 

components of the initial velocity (0)

1q , …, (0)

nq , one would rather appeal to their characterization 

by geometric quantities. If one now introduces the components of the initial direction (48) 1

0

,
dq

ds

 
 
 

 

…, 
0

ndq

ds

 
 
 

, in place of the initial velocity, and the magnitude of the initial velocity v0 = 0( )s  then 

the trajectory will appear to be determined for a prescribed starting point and a prescribed direction 

by magnitude of the initial velocity v0 . Now, when v0 changes, the (geodetic) curvature (48.a) of 

the trajectory at the starting point will change, such that the individual trajectories that go through 

 
 (48) For the direction components dq1 / ds, …, dqn / ds, one has: 

  

, 1

n dqdq
g

ds ds




 =

  = 1 . 

Furthermore, one has: 

2
s  = 

, 1

n

g q q  
 =

 , 

from which it follows: 

s s  = 
1 1

1 , 1

( )
n n

ng q g q q q q     
  

 

= =

  
+ + +   

  
   . 

 

 (48.a) The covariant derivatives of the direction components: 

 

L


 = 
2

2
, 1

nd q dq dq

ds ds ds

  

 

 

=

 
+  

 
  

 

are the contravariant components of a vector that possesses the direction of the principal normal to the curve q1 = q1(s), 

…, qn = qn (s). If Kg means the geodetic curvature of the curve then one will have: 

 

2

g
K  = 

, 1

n

g L L 


  =

 . 

[Cf., III D 11 (L. Berwald), no. 18]. 
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a given point in a given direction can also be characterized by giving the geodetic curvature at the 

starting point. 

 In order to express that in formulas, one writes the equations of motion (57.b) in the form: 

 
2

2 2

2
,

d q dq dq dq
s s s

ds ds ds ds

   

 

 



 
+ +  

 
  = Q  

or 

 L  = 
2

dq
Q s

ds

s

 −
 . 

 

On the other hand (48), when the contravariant force vector is introduced using (57.b), s  will take 

the form (49): 

s  = 1
1

1

n
n

n

dqdq
g g Q

ds ds



 
=

 
+ + 

 
  

or (49.a): 

(58) s  = 1
1

n
n

dqdq
Q Q

ds ds
+ + = W . 

 

Therefore, the equations of motion ultimately read (50): 

 

(59)     L  = 
2

dq
Q W

ds

s

 −

, 

 

which implies the connection between the geodetic curvature and the magnitude of the velocity in 

the form of the relation (51): 

 
 (49) The expressions in the parentheses are the n covariant components of the direction vector whose contravariant 

components are dq1 / ds, …, dqn / ds.  

 (49.a) W is the projection of the force vector Q1, …, Qn onto the tangent to the trajectory. Equation (58) is then 

nothing but the theorem of the tangential acceleration [IV 6 (P. Stäckel), no. 5]. 

 (50) On this subject, cf., J. Lipka, “On the geometry of motion in a curved n-space,” J. of math. and phys. 1 

(1922), pp. 21. Similar arguments are also given by L. Berwald and Ph. Frank, “Über eine kovariante Gestalt der 

Differentialgleichungen der Bahnkurven allgemeiner mechanischer Systeme,” Math. Zeit. 21 (1924), pp. 154. Cf., 

moreover, J. L. Synge, “On the geometry of dynamics,” Trans. London Phil. Soc. (A) 226 (1927), pp. 31. 

 Furthermore, C. G. J. Jacobi had already appealed to a geometric interpretation in his formulation of the principle 

of least action (cf., no. 10). Moreover, H. Hertz made use of an interpretation is higher-dimensional spaces in his 

Prinzipien. 

 (51) The sum in parentheses is the length of the force vector, and equation (60) is the generalization of the theorem 

of the normal acceleration [IV 6 (P. Stäckel), no. 5]. That is because since the vector /
g

L K


 is the unit vector in the 

direction of the principal normals of the trajectory [cf., III D 1 (L. Berwald), no. 18]: 
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(60) 2

gK  = 2

4
, 1

1 n

g Q Q W
s

 


  =

 
− 

 
  . 

 

One sees from this that for those mechanical problems, the curves Kg = 0, i.e., the geodetic lines 

[cf., III D 11 (L. Berwald), no. 18] of the Riemannian space: 

 

  
2

2
, 1

nd q dq dq

ds ds ds

  

 

 

=

 
+  

 
  = 0  ( = 1, …, n) 

 

are included in the trajectories, and indeed, they belong to the ones with s  = , i.e., they will be 

assigned infinitely-large velocities (52). 

 Naturally, that is true only as long as not all Q  vanish. If all Q  are equal to zero, i.e., if the 

force vector is identically zero then, from (60), the geodetic curvature of the trajectories will be 

equal to zero, so the trajectories will become geodetic lines in Riemannian space. Therefore, the 

mechanical problem without applied forces might also be briefly referred to as the geodetic 

problem that belongs to the kinetic energy (52.a). Since the magnitude of the acceleration s  on a 

 

(61)  

1

1 n

g

V Q L
K




=

=   

 

will be the projection of the applied force vector onto the principal normal of the trajectory. On the other hand, if one 

multiplies equations (59) by Q and sums over  then it will follow that: 

 

2 2

1 , 1 2 2

2 2
1

1

n n

n

g

g

Q Q W g Q Q W

Q L s K
K s s

  
 

  




= =

=

− −

= = =

 
  

such that (61) will go to: 

(61.a)  V = 
2

g
K s  = 

2

g

s


, 

in which g is understood to mean the radius of geodetic curvature of the trajectory. 

 (52) More precisely: The geodetic line through a point appears to be the limiting curve that the trajectories will 

approach when one lets the magnitude of the initial velocity go to . On that subject, cf., P. Painlevé, “Sur les 

mouvements et les trajectoires réels des systèmes,” Bull. Soc. math. Fr. 22 (1894), pp. 136, as well as J. Andrade, 

“Sur une propriété mécanique des lignes géodésiques,” Bull. Soc. math. Fr. 22 (1894), pp. 186. Any mechanical 

problem will then have a family of 2n−2 trajectories in common with the geodetic problem that belongs to the same 

expression for the kinetic energy T. One can ask whether it might be correspondingly possible for two mechanical 

problems that have the same expression for kinetic energy but different (non-zero) force vectors to have a family of 

2n−2 trajectories in common. According to P. Painlevé, “Sur la transformation des équations de la dynamique,” J. de 

math. (4) 10 (1894), pp. 5, as long as n > 2, that would be impossible. For n = 2, it can happen, as Painlevé showed 

in an example (cf., pp. 32). 

 (52.a) Furthermore, from (59) the geodetic lines will also prove to be trajectories when one has: 

 

   Q


 = 
dq

s
ds


   ( = 1, …, n). 
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geodetic line is zero, from (58), the geodetic lines will be assigned a velocity with constant 

magnitude. However, since the numerical value of the magnitude of the velocity remains 

undetermined, the geodetic line can be traversed with any arbitrary velocity, i.e., one will always 

get the same trajectory once the starting point and starting direction have been prescribed, 

independently of the initial velocity. In that case, one therefore has only 2n−2 trajectories that are 

each associated with a double infinitude of ways of traversing them. In geometric language: Each 

geodetic line belongs to 2 space-time curves. Namely, if, for the sake of geometric interpretation, 

one lays parallels to the t-axis through the individual points of the geodetic line in the space-time 

manifold of the (q1, …, qn, t), and in so doing generates a cylindrical M2 then a pencil of 1 space-

time lines will go through every space-time point of that M2 that correspond to the possible values 

that the magnitude of the velocity might have. However, since one can displace any space-time 

curve parallel to itself on the cylindrical M2, one will get, in total, 2 space-time curves on the 

cylindrical M2, each of which represents a possible motion along the geodetic line. 

 In the case of the general forced motion, after eliminating s  from (59) by means of (61.a), that 

will yield the following n second-order differential equations as the differential equations for the 

trajectories (53): 

L  = 
gKdq

Q W
ds V

 
− 

 
 , 

 

to which yet another differential equation will be added that determined Kg as a function of s. One 

gets it from equation (61), which will that next imply that: 

 

2 s  = 
g

d V

ds K

 
  
 

 

when one appeals to (58) in the form: 

 
However, that is possible only when the force components Q1, …, Qn depend upon not only the position coordinates, 

but also the velocity components. P. Painlevé, “Sur les mouvements et les trajectoires réels des systèmes,” Bull. Soc. 

math. Fr. 22 (1893), pp. 136. 

 (53) When extracting the square root in (60), the sign is chosen in such a way that: 

 

(60.a) 
2

s  = 
g

V

K
 

 

will be positive. That is because a real motion naturally belongs to a positive value of 
2

s . However, one should observe 

that the equations of the trajectory will remain unchanged when one changes the sign of the force components, i.e., 

inverts the direction of the force. In that way, 
2

s  will take the negative sign, such that no real motion can belong to it. 

Following P. Painlevé, one nonetheless speaks of the true and conjugate motions in those cases. The trajectories of 

motion with the forces (Q1, …, Qn) and the motion with the forces (− Q1, …, − Qn) are identical then. If one of the 

trajectories for the one force system is a true trajectory (
2

s  > 0) then it will be a conjugate one for the other problem 

(
2

s  < 0). There are also trajectories with one part of their arc-length that belongs to a true motion and another that 

belongs to a conjugate one (cf., infra). 
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22 gW K  = 
g

g

dKdV
K V

ds ds
− . 

 

The equations of the trajectory will then be: 

 

(62)  

2

2
, 1

( 1, , ),

2 ,

n
g

g g

g

Kd q dqdq dq
Q W n

ds ds ds ds V

dK K dV
W K

ds V ds

  

 

 


=

   
= − + − =    

    


 
= −   


 

 

in which the right-hand side of the last equation must be represents as a function of the q1, …, qn, 

1dq

ds
, …, ndq

ds
 (54). 

 If one has found the trajectory q1 = q1 (s), …, qn = qn (s) then one can succeed in determining 

the time t when an individual point is reached by a quadrature, namely, by (54.a): 

 

(63)    dt = 
gK

ds
V

 , t – t0 = 
gK

ds
V

  , 

 

in which the integral is taken along the trajectory in question. Equation (63) will break down when 

V  0, i.e., when the force vector (Q1, …, Qn) continually falls along the tangent direction to the 

trajectory. In that case, since one cannot have s  = 0 identically, one must necessarily have Kg = 0, 

i.e., the curve must be a geodetic line, such that this can happen only when the lines of force are 

likewise geodetic lines of the arc-length. If such remarkable trajectories [trajectoires 

remarquables according to P. Painlevé (55)] exist then 2 motions will be possible along them, 

because one would then have to appeal to (59) and obtain (56): 

 

 
 (54) In the literature, as a rule, one does not choose the arc-length to be the independent variable, but one of the 

variables, e.g., q1 . Cf., P. Painlevé, “Sur la transformation des équations de la dynamique,” J. de math. (4) 10 (1894), 

pp. 5. The differential equations of the trajectories are found on pp. 24. When the energy integral exists, one can 

eliminate the time t with their help. P. Stäckel did this in “Über dyn. Probl., deren Differentialgl. eine infinit. 

Transform. gestatten,” Leipzig Ber. 45 (1893), pp. 331, and he also used q1 as an independent variable. 

 (54.a) The double sign means that every trajectory can be traversed in the sense of increasing arc-length, as well as 

decreasing. The transition from the one sense of traversal to the opposite one comes about when one replaces t with 

(− t). One might also refer to such mechanical problems as reversible then. 

 (55) P. Painlevé, “Sur les mouvements et les trajectoires réels des systèmes,” Bull. Soc. math. Fr. 22 (1894), pp. 

136, esp. pp. 145. 

 (56) Moreover, one can also try to interpret the trajectories of the motion under an applied force as the geodetic 

lines of a Riemannian space. L. P. Eisenhart succeeded in doing that while restricting himself to the case in which 

the applied force arises from a potential in “Dynamical trajectories and geodesics,” Ann. Math. (2) 30 (1929), pp. 591 

(cf., esp., pp. 603), by introducing an (n + 1)-dimensional Riemannian space. 
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(63.a)    

21
2

0

( ) ,

.
2( ( ) )

s W ds K f s K

ds
t t

f s K

 = + = +



− = 
+




 

 

 If time t appears explicitly in the kinetic energy (and possibly in the components of the applied 

force) (57) then one can start the integration with the equations of motion (53) directly. Since the 

kinetic energy is not a quadratic form now, but a quadratic function: 

 

(64)   T = T0 + T1 + T2 = 1 1
00 02 2

1 , 1

n n

g g q g q q    
  = =

+ +  , 

 

in which g00, g0, g are functions of q1, …, qn, and t, the Lagrange equations of motion (53) will 

take on the form (58): 

 

(64.a)  
1 , 1 1

0 0 0
2

n n n

g q q q q    
   

  

  = = =

     
+ + +     

     
    = Q  ( = 1, …, n), 

 

which is analogous to (57.a), and from that, one will further get the following form (58.a): 

 

(64.b)   
, 1 1

0 0 0
2

n n

q q q q   
  

  

  = =

     
+ + +     

     
   = Q . 

 

 
 (57) Since t cannot be switched with (− t) here, as before, one might refer to such problems of motion as 

irreversible. Cf., J. Lipka, “On irreversible dynamical systems,” J. math. phys, 2 (1923), pp. 73.  

 (58) These were probably first given by T. Levi-Civita, “Sugli integrali algebrici delle equaz. dinam.,” Turin Atti 

31 (1895), pp. 816. In it, one has: 

0 



 
  

 = 
00

1

2

g gg

q t q

 

 

−
 

+
  

 
 
 

 , 

   
0 0



 
  

 = 
0 001

2

g g

t q





−
 

 
 . 

 (58.a) The curly three-index symbols are defined in the same way as in (47) with the quantities g


, which one gets 

from the quadratic form T2 in the same way that one gets them from the quadratic form T itself in the case of the 

Riemannian Rn . In particular: 

0 



 
 
 

 = 
1

0
n

g






=

 
  

 ,  
0 0



 
 
 

 = 
1

0 0
n

g




=

 
  

 , 

and furthermore: 

Q


 = 

1

n

g Q


 =

 , 

as before. 
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Of course, the Q  here are not referred to as the contravariant components of the force vector, 

since the Rn+1 of the q1, …, qn, t is not a Riemannian space (58.b). Similarly, the impulse 

components, which are defined by: 

 

(64.c)     p = 0

1

n

g q g  
 =

+  

 

here (58.c), will no longer play the role of covariant components of the velocity vectors. 

 In the case of non-holonomic constraints, one first considers the scleronomic case (59). The Mn 

of the q1, …, qn is a Riemannian space then whose arc-length element is imposed upon it by the 

kinetic energy T corresponding to (55.a). The motion in that space restricted by the k non-

integrable Pfaffian equations (9.a), which can now be written in the form (59.a): 

 

(65)  a()1 dq1 + … + a()n dqn = 0 ,  a() = a() (q1, …, qn) ( = 1, …, k). 

 

The k vectors that are determined in that way, along with the contravariant components 1

( )( ,a  , …, 

( ) )
na  , span a k-dimensional element at each point of the Riemannian Rn , and the Pfaff equations 

(65) say that the velocity vector (the direction vector, resp.) to the trajectory belongs to the (n – k)-

dimensional element that is perpendicular to it. The equations of motion that were given in 

covariant form on pp. 23 can be written in the contravariant form: 

 

(65.a)    
, 1

n

q q q  
 

 

=

 
+  

 
  = 

( )

1

k

Q a 

 



=

+  , 

 

 
 (58.b) According to L. P. Eisenhart, loc. cit. (56), when a potential exists for the applied force, the space-time lines 

can be interpreted as geodetic lines in an (n + 2)-dimensional Riemannian space. 

 (58.c) The solution of those relations for the q


 reads: 

q


 = 
0

1

( )
n

g p g

 
 =

− . 

 (59) G. Vraneceanu, “Studio geometrico dei sistemi anholonomi,” Ann. di mat. (4) 6 (1929), pp. 6, in which he 

summarized some earlier scattered little papers, as well as J. L. Synge, “Geodesics in non-holonomic geometry,” 

Math. Ann. 99 (1928), pp. 738. 

 (59.a) In this, it is suggested that the first index represents simply a number that characterizes the equation, while 

the second index, by contrast, expresses the idea that the a() 1, …, a() n are the covariant components of a vector in 

the Riemannian Rn whose associated contravariant components are then: 

( )
a




 = 

( )

1

n

g a

 
 =

 . 

One can imagine that the Pfaff equations are given from the outset in such a way that for every , the 
1

( )
a


, …, 

( )

n
a


 

are the components of a unit vector and that two different unit vectors among those k will be mutually-perpendicular: 

( ) ( )

1

n

g a a 

  
 =

  = 
0 ( ),

1 ( ).

 

 

 


=
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in which the Lagrange factors (i.e., the reaction forces)  take the form: 

 

 = − ( ) ( )

1 , 1

n n

a Q a q q

     
  = =

 
+ 

 
   , 

 

in the event that the 1

( )( ,a  , …, 
( ) )
na   are mutually-perpendicular unit vectors, and the a() the 

covariant derivative of a() with respect to q (59.b). 

 The transition from equations (65.a) to the equations of motion with the lowest number of 

equations can be geometrically illustrated by regarding the totality of all (n – k)-dimensional 

elements that the Pfaff equations (65) associate with the individual points of the Riemannian 

space as a non-holonomic manifold n k

nM −  that is spanned in the Riemannian space (59.c). Namely, 

since the reactions of the constraints in (65.a) are perpendicular to the (n – k)-dimensional at each 

point, if one wishes to eliminate then from the equations of motion, one needs only to project all 

vectors onto the n k

nM −  (59.d), and in that way obtain the lowest number of equations of motion. For 

the analytical representation, it would then be preferable to introduce quasi-coordinates (in the 

chosen way of looking at things, they are usually referred to as non-holonomic parameters) in 

order to represent the n k

nM −  by the simple equations (39.b). The kinetic energy will then take on a 

form whose coefficients are the projections of the fundamental tensor of the gik (or arc-length on 

the Riemannian space) onto the n k

nM − , and the coefficients that appear in the transitivity equations 

are closely connected with the translation quantities for vectors that the Riemannian Rn imprints 

upon the n k

nM −  that they span. 

 That consideration, which initially referred to only scleronomic constraints, can be generalized 

to rheonomic constraints. That is because it is basically inessential that the Rn of the q1, …, qn 

should be a Riemannian space, rather it is essential that the Christoffel three-index symbols 

should define a direction of translation in it and thus make it possible to form covariant derivatives. 

Therefore, A. Wundheiler (60) regarded the (n + 1)-dimensional manifold of q1, …, qn, t as an 

affine space An+1. One defines a linear translation in that An+1 [cf., III D 11 (L. Berwald), no. 28] 

with the help of the three-index symbols that appear in the equations of motion (64.b) (60.a). If non-

holonomic constraints of the form (9) exist, which might now be written: 

 
 (59.b) Cf., J. L. Synge, “On the geometry of dynamics,” Trans. London Phil. Soc. (A) 226 (1927), pp. 31, esp., pp. 

53, et seq. 

 (59.c) The notation shall suggest that the manifold belongs to all points in the Riemannian space Rn, but that at 

each point of it, the only allowable directions of advance are the ones that belong to the (n – k)-dimensional elements. 

 (59.d) Cf., J. A. Schouten, “Über nichtholonome Übertragungen in einer Ln,” Math. Zeit. 30 (1929), pp. 149, as 

well as J. A. Schouten and E. R. van Kampen, “Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde,” 

Math. Ann. 103 (1930), pp. 752. The starting point in those treatises was chosen more generally than was necessary 

here. 

 (60) A. Wundheiler, “Über die Variationsgleichungen für affine geodätische Linien und nichtholonome, 

nichtkonservative dynamische Systeme,” Prace matemat.-fis. 38 (1931), pp. 126.  

 (60.a) If one chooses the translation quantities according to the formulas: 
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(66) a()1 dq1 + … + a()n dqn = 0   ( = 1, …, k), 

 

corresponding to (65), then they will define a non-holonomic manifold 1

1

n k

nM − +

+
 in the affine space 

An+1 that is embedded in the An+1, and the linear translation in the An+1 then determines a linear 

translation in that non-holonomic 1

1

n k

nM − +

+
. One also starts from the equations of motion, which will 

possess the form (60.b): 

 

(66.a)  
, 1 1

0 0 0
2

n n

q q q q   
  

  

  = =

     
+ + +     

     
   = 

( )

1

k

Q a 

 



=

+  

 

here, corresponding to (65.a), and when one projects them onto the 1

1

n k

nM − +

+
 (while discarding the 

reaction forces), one will get the lowest number of equations of motion, in which one once more 

finds it preferable to appeal to a convenient analytical representation of the non-holonomic 1

1

n k

nM − +

+
 

quasi-coordinates (non-holonomic parameters). The coefficients in the transitivity equations are 

connected with the quantities that describe the direction of translation in the 1

1

n k

nM − +

+
. 

 

 

 7. Painlevé’s general discussion of the singularities of the trajectories of a system (61). – 

In order to get a glimpse into the singularities of the trajectories, one must next look at the 

singularities of the functions gik and those of the force components Q1, …, Qn and treat the course 

of motion in the neighborhood of those singular points according to the general rules [cf., II A 4.a 

 




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 



  
 
  

, 
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
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

  
 
  

, 
00


  = 

0 0
Q





  
− 

  
,     

0


  = 0 ,    

00


  = 0 (, ,  = 1, …, n) 

 

then the space-time lines of the motion are precisely the geodetic lines of the An+1 . In that way, the geodetic lines are 

imagined to be defined to be the curves whose tangents are parallel to the direction of translation [cf., III D 11 (L. 

Berwald), no. 18]. 

 (60.b) The 
( )

a



 in that are defined by: 

( ) ( )

1

n

a g a 

  
=

=  , 

as in (59.a). 

 (61) The investigation is restricted to the case in which the kinetic energy T is a quadratic form in the q


 whose 

coefficients do not include time t, just like the components Q of the applied force. 
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(P. Painlevé) and III D 8 (H. Liebmann)] (61.a). Moreover, the so-called equilibrium points (62), 

i.e., the points at which all n force components Q1, …, Qn vanish, are especially significant for the 

form of the trajectory. Moreover, they are not only singular points for the system of trajectories, 

but also for the system of lines of force. 

 The construction that one ordinarily uses to prove the existence of solutions to the differential 

equations (64) of the trajectories can be interpreted as follows: At the starting point, the direction 

vector of the trajectory and the contravariant force vector will span a two-dimensional planar 

manifold that is the osculating M2 for the desired trajectory. Since one knows the initial value of 

the curvature, one can construct an arc-length to the curve according to the last of equations (62). 

One then finds the new tangent direction and the new value of the curvature, and since the new 

value of the force vector, together with the direction vector, once more implies the osculating M2, 

one can repeat the construction. The construction will not even fail when the direction of the force 

vector and the tangent direction of the trajectory coincide, so the normal components of the force 

will be V = 0. The trajectory can then be continued at the points where one has Kg = 0 or s  = 0 

(63). The latter, which Painlevé referred to as stopping points (64), will become significant on the 

basis of things that will soon become clear. By contrast, the construction can break down when 

one reaches an equilibrium point (65). In that case, the trajectory must end at the equilibrium point 

and cannot be continued beyond the equilibrium point, which is otherwise true for only singular 

points of the gik and Qi . A necessary condition for the trajectory to not be continued beyond the 

equilibrium configuration is that the velocity must go to zero when the system approaches the 

 
 (61.a) At a regular point, the gik must be twice continuously differentiable and the Qi must be once continuously 

differentiable. Furthermore, the determinant G of the quadratic form: 

 

2

, 1

n

ik i k

i k

ds g dq dq
=

=   

 

cannot vanish there. Moreover, one can also see immediately how to proceed when the gik (Qi, resp.) are not single-

valued. On the subject of singularities, see also P. Painlevé, “Leçons sur la théorie analytique des équations 

différentielles,” Paris 1897 (lithogr.), esp. pp. 543-589. 

 (62) Cf., in addition to (55), also P. Painlevé, L’intégr. d. équ. de la méc., esp. Leçons 16.  

 (63) For 
2

s  = 0, the curvature Kg indeed assumes the indeterminate form 0 / 0, but it will nonetheless always yield 

a well-defined limiting value for Kg as long as the   


 and the Q are twice continuously differentiable. Analogous 

statements will be true for the value of 
2

s  when the curvature is Kg = 0 . 

 (64) For Painlevé, the term was point d’arrét. Moreover, for s  = 0, i.e., for 
1

q  = 0, …, 
n

q = 0, the trajectory must 

necessarily possess the direction of the line of force, as one sees immediately from equations (59). 

 (65) However, the trajectory can also be continued past an equilibrium point. If the moving system is brought into 

an equilibrium configuration, and the velocity is zero there (
1

q  = 0, …, 
n

q = 0) then the trajectory will consist of the 

single point q1 = a1, …, qn = an . When a trajectory moves towards an equilibrium configuration, it can attain the 

equilibrium configuration with a certain direction and in a finite arc-length (without it then needing to be continuable 

beyond the equilibrium configuration). However, it can move towards the equilibrium configuration without its 

tangent direction approaching a certain limiting position in that way. 
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equilibrium configuration. Painlevé then subdivided the equilibrium points into regular ones (66), 

i.e., ones at which s  does not vanish, and singular ones, at which s  does equal zero. 

 When one now focusses on the time evolution of the motion along an individual trajectory, one 

must decide whether one has: 

 

2s  = 
g

V

K
  0  or 2s  = 

g

V

K
  0 . 

 

If 2s  > 0 for all points of a trajectory then according to Painlevé, it will be called a true trajectory 

(trajectory of the true motion). By contrast, if 2s  is negative everywhere along the trajectory then 

Painlevé spoke of a conjugate trajectory (67) (trajectory of the conjugate motion). It is implicitly 

assumed in this that 2s  always has the same sign along the trajectory, such that the velocity s  will 

not be zero. A true trajectory will then be traversed completely in one sense. Every finite point that 

is reached at a finite time t  will also be reached with a certain finite velocity, such that the motion 

can be continued beyond the time-point t (68). However, the general case is naturally the one in 

which there are points along a trajectory for which the s  are equal to zero. If such a stopping point 

s  = 0 is not coincidentally an equilibrium point then the motion will reverse at the stopping point 

and traverse the same trajectory backwards, such that it will pass through the same point on the 

trajectory at time t  +  that it passed through at time t  − , in which t
 is understood to mean 

that time at which the stopping point is reached (68.a). In fact, the root in (63) will change sign at 

such a point since V will vanish simultaneously with s  (69). If one now pursues the value of 2s  

beyond a stopping point then V will change sign along with 2s . The stopping point then splits the 

curve into two pieces, for which the motion in question will be real along one of them, while the 

conjugate motion will be real for the other one. Such trajectories with stopping points then carry 

the true motion along part of their extent and the conjugate motion along the other. On those 

grounds, Painlevé referred to them as mixed trajectories (trajectoires mixtes). There are n such 

mixed trajectories, because for every point there is a mixed trajectory that possesses that point as 

 
 (66) 1 trajectories will go through a regular equilibrium point with a prescribed direction, just like an ordinary 

regular point, corresponding to the fact that the value of s  can be freely assigned. However, the difference between a 

regular equilibrium point and an ordinary regular point is that all of those trajectories will possess the geodetic 

curvature Kg = 0 at the equilibrium point. 

 (67) The terminology “conjugate” is understood to mean that it would be a “true” trajectory if one replaced t with 

( )it , where i means the imaginary unit. 

 (68) Furthermore, not all qi need to remain finite for a finite t  by any means. 

 If the system approaches an equilibrium configuration and its velocity then goes to zero as a result then that cannot 

happen in a finite length of time; rather, t must become infinite. Conversely, if the system approaches a certain finite 

configuration when t →  then that configuration must be an equilibrium point, and the system must approach that 

configuration in such a way that the velocity components go to zero like 1 / t . 

 (68.a) Ph. Frank thus referred to those points as turning points (Umkehrpunkte). 

 (69) If one then develops the q in powers of t = ( )t t


−  then only even powers of that quantity can appear in 

such a development. For singular points of the gik (the Qi, resp.), cf., P. Painlevé, loc. cit. (55), esp., pp. 153. 
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a stopping point (70). It must then be true that any point of the mixed trajectory can be a stopping 

point of a motion. In that case, since 1 motions are possible along the mixed trajectories, they 

must be “remarkable trajectories,” i.e., they must coincide with the lines of force, which are then, 

at the same time, geodetic lines of the arc-length. It is only in that case that the totality of mixed 

trajectories will reduce to n−1. Conversely, the remarkable trajectories are naturally always mixed 

trajectories for which every point is a possible stopping point. If two or more stopping points occur 

on a mixed trajectory (71) then the trajectory will be divided by them into pieces that alternately 

belong to the true or conjugate motions. The motion then results in such a way that the system (the 

associated representative point, resp.) will move periodically back and forth between the two 

stopping points. 

 Of the singular trajectories, Painlevé investigated the ones along which there were equilibrium 

points with vanishing velocities. Such an equilibrium point is an asymptotic point for the motion 

of the system in the sense that the system (the representative point, resp.) approaches such an 

equilibrium point as t → . By contrast, the trajectory can go through such a point in a normal 

way (72). Of course, it is also possible that it ends at such a point and cannot be continued beyond 

it. Indeed, it does not even need to have a well-defined tangent there, nor does the arc-length up to 

the equilibrium point need to be finite. It is always assumed then that the velocity between an 

arbitrary point on the trajectory and the equilibrium point possesses only finitely-many zeroes. 

Painlevé gave an example in which infinitely-many zeroes of the velocity could also appear along 

a trajectory that would accumulate at the equilibrium point (73). 

 

___________ 

 
 (70) A pencil of mixed trajectories goes through a point, so any one of them possess its stopping point at that point. 

The direction is that of the line of force that goes through the point, and the value of the geodetic curvature Kg is found 

to be determined completely by a passage to the limit.  

 (71) Aside from the remarkable trajectories, that can occur only in exceptional cases. Only a finite number of 

stopping points can ever lie between two given finite points of a trajectory that is not a remarkable trajectory. 

 (72) In particular, the remarkable trajectories can always be continued beyond any equilibrium point that might 

occur.  

 (73) If the trajectory can be continued beyond an equilibrium point then further equilibrium points can appear on it. 

There can also be infinitely many of them, and that sequence can possess an accumulation point. 



CHAPTER II 

 

THE VARIATIONAL PRINCIPLES. 
 

 

 8. Hamilton’s principle. – One will easily arrive at the transition to the variational principles 

by starting from the differential principles. One starts from the formulas for the Lagrange central 

equation in the form (27) [(27.a), resp.] of no. 4. If one regards the virtual displacements q1, …, 

qn as functions of time in the sense of no. 3 then one can integrate formula (27.a) between two 

fixed values of time t = t1 and t = t2 (
74) and obtain: 

 

(67)  
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T Q q Q q dt  + + +  = 
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  
, 

 

which is a relation that one can refer to as the integrated central equation (75). If the forces arise 

from a potential  (q1, …, qn, t), so: 

Q = − 
q




, 

then (67) will take the form: 

(67.a)    
2

1

( )

t

t

T U dt −  = 

2

1

1

1

t

n

n t

T T
q q

q q
 

  
+ + 

  
. 

 

 Now, from no. 3, the virtual displacements q are performed for constant t, such that the 

variation symbol  will commute with the integral sign. Moreover,  is independent of the q , so 

/ q  = 0 . Therefore, one can convert formula (67.a) into: 

 

 
 (74) This argument was already applied, in principle, by J. L. Lagrange himself, but he derived the principle of 

least action (cf., no. 10) in that way, see, Mécanique, 2. partie, sect. III, § 6 = Œuvr. 11, pp. 315. Cf., moreover, e.g., 

L. Boltzmann, Prinzipe II, § 1.  

 (75) One can also integrate the differential formula of least constraint: 
2

1
1

[( ) ( ) ( ) ]

t r

i i i i i i i i i i i i

it

m x X x m y Y y m z Z z dt  
=

− + − + −  

[cf., J. Schenkel, “Über eine dem Gaußschen Prinzip des kleinsten Zwanges entsprechende Integralform,” Wien 

Sitzungsber. 122, IIa1 (1913), pp. 721] and seek to convert it into an integral principle, whereby one will naturally not 

arrive at a variational problem, but an integrated differential formula. In that way, one must perform a variation that 

leaves the position and velocity along a piece of the space-time line unchanged, while the accelerations shall be varied 

everywhere along the entire time interval. Naturally, that can only lead to the most fruitless artifices in one’s definition 

of the variation, but it is basically nothing but the logical continuation of the so-called “Hölder type of variation,” i.e., 

the method that leads to the desired result by understanding the variation to mean something suitable in each case. 

 For that, cf., also A. Wassmuth, “Studien über Jourdain’s Prinzip der Mech.,” Wien Sitzungsber. 128, IIa (1919), 

pp. 365, who showed how an integral formula related to Jourdain’s principle [no. 5 (40.b)]. 
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(67.b) 
2

1
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t
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The variation of the definite integral 
2

1

( )

t

t

T dt−   (except for the limits) is represented in that form 

when the variation is performed with time held constant, which then says that the first variation 

that belongs to the variational problem: 

 

(68)     
2

1

( )

t

t

T dt−   = extrem. 

 

must vanish. However, that means nothing but the idea that the equations of motion of the 

mechanical system must be given as the Euler equations of the variational problem (68), i.e., from 

the demand that the integral of the so-called Lagrangian function L = T –  (for fixed limits) must 

be an extremum. That variational problem is referred to as Hamilton’s principle (on the 

Continent), although that terminology (which has not been accepted in England, moreover) is not 

justified historically. [Cf. IV 1 (A. Voss), no. 42, esp., footnote 243.]  

 Of course, in going from the variational problem to the Ansatz for the equations of motion, the 

only extremum conditions that will come into question are expressed by the vanishing of the first 

variation. One can restrict oneself to that as long as one has only the Ansatz for the equations of 

motion in mind. If one holds the limits of the integral (68) fixed under that variation then that will 

imply the formula: 

(68.a)     
2

1

( )

t

t

T dt −   = 0 , 

 

which is nothing but the formula (67.b) when one drops the right-hand side, which originates in 

the variation of the limits. Many times, in the literature, it is not actually the variational problem 

(68) that one appeals to as an expression of Hamilton’s principle for the Ansatz of the equations 

of motion, but the variational formula (68.a). That is closely related to referring to formula (67) 

(correspondingly distorted while fixing the limits) for the integrated central equation: 

 

(67*)    
2

1

1 1[ ( )

t

n n

t

T Q q Q q dt  + + +  = 0  
1

2

( ) 0,

( ) 0,

q t

q t









=


=
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as the formula for Hamilton’s principle, although here one certainly cannot speak of a variational 

problem, at least in the sense of the classical calculus of variations (76). By contrast, the variational 

problem shall be understood in the narrow sense here. 

 That difference in viewpoint will take on a deeper meaning as soon as one no longer assumes, 

as before, that the q are independent coordinates, but assumes that auxiliary conditions exist 

between them. From the standpoint of the classical calculus of variations, one must then impose 

condition equations on the functions q (t) that are allowable for concurrence with the extremum 

in the variational problem, i.e., perform the variation of the integral in such a way that not only the 

extremal itself, but also the varied curve will fulfill the prescribed condition equations. By contrast, 

in the integrated central equation (67*), the variations are chosen such that they will represent 

virtual displacements in the previously-defined sense (cf., no. 3). Those two types of variations 

(which are performed on the space-time lines of motion in the Rn+1 of q1, …, qn, t for fixed time) 

are probably compatible for holonomic constraints, but not for non-holonomic constraints (no. 2). 

If one would then like to restrict oneself to the applications of the classical calculus of variations 

that would seem appropriate to the variational principles then one would have to say that 

Hamilton’s principle will imply the Ansatz for the equations of motions for holonomic auxiliary 

conditions, but not for non-holonomic ones (77). In addition, one can properly speak of a variational 

 
 (76) The integral formula can also serve to exhibit the equations of motion for quasi-coordinates. Cf., G. Hamel, 

“Über die virtuellen Verschiebungen in der Mechanik,” Math. Ann. 59 (1904), pp. 416, esp., pp. 426 and 427, as well 

as Th. Pöschl, C. R. Acad. Sci. Paris 156 (1913), pp. 1829. In that way, it takes the form: 

 

( )
0

dT T
dt

dt




  


 

 

    −  
+ =       

 , 

 

in which one has correspondingly substituted the transitivity equations (17.a) from no. 2: 

 

,

( )
d d dd

dt dt dt dt

   
   

 

  
    

 
= − − 

 
  . 

One will then get: 

,

( )
0

d T T T

dt



 
   

 
  

      −
− − =     
  

 

as the form of the equations of motion. Pöschl correspondingly restricted himself to the scleronomic case, which is 

the usual custom in the literature. 

 (77) For this way of looking at things, cf., H. Hertz, Prinzipien der Mechanik, Ges. Werke III (2nd ed.), Leipzig, 

1910, pp. 23. That state of affairs is characterized by the following comparison: If a holonomic Mn−k is embedded in a 

Riemannian space Rn then the “geodetic” lines in that Mn−k , which one defines to be curves with parallel-translated 

tangent directions, will be the “shortest” lines in the Mn−k , which one characterizes as the extremals of the variational 

problem: 

ds  = extrem. 

 

 By contrast, if a non-holonomic 
n k

n
M

−
 is embedded in the Riemannian space Mn then the “geodetic” lines in 

n k

n
M

−
 

that are defined by parallel translation of the tangent direction will be different from the “shortest” lines, which one 

defines to be the extremals of the variational problem: 
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principle only when the general components Q of the applied forces arise from a potential  (q1, 

…, qn, t). That standpoint is not adopted in the literature, as a rule, but rather one wishes to apply 

Hamilton’s principle to the widest-possible range of applications. In order to do that, one does not 

just speak of the variational problem (68) as Hamilton’s principle, but the variational formula 

(67*) of the integrated central equation and demands that the variations that appear in it must be 

performed at fixed times, and that they shall be subject to the same conditions as virtual 

displacements (cf., no. 3), moreover (78). 

 Here one says that the term Hamilton’s principle is understood in the narrow sense, so it will 

only apply to mechanical systems for which the forces derive from a potential and the constraints 

are holonomic. Furthermore, one might eliminate the associated auxiliary conditions from the 

outset by the introduction of suitable general coordinates. With that assumption, Hamilton’s 

principle says that the equations of motion of the mechanical system will be given by the Euler 

equations of the variational problem: 

 

(69)     
2

1

( )

t

t

T dt−   = extrem. 

 

with no further auxiliary conditions. The function: 

 

(69.a) 1 1( , , , , , , )n nL q q q q t  = T –  

 

 

ds  = extrem. 

 

with the auxiliary conditions defined to be non-holonomic conditions. 

 (78) Cf., O. Hölder, “Über die Prinzipien von Hamilton und Maupertuis,” Gött. Nachr. (1896), pp. 122. See also 

Cl. Schaefer, Prinzipe, § 8. Should the varied space-time lines satisfy the prescribed auxiliary conditions, as is 

required of a variation in the classical calculus of variations, then the variation could not be virtual displacements in 

the case of non-holonomic constraints. On pp. 126, Hölder admitted that the term “the principle of least action” was 

basically no longer appropriate to his type of variation. Hölder exhibited a further variational formula from which one 

can arrive at the variational formula of Hamilton’s principle, as well as the Euler-Maupertuis principle that will be 

treated below (no. 10). However, he had to appeal to gimmickry in that, on the one hand, he chose the variations of 

the position coordinates to be virtual displacements relative to auxiliary conditions, while on the other hand, in the 

variational formula for the integral, the time ordering between any two position points that are coupled by a virtual 

displacement was established arbitrarily, which would properly contradict the concept of a virtual displacement. C. 

Schaefer (Prinzipe, § 11) took up Hölder’s formula, but without mentioning that contradiction. A. Voss adapted 

Hölder’s argument to general coordinates in “Über die Prinzipe von Hamilton und Maupertuis,” Gött. Nachr. (1900), 

pp. 322. Moreover, the L. Maurer explained the different types of variation in “Über die Differentialgl. der Mech.,” 

Gött. Nachr. (1905), pp. 91. 

 The difficulties in applying Hamilton’s principle in the case of non-holonomic constraints were also treated 

thoroughly by G. Morera, “Sulle equazioni dinamiche di Lagrange,” Turin Atti 38 (1902), pp. 121. He appealed to 

the bilinear covariants of the Pfaffian expressions (9) in order to examine when the consideration of the Pfaff 

equations (9) as the auxiliary conditions of the variational problem in the sense of the classical calculus of variations 

would lead to the correct form for the equations of motion and found that that would happen if and only if the Pfaff 

equations define a completely-integrable system. 

 More recently, M. Kerner has once more treated the problem in “Le principe de Hamilton et l’holonomisme,” Prace 

mat.-fis. 38 (1931), pp. 1, without adding anything essentially new. 
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that appears under the integral, which is the difference between the kinetic energy and the force 

potential, was referred to by E. J. Routh as the Lagrangian function (79), and by H. von 

Helmholtz as the kinetic potential (80). Upon introducing that function L, the equations of motion 

for the mechanical system will take the form: 

 

(70)     
d L L

dt q q 

  
−    

 = 0   ( = 1, …, n). 

 

 The connection between those equations and the variational problem (69), which also requires 

its special form, leads to some results that are important for their integration, as will be made clear 

in what follows. To that extent, the variational principle overlaps with the arguments regarding the 

differential principle. The results concerning the integration of equations (70) can obviously be 

adapted to the general form of the Lagrange equations of motion: 

 

  
d T T

dt q q 

  
−    

 = Q   ( = 1, …, n) 

 

to the extent that they arise from the formula for the first variation (68.a) since the general formula 

(67) indeed runs parallel to the integrated central equation. The meaning of the integrated central 

equation (67), as opposed to the original form of the central equation in no. 4, consists of precisely 

the fact that it makes it possible to adapt part of that result, because, as will be shown, formula 

(67.b) is important for the theory of integration in particular, and it represents a special case of the 

so-called boundary formula for the calculus of variations. In order to get that boundary formula 

in general, one extends the integral of the variational problem (69) along an extremal, i.e., along a 

space-time line of motion that connects two given space-time points (1) (1)

1 1 1( , , , )nP q q t  and 

(2)

2 1( ,P q …, (2)

2, )nq t , and goes over to a second extremal that connects two points that are infinitely 

close to P1 (P2, resp.). The change in the value of the integral along the extremal will then be (†): 

 
2

1

t

t

L dt   = 
(2) (2)

1 1 2

1 12 2 2

n n

n n

L L L L
q q L q q t

q q q q
  

       
+ + + − − −    

        
 

  − (1) (1)

1 1 1

1 11 1 1

n n

n n

L L L L
q q L q q t

q q q q
  

       
+ + + − − −    

        
 , 

 

which is a relation that emerges from the formula (67.b) when one sets t1  0, t2  0. 

 
 (79) E. J. Routh, Dynamik I, pp. 357.  

 (80) H. von Helmholtz, “Die physikalische Bedeutung des Prinzips der kleinsten Wirkung,” J. f. Math. 100 (1887), 

pp. 137. = Ges. Abh. III, pp. 203; cf., moreover, H. von Helmholtz, Dynamik, pp. 359.  

 (†) Translator: I could not duplicate Prange’s notation for an integral along an extremal, so I substituted the script 

E as a prefix to the integral. 
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 The quantities that appear in that formula (71) have an immediate physical meaning, because 

since L = T – , and only the velocity components q  appear in T, the derivatives: 

 

(72)     
L

q




 = 

T

q




 = p  

 

will be the impulse components of the mechanical system. Moreover, if one sets: 

 

(73)    1

1

n

n

L L
L q q

q q

 
− − −

 
 = − H  

 

then H will also admit an intuitive mechanical interpretation. Namely, if T is a quadratic form in 

the velocity components q : 

T = 1
2

g q q    

then one will get: 

1

1

n

n

L L
q q

q q

 
+ +

 
 = 1

1

n

n

T T
q q

q q

 
+ +

 
 = 2 T . 

One then has: 

− H = T –  – 2T = − (T + ) , 

or 

 

(73.a)      H = T +  , 

 

resp., i.e. (in the event that T and  do not include time t explicitly), H is the sum of the kinetic 

and potential energy of the system. On the other hand, if T is a general quadratic function of the 

q : 

T = T0 + T1 + T2 

then: 

1

1

n

n

L L
q q

q q

 
+ +

 
 = 2 T2 + T1 , 

so: 

1

1

n

n

L L
L q q

q q

 
− − −

 
 = (T0 – ) – T2 , 

 

and that will imply the following expression for H : 

 

(73.b) H = T2 + ( – T0) , 
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which can likewise be referred to as the total energy of the system (81). With the introduction of 

the impulse coordinates p and the energy H, the boundary formula (71) will take the form: 

 

(71.a)      
2

1

t

t

L dt   = (2) (2) (2) (2) (1) (1) (1) (1)

1 1 2 2 1 1 1 1[ ( ) ] [ ( ) ]n n n np q p q H t p q p q H t     + + − − + + −  . 

 

 In so doing, it is convenient to not regard the function H as a function of t, q, q , but to replace 

the velocity components q  with the impulse components p . In the case (73.a), since one has: 

 

T = 1
2

, 1

n

g q q  
  =

  = 1
2

1

n T
q

q


 =




  = 1

2

1

n

q p 
=

  = 1
2

, 1

n

g p p

 
  =

 , 

 

that will then give: 

 

(74.a) H (p1, …, pn, q1, …, qn, t) = 1
2

, 1

n

g p p

 
  =

 +  (q1, …, qn, t) . 

 

In the general case (73.b), one has: 

 

T2 = 1
2

, 1

n

g q q  
  =

  = 21
2

1

n T
q

q


 =




  = 1

02

1

( )
n

q p g  
=

−  = 1
0 02

1

( ) ( )
n

g p g p g

   
=

− − , 

 

and therefore (82): 

 

(74.b)  H (p1, …, pn, q1, …, qn, t) = 1 1
0 0 0 002 2

1

( 2 ) ( )
n

g p p g p g g g

     
=

− − +  −  . 

 

 
 (81) Cf., say, G. D. Birkhoff, Dynamical Systems, Chap. 1, no. 6, pp. 14. Namely, in the energy equation (power 

equation): 

1 1

n nd T T
q Q q

dt q q
  

  = =

   
− =       

  , 

 

the terms that originate in T1 drop out when T does not include the time t explicitly. On the other hand, one can imagine 

that the term T0 in: 

L = T –  = T2 + T1 + T0 –  

 

that is free of q


 is combined with , so one can write: 

 

L = T2 + T1 – ( – T0) . 

 

 (82) Cf., e.g., L. P. Eisenhart, “Dynamical trajectories and geodesics,” Ann. Math. (2) 30 (1929), pp. 591. 
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 9. Cyclic coordinates. The canonical form of the equations of motion. The Routh-

Helmholtz transformation. – From the form (70) of the equations of motion, it will be 

immediately obvious that one can give a first integral of those equations when one of the 

coordinates, say qn, does not appear in the Lagrangian function L, because one will then have: 

 

(75)  
n

L

q




 = 0 , so 

n

d L

dt q

 
 

 
 = 0   or 

n

L

q




 = const. = cn . 

 

Now, since a coordinate will not generally appear in the expression for the Lagrangian function 

when it belongs to a motion that returns to itself (i.e., a cyclic one) (83), H. von Helmholtz 

proposed the name of cyclic coordinate for that coordinate (84). The expression hidden coordinate 

has also been chosen (85), which is patterned on the term ignored coordinate that W. Thomson 

(Lord Kelvin) used (86). Now what is of fundamental significance for the integration of the 

equations of motion is the fact that, as E. J. Routh and H. von Helmholtz observed (and probably 

independently of each other)(87), by means of the first integral (72), the system of equations of 

motion (70) can be reduced to an analogous system with only (n – 1) unknown functions that is 

once more the Euler system of equations that arises from a variational problem that is easy to 

specify. 

 Namely, if one imagines a space-time line of the motion of the mechanical system, so one 

constructs an integral curve of the equations of motion (70) in the manifold of (q1, …, qn, t), then 

obviously the absence of qn from the equations of motion (70) would have the consequence that 

every integral curve of the equations (70) will once more arise from an integral curve of those 

equations when one displaces it parallel to itself by an arbitrary segment in the qn-direction (88). 

The set of all 2n space-time curves is then arranged in such a way that 1 curves will lie on a 

cylindrical M2 whose “generators” are parallel to the qn-direction, and indeed those 1 curves will 

be parallel curves on the cylinder. When one then projects all integral curves parallel to the qn-

direction onto the n-dimensional manifold of (q1, …, qn, t), the 1 curves that lie on the same 

cylinder will possess the same projection, such that one will get only 2n−1 curves in the Mn of q1, 

…, qn−1, t as the projections of the space-time lines of motion in the Rn+1 of the q1, …, qn, t. Now, 

obviously the integration constant cn in (72) will have the same numerical value for all space-time 

lines in Rn+1 that lie on the same cylinder, such that one can also assign a numerical value cn to 

each projection onto Mn . Those projections that belong to the same numerical value of the constant 

 
 (83) For example, the angle of rotation  plays the role of such a coordinate for a rotating flywheel. 

 (84) In particular, Helmholtz referred to a mechanical system with one such coordinate as monocyclic, while he 

called a mechanical system in which several coordinates are cyclic polycyclic. H. von Helmholtz, “Studien zur Statik 

monozyklischer Systeme,” Berlin Sitzungsber. (1884), pp. 159; J. f. Math. 97 (1884), pp. 111 – Ges. Abhandl. III 

(1895), pp. 119, and also in Helmholtz, Dynamik, pp. 362. 

 (85) The expression hidden coordinate will be explained later on, and likewise the term (that J. J. Thomson 

introduced) kinosthenic coordinate, which is still prevalent in England. 

 (86) Cf., e.g., Thomson-Tait, Natural Philosophy, v. I, no. 319, pp. 320 [cf., also IV 1 (A. Voss), nos. 26-28].  

 (87) Cf., E. J. Routh, Dynamik, v. II, Chap. 10, § 450, pp. 331; H. von Helmholtz, “Statik monozyklischer 

Systems,” Ges. Abhandl. III, pp. 130 or also Dynamik, § 77, pp. 361.  

 (88) The set of all integral curves then admits the one-parameter group of parallel displacement in the qn-direction. 

That group is characteristic of the existence of first integrals (75), cf. infra, no. 25. 
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cn must then define a family of 2n−2 curves within the set of 2n−1 projections such that that set 

seems to be subdivided into 1 families of 2n−1 curves. The 2n−2 curves in one such family of 

projections with a fixed numerical value of cn once more define precisely the extremals of a 

variational problem with (n – 1) unknown functions. In order to see that, one puts the equations of 

motion (70) into the form of a system of 2n first-order differential equations, namely, the so-called 

canonical system (89), in which one juxtaposes the impulse components p with the position 

coordinates q . (For the historical development of that, cf., infra, no. 14.) 

 If one writes the relation between H and L in the form: 

 

(75.a)   H (p1, …, pn, q1, …, qn, t) = 1 1 b nq p q p L+ + −  , 

 

corresponding to (73), in which the q  are now regarded as functions of p, q, t, then one can 

read off the relations: 

 

(75.b)   
H

p




 = q , 

H

q




 = − 

L

q




,  

H

t




 = − 

L

t




,  

 

the first group of which is only another form of the relations (72) that couple impulse and velocity 

components. The equations of motion (70) then take the form: 

 

dp H

dt q






+


 = 0 . 

 

The first group of equations (75.b), which give the coupling between the q  and p , are added to 

that. The system of equations of motion (70) can then be represented by the canonical system (90): 

 
 (89) In regard to that terminology, which was introduced by C. G. J. Jacobi [cf., “Note sur l’intégration des équ. 

diff. de la dynamique,” C. R. Acad. Sci. Paris 5 (1837), pp. 61 = Werke IV, pp. 129, esp. pp. 135], Thomson-Tait 

(Natural Phil., I, np. 319, pp. 307) remarked “why it has been so called it would be hard to say.” 

 (90) The canonical form of the equations of motion was first achieved in a special problem of perturbation theory 

by J. L. Lagrange, cf., Mécanique analytique (2nd ed., 1811), 2. part., sect. 5, no. 14 = Œuvres XI, pp. 357. S. D. 

Poisson also met up with the canonical form of the equations of motion in his work on perturbation calculations, cf., 

S. D. Poisson, “Sur les inégalités séculaire des moyens mouvements des planètes,” J. Éc. Polyt. 8 (1809), pp. 1. In 

general, the system was then exhibited by A. Cauchy, Bull. de la soc. philomath. (1819), pp. 10 and W. R. Hamilton, 

Trans. London Phil. Soc. (1835), pt. I, pp. 95. 

 The canonical equations have also been written down for more general mechanical problems. For instance, Th. 

Pöschl, “Sur les équations canoniques des systèmes non holonomes,” C. R. Acad. Sci. Paris 156 (1913), pp. 1829, 

presented it for quasi-coordinates. He set: 

J = 
T








 

and then defined: 

T J T 


 = − , 
T

J







=


, − 

i

T








 
 
 

 = 

i

T







 
 
 

 , 
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(76)    
dq

dt


 = 

H

p




,  

dp

dt


 = − 

H

q




   ( = 1, …, n), 

 

which represents a system of 2n first-order differential equations for the p (t), q (t). Naturally, 

the special form of that system is required by the form that the equations of motion (70) have as 

the Euler equations of a variational problem. A special advantage in terms of integration also 

arises from that canonical form. 

 Now, if qn is a cyclic coordinate, in particular, then from (75.b), since L / qn = 0 , one will 

also have H / qn = 0, so the canonical system will have the first integral: 

 

(77)     pn = const. = cn .  

 

If one substitutes that value of pn in H then only the 2n – 1 variables p1, …, pn−1 ; q1, …, qn−1 ; t 

will still appear in H, and one can solve the canonical system (76) with 2n unknown functions in 

such a way that one first solves the canonical system with 2 (n – 1) unknown functions: 

 

(77.a)    
dq

dt


 = 

H

p




,  

dp

dt


 = − 

H

q




  ( = 1, …, n − 1), 

 

in which the constant cn is introduced in place of pn in H, and then qn is determined as a function 

of time by a quadrature from the equation: 

 

(77.b) ndq

dt
 = 

n

H

p




, 

 

 
in which T must be a function of the J . If one then sets: 

 

H = T +  

 

then one will get the analogue of the canonical system: 

 

 = 
d

dt




 = 
H

J




, 

,

dJ H H H

dt J

 


    


 

   
= − −  

   
  . 

 

When H is independent of t, and the defining equations of  are independent of t, one can also derive the energy 

integral H = k from that. Moreover, G. Hamel had already expressed the idea of converting the equations of motion 

for quasi-coordinates into canonical form in “Die Lagrange-Euler Gleichungen der Mechanik,” Zeit. Math. u. Phys. 

50 (1904), pp. 1 (esp., pp. 17, footnote). 

 A more formal Ansatz for the canonical equations for non-holonomic constraints is also found in J. Quanjel, Rend. 

Palermo 22 (1906), pp. 263. R. Dautheville, Bull. Soc. math. Fr. 37 (1909), pp. 120, already formally posed the 

Appell corrected form of the Lagrange equations in the canonical form under the assumption of the existence of a 

potential for the forces. Cf., moreover, M. Bilimovitsch, “Sur les transf. canon. des équ. du mouv. d’un system. non 

holonome,” C. R. Acad. Sci. Paris 158 (1914), pp. 1064. 
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whose right-hand side is now a known function of time t. 

 However, the integration of the canonical system (77.a) with the 2 (n – 1) unknown functions 

p1 (t), …, pn−1 (t), q1 (t), …, qn−1 (t) is nothing but the determination of the projections q1 (t), …, 

qn−1 (t) of the space-time lines of motion onto the manifold of (q1, …, qn−1 , t) that were spoken of 

above, and indeed the ones that belong to the chosen numerical value of cn. The quadrature (77.b) 

then yields the function qn (t) (
91), and thus each projection of the space-time line itself. 

 Now, if one performs the transformation that converts the Euler equations (70) into the 

canonical system (76) backwards and applies it to the canonical system (77.a), so one calculates 

the p1, …, pn−1 from: 

  q  = 
H

p




    ( = 1, …, n – 1) 

and then defines: 

(78)   
1 1 1 1( , , , , , , , )n n nL q q q q t c

− −
 = 1 1

1 1

n

n

H H
p p H

p p
−

−

 
+ + −

 
 

 

then one will get the following system of (n – 1) second-order differential equations from the 

canonical system (77.a): 

(79) 
d L L

dt q q 

   
−    

 = 0   ( = 1, …, n – 1), 

 

which are the Euler equations of the variational problem: 

 

(79.a) 
2

1

1 1 1 1( , , , , , , , )

t

n n n

t

L q q q q t c dt

− −  = extrem. 

 

A comparison of (78) and (73) will show that: 

 

(79.b)  
1 1 1 1( , , , , , , , )n n nL q q q q t c

− −
= 1 1 1 1( , , , , , , , )n n n n

n

L
L q q q q t c q

q
− −


−


, 

 

in which nq  is replaced with the function of q1, …, qn−1, 1q , …, 1nq − , t that one calculates from 

(92): 

 
 (91) In which the integration constants that appear additively say just that one will obtain a one-parameter family 

from a space-time line by parallel translation in the qn-direction. 

 (92)  The fact that the projections of the extremals of the variational problem (69) with the same values of cn prove 

to be the extremals of the variational problem (79.a) is also easy to see directly, perhaps in the following way: If one 

has a segment along an extremal of  L dt = extrem. then one can imagine that the extremal is given by the projection 

e and then determine qn (t) from equation (79.c) by a quadrature. Now, one has: 
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 (79.c) 
n

L

q




 = cn . 

 

 That transformation (79.b), (79.c), which yields the integrand of the new variational problem, 

is the one that one refers to as the Routh transformation (79) or also the Helmholtz transformation 

(80). Moreover, it is easy to see how one might proceed analogously when two or more cyclic 

coordinates are present (93). 

 
2 2 2

1 1 1

(2) (1)( ) ( )

P P

n n n n n

P P

L dt L c q dt L dt c q q



 



= + = + −    , 

 

in which the last integral can be take over the projection, since qn does not appear in it. If one now replaces the 

projection e with another curve  that connects the points 1 and 2 then it will belong to a certain function qn (t) that 

one determines by means of (79.c), and thus a curve in the manifold of (q1, …, qn, t) [that goes through P1] that must 

end on the line 2 P2 . The endpoint might be P

, so let the curve be E. Obviously, one will then have: 

 

2

1 1 1

(1)( ) ( )

P P

n n n n n

P P

Ldt L c q dt L dt c q q

  

  



= + = + −  E E  . 

 

On the other hand, only qn varies along the line 
2

P P

, such that the integral will become: 

 

1

(1)( )

P

n n n

P

Ldt c q q



= −  

 

when it is extended along the line. If one the extends the integral  L dt over the broken path 
1

PP

 and 

2
P P


 then that 

will give: 

2

1

(2) (1)( )n n nL dt c q q







+ − . 

 

However, that must be greater than the integral over the extremal P1 P2, such that: 

 
2 2 2

1 1 1

(2) (1) (2) (1)( ) ( )

P

n n n n n n

P

L dt c q q L dt e L dt c q q

 

 

 

+ −  = + −    , 

and therefore: 

2 2

1 1

L dt e L dt

 

 

 

  , 

 

i.e., the projection e is an extremal of the variational problem (79.a). 

 (93) If qk+1, qk+2, …, qn are cyclic coordinates then one will have L

 = T


−  , in which one sets: 

 

(a)      T


 = 
1 1k k n n

T c q c q
+ +

− − −  
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 In the most important case in practice, namely, when the kinetic energy T in L = T –  is a 

quadratic form in the q , the relation (79.c) will yield q  as a linear (but not homogeneous) 

expression in the 1q , …, 1nq − . If one substitutes 

the calculated value for nq  from (79.b) in: 

  

L  = n nT q c−  −  = T  −   

 

then the function: 

 

T   = n nT q c−  

 

will no longer be a quadratic form in the 1q , …, 

1nq − , but a more general quadratic expression in 

the 1q , …, 1nq −  in which both a term that depends upon the velocity components linearly and a 

term that is completely free of them will appear. Obviously, one can combine the term in T that is 

free of the velocity components 1q , …, 1nq −  with the function . It will then have the character of 

a potential. From here on, one can try to interpret the applied forces that act upon the mechanical 

system and arise from a potential as purely kinetic in origin [for that, cf., IV 1 (A. Voss), nos. 27 

and 28]. In order to do that, one must regard the potential of the applied forces as one term in the 

kinetic energy of the system that originates in an unknown cyclic motion and then try to construct 

a theory of mechanics in which the concept of force has been eliminated completely. In that sense, 

H. Hertz (94) had, in fact, presented the program for explaining potential energy in terms of the 

cyclic motion of hidden masses that exist along with the visible masses, which is admittedly a 

program whose implementation has not met with great success. That interpretation has also given 

rise to the English term ignored coordinate (hidden coordinate, resp.). What is especially 

important in that is the case in which the acyclic coordinates change so slowly in time t that the 

associated velocity components in the kinetic energy can be set equal to something close to zero. 

The name of cyclic system has been proposed for such a mechanical system (95) since the acyclic 

 

as a generalization of (79.b). The recalculation must proceed here in such a way that one calculates 
1k

q
+

, …, 
n

q  from 

the equations: 

1 1,1 1 1, 1, 1 1 1,
,( )

k k k k k k k k k n n
c g q g q g q g q

+ + + + + + +
=− + + + + , 

…………………………………………………………… 

1 1 , 1 1
( )

n n nk k n k k nn n
c g q g q g q g q

+ +
=− + + + + , 

 

and substitute the values that one finds in the right-hand side of (a). On this, cf., also, L. Koenigsberger, “Das Prinzip 

der verborgenen Bewegung,” Heidelberg Sitzungsber. 3 (1912), no. 10. 

 (94) H. Hertz, Prinzipien der Mechanik, Book 2, Sect. 5, II = Werke III, pp. 252. 

 (95) Cf., H. Hertz, Prinzipien der Mechanik, Book 2, Sect. 5, I = Werke III, pp. 235. 

  Furthermore, one can also speak of cyclic coordinates when no force function exists, so the equations of motion 

possess the form: 

qn 

q1 

t Figure 1. 
2 

1 

P1 

e 

 

E 

P2 
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coordinates then will play the role of only parameters. The linear terms in  T   are referred to as 

gyroscopic terms since cyclic motions appear for certain motions of tops in an especially 

characteristic way, and one can then interpret the terms in the equations of motion that originate 

in the part of the kinetic energy that is linear in the velocity components in an especially intuitive 

way (96). 

 However, from the standpoint of this book, understanding the meaning of the cyclic 

coordinates does not lie in the direction that we have in mind. Rather, they are important here due 

to the fact that they open up the possibility of simplifying the system of equations of motion. The 

systematic theory of integration can be oriented towards the model of eliminating the cyclic 

velocity components. Knowing an arbitrary first integral can also, in fact, be utilized in a similar 

manner to knowing the constancy of a cyclic impulse. The simple relationship between a one-

parameter group of transformations and the constancy of cyclic impulses can likewise be adapted 

to the more general cases for a cyclic coordinate. A first integral of the equations of motion and a 

one-parameter group of transformations that takes the set of space-time lines into itself are 

mutually implicit (cf., infra, no. 25). As group theory teaches us, every one-parameter group of 

transformations possesses a normal form in which it appears to be a parallel displacement along a 

coordinate direction. The coordinate transformation that produces that normal form for the group 

must then, at the same time, give a form to the system of equations of motion in which the 

associated coordinate is a cyclic coordinate. In that way, the associated first integral must 

 

   
d T T

dt q q 

 
−

 

 
 
 

 = Q     ( = 1, …, n), 

 

and indeed, one refers to a coordinate qn as cyclic in this case when qn does not appear in the kinetic energy T itself, 

such that the associated equation of motion will read: 

 

n

d T

dt q





 
 
 

 = Qn . 

 

If all cyclic impulses (so, e.g., pn = / )nT q   remain constant under the motion (Qn = 0) then the motion is called 

adiabatic. By contrast, if the derivatives of the cyclic coordinates (viz., the cyclic velocity components) remain 

constant then the system will be referred to as isocyclic. That terminology was introduced by Helmholtz, who 

attempted to give a mechanical interpretation to the laws of thermodynamics by appealing to cyclic coordinates. [In 

his studies on the statics of monocyclic systems, cf., (84).] 

 (96) One ascribes those terms to the system of forces that are in effect, and one correspondingly calls them 

gyroscopic reaction forces, which originate in the hidden top motions, cf., W. Thomson and P. G. Tait, Natural 

Philosophy I, no. 345IV, pp. 392. This interpretation of the terms as forces is the basis for the term kinosthenic 

coordinate, moreover. 

 The following should be pointed out: If one were to replace the derivatives of the cyclic coordinates 
1k

q
+

, …, 
n

q  

with the constant cyclic impulses ck+1, …, cn in T itself, rather than T


, then after recalculation, T would be the sum 

of two quadratic forms, the first of which is a quadratic form in the velocity components  of the acyclic coordinates, 

and the second of which is a quadratic form in the cyclic impulses cn−k+1, …, cn . Terms that are linear in the q


 would 

not appear. Cf., Thomson-Tait, Natural Philosophy I, no. 319, pp. 322. 

 Even when the qk+1, …, qn are not cyclic coordinates, such a replacement of the 
1k

q
+

, …, 
n

q  in T with the associated 

impulses can be advantageous. Cf., A. B. Bassett, Quart. J. 38 (1907), pp. 367.  



Chapter II – The Variational Principles. 65 

 

simultaneously assume a form in which it expresses the constancy of the associated cyclic impulse. 

One next treats the integrals that are linear in the velocity components (96.a) (cf., infra, no. 29). 

 The cyclic coordinates are generally distinguished in a special way for this relationship 

between groups and integrals of the equations of motion. Namely, if several (say k) cyclic 

coordinates appear in a mechanical problem and one has, correspondingly, k first integrals then 

the set of k one-parameter groups of parallel displacements in the directions of the individual cyclic 

coordinates will define a k-parameter group. By contrast, if one has k arbitrary first integrals of 

the equations of motion then the k one-parameter groups that belong to the individual integrals will 

not, by any means, determine a k-parameter group, since the necessary conditions [cf., II A 6 (L. 

Maurer and H. Burkhardt), no. 5] do not need to be fulfilled. That will happen only when the k 

integrals are in involution with each other (cf., infra, no. 26). The first integrals of the equations 

of motion that are obtained by setting the k cyclic impulses equal to constants will then represent 

k integrals that lie in involution. 

 

 

 10. Jacobi’s principle of least action. – If time t does not appear explicitly in the Lagrangian 

L then, from (75.b), it cannot appear in H either. As one sees immediately from the system (76) of 

canonical equations: 

 

(80)    H (p1, …, pn, q1, …, qn) = const. = k 

 

is a first integral of the canonical system (97), so: 

 

(80.a) 1

1

n

n

L L
L q q

q q

 
− − −

 
 = − k 

 

is a first integral of the Lagrange equations of motion (70), and indeed it is the energy integral, 

from the meaning H. The appearance of the energy integral as the first integral of the equations of 

motion is then connected with the fact that t does not appear explicitly in L (H, resp.), i.e., that t 

appears in the equations of motion only as a differential dt, and therefore the totality of all space-

time lines of the motion must go to itself under a “parallel displacement” in the time direction (98). 

 
 (96.a) V. Voronets, “Transformation of the dynamical equations by means of linear integrals of the equations of 

motion,” Kyiv 1906 (Russian). In particular, for a linear integral, one has a one-parameter group of transformations 

of only the position coordinates. 

 (97) In fact, one has: 

dH

dt
 = 

1 1

1 1

n n

n n

H dp H dp H dq H dq

p dt p dt q dt q dt
+ + +

   
+ +

   
 = 0 , 

 

as one will see immediately upon appealing to the canonical system. 

 (98) That interpretation was first made known when the theory of relativity made it customary to regard the 

position coordinates and time (the impulse and energy, resp., which amounts to the same thing) as equivalent. 

 One sees immediately that the fact that the constancy of energy corresponds to the fact that time does not appear 

explicitly corresponds completely to the constancy of the impulse component that belongs to a cyclic coordinate when 
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As one sees, the independent variable t plays a role that corresponds to that of the coordinate qn in 

the previous section. The time t is then a type of cyclic coordinate here. I lay 1 space-time lines 

on the same cylinder M2 with generators that are parallel to the t-direction, which cuts out the 

associated trajectory in the Mn of position coordinates q1, …, qn . Mechanically, the appearance of 

the energy integral then means that every trajectory can be traversed in 1 ways. Since the same 

numerical value of the energy constant k belongs to all space-time lines on the same cylinder, one 

numerical value of k will belong to each of the 2n−1 trajectories such that a fixed value of k will 

single out 2n−2 trajectories, and the totality of all trajectories will seem to be subdivided into 1 

families of 2n−2 trajectories with a fixed numerical value of the energy constant. 

 Now, the 2n−2 trajectories of one such family are also extremals of a variational problem here 

that emerges from the variational principle of Hamilton’s principle by eliminating time. In that 

way, Hamilton’s variational principle for space-time lines will then be juxtaposed with the 

variational principle for the trajectories, namely, the so-called principle of least action. 

 The transition to that new variational problem also takes place here most conveniently by 

starting from the canonical system (76) (98.a). Namely, if one gives the energy integral (80) the 

form: 

 

(81)   
1 1( , , , , , , )n nH p p q q k  = H (p1, …, pn, q1, …, qn) – k = 0 

 

then the canonical system (76), which one can now write as: 

 

(82)  dq1 : … : dqn : dp1 : … : dpn = 
1 1

: : : : :
n n

H H H H

p p q q

      
− −

   
, 

 

 
one converts the variational problem of Hamilton’s principle, which is represented as a function problem in the 

calculus of variations, into a parametric problem by introducing a parameter u : 

 

1 1
( , , , , , )

n n
L q q q q dt  = 1

1, , , , ,n
n

q q
q q

t t
L t du

  
 

  
   = 

1 1
( , , , , , )

n n
L q q q q du  = extrem. 

 

Since t is a cyclic coordinate in that parameter problem, one has the first integral: 

 

L

t




 = const. = − k , 

or since: 

L

t




 = 

1 1 1

1

( , , , , , )
n n n

n

L L
L q q q q q q

q q
− −

 
−

 
, 

one will have: 

H = k , 

from (73). 

 (98.a) This was pointed out to the author by C. Carathéodory. On this subject, cf., also F. D. Murnaghan, “The 

principle of Maupertuis,” Washington Proc. of the Acad. 17 (1931), pp. 128. 
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can be regarded as the canonical system of a parametric problem in the calculus of variations (99): 

 
 (99) Since the explanations from the calculus of variations that are required here are not found in the articles II A 8 

(A. Kneser) and II A 8.a (E. Zermelo-H. Hahn), they might be briefly summarized here. 

 Let: 

(1)     
1 1

( , , , , , )
n n

f q q q q du   = extrem.  
dq

q
du




 =

 
 
 

, 

in which f is homogeneous of degree one in the q

 , so: 

 

(2)      f = 
1

1

n

n

f f
q q

q q

 
 + +

  
 , 

 

be a parametric problem in the calculus of variations with the Euler equations: 

 

(3)      

1 1

d f f

du q q

 

 

 
− 

 
 = 0    ( = 1, …, n) 

 

(which are not mutually independent). If one sets: 

 

(4)      p1 = 

1

f

q




, …, pn = 

n

f

q




 

 

here, then since the right-hand sides are homogeneous of degree zero in the 1q , …, 
n

q , one can eliminate the 1q , …, 

n
q , and one will get a relation: 

 

(5)      H (p1, …, pn, q1, …, qn) = 0 

 

(in which the form of the function H is not completely fixed). 

 Since: 

1 1

1 1

n n

n n

H H H H
p p q q

p p q q
   

   
+ + + + +

   
 = 0 

 

is then equivalent to these equations, which follow from (2) and (4): 

 

1 1 1

1

n n n

n

f f
q p q p q q

q q
   

 
 + + − + +

 
 = 0 . 

 

Therefore, if  is a proportionality factor then the following relations will be true: 

 

(6)     1

1 1

1
, , ,

, , ,

n

n n

n

H H
q q

p p

f H f H

q q q q

 

 

 
 = =  


   

 − = − =
   

 

 

which was first found (in essence) by W. R. Hamilton (cf., infra, no. 13). With that, the Euler equations (3) can be 

converted into the canonical system: 
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(83)    1 1( , , , , , )n nf q q q q du   = extrem.   
dq

q
du





 
 = 

 
. 

 

One then gets the integrand f when one next sets: 

 

(84)    

1

1 0

11

0

1

( ) ,

.....................................................

( ) ,

n

n
n

n

n

H
q g p g

p

H
q g p g

p



 




 


 

 



=



=

 
 = = −








  = = −







 

and calculates: 

(84.a)     p = 0

1

1 n

g g q  
 =

+   

 

from that. If one substitutes those values in H  = 0 then one will find that: 

 

( )1
0022

, 1

1 1

2

n

g q q g k  
  =

  +  − −  = 0 , 

or 

(84.b) 
1


 = 

1
002

,

2( ( ))k g

g q q  
 

−  −

 
. 

 

One can then get f from that by means of: 

 

f = 1 1 n np q p q + + , 

on the basis of (84.a): 

 

(7)     1

1

1

1
, , ,

, , .

n

n

n

n

H H
q q

p p

H H
p p

q q

 

 

 
 = =  


 

  = − = −
 

 

 

 If one has, conversely, a canonical system in the form (7) with the relation (5) then it will belong to a parametric 

problem in the calculus of variations of the form (1), which one will prove in the following way: One determines the 

dependency of the p on the q1, …, qn, , 1
q , …, 

n
q  and  from the first group of equations in (7), and then determines 

 by substituting the values of p that one finds into the relation (5). One correspondingly puts f into the form: 

 

(8)     
1 1

, , , , ,( )
n n

f q q q q   = 
1 1 n n

p q p q + + , 

 

 corresponding to (2). 
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f = 
0

1 , 1

1n n

g q g q q    
  = =

  +  , 

or furthermore, from (84.b): 

 

(84.c)   f = 1
0 002

1 ,

2( ( ))
n

g q k g g q q    
  =

  + −  −  . 

 

One will then find that the principle of least action is the variational problem of: 

 

(85)  1
0 002

1 ,

2( ( ))
n

g dq k g g dq dq    
  =

  
+ −  − 

  
   = extrem. 

 

whose extremals are the trajectories. In it, the g00, g0, and g are functions of only the position 

coordinates q1, …, qn , and are independent of time t. 

 If the kinetic energy T is a quadratic form in the q , in particular, so the Mn of the coordinates 

q1, …, qn becomes a Riemannian space with the arc-length element: 

 
2ds  = 

,

g dq dq  
 

 , 

 

then this variational problem will take the form: 

 

(86) 2( )k ds−   = extrem. 

 

 On the basis of that energy integral, the individual points of the trajectory that proves to be the 

extremal of the variational problem (85) [(86), resp.] can be associated with the time t by way of 

the differential relation: 

(87)     dt = 
,

1
002

2( ( ))

g dq dq

k g

  
 

−  −


 , 

while for (86) it is given by (99.a): 

(87.a) dt = 
2( )

ds

k − 
 . 

 

 
 (99.a) Here as well, an argument that is analogous to the one in (92) will show directly that the projections of the 

extremals of the Hamilton’s principle onto the spatial Mn of the q1, …, qn are the extremals of the variational problem 

(85) [(86), resp.]. 
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 The variational problem for the trajectories is the principle of least action in the form that C. 

G. J. Jacobi obtained it in (100) [cf., IV 1 (A. Voss), no. 44]. Historically, the principle was first 

expressed by M. de Maupertuis, if only in a very unclear (if not outright false) form. [For the 

historical development, cf., IV 1 (A. Voss), nos. 43 and 44]. L. Euler then first gave it a precise 

formulation by way of an example: The space-time curves of the motion are obtained as the 

extremals of the variational problem: 

 

(88)     2T dt  = extrem. , 

 

for which the constancy of the energy: 

 

(88.a) T +  = k 

 

is prescribed. In so doing, the lower limit of the integral is a given space-time point (1)

1 1( ,P q  …, 

(1)

1, )nq t , while only the position coordinates (2)

1q , …, (2)

nq  are given for the upper limit P2 , and the 

associated time t2 will first be determined by the extremum requirement itself (101). One can 

therefore refer to that formulation as Euler’s principle. Lagrange (102) then generalized the Euler 

formulation for arbitrary holonomic and scleronomic mechanical systems (103). In the Jacobi 

formulation, it is almost self-explanatory that the principle can yield trajectories only when the 

auxiliary conditions, which perhaps come about as a result of the constraints on the system, are 

holonomic and scleronomic. Therefore, it would seem appropriate to also exclude non-holonomic 

constraints for the Euler form of the principle, just as one does with Hamilton’s principle, and 

allow only those auxiliary conditions that are holonomic, as well as scleronomic. That is because 

for a variation in the sense of classical calculus of variations, one would not get the correct 

equations of motion from the principle with auxiliary conditions that are indeed holonomic, but 

rheonomic. By contrast, in the literature, there are those who have also attempted to express that 

principle in the broadest-possible domain of application (104). In order to do that, the type of 

 
 (100) Cf., C. G. J. Jacobi, Vorlesungen, 6. Vorlesung = Werke, Supp.-Bd., pp. 43. Using that Jacobi form of the 

principle, the problem of determining the trajectories in a mechanical problem will run parallel to that of determining 

the geodetic lines in a manifold with a general arc-length element. Jacobi has already pursued that parallel, which has 

made each advance in the one domain just as useful in the other, to worthwhile effect. It was systematically utilized 

later by P. Stäckel and others. Cf., also J. L. Synge, “On the geometry of dynamics,” Trans. London Phil. Soc. (A) 

226 (1927), pp. 31, esp., Chap. 4. 

 (101) L. Euler, Methodus inveniendi lineas curvas…, Lausanne 1744, additamentum II. 

 H. von Helmholtz, “Zur Geschichte des Prinzips der kleinsten Aktion.” Berlin Sitz. der Akad. (1887), pp. 225 = 

Wissensch. Abhandl. III, pp. 249 has proved that, in general, the Euler form of the principle will yield the equations 

of motion by the methods of the calculus of variations. 

 (102) J. L. Lagrange, Mécanique analytique, 2. part. sect. III, § 6 = Œuvres XI, pp. 315. 

 (103) In the literature, the principle is occasionally referred to as Lagrange’s principle. The term principle of 

Maupertuis is also very widespread.  

 (104) Cf., above all, O. Hölder, “Über die Prinzipien von Hamilton und Maupertuis,” Gött. Nachr. (1896), pp. 122, 

as well as Ph. E. B. Jourdain, “On those principles of mechanics which depend upon processes of variation,” Math. 

Ann. 65 (1908), pp. 513. A. Voss, “Über die Prinzipe von Hamilton und Maupertuis,” Gött. Nachr. (1900), pp. 322, 

has also adapted the Hölder approach to general coordinates. A somewhat-different formulation was given by H. 
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variation that is appropriate to the variational problem must once more be replaced with another 

one that one establishes by a special convention. Basically, one naturally does nothing but replace 

the variational formula of the variational principle with the integrated central equation (105) and 

then employ the variations as the virtual displacements. 

 

____________ 

 
Brell, Wien Sitzungber. 122 (1913) IIa 1, pp. 1031. One can also confer H. Brell and E. Schenkel, “Über die Prinzipien 

von Hamilton und Maupertuis,” Verhandl. der Deutsch. phys. Ges. 15 (1913), pp. 1082. 

 A. Voss generalized those ideas by giving a general form to the variational problem: 

 

( )T U dt +  = extrem. 

 

and sought to derive the various forms that it would take, like Hamilton’s principle and Euler’s principle. Cf., A. 

Voss, “Bemerkungen über die Prinzipien der Mechanik,” München Sitzungsber. 31 (1901), pp. 167. R. Leitinger, 

“Über Jourdains Prinzip der Mechanik und dessen Zusammenhang with der kleinsten Aktion.” Wien Sitzungsber. 122 

(1913) IIa 1, pp. 635, would even like to arrive at Euler principle by integrating the differential formulas of Jourdain’s 

principle, whereby the definition of the variation must naturally be made heuristically. Similar arguments that started 

from the principle of least constraint were presented by H. Brell, Wien Sitzungber. 122 (1913) IIa 1, pp. 933. 

 (105) Naturally, in a form that takes the constancy of energy into account.  



CHAPTER III 

 

PRELIMINARY ANSÄTZE FOR THE GENERAL THEORY OF 

INTEGRATION. 
 

 

 11. Introductory remarks. – One finds the course of motion for a mechanical system from 

the differential equations of motion by integrating them, whereas examining the bases for 

obtaining them was the subject of the previous sections. Historically, the systematic theory of that 

integration has been constructed by treating examples, and indeed, there were basically only two 

problems that were treated repeatedly in the research, namely, the “celestial” mechanics of the n-

body problem [cf., VI 2, 12 (E. T. Whittaker)] and the “terrestrial” mechanics of the motion of 

rigid bodies (i.e., tops). Of the two, the n-body problem has had a significantly greater influence 

on the general theory of integrating the equations of motion than the motion of rigid bodies. The 

beginnings of one such theory of integration are almost identical to the perturbation calculations 

of the astronomers, whose foundations were laid by L. Euler, J. L. Lagrange, P. S. Laplace, S. 

D. Poisson (106). W. R. Hamilton (from 1824 on) was the one we have to thank for showing us 

that defining the source of the equations of motion in the form of a variational problem would lead 

to some special simplifications in its analytical treatment. However, it was not his research in 

mechanics, but in ray optics, that inspired his new ideas. In the characteristic function, he 

discovered the suitable tool for tracing an entire ray system that was emitted from a luminous point 

through an optical instrument. He then soon recognized that the existence of the characteristic 

function would depend upon only the fact that the phenomena of ray optics could be summarized 

mathematically in Fermat’s principle of the shortest light-path, and therefore (he concluded) for 

every realm of phenomena that was based upon a variational problem, the adaptation of the concept 

of the characteristic function to it must bring with it some simplifications that are analogous to the 

ones that were achieved in geometrical optics. In particular, he applied those ideas to the 

differential equations of mechanics (107), and in so doing developed a new form for the theory of 

perturbations in astronomy. 

 Hamilton’s ideas were taken up in Germany by C. G. J. Jacobi, but of course, not in their 

original form. Rather, he was following up on his own preconceived notions that he had formed in 

his investigations into the integration of first-order partial differential equations. From there, the 

genesis of a systematic theory of integration for the differential equations of mechanics arose that 

was further built up by the Jacobi school. In so doing, the work of Lagrange and Poisson on the 

theory of perturbations had considerable influence. Some historical remarks on the work of 

Lagrange and Poisson, as well as Hamilton, are thus necessary for a deeper understanding of the 

 
 (106) For a detailed report on those beginnings of a theory of integration, cf., A. Cayley, “Report on the recent 

progress of theoretical dynamics,” Report on the British Assoc. for the Advancement of Science (1857), pp. 1 = Coll. 

Papers III, pp. 156. Cf., also E. O. Lovett, “The theory of perturbations and Lie’s theory of contact transformations,” 

Quart. J. of pure and appl. Math. 30 (1899), pp. 47. 

 (107) The adaptation to mechanics was especially obvious when one stood on the base of Newton’s emissive optics, 

which researchers in England had long sought to establish in opposition to Huyghen’s wave theory.  
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conceptual structure of the general theory of integration of the equations of motion that the Jacobi 

school had built up. 

 

 12. The variation of constants due to Lagrange and Poisson. – The motion of the individual 

planets around the Sun (two-body problem) can be reduced to the motion of a mass-point about a 

fixed attracting point, and as such, they can be described by the equations of motion of a one-body 

problem: 

(89)     

3

3

3

1
0,

1
0,

1
0

m
x x

r

m
y y

r

m
z z

r

+
− =


+

− =


+
− =



  (r = 2 2 2x y z+ + ) 

 

[cf., VI 2, 15 (Karl F. Sundman), no. 3]. When one considers the influence of the other planets, 

a more general potential function  (x, y, z, t) will enter in place of the potential: 

 

(89.a) * = 
1 m

r

+
 . 

 

However, the effect of the other planets is relatively minor in comparison to the effect of the Sun, 

such that the potential  can be split into the “unperturbed” motion and a perturbing function  

(x, y, z, t): 

(89.b)     (x, y, z, t) = 
1 m

r

+
−  (x, y, z, t) . 

 

The equations of motion for the actual (“perturbed”) motion will then have the form: 

 

(89.c) 
3

1 m
x x

r

+
−  = 

x




, 

3

1 m
y y

r

+
−  = 

y




, 

3

1 m
z z

r

+
−  = 

z




 

 

[cf., VI 2, 15 (Karl F. Sundman), no. 2]. Lagrange was the next to address them (108). Meanwhile, 

he could also adapt his arguments to the more general problem in which the equations of motion 

in unperturbed form possessed the general form: 

 

(90)     
d L L

dt q q 

  
−    

 = 0  ( = 1, …, n) 

 

 
 (108) J. L. Lagrange, “Mémoires sur la théorie des variations des éléments des planètes et en particulier des 

variations des grands axes de leurs orbites,” Paris Mém. de l’inst. (1808), pp. 1 = Œuvres VI, pp. 711. 



74 General Methods of Integration in Analytical Mechanics 

 

so the perturbation equations will become (109): 

 

(90.a)     
d L L

dt q q 

  
−    

 = 
q




  ( = 1, …, n). 

 

 Perturbation theory assumes that equations (90) are solved for the unperturbed problem, and 

indeed Lagrange assumed that the q were functions of t and determined from 2n integration 

constants (110): 

 

(91) q = q (t, c1, …, c2n)   ( = 1, …, n). 

  

At the same time, the velocity components q  (the associated impulse components p , resp.) will 

be functions of t and the 2n constants c1, …, c2n : 

 

(91.a) p = p (t, c1, …, c2n)   ( = 1, …, n). 

 

Now, in order to solve the equations (90.a) of the perturbed problems, Lagrange, learning from 

the method variation of constants that had already been employed by L. Euler, imagined that the 

2n integration constants c1, …, c2n were (slowly-varying) functions of time and sought to ascertain 

them in such a way that equations (90.a) would be satisfied by the perturbed motion if one had 

substituted (91) (111). However, one will get only n equations for the 2n unknown functions c1, …, 

c2n in that way. For that reason, in order to fix the c completely, Lagrange added the condition 

that the velocity of the unperturbed motion and that of the perturbed motion should coincide at 

every moment t (112), which is a condition that one might also care to formulate in the law that the 

unperturbed motion shall be an osculating motion (113) to the perturbed motion. It will lead to the 

equations: 

dq

dt


 = 

q

t




 

or 

(92) 21

1 2

n

n

q q dcdc

c dt c dt

  
+ +

 
 = 0   ( = 1, …, n) . 

 

 
 (109) J. L. Lagrange, “Mémoires sur la théorie générale de la variation des constantes arbitrarires dans tous les 

problèmes de la mécanique,” Paris Mém. de l’inst. (1809), pp. 257 = Œuvres VI, pp. 769. 

 (110) For a planet, e.g., the six elliptic elements might be such a system of integration constants [cf., VI 2, 15 (Karl 

F. Sundman), no. 6].  

 (111) On this subject, cf., VI 2, 15 (Karl F. Sundman), no. 5.   

 (112) I. e., the q
  shall take the same numerical values at every moment t, regardless of whether one regards the 

c1, …, c2n in (91) as functions of time or constants in the differentiation with respect to t, to the extent that one only 

assigns those numerical values to the c that belong to the value of t in question. 

 (113) Cf., VI 2, 15 (Karl F. Sundman), no. 6.  
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On the other hand, when one introduces the impulses p = /L q   into equations (90) and (90.a), 

one will get: 

dp p

dt t

 
−


 = 

q




 , 

 

since, in fact, the L / q will have the same values for the perturbed and unperturbed motions 

when the c1, …, c2n are osculating elements. Thus, the n equations: 

 

(93) 21

1 2

n

n

p p dcdc

c dt c dt

  
+ +

 
 = 

q




   ( = 1, …, n) 

 

will be added to equations (92), and together with (92), they will represent a system of 2n first-

order differential equations for the 2n unknown functions c1 (t), …, c2n (t). 

 From (91) and (91.a), the factors that multiply the derivatives dc / dt are functions of time t 

and the c1, …, c2n . Likewise, the right-hand sides of (93), in which one imagines that the 

expressions (91) have been substituted for the q, are also functions of t and the c1, …, c2n . One 

can imagine that the expressions (91) have been substituted for the q directly in the perturbation 

function  (q1, …, qn, t), which will make it into a function of time t and the c1, …, c2n : 

 

(94)  =  (t, c1, …, c2n ) . 

 

However, it will then be convenient to introduce the derivatives of the perturbation functions (94) 

with respect to the c1, …, c2n into the “perturbation equations” (92) and (93). In order to do that, 

Lagrange multiplied the individual equations (93) by q / c and subtracted from them the 

corresponding terms in (92) multiplied by p / c, by which, he then got: 

 

21

1 1 2 2

n

n n

p q q p p q q p dcdc

c c c c dt c c c c dt

       

   

          
− + + −   

          
 = 

q

q c



 



 
 . 

 

Upon summing over  from 1 to n, one will then get the system of 2n so-called Lagrangian 

perturbation equations: 

(95)    21
1 2[ , ] [ , ] n

n

dcdc
c c c c

dt dt
 + +  =

c

 


  ( = 1, …, 2n) . 

 

The [c , c] are the so-called Lagrange brackets (114), which are defined by: 

 

 
 (114) Those constructions, which first appeared in perturbation calculations in the way that was given in the text, 

have since then taken on great significance in the theory of first-order partial differential equations and ancillary 

theories in analysis [cf., also II A 5 (E. von Weber)]. 
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(96)    [c , c] = 
1

n p q q p

c c c c

   

    =

    
−      

  , 

 

and with that definition, they define a skew-symmetric system: 

 

(96.a) [c , c] = − [c , c] , so [c , c]  0 , 

 

such the terms in the principal diagonal will be missing from the perturbation equations (95). In 

general, one should expect that these Lagrange brackets will be functions of c1, …, c2n, and time 

t. Meanwhile, as Lagrange could further show by calculation, time t does not appear explicitly in 

them (115); they are functions of only the c1, …, c2n . 

 Almost simultaneously with Lagrange, S. D. Poisson presented his perturbation formulas in 

a different way (116), and they were, to some extent, reciprocal to Lagrange’s perturbation 

formulas. Whereas Lagrange determined the solutions to equations (90) for the unperturbed 

problems, i.e., he thought of representing the q , p as functions of time t and the 2n integration 

constants c1, …, c2n, Poisson started from a system of 2n first integrals of the unperturbed 

equations of motion (90), which he imagined to be posed in the form (117): 

 

(97)     (q1, …, qn, p1, …, pn, t) = c  ( = 1, …, 2n). 

 

Now, in order to integrate the perturbation equations, Poisson, like Lagrange, regarded the 

constants c1, …, c2n of the unperturbed motion as slowly-varying functions of time. With that 

assumption, it will follow from (97) that: 

 

(98)   
dc

dt


 = 1 1

1 1

n n

n n

dq dpdq dp

q dt q dt p dt p dt t

            
+ + + + + +

    
, 

 

while, on the other hand, it will emerge from (97) that one has: 

 

(98.a)   0 = 1 1

1 1

n n

n n

q pq p

q t q t p t p t t

          

   

    
+ + + + + +

    
 

 

for the unperturbed motion (118). If one demands that the constants c1, …, c2n should be osculating 

constants then one would need to have: 

 
 (115) The intrinsic reason for this will be given below. (Cf., no. 21) 

 (116) S. D. Poisson, “Mémoire sur la variation des constantes arbitraires dans les questions de mécanique,” J. Éc. 

Polyt. 8 (1809), pp. 266. 

 (117) One can obtain them as solutions to (91), (91.a) when one solves the 2n functions p , q for the 2n constants 

c1, …, c2n .  

 (118) Here, the derivatives with respect to time while the values of c are held constant are distinguished from the 

derivatives with varying c  at one instant by . 
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q

t




 = 

dq

dt


, 

while: 

dp p

dt t

 


−  = 

q

 


. 

 

Thus, subtracting (98) and (98.a) will yield: 

 

(98.b)  

2

1 1 11 1

2

1 1

.

n n n

n n

n n

dc c c c

dt p q p q p q p c q

c c

c p q

     

      

 

   

 

= = =

= =

             
= + + = =              


    

=         

  

 

 

 

On the other hand, since the perturbing function is independent of the impulse components, one 

will have: 

0 = 
21

1 2

n

n

cc

c p c p 

   
+ +

   
 , 

 

or when one multiplies by c / q and sums over  : 

 

0 = 
2

1 1

n n c c

c q p

 

   = =

   
 

   
  . 

 

If one subtracts that from (98.b) then that will yield the system of so-called Poisson perturbation 

equations: 

(99)    
dc

dt


 = 1 2

1 2

( , ) ( , )n

n

c c c c
c c

 

 
+ +

 
  ( = 1, …, 2n). 

 

The Poisson brackets (c, c) in that are defined by: 

 

(100)   (c , c) = 
1

n c c c c

p q q p

   

    =

    
− 

    
  = 

1 1 1 1 n n n n

c c c c c c c c

p q q p p q q p

                
− + + −  

          
 . 

 

Like the Lagrange brackets, the Poisson brackets also define a skew-symmetric system with that 

definition: 

 

(101.a)    (c , c) = − (c , c) , so (c , c)  0 , 
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such that the terms in the principal diagonal will also be missing from the Poisson perturbation 

equations. Similarly, as Poisson could show by calculation, the Poisson brackets have the property 

that they are functions of time t and the c1, …, c2n, as one might expect, but time t does not appear 

in them explicitly (119). 

 Just as formulas (91), (91.a), on the one hand, and (97), on the other, which together determine 

the unperturbed motion, are solutions to each other, the Poisson perturbation equations (100) are 

also the solutions to the Lagrangian perturbation equations (95), and conversely. It then follows 

that the relations: 

(102)    

2

1

[ , ]( , )
n

c c c c   
 =

  = 
0 ( ),

1 ( )

 

 




=
 

 

must exist between the Lagrange and Poisson brackets. 

 Lagrange soon remarked (120) that for a special choice of the constants c1, …, c2n (e.g., when 

he chose them to be the initial values of the position coordinates q1, …, qn , and that of the impulse 

components p1, …, pn), all of the bracket expressions in each of the perturbation equations can 

vanish, except for one of them that will assume the value + 1 or – 1, and the perturbation equations 

will take the form: 

(103)    
d

dt


= 



 


,  

d

dt


= − 



 


, 

 

when one introduces such constants 1, …, n, 1, …, n, which is then the canonical form (121). 

Nevertheless, even though that form for the perturbation equations seemed remarkable to him, he 

did not succeed in putting the general equations of motion into canonical form. Thus, he had 

overlooked the fact that he had basically posed the “problem of the canonical transformation of 

the equations of motion” here (cf., infra, no. 31, et seq.). 

 

 

 13. W. R. Hamilton’s investigations into geometrical optics (122). – The arguments by which 

W. R. Hamilton blazed new trails into the analytical treatment of the differential equations of 

motion arose from geometrical optics (cf., no. 11), and indeed he was already basically toying with 

 
 (119) That is Poisson’s theorem, whose significance for the theory of integration was first emphasized by Jacobi 

(cf., infra, no. 26).  

 (120) Cf., J. L. Lagrange, “Second mémoire sur la théorie de la variation des constantes arbitraires dans les 

problèmes de mécanique, dans lequel on simplifie l’application des formules générales à ces problèmes,” Paris 

Mémoires de l’inst. (1809), pp. 343 = Œuvres VI, pp. 807. 

 (121)  Cf., (90). 

 (122) W. R. Hamilton, “Essay on the theory of systems of rays,” Dublin Trans. R. Irish Acad. 15 (1828), pp. 69 = 

Papers I, pp. 1, as well as “Supplement to an essay…,” Dublin Trans. R. Irish Acad. 161 (1830), pp. 1 = Papers I, pp. 

107, “Second supplement to an essay…,” Dublin Trans. R. Irish Acad. 162 (1831), pp. 93 = Papers I, pp. 145, “Third 

supplement to an essay…,” Dublin Trans. R. Irish Acad. 17 (1837), pp. 1 = Papers I, pp. 164. The first thing to 

precipitate from his ideas was the treatise “On caustics,” which was submitted to the Royal Society of Ireland in its 

nineteenth year 1824. It was not printed at the time but was first published more recently as a supplement to the first 

volume of his works (W. R. Hamilton, Papers I, pp. 345), which also included all of Hamilton’s other papers on ray 

optics. 
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the idea of fusing the emissive and undulatory optics [cf., V 21 (A. Wangerin), no. 1] into a greater 

whole (123), which has now (a hundred years later) been realized by wave mechanics. In order to 

do that, in the bundles of light rays that are emitted from a luminous point and pass through an 

optical system, along with the light rays, he always considered the wave surfaces of the bundle 

and observed the relationships between rays and wave surfaces. Now, since one prefers to 

summarize the laws of light propagation in Fermat’s principle of the shortest light path (124), he 

was then led to regard the light rays as the extremals of the variational problem: 

 

(104)     n ds  = extrem. 

 

The n in that is the index of refraction, and in an anisotropic, inhomogeneous medium, it will be a 

function of the direction and position: 

(104.a)     n = n (, , , x, y, z)  , ,
dx dy dz

ds ds ds
  

 
= = = 

 
, 

 

such that the light rays are the integral curves of the Euler equations for the variational problem 

(104): 

(104.b)   
d n n

ds x

  
− 

  
 = 0 , 

d n n

ds y

  
− 

  
 = 0 , 

d n n

ds z

  
− 

  
 = 0 . 

 

 That function n simplifies considerably in the individual cases. In particular, the index of 

refraction n will be a constant (125) in a homogeneous isotropic medium, such that the extremals 

will be straight lines (126). In a single bundle of light rays that is emitted from a luminous point, 

and is therefore initially homocentric, but will no longer remain homocentric when it passes 

through the optical instrument (as a result of reflections or refractions, resp.), Hamilton could now 

find the wave surfaces from the variational problem (104) without appealing to the undulatory 

theory of light. Namely, one will get the individual wave surfaces when one determines the point 

on each light ray that delimits a prescribed light-path length with the luminous point and can be 

 
 (123) Cf., E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys. (4) 79 (1926), pp. 489 = E. 

Schrödinger, Abhandlungen zur Wellenmechanik, Leipzig, 1927, pp. 17. F. Klein had already referred to the coupling 

of the emission theory and the wave theory of light in Hamilton’s work on ray optics. Cf., F. Klein, “Über neuere 

englische Arbeiten zur Mechanik,” Jahresber. d. Deutsch. Math.-Ver. 1 (1891/92), pp. 35 = Ges. math. Abhandl. II, 

pp. 601. 

 (124) Cf., e.g., M. Herzberger, Strahlenoptik, Berlin 1931, pp. 5.  

 (125) The numerical value of that constant is required by the color of the light. From Hamilton’s practical 

viewpoint (e.g., construction of optical instruments that are free of chromatic aberration), it is characterized by the 

fact that he imagined that n was not only an independent variable, but also a “color parameter.” 

 (126) The extremum requirement for the variational problem, which simplifies to an extremum problem for a 

function of finitely-many variables here: 

 

(104.c)      extrem.,n l 


=  

 

is correctly established by the kinking of the light ray under reflection and refraction. 
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introduced into the ray bundle as surfaces of constant light-path in the ray-bundle (127). If one 

thinks of the numerical value of the constant as variable then one will get an entire family of such 

surfaces in the ray bundle: 

 

(105) V (x, y, z) = const., in which V (x, y, z) = n l 


 , 

and the sum is taken over the extent of the path along the light ray that connects the luminous point 

with the point P (x, y, z). Hamilton called the function V (x, y, z) the characteristic function of the 

bundle of light rays. Now, the surfaces of constant light-path have the property that the light rays 

intersect them perpendicularly, such that conversely, when one knows a surface V (x, y, z) = const., 

one can get the light rays as the system of normals to that surface. One has (128): 

 

(106) 
V

x




 = n  , 

V

y




 = n  , 

V

z




 = n  . 

 

 For the generalization in which the index of refraction n is not constant, but a function of 

position (e.g., light ray in the atmosphere): 

 

(107) n = n (x, y, x) , 

 

the argument will remain valid with no changes, except that now the light rays will no longer be 

straight lines, but curves, and the characteristic function is defined by: 

 

(107) [sic] V (x, y, z) = 
1

0

( , , )

P

P

n x y z ds  

 

accordingly, and the integral is taken along the light ray. What is more significant is the 

generalization that relates to the study of the propagation of light in crystals, in which the index of 

refraction is a function of the direction of the ray: 

 

(108) n = n (, , ) . 

 

The surfaces of constant light path (129): 

V (x, y, z) = const. 

 

 
 (127)  Since, according to the undulatory theory, the time that light requires to traverse a segment of the light ray 

is proportional to the length of the light path, the surfaces of constant light-path will be reached by the light at equal 

times, and will then be the wave surfaces, in the sense of the undulatory theory. 

 (128) In order to obtain those formulas directly, one must replace the index of refraction n in the variation problem 

(104) with the equal quantity: 

 

(106.a)     2 2 2n   + + .  

 (129) In which V is defined as in (105).  
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will no longer intersect the rays at right angles, in the sense of Euclidian metric geometry, i.e., the 

light rays and wave normals will no longer coincide, but rather the direction of the ray will be 

coupled with the direction of the surface normal by the law: 

 

(109)    
V

x




 = 

n






, 

V

y




 = 

n






, 

V

z




 = 

n






, 

 

which says, in the terminology of the calculus of variations [cf., II A 8.a (E. Zermelo-H. Hahn), 

no. 1], that the surfaces are transverse to the light rays (130). From there, it is only one more step 

to the general case of inhomogeneous and anisotropic optical media, in which the surfaces of 

constant light path in a bundle of (curvilinear) rays will be obtained setting the function: 

 

(110) V (x, y, z) = 
1

0

( , , , , , )

P

P

n x y z ds    

 

equal to a constant, in which P0 is understood to mean the common starting point of the rays in the 

bundle. The curvilinear light rays are also coupled with the normals to the surfaces V (x, y, z) = 

const. by formulas of the same form as (109): 

 

(1111)    
V

x




 = 

n






, 

V

y




 = 

n






, 

V

z




 = 

n






, 

 

 
 (130) That relationship between the light rays and the surfaces of constant light path can also be referred to as 

orthogonality, in the generalized sense of the word. In order to see that, one must no longer regard ds = 2 2 2dx dy dz+ +  

as the arc-length element of the metric that prevails in space, but the metric in the sense of optics, which is defined 

with the help of the index of refraction (108) (which is a homogeneous function of degree one in its variables) by: 

 

(108.a)  d = n (, , ) ds = n (dx, dy, dz) . 

 

In place of the unit sphere in Euclidian space: 
2 2 2  + +  = 1 

 

that serves as a “gauge surface,” one will then find the surface: 

 

n (, , ) = 1 

 

as the “gauge surface in space” that Hamilton referred to as a spheroid. In isotropic media, the gauge surface has the 

corresponding form (128): 
2 2 2n   + +  = 1 , 

 

so it is a sphere with radius 1 / n . From the standpoint of wave optics, those gauge surfaces are the unit waves that the 

light attains from a luminous point in a unit time. Physically, one then represents the introduction of the new metric 

in space in such a way that all lengths are measured in the time that light needs in order to traverse it. 
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but in which n now depends upon the position coordinates, along with the direction cosines. Those 

formulas, which give the relationship between the (tangent to the) light ray and the wave normals 

can also be expressed in the terminology of the calculus of variation by saying that the light rays 

intersect the surfaces of constant light path transversally (131). 

 Now, Hamilton eliminated the direction cosines , ,  for the rays from equations (111), and 

in that way obtained the first-order partial differential equation: 

 

(113) , , , , ,
V V V

x y z
x y z

   
  

   
 = 0 

 

for the characteristic function V (x, y, z), in which V itself did not appear (132). The function  that 

one introduces in that way takes on a very intuitive interpretation in terms of the unit waves (112.a): 

 

n (, , , x, y, z) = 1 , 

because the derivatives: 

 
 (131)  Here, transversality is orthogonality in the sense of the metric that is defined by the arc-length: 

 

(112)    ds = n (, , , x, y, z) ds = n (dx, dy, dz, x, y, z) . 

 

That metric is defined in only a differential-geometric sense, so in the sense of Riemannian geometry [cf., III D 11 

(L. Berwald), no. 17]. If one then imagines that one assigns a space to each individual point that is filled with a 

homogeneous medium of the same index of refraction that prevails at that point then one will have the gauge surface: 

 

(112.a)  n (, , , x, y, z) ds = 1 , 

 

for one such space, in the sense of the metric (112), which arises from the “infinitesimal” gauge surface (112) by a 

dilatation with a ratio of d : 1. 

 The light rays are geodetic lines for the metric (112). In terms of the history of the mathematical ideas, it might not 

be uninteresting to note that perhaps simultaneous to Hamilton, C. F. Gauss studied the pencil of geodetic lines 

through a point on a surface in his investigations into surface theory and introduced the associated family of geodetic 

circles, which are completely analogous to the surfaces of constant light path in the bundle of light rays. Gauss 

published his investigations in regard to that in 1827 in his Disquisitiones generales circa superficies curvas, Werke 

IV, pp. 217 [cf., III D 3 (R. von Lilienthal), no. 15]. 

 (132) For a homogeneous medium, in particular, it will be free of x, y, z: 

 

, ,
V V V

x y z

  


  

 
 
 

 = 0 . 

 

If the medium is also isotropic, in addition, then it will read simply: 

 
22 2

1 V V V

n x y z

      
+ +    

      
 = 1 , 

or 
22 2

V V V

x y z

  

  

    
+ +    

    
= 

2
n , 

resp. 
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(114)     = 
n






,  = 

n






,  = 

n






 

 

are the components of the altitude that one can drop from the tangent plane to the point , ,  in 

question on the unit wave to the center, since: 

 

  +   +   = 1 , 

 

i.e., , ,  are the coordinates of the tangent plane at the point in question. Hence, if , ,  are 

eliminated from (114) then that will give the equation of the unit wave in planar coordinates in 

the form of (133): 

 

(115)      (, , , x, y, z) = 0 . 

 

 Geometrically, the fact that the characteristic function V (x, y, z) of a bundle of rays satisfies 

the partial differential equation (113), means that the tangent plane to the surface of constant light 

path (i.e., the wave surface) V (x, y, z) = const. that goes through a point P (x, y, z) is parallel to the 

tangent plane to the unit wave that belongs to the point that contacts the direction of the ray at the 

point where the ray pierces the unit wave. If one imagines that , ,  are not the coordinates of a 

tangent plane to the unit wave, but the components of a vector that might be referred to as the wave 

vector, then the endpoints of all wave vectors of the unit wave of a point (x, y, z) will likewise 

sweep out a surface (134) whose radii will give the direction and reciprocal magnitudes of the speed 

 
 (133) In so doing, Hamilton chose the normalization that would make: 

  

(115.a)  1  
  

−
  

+ +
  

 = 0 . 

 

Cf., the form of  in (132). One correspondingly obtains the coordinates of the contact point of the individual tangent 

plane (, , ) from the formulas: 

(115.b)  





 = 

n


,      






 = 

n


,      






 = 

n


, 

 

and comes back to equation (112.a) for the unit wave in point coordinates by eliminating , ,  from (115.a), say in 

the form: 

, , , , ,x y z
n n n

  


 
 
 

 = 0 . 

(Cf., Hamilton, Papers I, pp. 171.) 

 (134) In Fresnel’s crystal optics, one juxtaposes that surface as the normal surface to the ray surface that the unit 

wave defined. [cf., e.g., P. Drude, Lehrbuch der Optik, 3rd ed., Leipzig, 1912, pp. 311 and pp. 303, as well as V 21 

(A. Wangerin), no. 7]. Due to formulas (115.b), in conjunction with: 

 

  +   +   = 1 , 
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of propagation of the wave. When viewed from that standpoint, the partial differential equation 

(113) means that the wave vector of the surface V (x, y, z) = const. at the point (x, y, z) is 

simultaneously a wave vector to the unit wave that belongs to that point, and indeed it is the one 

that is determined by the direction of the ray. 

 Now, along the individual light ray, the direction of the ray, or better yet, the ray vector (135) 

with the components 
n


, 

n


, 

n


 [n = n (, , , x, y, z)] and the wave vector with the components  

, ,  are coupled to each other, and indeed correspond to the formulas (114), which now read: 

 

(116)     = 
n






,   = 

n






,  = 

n






, 

 

or the formulas (115.b), which are equivalent to them and might now be written in the form: 

 

(117)    
n


 = 






,  

n


= 






,  

n


 = 






. 

 

Since, on the one hand,  = dx / ds ,  = dy / ds ,  = dz / ds , and on the other [cf., (131)]: 

 

n ds = ds = dV , 

they will possess the form (136) 

 

(118)    
dx

dV
 = 






,  

dy

dV
 = 






,  

dz

dV
 = 






. 

 

 Therefore, when one knows how the wave vector changes as one advances along the light ray, 

one will also have the light ray. In order to determine that change, Hamilton took the difference 

of the values of the characteristic function at two infinitely-close points: 

 

V (x + dx, y + dy, z + dz) – V (x, y, z) = ( , , , , , )V dx dy dz x y z  = n (dx, dy, dz, x, y, z) 

= n (, , , x, y, z) ds , 

and one will then find that (137): 

d = 2 − 1 = 
V

x




 = 

n
ds

x




, 

 
that will lead back to the same construction that one arrives at when one applies the ray surface to the normal surface 

as when one applies the normal surface to the ray surface. Moreover, the simultaneous consideration of the ray surface 

and the normal surface was what led Hamilton to the discovery of conical refraction, cf., “Third Supplem.,” no. 28, 

29 = Papers I, pp. 283, et seq. 

 (135) which gives the direction and reciprocal magnitude of the ray velocity.  

 (136) Cf., Hamilton, Papers I, pp. 208. 

 (137) Cf., Hamilton, Papers I, pp. 173, cf., also the presentation in Thomson-Tait, Nat. phil. I, no. 330, pp. 346, 

et seq.  
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d = 2 − 1 = 
V

y




 = 

n
ds

y




, 

d = 2 − 1 = 
V

z




 = 

n
ds

z




, 

 

in which one understands 2, 2, 2 [ 1, 1, 1, resp.] to mean the wave vectors at neighboring 

points, or since n ds = ds = dV : 

 

  
d

dV


 = 

1 n

n x




 , 

d

dV


 = 

1 n

n y




 , 

d

dV


 = 

1 n

n z




 , 

or since (138): 

  
x

 


 = − 

1 n

n x




, 

y

 


 = − 

1 n

n y




, 

z

 


 = − 

1 n

n z




, 

one will have: 

(119) 
d

dV


 = − 

x

 


, 

d

dV


 = − 

y

 


 , 

d

dV


 = − 

y

 


 ,  

 

resp. Together, equations (118) and (119) represent the conversion of Euler’s equations (104.b) 

into a canonical system. At the same time, one has obtained an intuitive interpretation of that 

conversion. The system (118) and (119) determines the propagation of light in the sense that the 

ray vector and wave vector are known at each point, and their integration basically ensues from 

the following construction: One first constructs the unit wave  = 0 at the starting point (x, y, z). 

The initial values , ,  will then give a well-defined tangent plane to the unit wave, and the 

connecting line of that point (x, y, z) with the contact point of the tangent plane will give the 

direction of the ray. The differential of the independent variable dV determines a neighboring point 

x + dx, y + dy, z + dz, and one will get the new value  + d,  + d,  + d of the wave vector 

from (119). One again constructs the unit wave at the neighboring point, determines the tangent 

plane that belongs to the new wave vector, etc. 

 Now, it was not actually that determination of the light rays that Hamilton had generally 

attempted to do in his approach to the problems of practical optics. Rather, he dealt with the 

problem of mastering the map from object space to image space that an optical instrument 

produced. Thus, he immediately focused on the set of 4 light rays, which he imagined to be 

divided into ray bundles with 2 rays in each of them that were generated by the luminous point 

in object space. The characteristic functions that belonged to the individual bundles, which 

represented the wave surfaces of each bundle, must be distinguished from each other by giving the 

associated luminous point is object space: 

 

V = V (x, y, z ; x0, y0, z0) . 

 

 
 (138) Cf., Hamilton, Papers I, pp. 171.  
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If one now focuses upon only the light ray that connects the point P0 (x0, y0, z0) in object space and 

the point P (x, y, z) in image space then the two points P0 and P will seem to be interchangeable 

for that ray, and one can regard the characteristic function: 

 

(120) V (x, y, z ; x0, y0, z0) = 
1

0

( , , , , , )

P

P

n x y z ds    

 

as a function of the point-pair {P0, P}. If one varies both limits of the integral then the boundary 

formula of the calculus of variations will yield the variational formula: 

 

(121)  V = 0 0 0
0 0 0

0 0 0

n n nn n n
x y z x y z     

     

       
+ + − + +  

        
 , 

 

in which one understands n0 (0, 0, 0, x0, y0, z0) to mean the index of refraction in object space. 

It can be split into the six relations: 

 

(121.a)  
0 0 0

0 0 0

0 0 0 0 0 0

, , ,

, , .

V n V n V n

x y z

n n nV V V

x y z

  
  

  
  

     
= = = = = =      


     = − = − = − = − = − = −

      

 

 

 Just as eliminating , ,  from the first three of those equations was what led to the partial 

differential equation (113) above, one can also eliminate 0, 0, 0 from the last three. When: 

 

(122)      (0, 0, 0, x0, y0, z0) = 0 

 

refers to the unit wave in object space, the two rows in equations (121.a) will then yield the two 

first-order partial differential equations: 

 

(123)    

0 0 0 0

0 0 0

, , , , , 0,

, , , , , 0

V V V
x y z

x y z

V V V
x y z

x y z

    
 =  

   


     − − − =     

 

 

that the characteristic function V, which is now regarded as a function of the point-pair P0, P, 

must satisfy. Equations (121.a) give the wave vectors, and therefore also the dependency of the 

ray vectors at the two boundary points P and P0 of the light ray on the coordinates of those two 

boundary points. They then determine – and this is the fundamental problem in ray optics – the 

changes that the directions of the light ray at the two boundary points will experience under a 

change in position of one of the two boundary points. In particular, the direction of the light ray at 
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P0, and therefore the wave vector 0, 0, 0, must now remain unchanged when the point P varies 

along the light ray itself. Hence, the equations of the second group in (121.a) [the second of them, 

resp.] (139) must be the finite equations of the light ray in image space (140). 

 In order to get an intuitive geometric interpretation of formulas (121.a), one must observe that 

a point (x0, y0, z0) in object space is associated with a surface (which is just the wave surface) in 

image space by the relation (141): 

 

(124)     V (x, y, z, x0, y0, z0) = const. 

 

If one takes a wave element in object space that goes through a point P0 (x0, y0, z0) instead of P0 , 

which might be established by two further points 0P  , 0P  that are infinitely close to P0, then each 

of the points P0, 0P  , and 0P  in image space will belong to a wave surface (124), and the three 

surfaces will intersect at a point P. At the same time, that point of intersection P belongs to the 

enveloping surface of that two-parameter family of surfaces that one will get from (124) when the 

starting point (x0, y0, z0) in object space varies on the element 0 0 0P P P   such that the point of 

intersection of the three wave surface will be associated with the tangent plane to the enveloping 

surface of a wave element. The intersection of the three surfaces is then given by the equations: 

 

0

0 0 0

zV V

x z x

 
+

  
 = 0 , 

0

0 0 0

zV V

y z y

 
+

  
 = 0 , 

 

so when (0, 0, 0) is the wave vector in object space, it will be given by: 

 

0 0 0

: :
V V V

x y z

  

  
 = 0 : 0 : 0 , 

 

and the proportionality factor is determined to be – 1, since: 

 

(0, 0, 0, x0, y0, z0) = 0 , 

when one recalls (121.a). 

 If one varies the constant in (124) with which one has constructed the three wave surfaces (so 

one considers the entire wave-train, instead of the individual wave surface) then one will traverse 

the whole light ray. The second group of equations (121.a) will then say that the individual light 

rays are generated by the intersection of three infinitely-close wave-trains. The first group will 

 
 (139) The third of them is determined from two of them, respectively, by (123). 

 (140) Correspondingly, the equations of the first group in (121.a) would be the finite equations of the light ray in 

object space when one regards x, y, z, , ,  as constants. Cf., Hamilton, Papers I, pp. 173. 

 (141) Naturally, since a point in image space also conversely corresponds to a surface in object space, one is dealing 

with a contact transformation for which (124) represents the “directrix equation” [cf., III D 7 (H. Liebmann), esp. 

no. 3]. For this and the following developments in the text, cf., also E. Vessiot, “Sur l’interprétation mécanique des 

transformations de contact infinitésimales,” Bull. de la soc. math. de France 34 (1906), pp. 230. 
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then determine wave vectors that belong to the light rays that are generated at the individual points 

in that way (142). 

 Equations (121.a) then give a representation of the individual light ray in image space, along 

with the wave element that propagates along it, and indeed its dependency upon the associated 

initial wave element in object space. The interpretation of the formulas (121.a) is based upon that 

association of corresponding wave elements in object space and image space. The fact that such 

as association is possible with the help of the one characteristic function V is the source of some 

important reciprocity theorems that were known previously in ray optics. Namely, when one 

partially-differentiates the function V with respect to two of its variables, the result will be 

independent of the sequence of differentiations. That leads to two different types of reciprocity 

relations. 

 For the first type, one has relations of the form: 

 

(125) 
y




  = 

x




  =  

2V

x y



 
, etc., 

or 

(125.a) 
0

0y




 = 

0

0x




 = − 

2

0 0

V

x y



 
, etc., 

 

resp., while the second type has the form: 

 

(126) 
0x




  = − 0

x




 = 

2

0

V

x y



 
, etc., 

as well as (143): 

(126.a) 
0y




 = − 

0

0x




 = 

2

0

V

x y



 
, etc. 

  

 Equations (125) once more give a strange relationship between the changes in the components 

of the wave vectors (the ray direction that it implies, resp.) that they experience under a change in 

position of the associated point. One can infer from it the way by which every ray in the image 

space is associated with the ray that is infinitely close to it. On the other hand, equations (126) and 

(126.a) show that the changes that the components of the wave vector at a point in object space 

experience are connected with the changes that a displacement of the point in image space will 

produce in the components of the wave vector at the luminous point in object space. Briefly stated, 

the latter reciprocity emerges from the fact that the map that an optical instrument mediates will 

remain unchanged when one switches the locations of the eye and the subject being observed while 

the position of the instrument remains unchanged (144). 

 
 (142) The ray vector that is coupled with it, resp., i.e., the direction of the light ray.  

 (143) Cf., W. R. Hamilton, Papers I, pp. 256.  

 (144) Cf., also Thomson-Tait, Mat. Phil., pp. 358. 
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 14. Introduction of the characteristic function into mechanics and its application to the 

calculation of perturbations. – In order to adapt those results that he had obtained in geometrical 

optics to mechanics (145), Hamilton (146) replaced the variational problem: 

 

n ds  = extrem. 

 

with the variational problem for the Euler principle: 

 

(127) 2T ds  = extrem. 

 

with the energy integral: 

 

(128) T +  = const. = k 

 

as an auxiliary condition (147). He then juxtaposed the principle of least or (better yet, since one is 

only dealing with the vanishing of the first variation) stationary action, which yields the Ansatz 

for the equations in the form of the principle of varying action, for which he introduced the 

extremal integral: 

 

(129) V = 2T ds  

 

which extends over a trajectory (space-time line, resp.) of the system, and which he regarded as a 

function of the coordinates of the initial position 
(0) (0)

0 1( , , )nq q  and the coordinates of the final 

position  (q1, …, qn), as well as the energy constant k (148): V = V (q1, …, qn, 
(0) (0)

1 , , , )nq q k . 

 One will get the derivatives of that function from the boundary formula in the calculus of 

variation (149): 

 
 Any adaptation of the concept of characteristic function to a different variational problem must exhibit reciprocity 

theorems that are analogous to these (cf., no. 16). Such theorems have often been pointed out in theoretical physics 

without ever mentioning the intrinsic reason for that, which is just the existence of a variational problem and the 

associated extremal integral. 

 (145) Cf., footnote (107).  

 (146) W. R. Hamilton, “On a general method in dynamics by which the study of all free systems of attracting or 

repelling points is reduced to the search and differentiation of one central relation, or characteristic function,” Trans. 

London Phil. Soc. (1834), Part 2, pp. 247. “Second essay on a general method in dynamics,” Trans. London Phil. Soc. 

(1835), Part 1, pp. 95. 

 (147) In particular, he had the n-body problem in mind with: 

 

 = ( )m m f r    . 

 

 (148) In which the time t0 that belongs to the initial location can be prescribed arbitrarily. 

 (149) Here, since a variation of the energy constant for fixed limits 0 and 1 will have only a change in the 

duration (t – t0) of the motion as a consequence, it will read: 

 



90 General Methods of Integration in Analytical Mechanics 

 

(130)   

1 1

(0) (0)

1 1 0 0

0

1

, , ,

, , ,

.

n n

n n

V T V T

q q q q

V T V T

q q q q

V
t t

q

   
= =    


      

= − = −   
      

 
 = −



 

 

It would be convenient to introduce the impulse components into equations (130): 

 

(131)      p = 
T

q




, 

which will make them take the form: 

 

(132)    

1

1

(0) (0)

1(0) (0)

1

0

, , ,

, , ,

.

n

n

n

n

V V
p p

q q

V V
p p

q q

V
t t

k

 
= =  


 

= − = −
 

 
= −



 

 

If one also introduces the energy H = T +  in impulse components: 

 

(133) H = H (p1, …, pn, q1, …, qn) 

 

then one will see immediately that the characteristic function V satisfies the two first-order partial 

differential equations: 

(134)    

1

1

(0) (0)

1(0) (0)

1

, , , , , ,

, , , , , .

n

n

n

n

V V
H q q k

q q

V V
H q q k

q q

   
=  

   


  
− − =    

 

 

 If one knows the characteristic function V then the n equations of the second row of (130) 

[(132), resp.] will yield a representation of the finite equations of the trajectory, while the equations 

of the first row will yield the impulse components (the velocity components, resp.) at the individual 

points of the trajectory. Finally, the last of the equations describes the time evolution of the motion 

 

(129.a)   T dt  = 
(0)

0

0

( )
T T

q q t t k
q q

 

 

  
 

− + − 
 

 
 
 

. 
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along the trajectory (150). Everything is exactly as it is in ray optics, except that the trajectories in 

an n-dimensional Riemannian space whose arc-length is determined from 2ds  = 
22T dt  enter in 

place of the light rays in three-dimensional space, and in place of the wave vector, one finds the 

impulse vector, which is perpendicular to the surfaces V = const. in the sense of the metric. Just as 

in optics, Hamilton’s goal in this case was to develop a systematic method for the integration of 

equations of motion, and all it took for him to achieve that goal was to represent the motion with 

the help of one function V (151). 

 Now, to Hamilton, formulas (130) was closely related to the idea of introducing the time t as 

a variable in place of the energy constant k by means of: 

 

V

k




 = t – t0 . 

 

In that way, he had replaced the characteristic function V with the principal function: 

 

 
 (150) In the case of the n-body problem, that representation of the motion by the formulas (130) [(132), resp.] led 

Hamilton (if only casually) to the connection between the “first center of mass integral” and the “area integral” with 

the “invariance of the equations of motion under parallel displacements and rotations.” 

 That is because if one imagines, say, replacing all coordinates x with (x + a) and correspondingly replacing 
(0)

x
  

with 
( 0 )

)(x a


+  then the derivative of V with respect to a must vanish, so: 

 

(0)

V V

x x 

 
 +
 
 

 

 
 = 0  

or 

V

x





 = const. 

 

However, from (130), that is nothing but the first center of mass integral for the x-direction: 

 

1 n

T T

x x

 
+ +

 
 = const. 

 

One will get analogous statements for the first center of mass integral for the other two coordinate directions, and 

when one appeals to rotations about the coordinate axes instead of parallel displacements, one will get the three area 

integrals (for that, cf. infra, no. 23). 

 C. G. J. Jacobi has also emphasized that connection: C. G. J. Jacobi, Vorlesungen, Werke Supplement. Bd., Vorles. 

3, pp. 15 and Vorles. 5, pp. 31. 

 (151) He himself made the remark that one must feel a certain “intellectual pleasure” in all cases where the motion 

can be represented in the form (130) with the help of one characteristic function, even when “no practical facility” is 

achieved in the problem of integrating the equations of motion. 

 For the motion of the n-body problem, he showed that the representation (130) subsumed known properties of the 

motion when he correspondingly represented the decomposition of the motion of the system into the motion of the 

center of mass and the motion relative to the center of mass that is customary in the celestial mechanics by 

decomposing the characteristic function V as a sum of two corresponding summands. 
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(135) (0) (0)

1 0 1( , , , , , , , )n nS t q q t q q  = (0) (0)

1 1( , , , , , , )n n

V
V q q q q k k

k


−


, 

 

in the sense of the so-called Legendre transformation (152). From (129) and (130), one has: 

 

S = −
0( ) 2k t t T dt− +   = (2 )T k dt−  = (2 ( ))T T dt− +   

or 

(136)     S = 
2

1

( )

P

P

T dt−  , 

 

i.e.: the principal function S is the extremal integral of Hamilton’s principle (153), when regarded 

as a function of the limits. The derivatives of the principal function are: 

 

 
 (152) The application of the Legendre transformation to the characteristic function was common in Hamilton’s 

investigations into optics. Namely, since a bundle of rectilinear rays that is emitted by a luminous point in object space 

will become a bundle of lines in image space (which is no longer homocentric) under the optical map (in the case of 

homogeneous media), it would seem convenient to characterize an individual ray in one such general bundle of rays 

in image space by its direction cosines. The function: 

 

V (, , , x0, y0, z0) = V
n n n

x y z
  

−
  

+ +
  

 

 

will then enter in place of the characteristic function V (x, y, z, x0, y0, z0) (cf., Hamilton, Papers I, pp. 111), in which 

the x, y, z on the right-hand side are eliminated with the help of equations (111). That function is best suited to the 

applications in optical practice. By contrast, by a systematic process, one has not introduced (and that is what 

Hamilton did in the third Supplement) the direction cosines of the ray as the variables, in the sense of the Legendre 

transformation, but the components of the wave vector in image space. Moreover, Hamilton went even further in the 

third Supplement. He then replaced the characteristic function V with a function T that depended on the components 

of the wave vector in object space and image space by performing the Legendre transformation in object space, as 

well as image space. That is the appropriate instrument for the study of the general line map from the object space to 

image space. 

 For an attempt to duplicate that in mechanics, one might cf., E. J. Routh, Dynamik II, Chap. 10, § 487, pp. 362. 

 (153) On the Continent, that recalculation has given rise to the introduction of the term “Hamilton’s principle” for 

the variational principle ( )T dt−   = extrem., despite the fact that Lagrange has already expressed the principle in 

Mécanique analytique. The fact that one was dealing with a new principle in the formulation that he had achieved 

whose range of applications was more extensive that that of Euler’s principle did not occur to Hamilton, since he 

also assumed that the energy integral was valid after recalculation. If the energy integral is fulfilled then time will 

appear in the principal function S only in the combination (t – t0) such that for Hamilton: 

 

S

t




 = − 

0

S

t




 = 

0
)(

S

t t



 −
 . 
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(137)  

1

1 1

(0) (0)

1(0) (0)

1 1 0 0

, , ,

, , ,

n

n n

n

n n

S T S T
p p

q q q q

S T S T
p p

q q q q

   
= = = =    


      = − = − = − = −         

 

 

to which the two derivatives: 

(137.a) 
S

t




 = − H , 

0

S

t




 = + H0 

 

are added (154). The elimination of impulse components from equations (137) and (137.a) yields 

the two first-order partial differential equations for the principal function S (155): 

 

(138)  

1

1

(0) (0)

1(0) (0)

0 1

, , , , , , 0,

, , , , , , 0,

n

n

n

n

S S S
H q q t

t q q

S S S
H q q t

t q q

    
+ =  

    


   
− + − − =     

 

 

in which time t is included explicitly in H, which goes beyond what Hamilton did. 

 The appearance of the impulse components p as the derivatives of the principal function S (as 

is already true of the derivatives of the characteristic function V, resp.) led Hamilton to pose the 

impulse components as independent variables, along with the position coordinates q and thus (no. 

9) to arrive at the canonical form: 

 

 
 (154) For Hamilton, the two equations (137.a) coincided in the one equation: 

 

0
)(

S

t t



 −
 = 

S

t




 = − 

0

S

t




 

 

since the energy integral has the form H = const. = k. 

 If one juxtaposes the formulas (137) and (137.a): 

 

1

S

q




 = p1 , …, 

n

S

q




 = pn , 

S

t




 = − H 

 

then one will see that the assumption that the position coordinates are on a par with time must necessarily imply that 

impulse and energy must also be building blocks in a higher unity, as the theory of relativity has accomplished by 

introducing the impulse-energy tensor [cf., V 19 (W. Pauli, Jr.), no. 37]. 

 (155) Since time t did not appear explicitly in H for Hamilton, he wrote the second of equations (138) in the form 

[cf., (154)]: 

(0) (0)

1(0) (0)

1

, , , , , n

n

S S
q q

q q

S
H

t

  
− −    


+


 = 0 . 
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(139)    
dq

dt

  = 
H

p




, 

dp

dt

  = −
H

q




  ( = 1, …, n) 

for the equations of motion. 

 As an application of his theory, Hamilton gave a new representation of the equations of 

perturbation. In order to do that, he represented the energy H as the sum of the energy H  of the 

unperturbed motion and the perturbing function  : 

 

(140) H = H (p1, …, pn, q1, …, qn, t) +  (p1, …, pn, q1, …, qn, t) , 

 

and started by integrating the equations of motion of the unperturbed motion: 

 

(141) 
dq

dt

  = 
H

p




, 

dp

dt

  = −
H

q




, 

 

in general, such that one defines the associated principal function as the function S   of the 

coordinates of the limits q1, …, qn, t, , …, t0, 
(0)

1q , …, (0)

1q , t0, and one can then represent the 

unperturbed motion in the form (137) with their help. 

 In order to then find the principal function S for the perturbed problem, he then imagined that 

it was represented as the sum of S   and a correction term U : 

 

(142)     S = S   + U . 

 

In so doing, one assumes that the correction term U is known as a function of q1, …, qn, t, , …, t0, 
(0)

1q , …, 
(0)

1q , t0  at the initial moment and then calculates the change that U will experience when 

one advances along a space-time line of the unperturbed problem that starts from the space-time 

point 
(0)

1(q , …, 
(0)

1q , t0). For that change, one gets in the desired degree of approximation (156): 

 
 (156) Namely, one has: 

(a)    
dU U U U H U

q
dt t q t p q


   

    
= + = +

    
  , 

 

 in which p naturally replaces with the derivatives S

q




 in H

p





. 

 On the other hand, from (138): 

 

, , , ,
U S S S U S U

H H q t q t
t t t q q q q

 

   

   

         

= − − = − − + −  +               

 , 

 

or, when one develops H

 and  and considers the fact that  S


, as the principal function of the unperturbed problem, 

satisfies the equation: 



Chapter III – Preliminary Ansätze for the general theory of integration. 95 

 

(143) 
dU

dt
 = − 

(0) (0) (0) (0)

1 1 0( , , , , , , , )n nt q q p p t , 

 

such that one can find U by a quadrature: 

 

(143.a)    U = 
(0) (0) (0) (0)

1 1 0( , , , , , , , )n nU t q q p p t  . 

 

If the (0)p
 in that were replaced with − 

(0)

S

q




 then the correction term U would be represented in 

the desired form as a function of the coordinates of the two space-time points P0 and P : 

 

(144)  
(0) (0)

1 0 1( , , , , , , , )n nU q q t q q t  = (0) (0)

1 0(0) (0)

1

( , , , , , , , )n

n

S S
U t q q t

q q

  
− −

 
 . 

 

However, if one has determined the correction term in the principal function then one will get the 

integral of the perturbed motion by applying the formulas (137) in the form: 

 

 

, , 0
S S

H q t
t q





 

  

+ =    

, 

one will have: 

, ,
U U H S U

q t
t q p q q p


     

       
= − − −  − +        

   . 

 

Here, in the sense of the approximate calculations, the terms of order two and higher in U / q , as well as the first-

order terms, that arise from the intrinsically-small perturbing function can be neglected, such that one will have: 

 

U U H

t q p  

  
= − − 

  
  . 

 

If then follows from (a) that, in the same approximation, one will have: 

 

dU

dt
 = −  (p1, …, pn, q1, …, qn, t) 

 

along a space-time curve of the unperturbed problem. Since p and q are known as functions of time and the initial 

values 
(0)

p
 , 

(0)
q

 , t0 along such a space-time line, one will have: 

 

 (p1, …, pn, q1, …, qn, t) = 
(0) (0) (0) (0)

1 1 0
( , , , , , , , )

n n
t q q p p t  

here. 
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(145) 

1

1 1

(0) (0)

1(0) (0) (0) (0)

1 1

, , ,

, , ,

n

n n

n

n n

S U S U
p p

q q q q

S U S U
p p

q q q q

 

 

    
+ = + =

   


    + = − + = −
    

 

 

and indeed, those would be exact formulas if U = S S−  were determined exactly. If U is 

determined only approximately, in the sense of the calculations that were just described, then those 

formulas will also give the perturbed motion to the same degree of approximation (157). 

 The connection between that treatment of the perturbed motion and its treatment by the 

variation of constants is implied immediately by the fact that the formulas of the unperturbed 

motion (158): 

(146)   

(0) (0) (0) (0)

0 1 1

(0) (0) (0) (0)

0 1 1

( , , , , , , , ) ,

( , , , , , , , )

n n

n n

q t t q q p p

p t t q q p p

 

 





 =


=
 

  

will yield the perturbed motion when one replaces the initial impulse 
(0)p  for the unperturbed 

motion with 
(0)

(0)

U
p

q





+


 and replaces the impulse p of the unperturbed motion at time t with p 

− 
U

q




, such that one has to use the new formulas: 

(147)  

(0) (0) (0) (0)

0 1 1 (0) (0)

1

(0) (0) (0) (0)

0 1 1 (0) (0)

1

, , , , , , , ,

, , , , , , , ,

n n

n

n n

n

U U
q t t q q p p

q q

U U U
p t t q q p p

q q q

 

 







   
= + +  

  


   
= + + +     

  

 

 
 (157) The second group in those formulas says how one must change the initial impulse of the unperturbed motion 

at the space-time point P0 in order to reach the same space-time point P under the perturbed motion as one does with 

the unperturbed motion. One then infers from the first group how the impulse components at the space-time point P 

that one reaches under the perturbed motion will change in comparison to the unperturbed motion. 

 (158) They will become identities when one substitutes: 

 

p = 
S

q






, 

(0)
p

  = − 
(0)

S

q






. 
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in place of formulas (156), in order to be calculate the position and impulse of the perturbed motion 

at time t for given initial values t0, 
(0)

1q , …, 
(0)

nq , 
(0)

1p , …, 
(0)

np  (159). 

 

 

 15. The intervention of Jacobi. – Hamilton’s work on ray optics was hardly noticed outside 

of England (160). Indeed, his treatises on mechanics were greatly noticed, but since their roots in 

his work on ray optics was not known, there was a danger that Hamilton’s basic concepts that 

arose from those works would be misunderstood. That danger was avoided by the first great 

researcher to take up those work in an autonomous spirit, as opposed to other more subjective 

works, namely, C. G. J. Jacobi. In fact, Jacobi gave a new twist to Hamilton’s development, and 

its further construction by the Jacobi school would then create a Hamilton-Jacobi theory that 

would no longer coincide with Hamilton’s original ideas but was believed to grow out of 

Hamilton’s basic ideas on the Continent (161). That theory will be presented systematically in the 

following sections. Here, we shall only go briefly into the basis for Jacobi’s reshaping of 

Hamilton’s ideas, because the following development will become more understandable in that 

way. 

 Ever since Jacobi did some work in his youth that addressed the integration of first-order 

partial differential equations (162), he became fascinated with Hamilton’s work on mechanics, and 

especially with the connection between the two partial differential equations and the canonical 

system of the equations of motion that is mediated by the principal function (163). In contrast to 

 

 (159) In so doing, in the correction terms 
(0)

U

q





 or 

U

q





, resp., the q1, …, qn are replaced with the values that would 

enter into the unperturbed motion at time t if they had possessed the same initial values (0)

1
q , …, 

(0)

n
q , 

(0)
p

 , …, 
(0)

p
  

that were prescribed for the perturbed motion. 

 Moreover, with a simple conversion of (147), one can obtain the changes q , p that would be required of the 

values q , p of the unperturbed problem in order for one to arrive at the position coordinates and the impulse 

components of the perturbed motion (with the same initial values) at time t. That would give, e.g.: 

 

(0) (0)

(0) (0)
q p q

p q

 

  
  

   
 =  +  

  
  , 

in which one has: 
1

0

(0)

(0)

t

t

p dt
q





 
 = −

 , 
1

0

(0)

(0)

t

t

q dt
p





 
 = −

 . 

 

 (160) The repercussions of that work were found only in the English literature (e.g., Thomson-Tait, Natural Phil.).  

 (161) For the contrast between Jacobi’s and Hamilton’s approaches, cf., also A. F. Conway and A. J. M’Connell, 

“On the determination of Hamilton’s principal function,” Proc. R. Irish Acad. Dublin (A) 41 (1932), pp. 18.  

 (162) C. G. J. Jacobi, “Über die Integration der partiellen Differentialgleichungen erster Ordnung,” J. f. Math. 2 

(1827), pp. 317 = Werke IV, pp. 1 and C. G. J. Jacobi, “Über die Pfaffsche Methode, eine gewöhnliche lineare 

Differentialgleichung zwischen 2n Variabeln durch ein System von n Gleichungen zu integrieren,” J. f. Math. 2 (1827), 

pp. 347 = Werke IV, pp. 17. 

 (163) Jacobi’s first reference to Hamilton’s ideas was found in a letter to Encke, cf., C. G. J. Jacobi, “Zur Theorie 

der Variationsrechung und der Differentialgleichungen,” J. f. Math. 17 (1837), pp. 68 = Werke IV, pp. 39. 
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Hamilton’s earlier conception of things, in the spirit of his era, he saw the solution to the problem 

of integrating a partial differential equation in the reduction to the integration of a system of 

ordinary differential equations, like what J. F. Pfaff had first achieved [cf., II A 5 (E. von Weber), 

no. 28]. From that standpoint, the canonical system represents the first Pfaffian system for each of 

the two Hamiltonian partial differential equations. Hamilton’s argument then shows that one can 

already complete the integration of a first-order partial differential equation with the help of that 

first Pfaffian system and not necessarily have to appeal to the “higher Pfaffian systems” (164). As 

a result of that line of reasoning, Jacobi had to take offence at the fact that Hamilton had 

introduced two partial differential equations for his principal function, and he wished to eliminate 

the second one as superfluous, since he did not regard the principal function as a function of the 

two equally-justified space-time points P0 and P, but as a function of the space-time point P alone, 

into which the coordinates of the space-time point P0 would enter only as parameters. Therefore, 

he believed that a new idea had to be introduced, while he had only resumed Hamilton’s view of 

things that the latter had originally started from in his optical investigations (165). 

 On the other hand, Jacobi interpreted the Hamiltonian representation of the motion with the 

help of the principal function that is given by formulas (137) (the corresponding representation in 

terms of the characteristic function, resp.) by saying that it should precede the first-order 

differential equation, and indeed in such a way that the 2n integrals of the canonical system in the 

form (137) (a suitably-generalized form, resp.) would arise from a “complete” solution to that 

partial differential equation by mere differentiation and eliminations. Naturally, his systematic 

view of such a direct procedure seemed impossible from the standpoint of partial differential 

equations since the integration of a system of ordinary differential equations could not be based 

upon the integration of a partial differential equation. Nonetheless (so he concluded), it offered 

the possibility of constructing a systematic method for integrating the canonical system that would 

make it possible to simplify the integration essentially. The 2n integrals (137) of the canonical 

system decompose into two classes, one of which is written in the first row of (137), and the other 

of which is written in the second row. Now, if one has found the n integrals of the first row: 

 

S

q




 = p , 

 

into which the n constants 
(0)

1q , …, 
(0)

nq  enter, in any way then one can obtain the principal 

function S itself by a quadrature, from which one will get the other n integrals [viz., the second 

row of (137)] of the canonical system  

  
(0)

S

q




 = −

(0)p    ( = 1, …, n) 

 

 
 (164) C. G. J. Jacobi, “Über die Reduktion der Integration der partiellen Differentialgleichungen erster Ordnung 

zwischen irgendeiner Zahl von Variablen auf die Integration eines einzigen Systems gewöhnlicher 

Differentialgleichungen,” J. f. Math. 17 (1837), pp. 97 = Werke IV, pp. 57. 

 (165) As long as Hamilton considered only an isolated bundle of rays with his wave surfaces (e.g., in the “Theory 

of Rays” itself), naturally he also had only one partial differential equation. 
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by mere differentiation. The integration will then be essentially complete when one knows only 

one-half of the set of all 2n integrals that are present, which are generally selected suitably. That 

argument agrees with a result to which Jacobi arrived in 1836. Namely, in his study of the motion 

of an individual mass-point in the plane (166), he had recognized that in addition to the energy 

integral: 

H (p1, p2, q1, q2) = k , 
 

one needs to know only one further integral: 
 

F (p1, p2, q1, q2) = c . 
 

Namely, if one calculates the impulse components p1, p2, as functions of the q1, q2, and the two 

constants k and c from those two integrals then: 
 

(148) p1 dq1 + p2 dq2 
 

will be a complete differential, and one can then obtains the two missing integrals by the 

quadratures: 

1 2
1 2

p p
dq dq

c c

  
+ 

  
  = b , 

1 2
1 2

p p
dq dq

k k

  
+ 

  
  = t –  . 

 

Naturally, the expression (148) is nothing but the differential of the characteristic function, such 

that Jacobi had already arrived at the other half of the integrals from one half of them along the 

path of the characteristic function. The generalization of that argument, namely, how it facilitated 

the relationship between the principal function and the canonical system, led to the realization that 

when one knows one first integral, the degree of the canonical system can be lowered by two units. 

The (2n – 2) first integrals of the reduced system are all integrals of the original system, as well, 

such that only one integral, namely, the conjugate to the starting integral, will not appear among 

the integrals of the reduced system. That way of looking at things systematically reduces the 

integration of the given canonical system with 2n unknown functions to the search for a first 

integral of the integration of system of that sort with (2n − 2) unknown functions, and then the 

search for a first integral of that reduced system reduces it to such an integration with (2n − 4) 

unknown functions, etc. (167) (Cf., no. 27) 

 Jacobi already had a wealth of further arguments for organizing those integration methods, 

which also essentially simplified the application to the perturbation calculations for astronomy. 

The Jacobi tradition has created a systematic theory from them (168). 

____________ 

 
 (166) C. G. J. Jacobi, “Sur le movement d’un point et sur un particulier cas du problème des trois corps,” C. R. 

Acad. Sci. Paris 3 (1836), pp. 59 = Werke IV, pp. 35. Cf., also (282). 

 (167) In the literature of the theory of first-order partial differential equations, that type of integration of the 

canonical system (the associated partial differential equation, resp.) is referred to as Jacobi’s second method [cf., II A 

5 (E. von Weber), no. 36].  

 (168) The foundations of that research are defined by two presentations that go back to Jacobi: C. G. J. Jacobi, 

“Über diejenigen Probleme der Mechanik, in welchen eine Kräftefunktion existiert und über die Theorie der 

Störungen,” Werke V, pp. 217 and C. G. J. Jacobi, Vorlesungen über Dynamik, Werke Supplementband. Both of them 

were published in the edition of A. Clebsch. 



CHAPTER IV  

 

THE VARIED ACTION. 
 

 

 16. Hamilton’s principal function. 

 

 16.a The derivatives of the principal function. – The general analytical treatment of the 

equations of motion has been developed on the model of the n-body problem. Therefore, the 

preferred problems are the ones for which a Lagrangian function exists: 

 

(148)    1 1( , , , , , , )n nL q q q q t  = T –  , 

 

in which T can be a general quadratic function of the velocity components 1q , …, nq : 

 

T = T0 + T1 + T2 

 

(cf., no. 4). The equations of motion, as the Euler equations of the variational problem of 

Hamilton’s principle: 

 

(149.a)    
1 1( , , , , , , )n nL q q q q t dt  = extrem. 

 

 will then possess the from: 

(150) 
d L L

dt q q 

  
−    

 = 0   ( = 1, …, n). 

 

Starting from the proof of the existence of solution to a system of differential equations, which 

says that one can establish a solution in the neighborhood of a location by 2n givens – say, the 

initial position and velocity – one can, without always having to clearly address the difficulties 

associated with adapting a statement “in the small” to a corresponding one “in the large” (169), 

represent the solutions to the equations of motion (150) as a family of 2n curves: 

 

(150.a)     q = q (t, c1, …, c2n)   ( = 1, …, n) 

 

in the space-time manifold of the (q1, …, qn, t). From that standpoint, the individual extremal 

space-time lines are generally determined uniquely in such a way that one prescribes two of its 

space-time points: 

 

 
 (169) Cf., on this, T. Levi-Civita, “Drei Vorlesungen über adiabatische Invarianten,” Hamburg Abhandl. aus. d. 

math. Sem. 6 (1928), pp. 323.  
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(151)    
(1) (1)

1 1 1( , , , )nP q q t  and 
(2) (2)

2 1 1( , , , )nP q q t  . 

 

If one now constructs the integral (149.a) between the two space-time points P1 and P2 along that 

extremal as an integration path: 

(152)     S (P1, P2) = 
2

1

P

P

L dt  

 

then one will have Hamilton’s principal function for the variational problem (149.a), which is 

regarded as a function of the point-pair {P1, P2} [as a function of its (2n + 2) coordinates: 

 

(152.a)    
(2) (2) (1) (1)

1 2 1 1( , , , ; , , , )n nS q q t q q t  = 
2

1

P

P

L dt , 

 

resp.], in the spirit of no. 8. When one goes to a “neighboring” point-pair: 

 

  
(1) (1) (1) (1)

1 1 1 1 1( , , , )n nP q q q q t t   + + +  

and 

  
(2) (2) (2) (2)

2 1 1 2 2( , , , )n nP q q q q t t   + + + , 

 

the change in S according to (71.a) will be: 

 

(153)   S = 
2 1

(2) (2) (2) (2) (1) (1) (1) (1)

1 1 2 1 1 1( ( ) ) ( ( ) )n n P n n Pq q q q H t q q q q H t     + + − − + + − , 

 

from which one can infer the derivatives of the principal function corresponding to (137): 

 

(154)   
2

1

(2) (2)

1(2) (2)

1 2

(1) (1)

1(1) (1)

1 1

, , , ( ) ,

, , , ( ) .

n P

n

n P

n

S S S
p p H

q q t

S S S
p p H

q q t

  
= = = −   


   = = = +

   

 

 

The derivatives of the principal function with respect to the position coordinates are the impulse 

components, and its derivative with respect to time is energy (169.a). 

 

 

 
 (169.a) The change in sign in the formulas in the second of (154) is explained by the fact that one leaves the interval 

P1 P2 from the point P2 as t increases, while one enters it from the point P1 . 
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 16.b. The reciprocity theorems. – If one regards the impulse components in (154) as functions 

of the coordinates of the two boundary points (151) (169.b) then that will give two classes of 

reciprocity relations (169.c) that correspond to the two classes that W. R. Hamilton had developed 

in ray optics (cf., no. 13). One gets the relations of the first class when one focuses on one of the 

two boundary points and considers the influence of the changes in position coordinates (time, 

resp.) on the impulse components (energy. resp.). For the boundary point P2, they will read: 

 

(155) 

(2)

(2)

p

q








 =  

(2)

(2)

p

q








  = 

2

(2) (2)

S

q q 



 
 , 

and 

(156) 

(2)

2

p

t




 = − 2

(2)

( )PH

q




 = 

2

(2)

2

S

q t



 
 , 

resp., in which: 

(156.a) 2

(2)

( )PH

q




 = 

2 2 2

(2)(2)

1

(2) (2)

1

n

nP P P

ppH H H

p q p q q  

      
+ + +               

. 

 

Corresponding relations are true for the boundary point P1 . 

 One will arrive at the second class of reciprocity theorems when one asks how the change in a 

position coordinate (time, resp.) at one boundary point influences any of the impulse components 

or the energy at the other boundary point. That will lead to the relations: 

 

(157) 

(2)

(1)

p

q








 = − 

(1)

(2)

p

q








 = 

2

(2) (1)

S

q q 



 
 , 

and 

(158) 

(2)

1

p

t




 = 1

(2)

( )PH

q




 = 

2

(2)

1

S

q t



 
 , 

(1)

2

p

t




 = 2

(1)

( )PH

q




 = − 

2

(1)

2

S

q t



 
 , 

resp., in which: 

(158.a) 1

(2)

( )PH

q




 = 

1 1

(1)(1)

1

(2) (2)

1

n

nP P

ppH H

p q p q 

    
+ +   

      
, 

and 2

(1)

( )PH

q




 has the corresponding meaning. 

 In so doing, the position coordinates (time, resp.) are thought of as arbitrary quantities at the 

boundary points, corresponding to the definition of the principal function S. From the standpoint 

of mechanics, it is often more reasonable to prescribe the changes in the impulse components 

 

 (169.b) By means of it, 
1

( )
P

H , as well as 
2

( )
P

H , will become functions of the (2n + 2) coordinates of the boundary 

points. 

 (169.c) H. von Helmholtz, “Über die physikalische Bedeutung des Prinzips der kleinsten Wirkung,” J. f. Math. 100 

(1887), pp. 137 and pp. 213, esp., pp. 213, et seq. = Ges. Abh. III, pp. 203, esp., pp. 238, et seq. 
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arbitrarily, which one can think of as being created by impacts. The given reciprocity relations will 

also remain preserved in that conception of things, except that one needs to interpret the partial 

derivatives as quotients of infinitesimal quantities, and in that sense, construct their “reciprocal 
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values” (170). With that, the reciprocity relations will take on a form that can be expressed in an 

especially intuitive way from the standpoint of mechanics (171). 

 
 (170) In order to derive that, one applies the so-called Legendre transformation to the function S in the same way 

that W. R. Hamilton did in ray optics [cf., (152)], i.e., one calculates the position coordinates 
(1)

q


, 
( 2)

q


 of the two 

boundary functions as functions of the impulse components 
(1)

p


, 
( 2)

p


, and the time coordinates t1, t2 [cf., H. von 

Helmholtz, loc. cit. (169.c), Ges. Abh., pp. 246] from the 2n equations: 

 

(2)

S

q





 =

(1)
p


,  

(1)

S

q





 = −

(1)
p


, 

and in that way define the function: 

 

(159)   (1) (1) (2) (2) (2) (2) (1) (1)

1 1 1 2

1

( , , , ; , , , ) ( )
n

n nU p p t p p t p q p q S   
=

= − − . 

 

One gets the associated position coordinates as derivatives of that function with respect to the impulse coordinates: 

 

(160)  
(2)

U

p





 =

(1)
q


,  

(1)

U

p





 = −

(1)
q


, 

 

and for the derivatives with respect to t1, t2, one will get: 

 

(161)  

2

U

t




 = − 

2

S

t




 = 

2
( )

P
H , 

1

U

t




 = − 

1

S

t




 = − 

1
( )

P
H . 

 

If one imagines that the position coordinates of the two boundary points 
(1)

q


, 
( 2)

q


 are expressed as functions of the 

impulse components 
(1)

p


, 
( 2)

p


 (and the time coordinates t1, t2) and also introduces those functions 
1

( )
P

H  [
2

( )
P

H , 

resp.] then one will get the following equations as the first class of reciprocity relations: 

 

(162)  

( 2) ( 2) 2

( 2) ( 2) ( 2) ( 2)

( 2) 2

2

( 2) ( 2)

2 2

,

( )
,

P

q q U

p p p p

Hq U

t p p t

 

   



 

   
= =

   


 
= =    

 

 

while the following equations will be the reciprocity relations of the second class: 

 

(163)  

( 2) (1) 2

(1) ( 2) ( 2) (1)

( 2) (1)

1 2

( 2) (1)

1 2

,

( ) ( )
, .

P P

q q U

p p p p

H Hq q

t p t p

 

   

 

 

   
= − =

   


  
= − = −    

 

 

 Moreover, one can replace the time coordinates t1 and t2 of the boundary points in the function U with the energy 

values 
1

( )
P

H  [
2

( )
P

H , resp.] by a further extension of the Legendre transformation. One would then also get the direct 

inversion of the relations (156) [(158), resp.]. 
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 16.c. The field of extremal space-time lines. – A bundle of n extremal space-time lines 

emanate from every isolated space-time point (0) (0)

0 1 0( , , , )nP q q t , and indeed, on the basis of the 

existence theorems, one and only one of those curves will go through each space-time point P (q1, 

…, qn, t) that belongs to a certain neighborhood of P0 and does not leave that neighborhood 

between P0 and P. In such a bundle, one has the simplest example of a so-called field of extremals 

 
 It should be pointed out that C. G. J. Jacobi had already developed reciprocity relations that were basically 

equivalent to the ones that were given (cf., C. G. J. Jacobi, Probleme der Mech., § 21, Werke V, pp. 315). 

 (171)  Those reciprocity theorems should not be confused with other reciprocity theorems that H. von Helmholtz 

had presented [cf., H. von Helmholtz, loc. cit. (169.c), Ges. Abh. III, pp. 231, as well as Dynamik diskreter 

Massenpunkte, pp. 373]. In them, Helmholtz considered a mechanical system with the Lagrangian function L. 

However, it did not move according to the Euler equations (150), but further external influences would be in effect, 

such that the equations: 

(164)     R = 
L

q

d L

dt q 

 
  −
  




 

 

must enter in place of (150) in order to describe the motion. In that way, Helmholtz did not think of the quantities R 

as being prescribed, but likewise defined by equations (164), in which he made the further assumption that time t did 

not appear explicitly in L. The R will then seem to depend upon the position coordinates q themselves, their first 

derivatives q


, and their second derivatives q


. If one considers the dependencies of those three types of quantities 

in succession then that will give three classes of reciprocity relations, namely: 

 

(165)     
R

q








 = 

R

q








 =  

2
L

q q
 



 
, 

(165.a)   

2 2

2

2 ,

2 2 2 ,

R R L L

q q q q q q

R R Rd L d d R

q q dt q q dt q dt q

 

     

   

     

    
 − = −
      
 

       
 + = = =               








 

(165.b)   
R R

q q

 

 

 
−

 
 = 

2 2L L

q q q q

d

dt    

  
 −
     

 = ( )1

2

R R

q q

d

dt

 

 

 
−

 
. 

 

Naturally, the R are linear in the second derivatives q


, corresponding to their definition (164), such that one must 

have: 

(166)  

2

q q

R

 



 
 = 0 . 

 

 Conversely, Helmholtz could also show that n functions ( , , )R q q q
   

 that satisfy the conditions (165, etc.) 

can be expressed in the form (164) in terms of a function 
1 1

( , , , , , )
n n

L q q q q . Cf., the treatise that was released 

by the estate to L. Koenigsberger: H. von Helmholtz, “Über die physikalische Bedeutung des Prinzips der kleinsten 

Wirkung,” Berlin Sitzungsber. (1905), pp. 863, as well as G. D. Birkhoff, Dynamical Systems, pp. 26. 

 Physical examples of that reciprocity were given in J. J. Thomson, Applications of dynamics to physics and 

chemistry, Cambridge, 1888, German, Leipzig, 1890. 
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for the variational problem (172), in which the point P0 itself might still be removed from that region 

in the space-time manifold. The space-time line (field extremal) that runs through an arbitrary 

space-time point P (q1, …, qn, t) of the field defines the velocity vector 1( , , )nq q  there [the 

impulse vector (p1, …, pn) that is coupled with it, resp.] as functions of the “position,” i.e., the 

velocity components q , like the impulse components p , as functions of q1, …, qn, t : 

 

(167) 
1

1

( , , , ) ,

( , , , ).

n

n

q q q q t

p p q q t

 

 

=


=
 

 

If one constructs the extremal integral of the variational problem (149.a) along the individual 

extremal space-time lines in the field and chooses the lower limit to be the midpoint P0 of the 

extremal bundle then the value of the extremal integral will become a function of only the upper 

limit P of the integral, i.e., a function of q1, …, qn, t : 

 

(168) S (q1, …, qn, t) = 

0

P

P

L dt , 

whose differential is, from (153): 

 

(168.a)    S = 1 1

1 1

n n

n n

L L L L
q q L q q t

q q q q
  

    
+ + + − − − 

    
 

 = p1 q1 + … + pn qn – H t . 

 

 In place of the bundle of space-time lines that emanate from a point, one can now use a family 

of n extremal space-time lines, in general, which might likewise have the property that one and 

only one space-time line of the family goes through every point in a certain region of the space-

time manifold, such that the point (as well every space-time point) is assigned a velocity vector 

(impulse vector, resp.) as it was given in the formulas (167). However, such an n-parameter family 

of extremals is not generally a field in the same sense as the extremal family through a point. 

 If one selects any extremal space-time line from that family and chooses two space-time points 

P1 and P2 along it then one can define the principal function (152) for the pair of space-time points 

P1, P2. Now, if one imagines that a simple (173) closed curve C1 has been drawn in the region of 

the space-time manifold in question then the extremal space-time lines of the n-parameter family 

that runs through the individual points of that curve will define the generators of a tube (174). If one 

draws a second closed curve C2 on such a tube that twines around the tube in such a way that it 

likewise meets each of the extremal space-time lines of the tube only once then the two curves are 

in one-to-one correspondence with each other by way of the space-time lines that serve as 

 
 (172) Cf., e.g., O. Bolza, Vorlesungen über Variationsrechnung, Leipzig, and Berlin, 1909, § 77, pp. 635.  

 (173) That is intended to mean that an extremal space-time line through a point of the curve can have no other point 

in common with the curve.  

 (174) For this subject, cf., H. Poincaré, Mèthodes nouv. III, pp. 4, et seq.  
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generators. Since any two associated points bound a segment of an extremal space-time, one can 

think of defining the principal function (152.a) for one such point-pair. The formula (153) then 

gives the change in the principal function when one goes from one generator to the neighboring 

generator, and in that way, the differentials (1)

1q , …, (1)

nq , t1 for an advance along one of them 

and the ones (2)

1q , …, (2)

nq , t2 for an advance along the other will both determine closed curves. 

 One can now go completely around the tube with the points P1 and P2 on the two closed curves 

until one again returns to the starting location. Since the associated total change in the function S 

is equal to zero, (153) will give the relation: 

 

(169)     
2 1

2 1

(2) (2) (2) (2) (1) (1) (1) (1)

1 1 2 1 1 1[ ( ) ] [ ( ) ]n n P n n P

C C

p q p q H t p q p q H t     + + − − + + −   = 0 , 

 

in which the first integral is taken over the curve C2, while the second is taken over the curve C1 . 

Since the curves C1 and C2 are twined around the tube in a completely arbitrary way, it will then 

follow that: 

 

(170)    
1 1( )n n

C

p q p q H t  + + −  = const. 

 

for the tube, which is a relation that is true in general for every tube through a closed curve in the 

region of the space-time manifold in question, since one can easily free it from the restrictions that 

were introduced later. 

 The numerical value of the constant in (170) can be interpreted very simply. In order to do 

that, one advances from a point on the surface of the tube in such a direction that the direction of 

advance will also be coupled with the direction of the extremal space-time lines by the relation: 

 

(171) p1 q1 + … + pn qn – H dt = 0 , 

 

so in a direction of advance that one cares to call transversal to 

the direction of the extremal in the calculus of variations [cf., II 

A 8.a (E. Zermelo-H. Hahn), no. 1]. Under such a circuit 

around the tube, one will once more meet up with the extremal 

space-time line from which one started at the point P for the first 

time at the point P . If one extends the curve segment PP , 

which encircles the tube like a type of helix, with the segment 

PP  of the extremal space-time line itself to a closed curve then 

equation (170) will be true for that closed curve. However, since 

the integrand in (170) will vanish on the thread PP , due to 

transversality, that thread will make no contribution to the 

integral (170). On the other hand, the integrand of (170) will 

reduce to the function L itself along the extremal space-time line 

P 

 

Figure 2. 
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PP , such that the numerical value of the constant in formula (170) will be: 

 

(170.a) const. = 

P

P

L dt


 . 

 

That quantity is nothing but the pitch of the screw PP  (as measured in the sense of the variational 

problem). In general, one then has that the curve that one will obtain when one advances along the 

tube transversally to the extremal space-time line (which serves as a generator) is a helix that 

possesses a constant extremal pitch. That should mean: If one selects two successive points on an 

arbitrary extremal space-time line on the surface of the tube where it intersects the transverse helix 

then Hamilton’s principal function will have the same constant value for such a point-pair 

everywhere on the tube, which one can refer to as the “tube constant.” 

 If the tube constant is equal to zero, in particular, then when one encircles the tube transversally 

to the extremal generators, that will yield a closed curve instead of a helix. What is especially 

important is the case in which for every tube with extremal generators in the n-parameter family 

of space-time lines a transverse circuit will give a closed curve, so the constant in (170) will always 

be equal to zero. In the region that is filled up by the extremal space-time lines of the n-parameter 

family, the integral: 

1 1( )n np q p q H t  + + −  

 

will obviously be independent of the integration path, and: 

 

(172) p1 q1 + … + pn qn − H t 

 

will be a complete differential. Thus, the differential equation: 

 

(173) p1 q1 + … + pn qn − H t = 0 

 

will determine a one-parameter family of n-dimensional manifolds in the n-parameter family of 

extremal space-time lines, and indeed according to the differential equation (173), those Mn will 

intersect the extremal space-time lines of the n-parameter family transversally. Any two of the Mn 

will cut out segments on all extremal space-time lines for which L dt  has the same value. 

 Moreover, the expression (172) for the (n + 1) variables q1, …, qn, t will already be a complete 

differential when: 

 

(174)     p1 q1 + … + pn qn 

 

is a complete differential for a manifold t = const. That is because since the integral (170) will 

have the same value for every closed curve that winds around a tube that is constructed from 

extremal space-time lines once, one needs to require the vanishing of the tube constant for only all 

closed curves in the manifold t = const. In particular, the expression (172) will then be a complete 
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differential for the n-parameter bundle of extremal space-time lines that emanate from a space-

time point, because at the center of the bundle itself, the corresponding differential equation: 

 

(174.a) p1 q1 + … + pn qn = 0 

 

will, however, be certainly fulfilled, since q1 = … = qn = 0 . 

 Just like the family of extremals, one also refers to this special case of a general n-parameter 

family of extremal space-time lines as a field of extremals (175) in the event that one can construct 

a one-parameter family of transversals Mn in them. From (173), the transverse manifolds of the 

field are given by: 

(175)   S (q1, …, qn, t) = 
1 1 1 1( )

P

p q p q H t  


+ + −  = const., 

 

in which the integral is independent of the path of integration in the field, which extends from a 

fixed, but arbitrary, point (0) (0)

1 0( , , , )nq q t  in the field to a varying point P (q1, …, qn, t). D. 

Hilbert (176) has referred to the significance of that integral that is independent of the path of 

integration, which one can also write in the form: 

 

(176)    1
1 1

1

P

n

n

qqL L
L q q t

q t q t




 


     
+ − + + −    

     
 . 

 

It is then referred to as Hilbert’s independent integral. 

 The fact that the value of the path-

independent integral in (175) is denoted by S, 

which is also the function symbol for the extremal 

integral, is actually justified. Namely, if one lays 

the transverse manifold through  in the field the 

one can arrive at the arbitrarily-chosen point P in 

the field in the following way: The extremal 

space-time line of the field that runs through P 

meets the transverse manifold through  at a point 

P0. One then goes from  to P0 along the 

transverse manifold and then from P0 to P along 

the space-time line of the field. Since the integral of (175) [(176), resp.] is equal to zero on the 

transverse manifold, while it reduces to L along the extremal space-time line of the field, for which: 

 
 (175) and indeed a field in the narrow sense (independence field).  

 (176) Cf., D. Hilbert, “Mathematische Probleme,” talk given at the International Congress of Mathematicians, 

Paris, 1900. French translation in the C. R. du congrès, pp. 58. Original version in Gött. Nachr. (1900), pp. 253. The 

general theorem was first proved by A. Mayer, “Über den Hilbertschen Unabhängingkeitsatz in d. Theorie d. Max. u. 

Min. d. einf. Int.,” Math. Ann. 58 (1904), pp. 235. Then D. Hilbert, “Zur Variationsrechnung,” Gött. Nachr. (1905), 

pp. 159 = Math. Ann. 62 (1906), pp. 351. Moreover, the theorem was previously remarked in passing by E. Beltrami, 

“Sulla teoria delle line geodetiche,” Mailand Rend. del istit. Lombardo (2) 1 (1868), pp. 708 = Opere I, pp. 366. 

P0 

 

P 

Figure 3. 
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1q

t




 = 1q , …,  nq

t




 = nq , 

 

the function (175) will be precisely the extremal integral that is taken along the field extremal 

through P from P0 to the point P : 

 

(177)     

0

P

P

L dt  = S (q1, …, qn, t) . 

 

The coordinates (0) (0)

1 0( , , , )nq q t  of the space-time point P0 are regarded as functions of the 

coordinates q1, …, qn, t of the point P in the field in that. 

 The differential of that extremal integral is, in fact, equal to the expression (172). Namely, if 

one varies the point P in the field then the point P0 will indeed vary with it, but since it remains on 

the transverse manifold, one will have: 

 

(178)    
0

(0) (0) (0) (0)

1 1 0( )n n Pp q p q H t  + + −  = 0 

 

for it, no matter what values the (0)

1q , …, (0)

nq ,  t0 might take on as a result of the variations 

 q1, …,  qn,  t. From (153), the differential of the function (177), like that of the function (168) 

of the field that emanates from a point, is: 

 

(179)  S = p1  q1 + …+ pn  qn − H  t . 

 

Upon decomposing that relation, one will then get: 

 

(180) 
1

S

q




 = p1 , …, 

n

S

q




 = pn , 

S

t




 = − H , 

 

i.e., in fields of extremal space-time lines, the value of the extremal integral that is defined by a 

transversal Mn of the field will define a function S (q1, …, qn, t) whose level surfaces are the 

transversals Mn of the field and whose gradient will determine the impulse components p and the 

energy H in the field. 

 

 

 17. The Hamilton-Jacobi partial differential equation. – The elimination of the impulse 

components from equations (180) will yield the first-order partial differential equation for the 

function S (q1, …, qn, t) (
177): 

 
 (177) Since H is normally quadratic in the impulse components in mechanics, the partial differential equation would 

be quadratic in the S / q . 
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(181)    1

1

, , , , , ,n

n

S S S
H q q t

t q q

   
+  

   
 = 0 , 

 

which coincides with one of the two differential equations that were given in the previous section 

[cf., no. 14, eq. (138)] for Hamilton’s principal function. Only one of the two partial differential 

equations can appear here, since indeed one of the points here, namely P0, seems to be established 

by the other one, namely the varying point P, while from the approach that Hamilton took in his 

mechanical treatises, both points of the point-pair that serves to delimit the extremal integral are 

thought of as independently varying, which was suggested by the notation in no. 16: (2)

1( ,S q  …, 

(2) (1) (1)

2 1 1, , , , , )n nq t q q t . Thus, in his treatises on mechanics, to a certain extent, Hamilton 

considered the set of 2n extremal space-time lines simultaneously, while here, corresponding to 

the approach that Hamilton took in his treatises on ray optics, a family of n curves is selected 

from it that defines a field. In the simplest case of such a field, namely the extremals that go through 

a fixed point (so when one regards one of the two space-time points, namely the lower limit of the 

integral, as fixed: 

 

(182)    (1)

1q  = (0)

1q , …, (1)

nq  = (0)

nq , t1 = t0 , 

 

while the other one is regarded as varying in the field: 

 

(182.a)    (2)

1q  = q1 , …, (2)

nq  = qn , t2 = t ) 

 

the transverse manifolds: 

S (q1, …, qn, t) = const. 

 

will be the immediately generalizations of the light waves that belong to the bundle that emanates 

from a luminous point in ray optics. However, even in a general field of the type that was 

introduced in the previous section, the transverse manifolds can be spoken of as generalizations of 

the light waves, since indeed a bundle of light rays that is originally centered will become one such 

general field as long as it experiences reflections or refractions. Since Jacobi (cf., no. 15) refused 

to regard Hamilton’s principal function as a function of two equally-justified points of a point-

pair, in order to do that, he introduced the concept of a field with its extremal integral whose level-

Mn would be the transversal manifolds to the field, and he arrived (178) at the function S (q1, …, qn, 

t), which is a solution to the one partial differential equation (181). That one equation is then 

referred to in the literature as the Hamilton-Jacobi partial differential equation. 

 
 (178) C. G. J. Jacobi, “Über die Reduktion der Integr. d. partiellen Differentialgl. 1. Ordn. zwischen irgendeiner 

Zahl Variabl. auf die Integr. eines einzigen Systems gewöhnlicher Differentialgleichungen,” J. f. Math. 17 (1837), pp. 

97 = Werke IV, pp. 57, as well as C. G. J. Jacobi, Vorlesungen über Dynamik, Werke Supplementband, pp. 148, et 

seq., in which Jacobi derived the partial differential equation (181) by initially considering “centered” fields whose 

extremal space-time lines all ran through a fixed space-time point and then asking what an arbitrary solution to that 

equation would mean. Cf., C. G. J. Jacobi, Probleme der Mech., Werke V, pp. 240. 
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 As was done in no. 15, Jacobi’s approach basically arose from the converse of that result, 

namely, the recognition that every solution of the Hamilton-Jacobi equation (181) must be 

obtained from a field of space-time lines in the given way (178.a). That is because, from the general 

theorem on the existence of solutions [cf., II A 5 (E. von Weber), no. 1], a solution of the partial 

differential equation (181) is determined uniquely when it assumes a prescribed value on an n-

dimensional manifold. Now, if any solution S (q1, …, qn, t) of (181) is known then one can 

determine the manifold on which S = 0 (179) and construct an n-parameter family of extremal space-

time lines of the variational problem L dt  = extrem. that is transverse to it (180), which will 

obviously represent a field, since the condition (171) is indeed fulfilled on S = 0, and therefore the 

tube constant will be equal to zero for all tubes that are defined by extremal space-time lines. The 

function: 

1( , , , )nS q q t  = 

0

P

P

L dt  

 

that is defined in the field is a solution to the partial differential equation (181) now that likewise 

assumes the value S   = 0 on S = 0. Since S and S   are identical on that n-dimensional manifold, 

from the existence theorem, they must be identical everywhere. As a result, the given solution 

1( ,S q …, qn, t) will arise from the field of extremal space-time lines that was constructed. 

 
 (178.a) That is the basis for the so-called Jacobi first method [II A 5 (E. von Weber), no. 30] for integrating first-

order partial differential equations. C. G. J. Jacobi, “Über die Reduktion…,” loc. cit. (178), esp., Werke IV, pp. 100, 

et seq. 

 (179) Or a suitable manifold S = const., resp., when S = 0 is not supposed to be favorable. Such a change will come 

about when one changes the function S by an additive constant, which is obviously inessential.  

 (180) I.e., one constructs the extremal space-time line at each point of the manifold S = 0 whose direction is 

determined by the equations: 

   
L

q




 = 

S

q




    ( = 1, …, n). 

 

 The construction of the field that belongs to a particular solution S (q1, …, qn, t) of the Hamilton-Jacobi equation 

requires the solution to a system of n first-order ordinary differential equations. Namely, if one replaces the Euler 

equations (150) with the associated canonical system: 

 

dq

dt


 = 

H

p




, 

dp

dt


 = − 

H

q




 

 

then since p = S / q , one will need only to integrate the n equations: 

 

dq

dt


 = 

H

p




, 

 

whose right-hand sides are now functions of q1, …, qn, t. For that, cf., R. Lehmann-Filhés, “Über die Verwendung 

unvollständing Integrale der Hamilton-Jacobischen part. Differentialgl.,” Astron. Nachr. 165 (1904), pp. 209. 
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 If one now starts from a centered field, so from a bundle of extremal space-time lines that go 

through a space-time point (0) (0)

0 1 0( , ., , )nP q q t , then one can assume that the center P0 in the 

associated solution: 

S (q1, …, qn, t) = 

0

P

P

L dt  

 

of the Hamilton-Jacobi equation (181) is not fixed, but variable. The coordinates (0) (0)

1 0( , ., , )nq q t  

of the center enter into the function S as constants then, and one will get a solution to the Hamilton-

Jacobi equation that depends upon (n + 1) constants in the form of (0) (0)

1 1( , , , ; , ., ,n nS q q t q q 0 ) .t  

That is a complete solution of that equation [cf., II A 5 (E. von Weber), no. 7], in which one 

constant is superfluous (181). One will then get a complete solution with the necessary number of 

n arbitrary constants when one gives a fixed value to – say – t0 and then regards (0)

1q , …, (0)

nq  as 

chosen arbitrarily from the n-dimensional manifold t = t0 . The set of 2n extremal space-time lines 

then seems to be divided into n bundles of n space-time lines whose centers are the n points of 

a manifold t = const. 

 Now, if arbitrary parameters c1, …, cn enter in place of the coordinates (0)

1q , …, (0)

nq  of the 

center of the bundle then: 

 

(182)     S = S (q1, …, qn, t, c1, …, cn) 

 

will represent the most general Ansatz for a complete solution to the Hamilton-Jacobi equation. 

However, since the function (182) can likewise be interpreted as the value of an extremal integral 

for a field whose extremals are transverse to an initial Mn when the parameters c1, …, cn possess 

fixed values, the complete solution of the most general kind (182), just like the special one, will 

find its interpretation in a family of n fields, except that now a family of n n-dimensional 

manifolds will enter in place of the centers of the bundle, each of which can serve as the initial Mn 

for a field of extremals that are transverse to it (182). The set of 2n extremal space-timelines also 

seems to be once more divided into n fields here, in the same way that they were divided into n 

bundles with centers in a manifold t = const. above. In one such chosen field that belongs to fixed 

values of the parameters c1, …, cn , a certain extremal space-time line will now go through a space-

time point P (q1, …, qn, t) and determine the point P0 as the point of intersection with the transverse 

manifold S = 0, such that for every choice of the c1, …, cn, the coordinates of the point P0 will be 

functions of the coordinates q1, …, qn, t of the point P. One will then have: 

 

(183)  
(0) (0) (0) (0)

1 1 1 1 1 1

0 0 1 1

( , , , , , , ) , , ( , , , , , , ) ,

( , , , , , , ).

n n n n n n

n n

q q q q t c c q q q q t c c

t t q q t c c

 = =


=
 

 

 
 (181) Cf., C. G. J. Jacobi, Probleme der Mechanik, Werke V, esp., pp. 309. 

 (182) Cf., D. Hilbert, “Zur Variationsrechnung,” Gött. Nachr. (1905), esp., pp. 170.  
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By definition, the point P0 will remain unchanged when one replaces the point P with another 

point of the same extremal space-time line of the field. 

 If one now interprets the function S (q1, …, qn, t, c1, …, cn) as the value of the extremal integral 

of the field: 

(184)    S (q1, …, qn, t, c1, …, cn) = 

0

P

P

L dt  

 

then one can easily infer the partial derivatives of S with respect to the c1, …, cn from the boundary 

formula for the calculus of variations. That is because if one fixes the upper limit of the integral 

then the boundary formula will imply the relation: 

 

(184.a)   S = − (0) (0) (0) (0) (0) (0) (0) (0)

1 1 1 1 0 0( , , , , , , )n n n np q p q H p p q q t t  − − + , 

 

in which (0)

1p , …, (0)

np  are the impulse components at the point P0 that belongs to the extremal 

space-time line that runs through it. They are also functions of q1, …, qn, t, c1, …, cn : 

 
(0)

1p  = (0)

1p (q1, …, qn, t, c1, …, cn) , …, (0)

np  = (0)

np (q1, …, qn, t, c1, …, cn) 

 

that have the property that they will not change when the point P (q1, …, qn, t) on the extremal of 

the field in question that goes through P0 changes its position. 

 The n relations: 

 

(185) 
S

c




 = −

(0)(0)
(0) (0) (0) (0) (0) (0) 01
1 1 1 0( , , , , , , )n

n n n

q tq
p p H p p q q t

c c c  

 
− − +

  
  ( = 1, …, n) 

 

follow immediately from (184.a). However, from what was said, the right-hand sides will now 

remain unchanged when the space-time point P (q1, …, qn, t) varies along one and the same 

extremal of a field, such that one will have: 

 

(186)    
1

S

c




 = 1 , …, 

n

S

c




 = n 

 

for the individual extremal space-time lines of the fields, in which 1, …, n are understood to mean 

constants. Conversely, those n equations (186) can be spoken of as the finite equations of the 

extremal space-time lines. Geometrically, that means that the individual points P of an extremal 

space-time line, as the intersections of the (n + 1) manifolds S = const. that belong to the parameter 

values (c1, …, cn), (c1 + c1, c2, …, cn), …, (c1, …, cn + cn), resp., and that one will give the entire 

space-time line when one appeals, not to the (n + 1) manifolds S = const. =  (with a fixed value 

of ), but to the (n + 1) paths in Mn with varying  . With that, the determination of the light ray 



Chapter IV – The Varied Action. 115 

 

as the intersection of three wave-trains (cf., no. 13) is generalized to the general problem of 

determining the space-time lines of the motion. 

 Along with the finite equations (186) of the extremal space-time lines, which Jacobi referred 

to as second integrals of the equations of motion, one can also infer the impulse components p 

(velocity components q , resp.) from the complete solution S (q1, …, qn, t, c1, …, cn). That is 

because, along with (185), the boundary formula will further imply the relations: 

 

(187)    
1

S

q




 = p1 = 

1

L

q




, …, 

n

S

q




 = pn = 

n

L

q




, 

 

which couple the components of the impulse vector (velocity vector, resp.) with the position 

coordinates and time, and represent n first integrals of the equations of motion, with Jacobi’s 

terminology. The n first integrals (187) and the n second integrals (186), with their 2n arbitrary 

constants c1, …, cn, 1, …, n, will then produce the general solution to the equations of motion. 

With that, one has arrived at a connection between the solutions of the equations of motion (150) 

and a complete solution to the Hamilton-Jacobi partial equation (181) that Jacobi expressed by 

saying that: One will get the solution to the system of equations of motion from a complete solution 

of the Hamilton-Jacobi partial differential equation by mere differentiations and eliminations 

using equations (186) and (187) (183). 

 

 

 18. Simplifying the Hamilton-Jacobi equation when an integral of the equations of 

motion is known. – 

 
 (183) C. G. J. Jacobi, Vorlesungen, Werke Supplement-Bd., pp. 157, cf., also Probleme der Mech., Werke V, pp. 

240. The theorem was first expressed in the treatise by C. G. J. Jacobi, “Über die Reduktion der Integration der 

partiellen Differentialgleichungen erster Ordnung zwischen irgendeinen Zahl Variablen auf die Integration eines 

einzigen Systems gewöhnlicher Differentialgleichungen,” J. f. Math. 17 (1837), pp. 97 = Werke IV, pp. 57, cf., esp., 

pp. 71. 

 If one has an incomplete solution to the Hamilton-Jacobi equations that includes less than n constants: 

 

(a)    S = S (q1, …, qn, t, c1, …, cr)    (r < n) 

 

then the derivatives of S with respect to the c1, …, cr along the individual extremals will be: 

 

(b)   

1

S

c




 = 1 , …, 

r

S

c




 = r . 

 

For every choice of the c1, …, cr, from (180), the construction of the field whose extremal integral is the function (a) 

will require the integration of the system of n ordinary differential equations: 

 

rdq

dt
 = 

H

p




. 

 

However, one already known the r integrals (b) of that system. Cf., R. Lehmann-Filhés, loc. cit. (180). 
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 18.a. Cyclic coordinates and the energy integral. – The Hamilton-Jacobi partial differential 

equation simplifies when one addresses a problem with one cyclic coordinate, say, the coordinate 

qn . Namely, since the coordinate qn will not appear in the function H then, as was shown before 

in no. 9, then obviously: 

 

(188)    S = 
1 1 1 1( , , , , , , )n n n nc q S q q t c c

− −+   

 

will represent a complete solution to the Hamilton-Jacobi partial differential equation (181), 

assuming that S   is determined to be a complete solution of the simplified partial differential 

equation: 

 

(189)    1 1

1 1

, , , , , , ,n n

n

S S S
H c q q t

t q q

  

−

−

   
+  

   
 = 0 . 

 

However, this partial differential equation (189) can once more be regarded as the Hamilton-

Jacobi equation for a new variational problem that it determines, and indeed it will follow 

precisely from the variational problem: 

 

(190)    1 1 1 1( , , , , , , , )n n nL q q c q q t dt

− −  = extrem., 

 

in which 

(190.a)    L  = 
1

1 1 1 1

1

( , , , , , , , )
n

n n np q H p p c q q t 


−

− −

=

−  

  = n nL p q−  = n nL c q−  

 

is the function that arises from L by the Routh-Helmholtz transformation, as in no. 9 (184). If one 

interprets the function S that was written out in (188) (for fixed values of the constants c1, …, cn) 

 
 (184) One gets the equations of the space-time lines from (188) in the form: 

 

(188.a)    

1

S

c





 = 1 , …, 

1n

S

c



−




 = n−1 , qn + 

n

S

c





 = n , 

to which the relations 

 

(188.b)    p1 = 

1

S

q





, …, pn−1 = 

1n

S

q



−




, pn = cn  

 

will then be added. The last of them is the first integral that belongs to the cyclic coordinate qn . The first (n – 1) of 

equations (188.a) represent the extremals of the variational problem (190) that are given by projecting the extremals 

of the variational problem  L dt = extrem. in the qn-direction. The last of equations (188.a) then implies such a 

projection onto the associated value of qn at each point, which will show that the additive constant belongs to a 

projection onto 1 space-time lines. 
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as the value of the extremal integral of a field of extremals of the variational problem  L dt = 

extrem. then obviously all transversal manifolds S = const. of the field will emerge from one of 

them by a parallel displacement in the qn-direction, since two manifolds S = C1 and S = C2 will 

possess the constant distance pn = (C2 – C1) / cn . Just as in no. 9, when qn is a cyclic coordinate, 

the set of all space-time lines will go to itself under parallel translation in the qn-direction, so every 

individual field, along with its transverse manifolds, will also go to itself under a parallel 

translation in the qn-direction. 

 From no. 9, the n−1 projections of the n extremal space-times of the field in question in the 

qn-direction will produce a family of n−1 extremals of the variational problem (190) L dt

  = 

extrem. Those n−1 projections are a field of the simplified variational problem in their own right. 

That is because the intersection of the transverse manifold S (q1, …, qn, t) = const. of the original 

field with qn = 0 (185): 

 

(191)     
1 1( , , , )nS q q t

−
 = const., 

 

and since that function S   is a solution of the Hamilton-Jacobi partial differential equation (189) 

that belongs to simplified variational problem (190), the manifolds (191) will be a one-parameter 

family of Mn−1 that can define the transverse manifolds of a field of the simplified variational 

problem (190). However, since one has: 

  
L

q




 = 

L

q




 = p  ( = 1, …, n – 1), 

 

from (190.a), on the basis of (188.b) in footnote (184), the projections of the extremals space-time 

liness of the initial field in the sense of new variational problem will be transverse to the Mn−1 

(191), so they will then define precisely the field that belongs to them. That connection, which is 

easy to predict from the standpoint of the Hamilton-Jacobi partial differential equation, make the 

convenience of the Routh-Helmholtz transformation when cyclic coordinates are present 

immediately understandable. 

 An entirely-analogous simplification of the Hamilton-Jacobi partial differential equation will 

come about when the function L (H, resp.) does not include time t explicitly. One will obviously 

have that: 

 

(192)     S = − k t + V (q1, …, qn) 

 

is a solution to (181) then, as long as V is a solution of the partial differential equation: 

 

 
 (185) One will also get those intersection manifolds when one determines the intersections Mn−1 of an individual 

n-dimensional transverse manifold S = const. with all manifolds qn = const. and projects them onto the Mn of the q1, 

…, qn−1, t in the qn-direction. 
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(193) 1

1

, , , , , n

n

V V
H q q

q q

  
 

  
 = k , 

 

and indeed (192) will be a complete solution when the function V (k, q1, …, qn, c1, …, cn−1) includes 

precisely (n – 1) arbitrary constants c1, …, cn−1, so it is a complete solution of (193) in its own 

right. 

 The partial differential equation now represents the Hamilton-Jacobi equation of a variational 

problem in parametric form (186), and indeed, according to (85), that variational problem has the 

form (187): 

(194)  ( )1
0 002

1 , 1

2
n n

g q k g g q q du    
  = =

 
   + −  −  

 
   = extrem., 

 

q
  = 

dq

du


, 

which will simplify to (187.a): 

(194.a)    
, 1

2( )
n

k g q q du  
  =

 −    = extrem. 

 

in the special case. Conversely, the partial differential equation (193) is the Hamilton-Jacobi 

differential equation of that variation problem. The Hamilton-Jacobi equation then immediately 

implies that when the energy integral is valid, Hamilton’s principle can be replaced with the 

variational principle for the trajectories, namely, Jacobi’s principle (188). The conceptual 

arguments in no. 10 obviously have their roots in that connection between the two equations (181) 

and (193). 

 
 (186) Thus, it is a variational problem: 

 

1
1, , , , ,n

n
dq dq

q q
du du

f du
 
 
 

  = extrem., 

 

in which f is homogeneous of degree one in the dq1 / du, …, dqn / du . 

 In order to calculate the integrand f, one must put equation (193) into the form: 

 

1
1

, , , , , ,
n

n
V V

q q k
q q

H
   

    
 = H – k = 0 

and then proceed as in (99). 

 (187) In that way, H will have the form (74.b), but time t cannot appear explicitly in g


, 0g  , 00g , and . 

 (187.a) Where H possesses the simple form (74.a) in which t cannot appear in g


 and , as before. 

 (188) As was shown in no. 10, Euler’s principle: 

 

2T dt  = extrem. 

is then equivalent to the auxiliary condition: 

T +  = const. 
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 If the energy integral is valid for the mechanical problem in question then one correspondingly 

cares to write out the Hamilton-Jacobi equation in the simplified form (193) from the outset and 

start with a “complete” integral: 

 

(195) V = V (q1, …, qn, k, c1, …, cn−1)  

 

of that simplified equation (193) directly. The integral of the equations of motion can then be 

written in the form (189): 

 

(195.a)   

1

1 1

1 1

1 1

, , ,

, , , ,

n

n n

n

n

V L V L
p p

q q q q

V V V
t

c c k
  −

−

   
= = = =    


   = = = −

   

 

 

instead of the form (186) and (187), with the help of this characteristic function V, in which  is 

an arbitrary constant (190). 

 The simplification of the Hamilton-Jacobi partial differential equation that comes about in 

the two cases considered is obviously coupled with the fact in each case, one can find a first integral 

of the equations of motion (the associated canonical system, resp.). If qn is, in fact, a cyclic 

coordinate then equations of motion will possess the first integral: 

 

pn = const. = cn . 

 

If one replaces the impulse component with the derivative of the function S that it equals here then 

one will see that, in addition to the Hamilton-Jacobi equation (181), the function S must satisfy 

the further first-order partial differential equation: 

 

n

S

q




 = cn . 

 

Those two partial differential equations will be fulfilled immediately by the Ansatz (188). 

 It follows analogously from the energy integral: 

 

H (p1, …, pn, q1, …, qn) = k 

 

that in addition to the Hamilton-Jacobi equation (181), the function S must satisfy the further 

partial differential equation: 

 
 (189) Cf., C. G. J. Jacobi, Vorlesungen, Werke Supplementband, pp. 167.  

 (190) It will enter in place of n in the same way that k enters in place of cn . 
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1

1

, , , , , n

n

S S
H q q

q q

  
 

  
 = k . 

 

The Ansatz (192) for S obviously employs the fact that the further partial differential equation for 

S: 

S
k

t


+


 = 0  

 

emerges immediately from those two partial differential equations, and therefore the system of the 

two partial differential equations: 

 

(196)    

1

1

1

1

, , , , , 0,

, , , , ,

n

n

n

n

S S S
H q q

t q q

S S
H q q k

q q

    
+ =  

    


  
=    

 

 

can be replaced with the system: 

 

(196.a)    
1

1

, , , , , 0,

0,

n

n

S S S
H q q

t q q

S
k

t

    
+ =  

    



+ = 

 

 

in which time t appears as an analogue of a cyclic coordinate and makes it clear that any field of 

extremal space-time lines, along with its transverse Mn, will go to itself under the one-parameter 

group of parallel translations in the t-direction. 

 Meanwhile, in order for the argument that was posed for the energy integral to be adaptable to 

an arbitrary first integral of the equations of motion (150), it is necessary to appeal to the system 

(196) itself directly and regard the second equation in it as the Hamilton-Jacobi equation of a 

parametric problem of the calculus of variations. From no. 10, that is just the variational problem 

of the Jacobi principle of least action, whose extremals are trajectories. Now, it is important that 

the cylindrical M2 with generators parallel to the t-axis that projects 1 space-time lines onto a 

trajectory can also be generated by this variational problem. That is because each cylindrical M2 

indeed intersects the manifolds t = const. in congruent curves that one can regard as extremals of 

the variational problem for Jacobi’s principle. One will also get the cylindrical M2 then when one 

draws curves through the individual points of an extremal space-time line in the manifold t = const. 

that are congruent to the associated trajectory. If, as before [in the spirit of (196.a)], the individual 

M2 are thought of as being covered by a net of 1 space-time lines of the field and 1 parallels to 

the t-axis then one can think of them, in the spirit of the new viewpoint [corresponding to (196)], 
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as being covered by 1 space-time lines of the field and 1 curves in the manifolds t = const., that 

are all congruent to the associated trajectory (and might also be called trajectories, for brevity). 

 Now, if the extremal integral of the parameter problem is denoted by V then the field of 

extremal space-time lines with its transverse manifolds will go to itself when one goes forward 

along all “trajectories” by the same segment V, which would follow immediately from (192). If 

one thinks of V as variable then one will obviously have a one-parameter group of transformations 

that transform the field into itself just like the one-parameter group of parallel translations in the 

t-direction. 

 

 

 18.b. Existence of an arbitrary first integral. – If one knows any first integral of the 

equations of motion (150): 

 

(197) 1 1( , , , , , , )n nF q q q q t  = c 

 

then when one replaces velocity components with the impulse components, one can give it the 

form: 

 

(198) G (p1, …, pn, q1, …, qn, t) = c . 

 

Now, if one has a field of extremal space-time lines, each of which has the same numerical value 

for the constant in (198), then the associated solution S (q1, …, qn, t) to the Hamilton-Jacobi 

equation (181) must likewise satisfy the first-order partial differential equation: 

 

(198.a) 1

1

, , , , , ,n

n

S S
G q q t

q q

  
 

  
 = c . 

 

In a way that is analogous to how the equation arose from the energy integral in no. 18.a, that 

equation can be employed to simplify the Hamilton-Jacobi equation and therefore the variational 

problem. Namely, if one regards t as a constant in (198.a) (191) then the partial differential equation 

(198.a) can be regarded as the Hamilton-Jacobi differential equation of a parametric problem in 

the calculus of variations in each manifold t = const., which might have the form (192): 

 

(199)  1
1, , , , , ,n

n

dqdq
g q q t du

du du

 
 
 

  = extrem. 

 

 
 (191) In the literature, as a rule, one treats the case in which t does not appear explicitly in H, such that one can 

consider the trajectories directly in place of the extremal space-time lines of the motion. One will correspondingly 

have only integrals (197) [(198), resp.] in which time t does not appear explicitly.  

 (192) The integrand g in that is calculated from G in the way that was given in (99). t appears in the integrand as a 

variable parameter, which corresponds to the fact that one has such a variational problem (199) for every manifold t 

= const. 
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The Euler equations for the problem (193): 

 

(199.a)     
d g g

du q q 

  
−    

 = 0  
dq

q
du





 
 = 

 
 

 

( = 1, …, n) 

 

can, by introducing the associated “impulse” (194): 

 

(200) p  = 
g

q




, 

be put into the canonical form (195): 

 

(201)    
dq

du


= 

G

p





,  

dp

du


= −

G

q





. 

 

 Now, the function S (q1, …, qn, t) is simultaneously a solution to the Hamilton-Jacobi equation 

(181) of the problem of motion itself and the Hamilton-Jacobi equation (198.a) of the variational 

problem (199). The manifolds S = const. are not just the transverse Mn to the field of extremal 

space-time lines in question, but when one intersects them with an Mn : 

 

t = const. = t
, 

 

they will give, at the same time, a family of 1 manifolds 
1( , , , )nS q q t  = const. in that Mn that 

represent the transverse Mn−1 of a field of extremals of the variational problem (199). If one thinks 

of constructing the extremals of that field for the variational problem (199) then two extremals will 

go through each space-time point (q1, …, qn, t), one of which is an extremal space-time line, while 

the other is an extremal of the variational problem (199). Since the same function S (q1, …, qn, t) 

will belong to both fields as the value of the extremal integral, one will have: 

 

p = 
S

q




 

 
 (193) Which are not mutually independent.  

 (194) The impulses are independent of the choice of parameters, since the derivatives /g q
   are indeed 

homogeneous of degree zero in q
  = dq / du . 

 (195) In the parametric problem (in contrast to the function problems of the calculus of variations), the function of 

the canonical system (and therefore the Hamilton-Jacobi partial differential equation, as well) is not determined 

uniquely. It is obtained from the relations (200) by eliminating the q
  and can be changed in many different ways. 

That is the reason for the appearance of the parameter . 
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for the impulse vector of the motion p1, …, pn, as well as having: 

 

p  = 
S

q




 

 

for the “impulse vector” (200) 1p , …, np  of the field of the variational problem (199), such that 

one will have (196): 

p  = p  

 

at every point (q1, …, qn, t), and one briefly says that both fields have the same field elements (i.e., 

space-time point + associated impulse vector). 

 Now, the variational problem that arises mediates a transformation of the field elements, which 

would follow directly from the foregoing. That is because if one starts from an arbitrary space-

time point 
1( , , , )nP q q t     whose impulse vector

1p , …, 
np  is associated by means of the field 

of the extremal space-time lines then a well-defined extremal of the field of the variational problem 

that arose will go through that point, and every point P of the extremal will determine a field 

element q1, …, qn, t = t
, p1, …, pn that one can associate with the field element of the starting 

point P . One can then use the value of the extremal integral P

P
W   of the variational problem (199) 

that is bounded by the two points P  and P of the extremals as a parameter. One then sees 

immediately that the family of transformations that one obtains when one thinks of W as variable 

possesses the group property. Since an extremal of the variational problem (199) goes through 

every point of the field of space-time lines of the motion, one will then have a one-parameter group 

of transformations that take every field element (q1, …, qn, t, p1, …, pn) to another field element. 

The canonical system (201) represents the infinitesimal transformation of that one-parameter 

group of transformations [cf., II A 6 (L. Maurer and H. Burkhardt), no. 4] (197), and in order to 

suggest that fact, it might take the form: 

 

(201.a)    q = 
G

u
p

 



,  p = −

G
u

q

 



,  t = 0 . 

 

 
 (196) In the case where the energy integral: 

 

H (p1, …, pn, q1, …, qn) = k 

 

is the known integral (198), that will mean: The same impulse components p will belong to the fields of the two 

variational problems, namely, that of Hamilton’s principle and that of Jacobi’s principle. 

 (197) One should only note that in that way a different parameter is employed in place of the value W of the 

extremal integral, and the factor  is introduced. That is based upon the fact that G is not homogeneous of degree one 

in the impulse components. If G were replaced with a suitable function that is homogeneous of order one in the impulse 

components then the value W of the extremal integral would appear as a parameter, and one would set  = 1 (cf., no. 

13). 



124 General Methods of Integration in Analytical Mechanics 

 

 

The extremals of the field of the variational problem (199) are correspondingly the orbits 

(Überführungskurven) of that one-parameter group of transformations (198). 

 The fact that the transverse manifold S = const. of the field of space-time lines of the motion 

will go to another such transversal Mn under a transformation of that group follows immediately 

from the fact that the value W of the extremal integral that is bounded by two associated points of 

an orbit is directly equal to the difference S between the two values of S that belong to the two 

points. On the other hand, an extremal space-time line of the field will also go to another extremal 

space-time line. That is because the time derivatives of the position coordinates dq / dt along the 

transformed curve are equal to the velocity components q , which one calculates from the 

transformed impulse components at the transformed space-time point (199): 

 

q  = 
H

p




. 

 

 
 (198) The expression orbits (Überführungskurven) might be chosen in place of the usual term as trajectories of the 

group (cf., e.g., S. Lie, Theorie der Transformationsgruppen I, Leipzig, 1888, pp. 60) in order to prevent any confusion 

with the trajectories of the mechanical system itself. 

 (199) In fact, from (201.a): 

 

2 2 2d q G H G H G
u

du p p q p q p p t



      


 

       
= − + +             

 , 

 

while on the other hand, q  = H / p will yield the relation: 

 

2 2H G H G
q u

p p q p q p


     

 
    

= − +        
  . 

 

On the other hand, (198) will imply the identity: 

 

0
G H G H G

p q q p t   

     
− + + = 

     
 , 

 

and when one differentiates that with respect to p , that will give: 

 

2 2 2 2 2

.
G H G H G G H G H

p p q p q p p t p p q q p p            

           
− + + = −                      

   

 

It will then follow that: 

d q

dt


= q , 

 

i.e., the field elements that are produced from the field elements of an extremal space-time line by a transformation of 

the group will all belong to one and the same extremal space-time line again. 
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 Every space-time line of the motion, along with the orbits that emanate from its individual 

space-time points, will then determine an M2 to which an entire family of space-time lines is 

assigned, and together with the orbits, they will define a net on the M2 in such a way that an 

extremal space-time line and an orbit will run through each point of the M2 (
200). In the field of the 

space-time lines of the motion, one will then have a family of n−1 such M2 , along each of which 

1 of the space-time lines of the field will lie. One can imagine introducing t and qn as independent 

variables along them: 

 

(202)    q1 = q1 (t, qn) ,    …, qn−1 = qn−1 (t, qn) , 

 

which will also make the impulse components p that are associated with the individual points of 

the M2 by the field become functions of t and qn : 

 

(202.a)    p1 = p1 (t, qn) ,    …, pn−1 = pn−1 (t, qn) . 

 

 If one now introduces an arbitrary Mn into the Rn+1 of the (q1, …, qn, t) by setting: 

 

(203)     t = t () , qn = qn ()  

 

then each of the n−1 M2 will intersect that Mn in a curve, and one will get a family of n−1 

intersection curves in the Mn . One can say that the orbits project the extremal space-time lines of 

the field into the Mn (203) here, in the adapted sense, as in the case of cyclic coordinates above, 

which will make the 1 space-time lines that belong to one and the same M2 possess the same 

projection. 

 If one now makes the transverse manifolds S = const. of the field of the space-time lines 

likewise intersect the Mn (203) then one will get a one-parameter family of Mn−1 : 

 

(204)   
1 1( , , , )nS q q 

−
 = S (q1, …, qn−1, qn (), t ()) = const. 

 

Once more, a variational problem can be given for which the projected curves represent a field of 

extremals, while the intersection manifolds (204) define the associated transverse manifolds. In 

order to get that variational problem, one solves equation (198.a) for S / qn : 

 

(205) 1 1

1 1

, , , , , , , ,n n

n n

S S S
h q q t q c

q q q
−

−

   
+  

   
 = 0 , 

 

and then substitutes the value for S / qn that is obtained in the Hamilton-Jacobi equation: 

 
 (200) That M2 was basically introduced before by S. Lie in his investigation into the integration of partial 

differential equations. The individual extremal, with the impulse vectors that are associated with its points, is the 

analogue of the “characteristic strip” that Lie introduced [cf., II A 5 (E. von Weber), no. 34], while M2 are the 

characteristic M2 for the two-parameter system in involution (cf., say, the remarks of F. Engel in S. Lie, Ges. Abh. III, 

pp. 607). 
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1

1

, , , , , ,n

n

S S S
H q q t

t q q

   
+  

   
 = 0 , 

which will make it go to: 

(205.a) 1 1

1 1

, , , , , , , ,n n

n

S S S
H q q t q c

t q q



−

−

   
+  

   
 = 0 . 

 

If one introduces the functions (203) for qn and t then the two equations: 

 

(206) 

1 1

1 1

1 1

1 1

, , , , , , , 0 ,

, , , , , , , 0

n

n

n

n n

S S S
H q q c

t q q

S S S
h q q c

q q q







−

−

−

−

    
+ =  

    


   
+ =     

 

 

will be fulfilled at each point of Mn . 

 If one now goes over to the function S   then from (204), one will have: 

 

(204.a)    

( ) ( ) ,

( 1, , 1),

n

n

S S S
t q

t q

S S
n

q q 

 








   
 = +

  


  = = −
  

 

 

and when one introduces the function: 

 

(207)    K (p1, …, pn−1, q1, …, qn−1, , c) 

= 
1 1 1 1 1 1 1 1( ) ( , , , , , , , ) ( ) ( , , , , , , , )n n n n nt H p p q q c q h p p q q c   

− − − −
 +  , 

 

one will get the partial differential equation for S  : 

 

(208)    1 1

1 1

, , , , , , ,n

n

S S S
K q q c

q q




  

−

−

   
+  

   
 = 0 . 

 

The intersection manifolds (204) are then transverse manifolds of a variational problem in the Mn 

(203) for which this partial differential equation (208) is the Hamilton-Jacobi equation. If one 

puts the Euler equations for that variational problem into canonical form then they will read: 

 

(208.a) 
dq

d




 = 

K

p




, 

dp

d




 = −

K

q




  ( = 1, …, n – 1), 
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and one will easily see that the projected curves are a family of solutions to that canonical system 

(208.a), so they are extremals to the variational problem that belongs (208) (201), as well as that, 

due to the fact that: 

  p = 
S

q




  ( = 1, …, n – 1), 

 

 
 (201) In fact, the differentials of the position coordinates and the impulse components for the projections must be 

linear combinations of the differentials of the space-time lines and their orbits on M2, since the projections belong to 

M2, such that if d


 means the direction of advance along the projection then d will mean the direction of advance 

along the space-time line of the motion, and  means the direction of advance along the orbit then one will have the 

relations: 

   d q


 = 1 dq + 2 q , d p


 = 1 dp + 2 p   ( = 1, …, n – 1), 

 

in which 1 and 2 are determined from the conditions: 

 

d t


 = 1 dt = ( )t d  , nd q


 = 1 dpn + 2 pn = ( )nq d   

to be: 

   1 = 
( )t

dt
d





, 

2 = 
( ) ( )n nq t q

t
d

 




 −
. 

Thus: 

   
d q

d







 = ( ) ( )n n
n n

q
q q

q

q
t q

q









 



 
− +  

 
  , 

   
d p

d







 = ( ) ( )n n
n n

p
p q

q

p
t q

q









 



 
− +  

 
  , 

or, since one has: 

n

q

q




 = 

h

p




, 

n

p

q




 = − 

h

q




, 

 

from (205), and further when one recalls (205.a): 

 

  n
n

q
q q

q







−  =  

n

H h H

p p p 

−
  

  
 =   

H

p





, 

  n
n

p
p q

q







−  = − 

n

H h H

q q p 

+
  

  
  = − 

H

q





, 

one will have: 

  
d q

d







 =  ( ) ( )n

H h
t q

p p 

 



+
 

 
 

, 

  
d p

d







 = − ( ) ( )n
H h

t q
q q 

 
 

 
 
 

 
 +

 
. 

 

However, from (207), that is just the system (208.a). 
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they will define just the field that belongs to the intersection manifolds (204). One has once more 

reduced the variational problem in one step by means of the known integral then. 

 Since the Mn (203) can be chosen arbitrarily, the new variational problem will determine the 

M2 immediately. If one has found them then all that will remain is to calculate the family of 1 

extremal space-time lines of the original variational problem on the individual M2 . In order to do 

that, one substitutes the expression (202.a) for p1, …, pn and the expressions (202) for q1, …, qn−1 

in the equation: 

ndq

dt
 = 

n

H

p




, 

which will give one a differential equation: 

 

ndq

dt
 = f (qn, t) . 

 

Whereas in the case of cyclic coordinates (and the energy integral), the determination of the 

extremal space-time line on the M2 will require only a quadrature, here, it seems necessary to solve 

a first-order differential equation. Meanwhile, one can immediately give an Euler multiplier for 

that differential equation, such that one also comes down to a quadrature here (cf., also no. 27)(202). 

 
 (202) The simplification of the variational problem when a first integral is present was achieved in a somewhat-

different way by P. Woronetz, “Sur l’intégration des équations aux dérivées partielles,” Bull. des sciences mathémat. 

(2) 47 (1923), pp. 113, cf., also the (Russian) treatise by P. Woronetz, “On the question of integrating the Lagrange 

differential equations,” Proc. math. Labor. Crimean Univ. 3 (1921), pp. 39. Referenced in Fortschritte der Mathematik 

48, pp. 901. 

 He immediately addressed the partial differential equation (205.a) and imagined that a solution S (q1, …, qn−1, t, 

qn) was determined, in which qn appeared as a parameter. In a manifold qn = const., that solution can differ from the 

desired function S (q1, …, qn, t) that simultaneously satisfies the Hamilton-Jacobi equation (181) and the partial 

differential equation (198.a) that arises from the first integral by only a constant, i.e., one will have: 

 

(209)    

1

S

q




 = 

1

S

q




, …, 

1n

S

q −




 = 

1n

S

q −




. 

 

Therefore, the difference S − S  must be a function of only qn . If one then defines: 

 

dS − d S  = n

n n

S S
dq

q q

 

 

 
− 

 
, 

 

and replaces the S / qn in it with h, corresponding to equation (205), then when one introduces h into the derivatives 

of S , the variables q1, …, qn−1, t must be given by the expression: 

 

1 1
1 1

, , , , , , ,n n
n n

S S S
h q q q

q q q
t−

−

    
+  

     
 , 

 

and one will get the function S by the quadrature: 
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 If one has yet another first integral to the equations of motion, in addition to the integral (197) 

[(198), resp.], then it can be employed to further simplify the Hamilton-Jacobi differential 

equation (208) if and only if the function that arises from it by the substitution: 

 

(210)  pn = − h (p1, …, pn−1, q1, …, qn−1, t, qn, c) , qn = qn () , t = t () 

 

represents an integral of the reduced canonical system (207). The necessary and sufficient 

condition for that is that the Poisson bracket that is defined by the two integrals must vanish (203), 

which will be explained in more detail below (cf., no. 25). The energy integral H = k (when it 

exists) has the property that each of the integrals (that are free of time t) that are added to it will 

fulfill that condition. One can then use the existence of such a further integral, along with the 

energy integral, to simplify the partial differential equation (191), which enters in place of the 

original Hamilton-Jacobi equation (181) when an energy integral exists, in a way that is 

analogous to what one does with just the Hamilton-Jacobi equation itself. If one knows two (or 

more) integrals of the canonical system that are free of t then if they are to be usable to further 

simplify the partial differential equation (191), it will once more be necessary and sufficient that 

the Poisson bracket must vanish. 

 

 

 19. Integrating the Hamilton-Jacobi equation by separation of variables. –  

 

 19.a. General statement of the problem. – The problem of motion is solved when one knows 

a complete solution to the Hamilton-Jacobi equation (cf., nos. 17 and 18). Therefore, Jacobi had 

turned his attention to the cases in which such a solution could be given in a simple way, and in 

particular, treated mechanical problems for which a complete solution to the Hamilton-Jacobi 

partial differential equation can be achieved by a quadrature alone (204). With the application of 

 

(209.a)  S (q1, …, qn, t) = n
n

S
h dq

q
S

 
+  

 
− . 

 

 (203) The problem statement is then identical to the question of whether one can give the one n-parameter family 

of space-time lines of motion that define a field when one demands that the impulse components p (q1, …, qn, t) of 

the field should make both integrals into identities (for prescribed numerical values of the constants). 

 (204) The simplest example is the so-called one-body problem in celestial mechanics, i.e., the motion of a mass-

point that is attracted to a fixed center according to Newton’s law of gravitation (cf., C. G. J. Jacobi, Vorlesungen 

über Dynamik, Vorlesungen 24 and 25 = Werke Suppl.-Band, pp. 183, et seq.). In rectangular coordinates, since the 

energy integral for the equations of motion exists, the Hamilton-Jacobi equation will have the form: 

 

(211)  

22 2 21

2

W W W

rx y z

        
+ + −     

        

 = k  2 2 2 )( x y zr + +=  

 

here. When one introduces spatial polar coordinates, that will go to: 

 

(211.a)  

2 22 2

2 2 2

1 1 1

2 sin

W W W

rr r r



 

        
+ + −      

         

 = k , 
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quantum theory to atomic mechanics (205), for some time now, the question of whether and when 

a solution to the Hamilton-Jacobi equation by quadratures would be possible has taken on special 

importance because when such a solution is present, the Ansatz for the quantization conditions 

will become especial simple (cf., also no. 23). 

 In the literature, when one investigates that question, one restricts oneself to mechanical 

problems for which the energy integral exists, and one further assumes that the kinetic energy is a 

quadratic form in the velocity components such that the Hamilton-Jacobi differential equation 

will possess the form: 

(212)    1
12

, 1

( , , )
n

n

W W
g q q

q q



   =

 
+ 

 
  = k . 

 

 
and Jacobi could then split that into the two equations: 

 
2

11

2

W

r





 
 
 

= 
2

1
2

c
k

r r


+ −  

and 
2 2

2

1 1

2 sin

W W

 

      
+    

      

 = c1 , 

 

the latter of which is again replaced with the system of two equations: 

 
2

21

2

W



 
 

 
 = c1 − 2

2sin

c


 

and 
2

31

2

W



 
 

 
 = c2 . 

 

If W1 (r) is then a solution to the first equation, W2 () is a solution to the second one, and W3 () is a solution to the 

third then one will obviously have a solution to equation (211.a) in: 

 

W = W1 (r) + W2 () + W3 () . 

 

Now, since the functions W1, W2, W3 are determined immediately by quadratures, one will have found a solution to 

the Hamilton-Jacobi equation by quadratures alone in: 

 

(211.b)  W = 
2

1 2
12 2 2

2 2 2
2 2 2

sin

c c
k c

r r
dr d c


 


−+ − + +  , 

 

and indeed, it is a solution that is complete solution, due to the appearance of the arbitrary constants c1, c2, and k. 

Jacobi gave an extension of the process to n variables (loc. cit., pp. 185, et seq.). At the same time, he recognized 

(Lecture 25, pp. 190) that there was a second way by which one could bring the partial differential equation (211) into 

a form from which one could get a complete integral by three quadratures. 

 One should observe that the reduction of the solution to quadratures is possible only when one employs suitable 

coordinates. One cannot arrive at a complete solution by quadratures alone with the form (211) of the Hamilton-

Jacobi equation for the one-body problem, i.e., with the use of ordinary rectangular coordinates. 

 (205) Cf., e.g., M. Born, Vorlesungen über Atommechanik I, Berlin, 1925.  
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The goal is to give a complete solution to that equation that has the form: 

 

(213)  W = W1 (q1, k, c1, …, cn−1) + W2 (q1, k, c1, …, cn−1) + … + Wn (q1, k, c1, …, cn−1) ,  

 

so a solution that is represented as a sum of n summands in which each summand depends upon 

only one of the n variables, while constants can appear in all summands. In the event that the 

process with the Ansatz (213) is possible, one refers to it as the integration of the Hamilton-Jacobi 

differential equation by separation of variables. 

 

 

 19.b. Levi-Civita’s theorem. The “essentially geodetic” case and the case of Stäckel’s 

theorem. – In order to find the conditions that the g   [the coefficients g , resp.] in the kinetic 

energy: 

 

(214) T = 
,

g q q  
 

  

 

and the potential function  (q1, …, qn) must satisfy in order for a solution of the form (213) to be 

able to exist in the coordinates q1, …, qn (
206), one interprets the solution W as the value of an 

extremal integral for a field of trajectories of the system, i.e., extremals of the variational problem 

of the principle of least action in the Jacobi form. From (213), the impulse components in the field: 

 

(215)    p = 
W

q




 = 

dW

dq

 = p (q , k, c1, …, cn−1) 

 

will then depend upon each (and indeed, the one with the same index) position coordinate, such 

that one will then have: 

(215.a)      
p

q








 = 0    (  ). 

The equation: 

H (p1, …, pn, q1, …, qn) = k , 

 

which will become an identity when one replaces the impulse components in it with the functions 

(215) of the field, will then imply that: 

 

dpH H

p dq q



  

 
+

 
 = 0 , 

 
 (206) Cf., T. Levi-Civita, “Sulla integrazione della equazione di Hasmilton-Jacobi per separazione di variabili,” 

Math. Ann. 59 (1904), pp. 383. 
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i.e. (207): 

(215.b) 
dp

dq





 = − 

H

q

H

p













 . 

 

If one differentiates that relation with respect to a position coordinate q that is different from q 

then it will further follow that: 

 

  
H H H H

q q p p q q     

        
−   

        
 = 0   (  ), 

 

and therefore, one will finally have: 

 

(216)    
2 2 2 2H H H H H H H H H H H H

q q p p q p p q p q q p p p q q               

           
− − +

               
= 0   (  ). 

 

Those are the n (n – 1) / 2 necessary and sufficient conditions for the partial differential equation 

(212) to possess a complete solution of the form (213) (208). 

 Since the function H is a sum of two terms, according to (212), one of which has degree two 

in the impulse components p and the other of which has degree zero: 

 

(217)  H (p1, …, pn, q1, …, qn) = Q (p1, …, pn, q1, …, qn) +  (q1, …, qn) 

  = 1
12

,

( , , )ng p p q q

 
 

+  , 

 

each of the condition equations (216) will include terms of degree four, terms of degree two, and 

terms of degree zero in the impulse components p1, …, pn . However, each of equations (216) must 

be true identically in the impulse components, so each of them must split into three equations such 

that the necessary and sufficient condition for the possibility of integrating the Hamilton-Jacobi 

partial differential equation (212) by separation of variables will yield the following three classes 

of n (n – 1) / 2 condition equations (209): 

 

(218.a) 
2 2 2 2Q Q Q Q Q Q Q Q Q Q Q Q

q q p p q p p q p q q p p p q q               

           
− − +

               
 = 0 , 

 
 (207) H / p = 0 is excluded, since the partial differential equation can be simplified directly in the spirit of the 

previous section when H is free of p . 

 (208) T. Levi-Civita, loc. cit. (206), pp. 385.  

 (209) These condition equations were converted into condition equations for the coefficients gik in F. A. 

Dall’Acqua, “Sulla integrazione delle equazioni di Hamilton-Jacobi per separazione di variabili,” Math. Ann. 66 

(1909), pp. 398. 



Chapter IV – The Varied Action. 133 

 

(218.b) 
2 2 2Q Q Q Q Q Q

q q p p q p p q p q q p           

         
− −

           
 

+ 
2Q Q Q

p p q q q q     

     
+        

 = 0 , 

 

(218.c) 
2Q

p p q q   

  

   
 = 0 . 

 

As a comparison with (216) will show, the first group (218.a) of those conditions says that the 

partial differential equation: 

 

(219)   1

1

2 , , , , , n

n

W W
Q q q

q q

  
 

  
 = 

,

W W
g

q q



   

 

 
  = 1 

 

can be integrated by separation of variables. However, that equation is just the Hamilton-Jacobi 

partial differential equation for the variational problem: 

 

(219.a) g dq dq    = extrem. 

 

of the geodetic lines in Riemannian space (210) with the arc-length element: 

 

(219.b)     
2ds  = g dq dq    

 

that is defined by the kinetic energy (214) of the mechanical problem. That will lead to the theorem 

of T. Levi-Civita (211): 

 

 If a mechanical problem is to be soluble by separation of variables for a certain choice of 

coordinates then it will be necessary that the geodetic lines of the arc-length element that arises 

from the kinetic energy can also be determined by separation of variables in those coordinates. 

 

 For a mechanical problem whose geodetic problem is soluble by separation of variables, the 

two groups (218.b) and (218.c) will then give conditions that the potential function must satisfy if 

the general mechanical problem with applied forces is to also be soluble by separation of variables. 

 An examination of the condition equations (218.a), which one can write in the form: 

 
 (210) One can refer to that variational problem for geodetic lines briefly as the geodetic problem that is associated 

with the mechanical problem. 

 (211) T. Levi-Civita, loc. cit. (206), pp. 386.  
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2 2Q Q Q Q Q

q p q q q q p      

     
−         

 = 
2 2Q Q Q Q Q

q p p q q p p      

     
−         

 , 

 

will lead to the question of whether or not: 

 

Q

q




 = 

T

q




 = 1

2

,

g
q q

q


 

  




  

is divisible by: 

Q

p




 = q . 

 

If the divisibility exists for the first  of the  indices (212), but not for the remaining (n – ), then 

F. A. Dall’Acqua (213) referred to the first  indices as “indices of the first kind” and the remaining 

(n – ) ones as “indices of the second kind” (214). Since one can have  = 0, …, n, there will then 

be (n + 1) cases to distinguish. 

 If  is an index of the first kind then one will initially have: 

 

(220) 
g

q








 = 0  (   ;  = 1, …, n), 

 

and one will infer immediately from (218.b) that: 

 

(221) 
q




 = 0   ( = index of the first kind). 

 

Only coordinates with indices of the second kind can then appear in the potential function, such 

that in the case of  = n, i.e., when all indices are of the first kind, the potential function must 

 
 (212) Which means that the second factor: 

 

2 2Q Q Q Q

p p q q p q     

    
 −
       

 

should not be divisible by q . 

 (213) F. A. Dall’Acqua, “Le equazioni di Hamilton-Jacobi, che si integrano per separazione di variabili,” Rend. 

circ. mat. Palermo 33 (1912), pp. 341.  

 (214) For an index of the second kind: 

   
2 2Q Q Q Q

p p q q p q     

    
 −
       

 ( arbitrary, but  ) 

must be divisible by q . 
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reduce to a constant, and only the geodetic problem will be soluble by separation of variables (215). 

One then refers to that case as essentially geodetic. 

 The other limiting case  = 0, in which all n indices are ones of the second kind, is also easy 

to grasp. That is because it would follow from (218.c) that one has: 

 

(222) g   = 0   

 

when the two coordinates of the second kind q and q both appear in the potential function. If all 

coordinates are present in the potential function then the Hamilton-Jacobi differential equation 

(212) must possess the form: 

 

(223)   

22

11

1

1

1
( , , )

2

nn

n

n

W W
g g q q

q q

     
+ + +    

      

 = k , 

 

i.e., it must relate to the arc-length element that arises from kinetic energy in orthogonal 

coordinates (216): 

 

(224) 
2ds  = 2 2

11 1 nn ng dq g dq+ + . 

 

 
 (215) Its analytical treatment is in T. Levi-Civita (206), pp. 388. The Christoffel three-index symbols in this case 

are: 

   
 



  
 
  

 = 0   (  ), 

 

and in the relations (215.b), the right-hand side will be a linear function of the p , namely: 

 

dp
p

dq






 



 
=  

 
 . 

Furthermore, that will give the conditions: 

q

     

  

          
+     

          




 = 0 , 

 

from which, it will follow that the Riemannnian curvature tensor of the arc-length will vanish, i.e., that the arc-length 

must be one of a Euclidian manifold. 

 (216) In that way, one has: 

(224.a)      g


 = 
1

g

.  
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That is the case that was treated systematically, with some preliminary remarks, by C. G. J. Jacobi 

(217) and J. Liouville (218), as well as by P. Stäckel (219). 

 When Stäckel applied the Ansatz (213) to the partial differential equation (223) and set: 

 

(225)    

2

W

q

 
   

= 

2

dW

dq

 
  
 

= w (q, k, c1, …, cn−1) , 

as well as (220): 

(226)    
w

k




 =  (q) , 

w

c








 = ( ) ( )q

  , 

 

he obtained a system of linear equations for the g  : 

 

(227)   

11 22

1 2

11 (1) 22 (1) (1)

1 2

11 ( 1) 22 ( 1) ( 1)

1 2

2,

0,

.........................................................

0 .

nn

n

nn

n

n n nn n

n

g g g

g g g

g g g

  

  

  − − −

 + + + =


+ + + =


 + + + =

 

 

If one denotes the determinant that one obtains, from the matrix: 

 
(1) (1) (1)

1 2

( 1) ( 1) ( 1)

1 2

n

n n n

n

  

  − − −

 
 
 
 
 

 

 

by dropping the row by D then the determinant of the system of equations (227) will become: 

 

 
 (217) C. G. J. Jacobi, Vorlesungen, Werke Suppl.-Bd., pp. 185, et seq. In connection with Jacobi, E. Rosochatius 

treated the motion of a point in the plane and on a second-order surface in “Über Bewegungen eines Punktes,” Diss. 

Göttingen, 1877. 

 (218) J. Liouville, “Sur quelques cas particuliers où les équations du mouvement d’un point matériel peuvent 

s’intégrer,” J. de math. 11 (1846), pp. 345, as well as J. de math. 12 (1847), pp. 410, in which he restricted himself to 

two and three degrees of freedom. For the case of n degrees of freedom, cf., J. Liouville, “L’intégration des équations 

différentielles du movement d’un nombre quelconque des points matériels,” J. de math. 14 (1849), pp. 257. 

 (219) P. Stäckel, “Über die Integration der Hamilton-Jacobischen Differentialgleichung mittels Separation der 

Varänderlichen,” Habilitat.-Schrift Halle 1891. 

 (220) The upper index in 
( )

( )q


   is placed in parentheses in order to avoid confusion with the fact that one is 

dealing with contravariant and covariant indices. 

  On this, cf., also the presentation in C. L. Charlier, Die Mechanik des Himmels I, pp. 77, et seq. 
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(228)   D = 

1 2

(1) (1) (1)

1 2

( 1) ( 1) ( 1)

1 2

n

n

n n n

n

  

  

  − − −

 = 1 D1 + … + n Dn , 

 

and the solution of (227) will give the g  : 

 

(229) g   = 
2D

D

 . 

 

Thus, the coefficients of the arc-length element will become: 

 

(229.a) g = 
2

D

D

, 

 

and therefore, the arc-length element itself will be: 

 

(230) 
2ds  = 

22

1

12

n

n

dqdqD

D D

 
+ + 

 
 . 

 

For the potential function , it will then follow from (223), (225), and (229) that: 

 

 (q1, …, qn) = k −
1

D
(D1 w1 + … + Dn wn) , 

or due to the identity: 

1 = 1 1 n nD D

D

 + +
 , 

it will also follow that: 

 (q1, …, qn) = 
1

D
[D1 (k 1 − w1) + … + Dn (k n − wn)] 

when one sets: 

k  − w =  (q) , 

resp., so: 

 

(231)  (q1, …, qn) = 
1

D
(D1 1 + … + Dn n) = 1 1

1 1

n n

n n

D D

D D

 

 

+ +

+ +
 . 

 

Conversely, one also has: If one chooses the n (n + 1) functions ( ) ( )q

  , ( )q  , ( )q   

arbitrarily and makes the Ansatz (230) for the arc-length element and the Ansatz (231) for the 



138 General Methods of Integration in Analytical Mechanics 

 

 

potential function then the associated Hamilton-Jacobi equation (223) will be integrable by 

separation of variables, i.e., one will get a complete solution by k quadratures. Namely, with the 

Ansatz (213), the function W will be given by quadrature: 

 

(232)   W = (1) ( 1)

1 1( ) { ( ) ( )} ( )
n

nk q c q c q q dq           
−

−+ + + − . 

 

That is Stackel’s theorem (221). 

 

 

 19.c. The discussion of the (n + 1) individual cases. – In the general case where  of the 

coordinates are of the first kind and the other (n – ) coordinates are of the second kind (222), the 

potential function will depend upon only the coordinates of the second kind, such that in the 

general case, one will have: 

 

(235)      = 1 2( , , , )nq q q + + . 

 
 (221) For n = 2, one has D = 1 2 − 2 1 , such that the arc-length element will have the form: 

 

2
ds = 

2 21 2
1 21 2

1 2

1
( )

2
dq dq

 

 
 

 
− −  

 
 , 

 

and for a somewhat-different choice of parameters, it will have the form: 

 

(233)  
2

ds = 
2 2

1 21 1 2 2 1 1 2 2{ ( ) ( )}{ ( ) ( ) }F q F q q dq q dqf f− + , 

 

resp., while the potential function will assume the form: 

 = 2 1 1 2

2 1 1 2

   

   

−

−
 = 

1

1

1

1

2

2

2

2

 

 

 

 

−

−

, 

so 

(234)   = 1 1 2 2

1 1 2 2

( ) ( )

( ) ( )

G q G q

F q F q

−

−
 . 

 

J. Liouville [cf., J. de math. 11 (1846), pp. 345] has already given that form. Should the arc-length element in the 

Euclidian form take the form (233), then it would be necessary to introduce elliptic coordinates (their degenerate 

forms: parabolic, ordinary polar, rectangular coordinates, resp.) 

 Liouville’s result generalizes to three-dimensional and n-dimensional spaces. The special form of Stäckel’s arc-

length element that arises from (233) by generalizing to more dimensions: 

 
2

ds = 
2 2

11 1{ ( ) ( )}{ }nn nF q F q dq dq+ + + +  

 

will then be referred to as the Liouville arc-length element. 

 (222) F. A. Dall’Acqua, “Le equazioni di Hamilton-Jacobi, che si integrano per separazione di variabili,” Rend. 

circ. mat. Palermo 33 (1922), pp. 341.   
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 In the same way as what was done in the special cases that were treated (223), it will now follow 

that one has: 

 

(235) g   = 0    ( = ), 

 

when  and  are both indices of the second kind, while the relation: 

 

(236.a)  
g

q








 = 0 

 

will be true when  is an index of the second kind and  is one of the first kind (224). 

 
 (223) Namely,  = n (all indices are of the first kind, which is the essentially geodetic case of T. Levi-Civita) and 

 = 0 (all indices of are the second kind, which is the Stäckel case). 

 (224) From (220), the g (  ) include only coordinates with indices of the second kind. If  is again an index 

of the second kind and  is one of the first kind then, if one understands  to mean an index of the second kind then: 

 

g

gq





  
 
 

 = 0 , 

 

i.e., the quotients /g g
 

 ( is an index of the first kind and  is an index of the second kind) depend upon only 

coordinates of the first kind. 

 

(236.b)     g


 = 
( )

g l





(q1, …, q) . 

 

In that case, the Hamilton-Jacobi equation will have the form: 

 

(237)   

 

1
12

, 1

( )

1 1

11

21
1 12

1

( , , )

( , , ) ( , , )

( , , ) ( , , ) .

n

n

n

n

n n

g q q p p

g q q p l q q p

g q q p q q k




 

 


 

   
 



  

 

=

== +

+ +

= +















 
+  

 

+ +  =







 

 

When  and  are indices of the second kind, the following conditions will further emerge from equations (218): 

 

   

2
ln lng g

q q q q q q

 

     

−
     

−
     

 = 0   (  )  

and 

   

2
ln lnQ Q g Q g

q q q q q q

 

     

−
    

−
     

 = 0   (  ) . 
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 Now, should the form of the arc-length element and the potential function  be characterized 

for arbitrary  in the Stäckel case  = 0, then one would have to start from the Ansatz: 

 

(238) W = W1 (q1) + … + Wn (qn) , 

 

as one does in that case. In that way, it is important that for an index of the first kind, one must 

have: 

(239) 
Q

q




 = q L   , 

 

in which L means a linear function of the impulse components of the first kind, and that one will 

then have: 

(240) 
dp

dq





 = − 

Q

q

Q

p













 = − 

Q

q

q








 = − L 

for an index of the first kind (225). 

 In the special case that was first treated by T. Levi-Civita, namely, the one in which all indices 

were of the first kind, one can evaluate those relations in the following way: If the Ansatz (238) is 

a complete solution then it will represent a field of extremals for a certain choice of the constants 

in the value of the extremal integral (226). For example, one can choose a certain field when one 

prescribes the impulse components of the field: 

 

(241)     (0)

1p  = 1 , …,  (0)

np  = n 

 

arbitrarily at any point, say, the initial point (227). Now, since the individual impulse components: 

 

p = 
W

q




 = 

dW

dq





 

 

 
When , ,  are all indices of the second kind, it will then follow from the latter that: 

 
2

ln lng g g g g

q q q q q q

    

     

−
    

−
     

 = 0 . 

 

 (225) P. Burgatti, “Determinazione dell’equazione di Ham.-Jac. integrabili mediante la seperazione delle 

variabili,” Rend. Accad. Lincei (5) 201 (1911), pp. 108; F. A. Dall’Acqua, Rend. circ. mat. Palermo 33 (1912), pp. 

341. 

 (226) Since that case is “essentially geodetic,” the extremals are the geodetic lines of the arc-length element.  

 (227) That is because the constants k, c1, …, cn−1 in the complete solution can be expressed in terms of the initial 

values and conversely. 
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depend upon only q, so they will have the same value in the entire manifold q = const., it will 

suffice that p is well-defined along the M1 (q1 = 0, …, q−1 = 0, q+1 = 0, …, qn = 0), i.e., along 

the q-axis. However, upon advancing along that M1, all impulse components, with the exception 

of p, will keep the same value that they had at the initial point, such that one can introduce: 

 

q1 = 0 ,  …, q−1 = 0 , q+1 = 0 , …, qn = 0 , 

 

p1 = 1 , …, p−1 = −1 , p+1 = +1 , …, pn = n 

 

into (240). However, that will then give the equation for determining p (q): 

 

(242) 
dp

dq





+ b (q) p =  (q) , 

 

in which  is a linear form in the constants 1 , …, −1 , +1 , …, n whose coefficients depend 

upon q . The integration of that linear differential equation (228) will produce p as a linear form 

in the 1 , …, n whose coefficients are functions of q . If one were to replace one of the initial 

values of the n impulse components – say n – with the constant k that appeared before in the 

Hamilton-Jacobi equation (229) then one will get: 

 

(243)   
W

q




 = 

dW

dq





 = p = (1) ( 1)

1 1 2n

n k A      −

−+ + + −  , 

 

in which A is a quadratic form in the 1 , …, n−1 , and ( )

  and  are functions that depend upon 

only the coordinate q . 

 The general case ( indices of the first kind, n –  indices of the second kind) can be easily 

resolved in an analogous way. The relations (240) are valid for the indices of the first kind, in 

which the L are linear forms in just the impulse components with indices of the first kind. 

Corresponding to (243), one will get the impulse components from that as linear forms in the initial 

values of the impulse components 1 , …,  : 

 

 
 (228) Upon considering the initial value of p : 

p (0) =  . 

  

 (229) Due to the Hamilton-Jacobi equation, n can be determined from the quadratic equation: 

 
1

2 1 , 1

1 1

, 1

2( ) 2
n

nn n n n

n n ng g g k g

 
 

     
−

−

−

=

+ + + = −  , 

 

in which one naturally introduces the  
(0)

1
q , …, 

(0)

n
q  into g

 
. 
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(244) 
W

q




 = 

dW

dq





 = p = (1) ( )

1



     + +  ( = index of the first kind). 

 

Now, if  is an index of the second kind and one advances in the q-direction such that only q and 

p are variable then the relation will follow from the Hamilton-Jacobi equation (236) (230): 

 

(245)   2 1

12 ( )n

ng p p g g  

   + + +  = 2 (k – ) − 
,

g

 
  

 


 , 

from which one will get p in the form: 

 

(245.a)   p = (1) ( )

1 1 1( , , ) ( , , )nF

                 −+ +  + +  . 

 

The  in that is a function of only q , while F represents a quadratic form in the 1 , …,   with 

coefficients that are functions of q . Moreover, the relation (236.b) is used in that, and the 

quantities: 

(245.b)     
2

1

2 l


     


  + +

=

+   =  

 

are introduced into it as new constants (231) that shall enter in place of  +1, …, n . The  are 

then linear forms in the 1 , …, n − with coefficients that are functions of q . Along with the 

relations (244) that hold for the indices of the first kind, one also has the equations: 

 

(246)  
W

q




 = 

dW

dq





 = (1) ( )

1 1 1( , , ) ( , , )F g

               + +  + +  

 

for the indices of the second kind. If no indices of the first kind are present then the equations (246) 

will obviously go to the Stäckel expressions (232). That will come to mind all the more when the 

energy constant k is introduced in place of, say n− (232), which will give: 

 

(246.a)  
W

q




 = 

dW

dq





  

 

 (230) In which, k is naturally expressed in terms of 1, …, n . The coefficients g


 and  in (245) are thought of 

as functions that depend upon only q . 

 (231) Naturally, the l are constants here, since from (236.b), they depend upon only coordinates with indices of 

the first kind. 

 (232) One easily achieves that with the help of the relation: 

 

,

, 1 1

2( ) ,
n

g g k
 

    

  
  

  
−

+ +

= =

+ = −    

 

in which the overbar means that one has set q1 = 0, …, qn = 0 . 
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= (1) ( ) (1) ( 1)

1 1 1 1( , , ) ( )n

nF k 

                     − − 

− −+ +  + + + + +  . 

 

Conversely, one can arrive at the form of the arc-length element and potential function for which 

the mechanical system is soluble by separation of variables by eliminating the constants from those 

formulas (233). 

 If one has established the general form of the arc-length element and potential function for 

which the separation of variables then the question would arise of whether a given mechanics 

problem (with given arc-length element and potential) can be converted into the desired form by a 

coordinate transformation. The investigation of that question has been taken up in only some 

individual cases (234). 

 

_________ 

 

 

 
 (233) For n = 3, all possible cases were worked out by F. A. Dall’Acqua, loc. cit. (209), pp. 398.  

 (234) Cf., O. Haupt and E. Hilb, “Über die Transformation Liouvillescher Mannigfaltigkeiten,” Gött. Nachr. 

(1924), pp. 77. One should also confer the work of J. Weinacht, “Über die bedingt periodische Bewegung eines 

Massenpunktes,” Math. Ann. 91 (1924), pp. 279, in which the cases of n = 2 and n = 3 were treated. 


