
CHAPTER V 

 

INTEGRAL INVARIANTS 
 

 

 20. The Jacobi equations. Invariant differential forms. The concept of an integral 

invariant. – The fact that the equations of motion of a system: 

 

(247)     
d L L

dt q q 

  
−    

 = 0 

 

come about as the Euler equations of a variational problem: 

 

(248)    1 1( , , , , , , )n nL q q q q t dt  = extrem. 

 

can be exploited for the integration of those equations in a different way that was first pointed out 

by H. Poincaré (235). In order to do that, one must start from a certain extremal space-time line: 

 

 (249) q = ( )q t     ( = 1, …, n), 

 

which might be referred to as the base extremal, and then consider its infinitesimally-close 

extremals. If one goes from the base extremal ( )q t  to a certain neighboring extremal q q +  

then the n functions: 

 

(250) q =  (t)    ( = 1, …, n) 

 

that mediate that transition will determine an extremal of a different variational problem in their 

own right. Namely, every base extremal of the variational problem (248) will be associated with a 

variational problem for the second variation: 

 

(251)    1 1( , , , , , , )n n t dt     = extrem., 

 

whose integrand is the quadratic form: 

 

(251.a)    = 
2 2 2

1
2

, 1

2
n L L L

q q q q q q
     

       

     
=

    
+ + 

       
  . 

 
 (235) H. Poincaré, “Sur le problème des trois corps et les équations de la dynamique,” Acta math. 13 (1890), pp. 

1 (esp., Chap. II), as well as Les méthodes nouvelles de la mécanique céleste, t. I, 162, et seq., and t. III, p. 1, et seq. 
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The functions ( )q t  for the base extremal replace the q in its coefficients, such that the second 

derivatives will become known functions of time. The functions (250) are now solutions of the 

Euler equations: 

(252)     
d

dt   

  
−    

 = 0   ( = 1, …, n) 

 

of that variational problem (251), which define a system of n linear second-order differential 

equations. Conversely, every extremal of the variational problem (251) will also mediate the 

transition to a neighboring extremal of the chosen base extremal, since the 1 (t), …, n (t) (up to 

a proportionality factor) equal the differences q1, …, qn in the coordinates of a neighboring 

extremal compared to the base extremal. It would seem historically justified to call equations (252) 

the Jacobi equations for the variational problem (247), since Jacobi first recognized their meaning 

(236) when he sought the conditions for the occurrence of a true extremum. In the terminology of 

H. Poincaré, they were called the “équations aux variations” of equations (247). 

 As Euler equations of the variational problem (251), one can also put them into the form of a 

canonical system corresponding to the transformation of no. 9, when one replaces the   with: 

 

(253)   = 





, 

and introduce the function: 

 

(253.a) H (, , t) =    −   

 

in place of . The function H, like , is a quadratic form in its variables, and indeed: 

 

(254)   H = 
2 2 2

1
2

, 1

2
n H H H

p p p q q q
     

       

     
=

   
+ + 

      
 , 

 

in which the functions for the base extremal are introduced into the second derivatives of H for p , 

q , such that those derivatives will become known functions of the independent variable t. The 

canonical system that belongs to (252) then reads: 

 

(255)   

2 2

1

2 2

1

,

.

n

n

d H H

dt p p p q

d H H

dt q p q q



 
    



 
    


 




 



=

=

    
= = +         


   

= − = − +        





H

H
 

 
 (236) C. G. J. Jacobi, “Zur Theorie der Variationsrechnung und der Differentialgleichungen,” J. f. Math. 17 

(1837), pp. 68 = Werke IV, pp. 39. 
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It then represents a system of 2n linear first-order differential equations that belongs to the 

canonical system: 

(256) 
dq

dt


 = 

H

p




, 

dp

dt


 = − 

H

q




, 

 

just like the Jacobi system (équations aux variations), namely the system of equations (252), is 

associated with the system of equations (247). 

 Now, a system of second-order linear differential equations that arises as the Euler equations 

of a variational problem (the associated canonical system, resp.) is distinguished from other linear 

differential equations by the fact that it defines a self-adjoint system [cf., II A 4.b (E. Vessiot), no. 

26], i.e., for two systems of solutions: 

 
(1) ( )t     and (2) ( )t  

 

to (252) [for two systems of solutions: 

 
(1) ( )t , (1) ( )t  and (2) ( )t , (2) ( )t  

 

of (255, resp.], one has the relation: 

(257)     (2) (2) (1) (1)

1

( )
nd

dt
   



   
=

 
− 

 
  = 0 , 

or 

(258) (2) (2) (1) (1)

1

( )
n

   


   
=

−  = const., 

resp. 

 The obvious question of what meaning it might have in terms of the equations of motion 

themselves (247) when a relation like (258) exists for the associated Jacobi equations was 

discussed by H. Poincaré (237). In order to do that, he first started from an arbitrary system of r 

first-order differential equations: 

 

(259)    1dx

dt
 = X1 , …, rdx

dt
 = Xr , X = X (x1, …, xr, t) . 

 

With the help of any solution, namely, the base solution: 

 

(259.a) x1 = 1( )x t , …, xr = ( )rx t , 

 

he associated it with the system of linear Jacobi equations: 

 
 (237)  H. Poincaré, Méthode. nouv. I, pp. 162. 
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(260) 
d

dt


= 1

1

r

r

X X

x x

  
 

+ +
 

  ( = 1, …, r), 

 

whose coefficients are functions of the independent variable t in the same way as before. Every 

solution to these linear Jacobi equations: 

 

(260.a) 1 = 1 (t) , …, r = r (t) 

 

gives (up to an arbitrary constant factor) the system of coordinate differences x1 (t), …, xr (t) 

that mediate the transition from the base integral curve (259.a) to a neighboring integral curve of 

the system (259). From an integral (238): 

 

(261) F (1, …, r) = const. 

 

of the Jacobi equations (260), one can then infer a relation: 

 

(261.a) F (x1, …, xr) = const. 

 

for the original equations (259) that is valid for every integral curve that is close to the base integral 

curve. If one does not fix the base integral curve from the outset then an integral of the Jacobi 

equations will have the form (239): 

 

(262)    F (x1 , …, xr , 1, …, r) = const. 

 

That will imply the relation: 

 

(262.a)    F (x1 , …, xr , x1, …, xr) = const., 

 

which is a statement about any two infinitesimally-close integral curves of the differential 

equations (259) (240). Ultimately, as was shown before in (258), such relations exist for not just a 

single neighboring solution, but for several of them, say s. If one has an invariant relation of the 

form (241): 

 

(263)   (1) (1) (2) (2) ( ) ( )

1 1 1( , , , , , , , , )s s

r r rF        = const. 

 

 
 (238) Naturally, since equations (259.a) are linear, it must be homogeneous in the 1, …, r, but the degree can be 

arbitrary.  

 (239) That relation must also be homogeneous in the 1, …, r .  

 (240) The invariant differential forms were considered systematically by E. Cartan, Leçons sur les invariants 

intégraux, Paris, 1922.  

 (241) That expression must also be homogeneous in the 
(1)

1
 , …, 

(1)

r
 , 

( 2 )

1
 , …, 

( 2 )

r
 , 

( )

1

s
 , …, 

( )s

r
 . Naturally, s 

 r in that. 
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or the form: 

 

(264)   (1) (1) (2) (2) ( ) ( )

1 1 1 1( , , , , , , , , , , , )s s

r r r rF x x        = const.  (s  r), 

 

resp., then it will correspond to the fact that for an arbitrary base integral curve of the system (259) 

and s neighboring integral curves, the transition to which is mediated by: 

 

  ( )

1x , …, ( )

rx     ( = 1, …, s), 

one will have the relation: 

 

(263.a)   (1) (1) (2) (2) ( ) ( )

1 1 1( , , , , , , , , , )s s

r r rF x x x x x x       = const.  

 

or 

 

(264.b)  (1) (1) (2) (2) ( ) ( )

1 1 1 1( , , , , , , , , , , , , )s s

r r r rF x x x x x x x x       = const., 

 

resp. For example, it follows from the relation (258), which is true for the Jacobi equations (255), 

that for the canonical system (256) itself, the relation: 

 

(258.a) (1) (2) (1) (2)

1

( )
n

p q q p   


   
=

−  = const. 

 

must exist between any two integral curves that are close to a base integral curve. 

 For that invariant differential form, the transition from a point to a neighboring point takes 

place entirely within the manifold t = const. ( t = 0). That is not necessary. One will get (242) a 

more general differential form from an invariant differential form like (263.a) [(264.a), resp.], by 

which one can go to an arbitrary neighboring point ( t  0) when one replaces x in it with x − 

X  t (242.a). Thus, e.g., the more general invariant differential form: 

 

(265) (1) (1) (2) (2) (1) (1) (2) (2)

1

n H H H H
p t q t q t p t

q q p q
   

    

       
=

          
+ − − − +                     

  

 

= (1) (2) (1) (2) (1) (2) (1) (2)

1

( ) ( )
n

p q q p H q q H     


       
=

− − −  = const. 

 

will enter in place of (258.a). 

 
 (242) Cf., E. Cartan, loc. cit. (240), pp. 28.  

 (242.a) Obviously, that is the same idea that allowed us to see in no. 16.c that along with the linear differential form 

(174), at the same time, the differential form (172) represents a total differential in a field of extremals. In general, in 

order to do that, one must first go on to the second-order invariant differential form (265). Cf., also (247). 
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 If the relation (261.a), which depends upon one row of differentials, is a differential form of 

degree p : 

 

(266) 
1( , , , )ik r i ka x x t x x x     = const. 

 

then one can convert it into a differential form of degree 1: 

 

(267) p
ik i ka x x x      

 

by extracting the root and employing it in that form as the integrand of a curve integral that extends 

along an arbitrary curve in a manifold t = const. The associated integral: 

 

(268)   p
ik i ka x x x     = i kp

ik

dx dx dx
a du

du du du


  

 

is then an integral invariant, as H. Poincaré had introduced it. Namely, it has the following 

property: If one lays the associated integral curve of the system (259) through each point of the 

integration path of (268) then they will collectively generate an M2 that cuts out a curve segment 

(M1) from any arbitrary manifold t = const. For any manifold t = const., the integral (268) will then 

have the same value when it is extended over the curve segment that is determined by M2, that is, 

it will remain invariant. If one generalizes the differential form in the way that was described 

above by eliminating  t then one can choose an arbitrary curve on the M2 as an integration path 

that connects an arbitrary point of the integral curve through the lower limit of the integral (268) 

with an arbitrary point on the integral curve through the upper limit of the integral. The integral 

has the same limit for all of those integration paths. That is the concept of a first-order integral 

invariant (243). The simplest example is the integral of a linear differential form: 

 

(269)    1( , , , )i r ia x x t x  = const. 

 

that is associated with the general integral invariant: 

 

(269.a) ( ) i i i ia x a X t −   = const. 

 

 The differential forms that are defined by several rows of differentials likewise yield integral 

invariants. For example, the bilinear differential form (258.a) can be regarded as the element of a 

double integral, and that leads to the integral invariant: 

 

 
 (243) Just as one derives an integral invariant from an integral of the Jacobi equation, one will also naturally get 

an integral of the Jacobi equation from an integral invariant. That relation can be used to find new integral invariants 

from ones that are known already. Cf., H. Poincaré, Méthode. nouv. III, pp. 19.  



150 The General Methods of Integration in Analytical Mechanics 

 

(270)    
1

n

p q

u u
du dv

p q

v v

 

  =

   
 

  
  

 
  

  = const. 

 

Correspondingly, an invariant differential form (264) that is defined by s rows of differentials, 

when it can be regarded as the element of an integral (244), will generally lead to the integral 

invariant of order s : 

 

(272)  (1) (1) ( ) ( )

1 1 1

( )

( , , , , , , , , , )s s

r r r

s

F x x x x x x      = const. 

that is invariant in the following sense: The integral is thought of as extended over an s-dimensional 

region in an arbitrary manifold t = const. If one maps that segment to a corresponding segment of 

another manifold t = const. in such a way that one can construct an integral curve of (259) and 

intersects the integral curve with the new manifold t = const. then when the integral is extended 

over the image region, it will have the same value that it had for the original integration region. 

Here, as well, one can free oneself of the condition that the integration region must belong to a 

manifold t = const. by replacing x with  x – X  t . For example, from (265), one can replace 

the integral (270) with (245): 

 

 
 (244) E. Cartan called such differential forms “formes extérieures” in Leçons sur les invariants intégraux, pp. 50. 

If that is to be true for a bilinear form: 
( ) (2)i

ik i ka x x   

 

then it would be necessary and sufficient that, for example, it should be alternating: 

 

aik = − aki , 

such that one can write: 
(1) (2)

(1) (2)

i i

ik ik ik

k k

x x
a a

x x

 


 

 
= 

 
  . 

 

In general, a forme extérieure has the form: 

 

(271)   

1 1 1

2 2 2

1 2 1 2 1 2

(1) (2) ( )

(1) (2) ( )

(1) (1) ( )

.
s s s

s s s

s

s

s

x x x

x x x
a a

x x x

  

  

        

  

  

  


  

 
 
 

= 
 
 
 

   

 

The name forme extérieure is explained by the fact that the determinants are the components of an exterior product of 

s vectors, in the sense of H. Grassmann. In the language of tensor calculus, one refers to the system of coefficients 

as a (covariant) alternating tensor of rank s. 

 (245) Here, as well, it will once more become clear that at the moment when one regards the position coordinates 

as being on a par with time, the impulse components and the energy will likewise be on a par with each other.  
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(1) (2) (1) (2) (1) (2) (1) (2)

1

( ) ( )
n

p q q p H t t H   


       
=

 
− − − 

 
  = const. 

 

 Along with the absolute integral invariants for a system of differential equations that are 

explained in that way, H. Poincaré (246) also posed the so-called relative integral invariants. For 

them, the differential forms that serve as integrals are not invariant by themselves, but the integrals 

that they define will remain invariant when one chooses the integration region to be a closed 

manifold. For example, if the linear form: 

 

(273)  a1 (x1, …, xr, t) x1 + … + ar (x1, …, xr, t) xr + b (x1, …, xr, t)  t 

 

is not also an invariant differential form in its own right then the integral: 

 

(273.a)     1 1( )r ra x a x b t  + + +  

 

can nonetheless be a relative integral invariant when it is extended over a closed curve. In order to 

do that, the following must be true: If one draws that integral curves of (259) through all points of 

the closed integration path such that a tube is generated, and one lays a second closed curve around 

that tube then the integral must have the same value for both integral paths. If the summand with 

 t is missing then the path of integration must lie in a manifold t = const. (247). Analogously, one 

speaks of a relative integral invariant of order s of the system of differential equations (259): 

 

(274)     
1 2 1 2s s

s

a        

 

as long as that integral remains constant in the sense that was just explained if and only if one 

extends it over a closed Ms as the domain of integration (248). The integrand in such a relative 

 
 (246) H. Poincaré, Méthode. nouv. III, pp. 9.  

 (247)  t cannot be introduced into a relative integral invariant with  t = 0 in the same way that it can be introduced 

into an absolute integral invariant. 

 (248) In so doing: 

1 2 s  
  = 

1 1 1

1 2

2 2 2

11 2

1 2

s

ss

s s s

s

du du

x x x

u u u

x x x

u u u

x x x

u u u

  

  

  

  

  

  

  

  

  

. 
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integral invariant is the sum of an invariant differential form (249) and a total differential of the 

same order (250). In that, one understands a total differential of order p to mean a differential form: 

 

(275) 
1 2 1 21( , , )

s srC x x       

 

whose coefficients satisfy the conditions (251): 

 

(275.a)   2 1 1 3 1 1 1

1 2 1

( 1)s s s s s s

s

s
C C C

x x x

         

  

+ + −

+

  
− + − + −

  
 = 0 . 

 

 Upon applying the generalized Stokes’s theorem (252), one will obtain an absolute integral 

invariant of the next-highest order (253) from a relative integral invariant (274). In order to do that, 

one must make the closed Ms that serves as the domain of integration for the relative integral 

invariant of order s (274) pass through an Ms+1, which is arbitrary moreover. One will then have: 

 

(276) 
1 1s s

s

a       

= 2 1 1 3 1 1

1 1

1 2 1

( 1)s s s s

s s

s

s

s

a a a

x x x

       

  

  

+ +

+

+

   
− + − + − 

    
  , 

 

and the right-hand side is an integral invariant of order (s + 1) whose integral is a total differential, 

moreover (254). 

 In regard to the relationship between integral invariants and the integrals of the system (259), 

we might mention only the following things: Naturally, from an integral: 

 

 
 (249) Which can be the integral of an absolute integral invariant in its own right.  

 (250) Cf., H. Poincaré, Méthod. nouv. III, nos. 239 and 240, pp. 11, et seq.   

 (251) Cf., R. Weitzenböck, Invariantentheorie, Groningen, 1923, pp. 398. There is further literature in that. The 

sum in (275) is taken over all combinations of s indices from 1 to r. In so doing, one regards the system of 
1 s

C
 

as 

the so-called alternating tensor, i.e., 
1 s

C
 

will change sign when any two of its indices are switched and will then be 

zero when two of its indices are equal. 

 One can call the tensor (275.a) the derivative of the tensor (275). Weitzenböck himself (Invariantentheorie, pp. 

381) called it the Stokes tensor of (275). E. Cartan, Leçons sur les inv. intégr., pp. 66, called it the dérivée exterérieure 

of the tensor (275). E. Goursat, (cf., e,g., Leçons sur le problène de Pfaff, Paris, 1922, pp. 210) called that process 

the D operation. 

 (252) Cf., e.g., R. Weitzenböck, Invariantentheorie, pp. 398. 

 (253) Naturally, instead of a relative integral invariant, one can also start from an absolute integral invariant whose 

domain of integration is a closed manifold. One then goes from an integral invariant of order p to an integral invariant 

of order p + 1.  

 (254) Correspondingly, it is not possible to repeat the process, i.e., to extend the integral in the right-hand side in 

(276) over a closed Ms+1 and then convert it into an integral of order (s + 2) with the help of the extended Stokes 

theorem. That is because the coefficients of that integral would vanish identically. 
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F (x1, x2, …, xr) = const. 

 

of the system of equations (259), one will always get a first-order integral invariant whose 

integrand is a complete differential: 

1

1

r

r

F F
x x

x x
 

  
+ + 

  
  . 

 

However, it does not follow that, conversely, from a first-order integral invariant: 

 

(277) ( )1 1 r ra x a x + +  

 

whose integral is a complete differential, one will arrive at an integral of the equations in form of 

the associated function: 

 

(277.a)    U (x1, …, xr) = ( )1 1 r ra x a x + + . 

 

Rather, one must conclude from that, in general, that the expression: 

 

(278) V (x1, …, xr) = 1 2

1 2

r

r

U U U
X X X

x x x

  
+ + +

  
 

 

will be an integral (255), and it is only when that expression (278) vanishes identically that U (x1, 

…, xr) will itself be an integral (256) of the system (259) (257). 

 

 
 (255) Cf., H. Poincaré, Méthod. nouv. III, pp. 28. If one knows an integral: 

 

a1 (x1, …, xr) 1 + … + ar (x1, …, xr) r = const. 

 

to the Jacobi equations then since, under the assumption that the X are independent of t, the Ansatz: 

 

1 = X1, …, r = Xr  

 

will be a solution to the Jacobi equations, one must also have that: 

 

a1 X1 + … + ar Xr = const. 

 

However, since the 1, …, r no longer appear in that, it will be an integral of the original system (259). A 

generalization of that result is in Méthod. nouv. III, pp. 34. 

 One can use the same process to arrive at an integral invariant of order (p – 1) from one of order p, cf., Méthod. 

nouv. III, pp. 33. H. Poincaré also showed how one can deduce an integral when one knows several integral invariants, 

more generally. Méthod. nouv. III, pp. 26.  

 (256) In general: 

U – t V = W 

will also be an integral of the system. 

 (257) A survey of the literature on integral invariants is in E. Cartan, Leçons sur les invar. intégr., Paris, 1922.  
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 21. The first-order relative integral invariant. The associated Pfaffian expression and its 

bilinear covariant. The n characteristic absolute integral invariants of the canonical system. 

– For the equations of motion (247) [the associated canonical system (259), resp.], the boundary 

formula of the calculus of variations will immediate yield a relative integral invariant. That is 

because the result of no. 16.c [cf., (170)] can be expressed by saying that: 

 

(279) 1 1( )n np q p q H t  + + −  

 

is a relative integral invariant of the canonical system (258): 

 

(280)     
dq

dt


= 

H

p




, 

dp

dt


= − 

H

q




. 

 

If the integration path is chosen to be a curve in a manifold t = const. then that integral invariant 

will take the simpler form: 

 

(281) 1 1( )n np q p q + + . 

 

 By means of Stokes’s theorem, the first-order relative integral invariant (281) will imply the 

second-order absolute integral invariant (259): 

 

(282)    1 1 2 2( )n np q p q p q     + + + , 

 

or when written more concisely: 

 

 
 (258) In order to connect up with the considerations of the last section, it is convenient to interpret the q , p , t as 

coordinates of an R2n+1 and to regard the path of integration of (279) as an M1 in that space. Correspondingly, the 

integral (279) is understood to mean: 

 

(279.a)    
1 1 1(0 0 )n n np p p pq q H t    + + + + + −  . 

 

 (259) If one starts from the form (279) for the relative invariant, instead of (281), then the second-order absolute 

integral invariant will have the form: 

 

(282.b)   (1) (2) (1) (2) (1) (2) (1) (2)

1

( ) ( )
n

p q q p H t t H   


       
=

 
− − − 

 
 . 

 

One can formally associate that with the form (282.a) when one identifies the time t with qn+1 and the energy (− H) 

with pn+1 and then lets the sum in (282.a) run from 1 to (n + 1), instead of 1 to n. Analogous statements are true for all 

further integral invariants that will be defined in this section. 

 The bilinear differential form that served as the integrand is the dérivée extérieure of the linear differential form 

that appears as the integrand in the relative integral invariant. 
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(282.a) (1) (2) (1) (2)

1

( )
n

p q q p   


   
=

−  . 

 

Now, further absolute integral invariants can be easily derived from that absolute integral invariant. 

Namely, if one now considers four neighboring curves to the base curve, instead of two, which is 

a transition that be mediated by: 

 

(283) (1)p , (1)q  goes to  (2)q , (2)p ,      (3)q , (3)p ,      (4)q , (4)p , resp., 

 

then each of the six alternating bilinear differential forms: 

 

(284)     (, ) = ( ) ( ) ( ) ( )( )p q q p   

      −  

 

that can be defined by two of the four systems (283) will be an invariant differential form of the 

canonical system. It will then follow that the sum (260): 

 

(285)   1
2
{ (1,2) (3,4) (1,3) (4,2) (1,4) (2,3)}  +   +    

 

= 
(1) (1) (3) (3) (1) (1) (4) (4) (1) (1) (2) (2)

(2) (2) (4) (4) (3) (3) (2) (2) (4) (4) (3) (3)

p q p q p q p q p q p q

p q p q p q p q p q p q

           

             

           

           

  
+ + 

  
  

 

= 

(1) (1) (1) (1)

(2) (2) (2) (2)

(3) (3) (3) (3)

(4) (4) (4) (4)

p q p q

p q p q

p q p q

p q p q

   

   

     

   

   

   

   

   



  =  (1, 2, 3, 4)  

 

is also an invariant (and indeed quadrilinear) differential form of the canonical system (261). 

 Therefore, that four-fold integral is: 

 

 
 (260) The product of two differential forms is defined in such a way that all of the products of two terms in the 

bilinear form are set equal to zero when their small determinants are indexed over the same variables.  

 (261) E. Cartan referred to that construction (up to a factor of 1/2) as the product of the form  (1, 2) with itself 

(viz., the square of the form ) by suitably defining the multiplication extérieure of two alternating forms (cf., Leçons 

sur les invar. intégr., pp. 51, 55, and 78). 

 E. Goursat, who referred to alternating differential forms as formes symboliques, spoke of a produit symbolique 

accordingly. (Leçons sur le problème de Pfaff, Chap. 3) 



156 The General Methods of Integration in Analytical Mechanics 

 

(286)  = 

(1) (1) (1) (1)

(2) (2) (2) (2)

(3) (3) (3) (3)
,

(4) (4) (4) (4)

p q p q

p q p q

p q p q

p q p q

   

   

     

   

   

   

   

   

   

 

 = 

1 1 1 1

2 2 2 2

1 2 3 4

,

3 3 3 3

4 4 4 4

p q p q

u u u u

p q p q

u u u u
du du du du

p q p q

u u u u

p q p q

u u u u

   

   

     

   

    
 

    
    
 

    
 

    
    
 

    
     

   

 

will be a fourth-order integral invariant of the canonical system. 

 If one multiplies the differential form (2)  =  (1, 2, 3, 4) by  (1, 2) in the same sense (262) 

then one will get a new invariant differential form with six rows of differentials, which will then 

couple the base integral curve to six neighboring integral curves, and indeed that will give: 

 

(287)    (3)  =  (1, 2, 3, 4, 5, 6) = 1
3
{ (1,2) (3,4,5,6)   

 

− (1,3) (2,4,5,6) (1,4) (2,3,5,6) (1,5) (2,3,4,6) (1,6) (2,3,4,5)  +   −  +    

 

= 

(1) (1) (1) (1) (1) (1)

(2) (2) (2) (2) (2) (2)

, ,

(6) (6) (6) (6) (6) (6)

p q p q p q

p q p q p q

p q p q p q

     

     

  

     

     

     

     

  , 

 

which is the sum of all triples of three different indices from the sequence 1 to n. That corresponds 

to the fact that the canonical system also possesses the absolute integral invariant of order six: 

 

 
 (262) In the sense of Cartan’s multiplication extérieure [Goursat’s analogous concept, resp.], this is the third 

power of the bilinear differential form (284). 
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(287.a)  

(1) (1)

(2) (2)

, ,

(6) (6)

p q

p q

p q

 

 

  

 

 

 

 

   = const. 

 

 One will get a corresponding integral invariant of order eight, ten, etc., in an analogous way, 

and ultimately one will arrive at an invariant differential form with 2n rows of variables (263): 

 

( )n  =  (1, 2, 3, …, 2n) = 

(1) (1) (1) (1)

1 1 2

(2) (2) (2) (2)

1 1 2

(2 ) (2 ) (2 ) (2 )

1 1 2

n

n

n n n n

n

p q p q

p q p q

p q p q

   

   

   

 

or to the integral invariant of order 2n : 

 

(288)   

(1) (1) (1) (1)

1 1 2

(2) (2) (2) (2)

1 1 2

2
(2 ) (2 ) (2 ) (2 )

1 1 2

n

n

n
n n n n

n

p q p q

p q p q

p q p q

   

   

   

   = const., 

 

resp., which says that the volume of a chosen 2n-dimensional structure in a manifold t = const. 

will remain unchanged (264) when the structure is carried to another manifold t = const. by means 

of the integral curves of the canonical system (265). 

 Moreover, one can also define a series of relative integral invariants analogously when one 

derives a new differential form from each of the integrands of the relative integral invariant (281) 

and the invariant differential forms , (2) , …, ( 1)n−  that appear as integrals of the absolute 

 

 (263) Which one interprets as the 
th

n  power of (284), in the spirit of Cartan. 

 (264) When one writes: 

(288.a)    
1 1n np p q q      = const., 

 

in the spirit of the usual notation of integral calculus, one must observe that every differential denotes a direction of 

advance here, so perhaps: 

 

  
(1)

1
p   = p1 , 

(1)

1
q   = 0 , 

(1)

2
p   = 0 , …, 

(1)

n
q   = 0 , 

  
( 2 )

1
p   =  , 

(2)

1
q   = q1 , 

( 2 )

2
p   = 0 , …, 

( 2)

n
q   = 0 , 

  
(3)

1
p   =  , 

(3)

1
q   = 0 , 

(3)

2
p   = p2 , …, 

(3)

n
q   = 0 , 

  ……………………………………………………………………………….. 

  
(2 )

1

n
p  =  , 

( 2 )

1

n
q  = 0 , 

(2 )

2

n
p  = 0 , …, 

( 2 )n

n
p  = qn . 

 

 (265) Those n integral invariants of the canonical system have played a role in the development of quantum theory, 

cf., e.g., M. Born, Vorlesungen über Atommechanik I, Berlin, 1925, pp. 39. 
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integral invariants (266). The first of them, which is constructed from , is the third-order relative 

integral invariant: 

(289)    

(1) (1) (1)

(2) (2) (2)

, (3) (3) (3)

q p q

p q p q

p p q

  

   
 

  

  

  

  

  . 

 

Meanwhile, they have no special meaning since the absolute invariant of one degree higher of the 

row that was just considered will emerge from each of them by using the generalized Stokes’s 

theorem. 

 That system of n integral invariants does not belong to the canonical system (259), but the 

converse is true. The integrand of the relative integral invariant (279) from which the absolute 

integral invariants arise is a Pfaffian expression: 

 

(290) p1 q1 + … + pn qn − H dt 

 

in the (2n + 1) variables p1, …, pn, q1, …, qn, t that is already in normal form [cf., II A 5 (E. von 

Weber), Section III]. The integrand of the second-order absolute integral invariant (282.b): 

 

(290.a)   (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

1 1 1 1( ) ( ) ( )n n n np q q p p q q p H t H t           − + + − − −  

 

is the associated bilinear covariant (267). 

 
 (266) According to E. Cartan, in order to do that, one must form the produit extérieure of the two differential 

forms, cf., E. Cartan, loc. cit. (240), pp. 78. 

 (267) In general, a Pfaffian expression: 

 

(291)     a1 dx1 + a2 dx2 + … + ar dxr 

 

will, as a result of: 

 

(292)  x =  (y1, …, yr) , 

 

take on the new form: 

 

(291.a)  b1 dy1 + b2 dy2 + … + br dyr , 

 

in which the contravariant vector (dx1, …, dxr) and the covariant vector (a1, …, ar) will be substituted contragrediently. 

One can regard each of those two expressions as integrands of a relative integral invariant for a system of r first-order 

differential equations in each case. The relative integral invariant will then belong to the second-order absolute integral 

invariants: 

(293)    (1) (2) (1) (2)

,

( )
a a

x x x x
x x

 
   

   

   
  

− − 
  

  

or 

(293.a)    (1) (2) (1) (2)

,

( )
b b

y y y y
x x

 
   

   

   
  

− − 
  

  , 
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 Now, the canonical system is characterized by the fact that it represents the characteristic 

system of the Pfaffian expression (291) (268). Along with G. D. Birkhoff (268.a), one can relate the 

deduction of the characteristic system of the Pfaffian to the calculus of variations. If: 

 

(294)  a1 (x1, …, xr, t) x1 + … + ar (x1, …, xr, t) xr + ar+1 (x1, …, xr, t) xr+1  

 

is the given Pfaffian expression then Birkhoff defined the variational problem: 

 

(294.a)   
2

1

1 1 1

1

( , , , ) ( , , , )

t r

r r r

t

a x x t x a x x t dt 


+

=

 
+ 

 
  = extrem., 

 

which he referred to as the Pfaffian variational problem. He obtained the characteristic system of 

the Pfaffian from that when be formally posed the Euler equations: 

 

1

1

( )
r

r
a ad

a x
dt x x



 
  

+

=

 
− −

 
  = 0 , 

or 

(295.a) 1

1

r
r

aa a a
x

x x t x

 


   

+

=

     
− − −         

  = 0  ( = 1, …, r), 

 

resp. Since the variation (268.b) of the integral (294.a): 

 

2

2

1

1

1

1 1

tr r
t

rt
t

da
a x x a x a dt

dt



    
 

    +

= =

   
− − −  

   
   

 

= 
2

2

1

1

1

1 1 1

tr r r
t

r

t
t

a aa a
a x x x dt

x x t x

 
   

     

 +

= = =

        
− − + −                  

    

 
 

resp., whose integrands are therefore invariant differential forms for the associated characteristic system. Those 

differential forms will then go to each other under the transformation (292), like the Pfaffian expressions (291) 

[(291.a), resp.]. That is the origin of the term covariant. 

 (268)  The characteristic system of a Pfaffian expression is identical to the characteristic system of the bilinear 

covariant, which is regarded as a second-order differential form that one arrives at in the following way: For a given 

differential form, one asks what all systems of ordinary differential equations might be for which the differential form 

would be an invariant differential form. All of those systems have a certain number of common integrals, and those 

integrals are the integrals of a completely integrable Pfaffian system in their own right. That Pfaffian system will be 

the characteristic system of the differential form. Its meaning consists of the fact that it transforms covariantly with 

the Pfaffian expression under the introduction of new variables. 

 (268.a) G. D. Birkhoff, Dynamical Systems, pp. 55. 

 (268.b) Naturally, since the integral in (294.a) is a linear function of the x


, the values of the x are not prescribed at 

the limits t1 and t2 . 
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includes precisely the bilinear covariant of the Pfaffian expression (294) under the integral, the 

formal Ansatz of Lagrange’s equations (295) [(295.a), resp.] is equivalent to saying that one sets 

the derivatives of the bilinear covariant with respect to the x equal to zero. If one multiplies 

equations (295) by x  and sums over  then that will give: 

 

1

r a a
x

x x

 


  =

  
−    

  = 0 

or 

(295.b) 1
1

1

r
r

r

aa
da dt dx

t t






+
+

=


− −

 
  = 0 , 

 

resp., in which the left-hand side is precisely the derivative of the bilinear covariant with respect 

to  t. Applying the process to the variational problem of the linear differential form in (279) 

[(279.a), resp.] will then mean that one sets the derivatives of the associated bilinear covariant with 

respect to the p, q,  t equal to zero, as one prescribes in the theory of the Pfaffian problem 

(269). In fact, that gives the equations: 

 

(296)     

0,

0,

0,

H
dq dt

p

H
dp dt

q

H
dH dt

t










− = 


 

+ =


 
 − =



 

 

the first 2n of which define the canonical system, while the last one follows from it. 

 Obviously, the second-order absolute integral invariant from which the ones of higher order 

are all derived or the associated invariant differential form: 

 

(297) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

1 1 1 1( ) ( ) ( )n n n np q q p p q q p H t t H           − + + − − −   

   = const., 

 

resp., is what has the fundamental meaning for the analytical treatment of the canonical system. 

The abbreviated form: 

 

 
 (269) According to E. Cartan, Leç. sur les invar. intégr., pp. 74, one will get the characteristic system of a forme 

extérieure when it defines its dérivée extérieure  and then sets the derivatives of both forms with respect to a series 

of differentials equal to zero. The dérivée extérieure of a bilinear covariant that is itself the dérivée extérieure of a 

Pfaffian expression will be equal to zero, such that one must take only the derivatives of the bilinear covariant itself 

with respect to a series of differentials. For this, cf., the discussion in no. 15. 
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(297.a) (1) (2) (1) (2) (1) (2) (1) (2)

1 1 1 1( ) ( )n n n np q q p p q q p       − + + −  

 

is essentially identical to the Lagrange bracket, moreover, which Lagrange had introduced into 

perturbation theory (cf., supra, no. 12). That is because the derivatives of the q, p with respect 

to one of the constants c will give a certain direction of advance in a manifold t = const., up to the 

factor c . Therefore: 

 

(298)   1 1 1 1 n n n np q q pp q q p

c c c c c c c c       

         
− + + −                

 = [c , c] 

 

is identical to the form (297.a), up to the factor c c , which is defined for the two directions 

that are determined by c [c , resp.]. Therefore, the structure (298) must remain invariant when 

one advances along an integral curve of the canonical system, i.e., it must not change when t 

changes. The Lagrangian bracket must not include time t explicitly then, as Lagrange himself 

had proved by laborious calculations (270). 

 Among those second-order differential forms, the last of the series, namely, the differential 

form of order 2n (the associated integral invariant, resp.) plays an important role. It leads to the 

theory of multipliers that Jacobi addressed. Moreover, the existence of the integral invariant of 

order 2n : 

1 1n np p q q      = const. 

 

for the canonical system can already be inferred from a remark by J. Liouville (271) such that one 

ordinarily refers to its existence in statistical mechanics as Liouville’s theorem [cf., IV 32 (P. and 

T. Ehrenfest), no. 8.c]. If one interprets the integral curve of the canonical system as the trajectory 

of a fluid flow in the R2n of p1, …, pn, q1, …, qn (phase space of statistical mechanics) then the 

 
 (270) It follows in a similarly-simple way that the Poisson brackets do not include time t explicitly, cf., the next 

section.  

 (271) J. Liouville, “Sur la variation des constantes arbitraires,” J. de math. 3 (1838), pp. 342. There, Liouville did 

not generally consider a canonical system, but a more general system of differential equations of the form (299). He 

showed that for the general solution: 

 

x1 = x1 (t, c1, …, cr) , …, xr = xr (t, c1, …, cr) , 

the functional determinant: 

x

c








 

will be independent of t in the event that the condition: 

 

1

1

r

r

X X

x x

 
+ +

 
 = 0 

 

is fulfilled, which will go to (301) when M = const. That condition is fulfilled identically for a canonical system. 
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existence of the integral invariant will say that one is dealing with the flow of an incompressible 

fluid (i.e., a volume-preserving flow). 

 

 

 22. Integral invariants with the same order as the system. The Jacobi multiplier. – If one 

knows an integral invariant for a system of r first-order differential equations: 

 

(299) 1dx

dt
 = X1 (x1, …, xr, t) , …, rdx

dt
 = Xr (x1, …, xr, t) 

 

that has the same order as the system: 

 

(300)    1 1( , , , )r rM t x x x x    

 

then the function M that appears in it will satisfy the differential equation: 

 

(301)   1 2

1 2

( ) ( ) ( )r

r

M X M X M XM

t x x x

  
+ + + +

   
 = 0 . 

 

Thus, that function will be a multiplier (272) of the system (299), with C. G. J. Jacobi’s definition. 

[Cf., II A 4.b (E. Vessiot), no.12 and II A 5 (E. Weber), no. 12]. For the canonical system, one 

can then deduce from the existence of the integral invariant of order 2n : 

 

1 1n rp p x x      = const. 

 

that M = 1 is a multiplier of the canonical system. 

 C. G. J. Jacobi defined the word multiplier as a generalization of the concept of the Euler 

multiplier (273)  (x, y) [II A 4.b (E. Vessiot), no. 5], which is known to reduce the integration of 

a first-order differential equation: 

(302)     dy : dx = Y (x, y) : X (x, y) 

 

 
 (272) That definition of the multiplier by C. G. J. Jacobi was in “Theoria novi multiplicatoris systemati 

aequationum differentialium vulgarium applicandi,” J. f. Math. 27 (1844), pp. 199; ibid., 29 (1845), pp. 213 and 333 

= Werke IV, pp. 317. See also the presentation in C. G. J. Jacobi, Vorlesungen, Werke Supplementband, lectures 10 

– 18, pp. 71, et seq. The connection between multipliers and integral invariants with the same order as the system was 

explained by H. Poincaré in “Sur le problème des trois corps et les équations de la dynamique,” Acta math. 13 (1890), 

pp. and Méthode. nouv. III, pp. 41. 

 (273) It is a solution of the partial differential equation: 

 

( ) ( )X Y

x y

  
+

 
 = 0 , 

which is analogous to (301). 
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to the quadrature: 

 

(302.a)     ( )X dy Y dx −  = const. 

 

The analogy will become clear when one starts with the system of (274) (r – 1)th-order differential 

equations: 

 

(303)  dx1 : dx2 : … : dxr = X1 (x1, …, xr, t) : X2 (x1, …, xr, t) : … : Xr (x1, …, xr, t) , 

 

instead of (299), and as a generalization of the expression: 

 

(304) X dy – Y dx , 

 

defines the form of order (n – 1) in the differentials (275): 

 

(305) 12 3 1 3 1 1
1 2 1 2 1

1 2 1 1 2 1 1 2 1

( , , , ) ( , , , ) ( , , )
( 1)

( , , , ) ( , , , ) ( , , , )

rr r r
r r

r r r

x x x x x x x x
X X X d d d  

        

− −
−

− − −

   
− + − + − 

   

. 

 

One can refer to that expression as an exact differential (276), in the generalized sense, when the (r 

– 1)-fold integral: 

 

 
 (274) The system (299) was correspondingly regarded as a system of (r + 1) variables: 

 

dx1 : … : dxr : dt = X1 (x1, …, xr, t) : … : Xr (x1, …, xr, t) : 1 . 

 

The integral invariants with the same order as the system were accordingly first written out as integral invariants of 

order (r + 1): 

1 1

1

( , , , )r r

r

M x x t x x t  

+

   . 

 

If one now takes the (r + 1)-dimensional domain of integration in the (r + 1)-dimensional manifold to be “disk-shaped,” 

i.e., one can bound it by two manifolds t = c and t = c + c that are separated by  t, and chooses the two r-dimensional 

“base surfaces” in the two Mr to be congruent, and indeed such that they will go to each other under parallel translation 

in the t-direction, then one will see that the r-fold integral: 

 

1 1( , , )r r

r

M x x x x    

is an integral invariant (of order r). 

 (275) One understands: 

2 3

1 2 1

( , , , )

( , , , )

r

r

x x x

  
−




 

 

to mean the functional determinant of the variables in the numerator with respect to the parameters in the denominator 

in the known manner. 

 (276) On this, cf., E. Cartan, Leç. sur les inv. intégr., pp. 71.   
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(305.a)  
2 3 1 3

1 2

1 2 1 1 2 1
1

( , , , ) ( , , , )

( , , , ) ( , , , )

r r

r r
r

x x x x x x
X X

     − −
−

  
− + −

 
   

1 1 1
1 2 1

1 2 1

( , , )
( 1)

( , , , )

r r
r r

r

x x
X d d d  

  

− −
−

−


+ − 

 
 

 

is also equal to zero when one extends it over a (two-sided) closed Mr−1, i.e., when the r-fold 

integral over the region that is bounded by the closed Mr−1 that emerges from (305.a) by the 

generalized Stokes’s theorem (277) is: 

 

(306)  
1 1 2

1

1 1 2

( , , , )

( , , , )

r r
r

r r
r

X X x x x
d d

x x
 

  

   
+ + 

   
   = 0 . 

 

 In order for that integral to vanish identically for every domain of integration, one must have: 

 

1 2

1 2

r

r

X X X

x x x

  
+ + +

  
 = 0 , 

 

which is a condition (278) that is naturally not fulfilled in general for the system (303). On the other 

hand, if M (x1, …, xr) is a Jacobi multiplier of the system (303) then from (301), one will have the 

relation: 

(307) 1 2

1 2

( ) ( ) ( )r

r

M X M X M X

x x x

  
+ + +

  
 = 0 , 

 

i.e., multiplying by a Jacobi multiplier will convert the expression (305) into a complete 

differential in the generalized sense. When the integral: 

 

(308)  
2 3 1 3

1 2

1 2 1 1 2 1
1

( , , , ) ( , , , )

( , , , ) ( , , , )

r r

r r
r

x x x x x x
M X M X

     − −
−

  
− + −

 
   

1 1 2 1
1 2 1

1 1

( , , , )
( 1)

( , , )

r r
r r

r

x x x
M X d d d  

 

− −
−

−


+ − 

 
 

 

 
 (277) Cf., e.g., R. Weitzenböck, Invariantentheorie, pp. 398.  

 (278) That is the analogue of the relation: 

X Y

x y

 
+

 
 = 0 

that must be fulfilled if the expression (304) is to be an exact differential in the ordinary sense. 



Chapter V – Integral Invariants. 165 
 

is extended over a closed Mr−1 , it will always be equal to zero. If one imagines that a fixed closed 

Mr−2 is given and an arbitrary Mr−1 is laid through it then the value of the integral (308), when 

extended over the piece of one such Mr−1 that is bounded by Mr−2 , will be independent of the 

special choice of that Mr−1 , and will be determined only the bounding closed Mr−2 (
279). 

 C. G. J. Jacobi himself had not studied expressions such as (308). He exploited the knowledge 

of a multiplier for the integration of the system of differential equations in such a way that he 

showed how to likewise obtain a multiplier for the reduced system from a multiplier for the system, 

from which (303) can be reduced to the knowledge of an integral. If one, in fact, knows an integral 

of (303): 

 

(309)     f (x1, x2, …, xr) = const. 

 

then the integral curves will be associated with the simple infinitude of Mr−1 that is represented by 

(307) when the numerical value of the constant varies, such that one will then have: 

 

(310) 
12 3 1 3 1 1

1 2

1 2 1 1 2 1 1 1

( , , , ) ( , , , ) ( , , )
( 1)

( , , , ) ( , , , ) ( , , )

rr r r
r

r r r

x x x x x x x x
X X X

       

− −

− − −

  
− + − + −

  
 

 

= 

1 2

1 2

1 1 1

1 2

1 1 1

r

r

r

r r r

X X X

x x x

x x x

  

  − − −

  

  

  

  

 = 0  

 

when the 1, …, r−1 mean general coordinates on an integral Mr−1 (309) (280). 

 Now, new coordinates y1, …, yr might be introduced into the r-dimensional space so the 

integral Mr−1 (309) can be represented by: 

 

(311)      yr = const. 

 

In order to do that, one must choose the y1, …, yr such that: 

 

(312) yr = f (x1, x2, …, xr) . 

 
 (279) From this standpoint, the hydrodynamical interpretation of the multiplier will become understandable, as it 

was given by L. Boltzmann, Math. Ann. 42 (1893), pp. 374 = Ges. Abhandl. III, pp. 497 and J. Larmor, Brit. Assoc. 

Rep. 1897) (Toronto), pp. 562 = Papers II, pp. 704. Namely, if one interprets the system (303) as the differential 

equations of a stationary fluid flow in an r-dimensional space then the Jacobi multiplier M will represent the density 

of that fluid flow. The integral (308) is the amount of fluid that flows through the Mr−1 per unit time, so it is independent 

of the special form of the Mr−1 and depends upon only the closed bounding-Mr−2 that spans the Mr−1 . 

 (280) From the standpoint of the hydrodynamical interpretation, that means: No fluid will flow through an Mr−1 

that is defined streamlines of the stationary flow. 
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If (312) can be solved for, say xr : 

 

(312.a)     xr =  (x1, x2, …, xr−1, yr) 

  

then one can introduce: 

y1 = x1 , …, yr−1 = xr−1 , yr , 

 

in particular, as the new coordinates. When expressed in those coordinates, the system of equations 

(303) will take the form: 

 

(313)   dx1 : dx2 : … : dxr−1 : dyr = 
1X  : 

2X  : … : 
1rX −
 : 0 , 

 

in which: 

 

(313.a) 
1 1( , , , )r rX x x y −

 = X (x1, x2, …, xr−1,  (x1, x2, …, xr−1, yr)) . 

 

If one recalculates the integral invariant of order r in the new coordinates: 

 

1 1( , , )r r

r

M x x x x    = 
1 1 1 2 1( , , , )r r r r

r
r

M x x y x x x y
y


   − −



   

 

then that will give (281): 

(314)     1 2 1r r

r

r

M
x x x y

f

x

   −



   

 

as the integral invariant of the new system. Now, one needs only to choose the domain of 

integration to be a disc between the two infinitely-close Mr−1 : 

 

f (x1, …, xr) = yr = c and f (x1, …, xr) = yr = c +  c 

 

then (314) will become: 

1 2 1

1

r

r

r

M
c x x x

f

x

    −

−





   = const. 

 
 (281) That is because one has: 

yr  f (x1, …, xr−1,  (x1, …, xr−1, yr)) 

so: 

1 = 

r r

f

x y

 

 
. 
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One concludes from this that (r – 1)-fold integral, when extended over an arbitrary domain of 

integration on the Mr−1 (309), will be an integral invariant for the system of equations: 

 

(315)    dx1 : dx2 : … : dxr−1 = 
1X  : 

2X  : … : 
1rX −
, 

 

in which one imagines that one has introduced yr = c into the right-hand side. That system of 

equations determines the integral curves on each of the Mr−1 on which they lie, according to (309). 

From the fact that this reduced system possesses the integral invariant: 

 

(315.a)    1 2 1

1

r

r

r

M
x x x

f

x

   −

−





   = const., 

it will follow immediately that the function: 

 

(315.b)     1 1( , , , )r

r

M x x c

f

x

−





 

 

is a multiplier for the reduced system (315) (281.a), such that the (r – 2)-fold integral: 

 

(316) 22 3 1 1 3 1 1 2
1 2 1 1 2

1 2 1 2 1 2
2

( , , , ) ( , , , ) ( , , )
( 1)

( , , ) ( , , ) ( , , )

rr r r
r r

r r r
r

r

x x x x x x x xM
X X X d d

f

x

 
     

−− − −
− −

− − −
−

   
− + − + − 

    


 
 

 

on the Mr−1 will be independent of the choice of the integration-Mr−2 , i.e., it assumes the same 

value for all of the Mr−3 with that same boundary that span the integration-Mr−2 . 

 When one knows another integral, one can further reduce the system (313) and once more 

convert the multiplier (315.b) into a multiplier for the further-reduced system. One can also lower 

the order of the system (303) by two units all at once by means of two integrals: 

 

(317) f1 (x1, …, xr) = c1 , f2 (x1, …, xr) = c2 . 

 

One will then get a multiplier for the reduced system from a multiplier of (303) in the form of: 

 

(317.a) M   = 
1 2

1

( , )

( , )r r

M

f f

x x−





. 

 

 
 (281.a) In f / xr , xr is thought of as having been replaced with the function (312.a), in which one has set yr = c . 

That shall be suggested by the overbar. 
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 If one knows (r – 2) integrals of the system (303), so all of them but one: 

 

(318)  f1 (x1, …, xr) = c1 , f2 (x1, …, xr) = c2 , …, fr−2 (x1, …, xr) = cr−2 , 

 

then the system will reduce to a differential equation: 

 

(319)   dx1 : dx2 = 
1 1 2 1 2 2 1 2 1 2( , , , , ) : ( , , , , )r rX x x c c X x x c c 

− −
 , 

 

and one will get a multiplier of (319) from a multiplier M (x1, …, xr) of the system (303) in the 

form of: 

(318.a)    M  (x1, x2, c1, …, cr−2) = 1

1 2

3

( , , )

( , , )

( , , )

r

r

r

M x x

f f

x x
−



. 

 

In place of the integral (308), one will then have the integral: 

 

1 2 2 1( )M X dx X dx  − , 

 

which is independent of the path of integration and will then produce the last integral that is still 

missing when one sets it equal to a constant. One will then finally get an Euler multiplier from the 

Jacobi multiplier. Jacobi called that the principle of the last multiplier. That should say that: If 

one knows a multiplier of the system (303), and one has found (r – 2) of the (r – 1) integrals then 

that will imply the last integral, since the multiplier will become an Euler multiplier by a mere 

quadrature (282). 

 
 (282) Jacobi then found that for the motion of a point in a plane, besides the energy integral: 

 

(a)     H (p1, p2, q1, q2) = k 

 

for the canonical system: 

(b)  dq1 : dq2 : dp1 : dp2 = 

1 2 1 2

: : :
H H H H

p p q q

   
− −

   
, 

one needs to know only one further integral: 

 

(c)     F (p1, p2, q1, q2) = c 

 

if one is to complete the integration by quadratures. Namely, if one solves (a) and (c) for p1, p2 : 

 

p1 = f1 (q1, q2, c, k) ,  p2 = f2 (q1, q2, c, k) 

 

then the multiplier 1 for the canonical system will imply that the remaining differential equation: 

 

1 2

2 1

H H
dq dq

p p
−

 

 
 = 0 

has the Euler multiplier: 
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 The Euler multiplier has the property in common with the Jacobi multiplier that when two 

multipliers are known, their quotient will give an integral of the system of differential equations. 

That is because one will find an integral of the associated Jacobi equations from a multiplier in 

the expression: 
(1) (1)

1

1 1

( ) ( )

1

( , , , )

r

r

r r

r

M x x t

 

 

 = const., 

and analogously, the expression: 

 

1 2

1 2

1

H H

p p

F F

p p

 

 

 

 

, 

 

such that the trajectory will be given by a quadrature. In particular, Jacobi found that one has: 

 

1 2

2 1

1 2

1 2

H H
dq dq

p p

H H

p p

F F

p p

 
−

 

 

 

 

 

 = 1 2

1 2

f f
dq dq

c c

 
+

 
. 

 

Therefore (on this subject, cf., the generalization arguments of no. 24): 

 

f1 dq1 + f2 dq2 

 

will also be an exact differential d  (q1, q2, c, k), and the equation of the trajectory will read: 

 

c

 


 =  . 

In order to do that, one likewise calculates: 

dt = 1 2

1 2

f f
dq dq

k k

 
+

 
 = d

k





 

then, so: 

t –  = 
k




. 

 

Cf., C. G. J. Jacobi, “Sur le mouvement d’un point et sur un cas particulier di problème des trois corps,” C. R. Acad. 

Sci. Paris 3 (1836), pp. 59 = Werke IV, pp. 35. 
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(1) (1)

1

2 1

( ) ( )

1

( , , , )

r

r

r r

r

M x x t

 

 

 = const. 

 

will be an integral of the Jacobi equations for the second multiplier. Therefore, the quotient: 

 

1 1

2 1

( , , , )

( , , , )

r

r

M x x t

M x x t
 = const. 

 

must also be an integral of Jacobi equations. However, since it does not depend upon the 1, …, 

e at all, it will also represent an integral of the given system of equations (299) in its own right. 

 In particular, knowing the multiplier M = 1 for the integration of the canonical system will also 

imply the statement that when one knows (2n – 1) integrals, the last one will be obtained 

immediately by a quadrature. 

 

 

 23. Poincaré’s recurrence theorem. Adiabatic invariants of a mechanical system. – The 

existence of the absolute integral invariant: 

 

(320) V = 1 1n np p q q      

for the canonical system: 

(321) 
dq

dt


 = 

H

p




, 

dp

dt


 = −

H

q




 

 

leads to an important theorem when one assumes that the time t does not appear explicitly in H 

and the trajectories remain entirely within a finite region of the 2n-dimensional “phase space of 

the p1, …, pn, q1, …, qn.” That theorem, which has found to be especially interesting in statistical 

mechanics, moreover [cf., IV 32 (P. and T. Ehrenfest), no. 7.b], goes back to H. Poincaré (283). 

 It says, roughly, that a trajectory that starts from an arbitrary point in a region will generally 

get increasingly close to that point during the course of its motion and is therefore referred to as 

the Poincaré recurrence theorem (284). More precisely, H. Poincaré introduced suitable concepts 

from probability and made the statement of the theorem more precise by saying that it was 

“infinitely improbable” that a mass-point would not increasingly return to an arbitrary 

neighborhood of a starting point (285). However, since the proof that H. Poincaré gave is subject 

 
 (283) Cf., H. Poincaré, “Sur les équations de la dynamique et le problème des trois corps,” Acta math. 13 (1890), 

pp. 67, as well as the thorough presentation in H. Poincaré, Méthod. nouv. III, Chap. 26, pp. 140, et seq. 

 (284)  H. Poincaré himself referred to the behavior of the mechanical system that is described in the recurrence 

theorem as stabilité à la Poisson in connection with certain investigations of S. D. Poisson into the behavior of the 

semi-major axes of orbital ellipses in planetary systems. 

 (285) For this formulation, one can also cf., the presentation by P. Hertz in the article “Statistische Mechanik” in 

the Repertorium der Physik by R. H. Weber and R. Gans, Bd. I2, Leipzig and Berlin 1916, pp. 461, et seq. 
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to some objections, the question arose of what more precise conditions for the validity of the 

theorem might be (286). An exact formulation, and at the same time, a rigorous proof, was then 

given by C. Carathéodory (287) by appealing to the concept of the Lebesgue measure for point-

sets [cf., II C 9 (E. Borel-A.Rosenthal), no. 20]. He stated the theorem in the following way: The 

steady flow in phase space that is defined by the canonical system (321), which is spatially stable 

due to the integral invariant (320), takes place in a region G of phase-R2n (with finite volume) that 

consists completely of finite points. Now, if a particle is found at a point P0 of that region at the 

time t = 0, and one then determines the set of points P1, P2, P3, … at which the particle is found at 

times , 2, 3, … (where  is understood to mean an arbitrary positive number) then that will 

establish the rule that P0 is an accumulation point of the point-set P1, P2, P3, … If there were a 

point P0 in the region for which that statement were not correct then it would define at most a set 

that possessed Lebesgue measure zero. 

 The crux of the proof of that theorem, as well as the one by Poincaré, is the argument that the 

set of non-recurrent points must have the property that the regions in G that they occupy at the 

times , 2, 3, … are all separate from each other. Otherwise, the phase points that fill up a sub-

region  of G (with non-zero Lebesgue measure) at time t = 0 would fill up sub-regions of G, say, 

1, 2, 3, … at times , 2, 3, … that would need to all have the same measure as , due to the 

spatial stability of the phase flow (321) that is expressed in (320), and therefore not all of them 

could be separate in G. Therefore, if no two of the infinitude of regions 1, 2, 3, … are to overlap 

then their common measure must have the value zero (288). 

 The volume of phase space also plays a role in a somewhat-different invariance property that 

was first recognized in statistical mechanics (289). In that way, one does not consider a mechanical 

system to be isolated, but one assumes that it is subject to external influences. Analytically, that is 

expressed by saying that the function H in (321) depends upon not only p, q, but also that a 

certain number of parameters a (say r) will appear that one represents as given functions of time: 

 
 (286) L. Boltzmann, “Über einen mechanischen Satz von Poincaré,” Wien Sitzungsber. 106 IIa (1897), pp. 12 = 

Ges. Abhandl., Bd. III, pp. 587.  

 (287) C. Carathéodory, “Über den Wiederkehrsatz von Poincaré,” Berlin Sitzungsberichte der Preuß. Akad. 

(1919), 2. Halbbd., pp. 580. 

 (288) Moreover, it follows immediately from these arguments that the theorem can be generalized. It will remain 

valid when the canonical system is replaced with a system of differential equations: 

 

1
dx

dt
 = X1 (x1, …, xn) , …, n

dx

dt
 = Xn (x1, …, xn) , 

 

and in place of the integral invariant (320), it will possess an integral invariant with the same order as the system: 

 

1 2 n
M x x x     

whose integrand is: 

M (x1, x2, …, xn)  0 , 

 

whereby the set of points at which M = 0 must be a set of measure at most zero. Cf., C. Carathéodory, loc. cit. (287). 

pp. 583. The theorem was already expressed in this general context by Poincaré himself without appealing to the 

Lebesgue measure, cf., Méthod. nouv. III, pp. 155. 

 (289) Cf., P. Hertz, loc. cit. (285), pp. 534.  
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(322)    H = H (p1, …, pn, q1, …, qn, a1, …, ar) . 

 

In particular, if those parameters change very slowly in time then they will influence the motion 

(290) of the mechanical system in a way that is analogous to that of adiabatic changes in 

thermodynamics, such that one cases to refer to the variation of the motion that belongs to the 

variation of the a as an adiabatic process (291). Statistical mechanics and quantum theory, which 

was initially developed from it, then ask what those quantities might be that remain invariant under 

adiabatic processes. 

 The energy integral: 

 

(323)    H = H (p1, …, pn, q1, …, qn, a1, …, ar) = k 

 

that the canonical system possesses for fixed values of the parameters a is interpreted in phase R2n 

of the p, q as an M2n−1 on which the integral curves lie. Now, if that M2n−1 is a closed manifold, 

in particular, then it will bound a region in phase space with a well-defined phase volume: 

 

(324) V = 1 1n np p q q     . 

 

Now, if the parameters a  vary slowly in time then the energy integral (323) will be valid at every 

moment during the motion, in the sense that on the one hand, the left-hand side of (323) is an 

analytical expression with varying values of the parameters a , and that on the other hand, the 

value of the energy constant k also varies in time. Since the region over which the integral (324) 

is extended varies in time, the phase volume (324) can be a (likewise slowly-varying) function of 

time under the slow variation of the parameters. Meanwhile, that shows that under certain 

assumptions, the phase volume (324) will remain invariant under the adiabatic process and will 

represent a so-called adiabatic invariant (292) of the canonical system [cf., V 28 (A. Smekal), no. 

3]. The assumptions for the adiabatic invariance of the phase volume (324), which T. Levi-Civita 

(293) made more precise, consist of saying that, first of all, the energy integral is the only integral 

of the canonical system (321) that is not infinitely multivalued, or also that the system is (in Levi-

Civita’s terminology) simply imprimitive (294), and that secondly, for fixed values of the 

parameters a, almost all trajectories fill up the M2n−1 (323) densely everywhere [the so-called 

quasi-ergodic hypothesis, cf., IV 32 (P. and T. Ehrenfest), no. 10.a and V 28 (A. Smekal), no. 

 
 (290) Which can be calculated by the methods of perturbation theory, moreover.  

 (291) Cf., P. Hertz, loc. cit. (235), pp. 533.  

 (292) The term goes back to P. Ehrenfest, “Adiabatic Invarianten und Quantentheorie,” Ann. Phys. (Leipzig) (4) 

51 (1916), pp. 327, also appeared in Amsterdam Versl. van Akad. Wet. 25 (1916), pp. 412, as well as London Phil. 

mag. (6) 33 (1917), pp. 500. 

 (293) T. Levi-Civita, “Drei Vorlesungen über adiabatische Invarianten,” Hamburg Abh. aus dem math. Sem. d. U. 

6 (1928), pp. 323. Cf., also T. Levi-Civita, “A general survey on the theory of adiabatic invariants,” J. of math. and 

phys. 13 (1934), pp. 18. 

 (294) T. Levi-Civita [loc. cit. (293)] referred to mechanical systems that possess only integrals that are infinitely-

multivalued as primitive. The number of integrals that are not infinitely multivalued determines the order of 

imprimitivity of the system. 
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1], i.e., that one such trajectory comes arbitrarily close to every point in the M2n−1 (
295). With those 

assumptions, it is possible to replace a temporal mean along a trajectory with a spatial mean over 

the M2n−1 (323), and indeed in that way, as can be shown, the density of that distribution is equal 

to the reciprocal value of the magnitude of the gradient of the family of M2n−1 that is defined by H 

= k as k varies. One can easily conclude from this the change in the phase volume (324) that will 

occur when one fixes the a in the left-hand side of (323), but gives a new value to k that is equal 

and opposite to the change that one will obtain when one gives new values to the a on the left-

hand side, but fixes the value of k. Therefore, if the total change in the phase volume V for an 

adiabatic change in all of the parameters is equal to zero then V will be an adiabatic invariant. 

 Such adiabatic invariants must have special significance in the development of quantum 

theory. That is because the first preliminary attempts to explain the radiation phenomena, etc., in 

terms of classical mechanics came out of the Ansatz of establishing quantization conditions [cf., 

V 28 (A. Smekal), no. 14], so there must be quantities that remain individually constant during 

the motion of a mechanical system whose values could be arbitrary real numbers according to 

classical mechanics, but could assume only certain distinguished values, i.e., they should not vary 

continuously, but can change only in jumps (i.e., quantum jumps). Now, if external influences act 

upon a mechanical system that change very slowly (296) then the quantities that would remain 

constant in the absence of external influences will (slowly) vary continuously in time. However, 

should such a quantity be used as a quantum condition, then it can change only in jumps, so it must 

remain completely constant under the slow change in the parameters (297), i.e., it must be an 

adiabatic invariant. One must then look for the quantities to be quantized among the adiabatic 

invariants. 

 If the mechanical system has only one degree of freedom and the energy integral: 

 

(325) H (p, q) = k 

 

determines a closed curve in phase (298) then the area of that energy curve (325) that surrounds a 

surface patch in the phase plane must prove to be the adiabatic invariant to be quantized: 

 

V = p q   = p q . 

 

Of the systems with several degrees of freedom, the constrained periodic systems offer the simplest 

examples for the introduction of quantization conditions, i.e., the systems whose Hamilton-Jacobi 

equations can be integrated by separation of variables (cf., no. 19) [cf., V 28 (A. Smekal), no. 15]. 

The essential basis for that preferred status for the constrained periodic systems is that when one 

integrates the Hamilton-Jacobi by separation of variables (cf., no. 19), along with the imprimitive 

energy integral, (n – 1) further imprimitive integrals will appear, and each of them will be quadratic 

in the impulse components p , moreover. That will raise the inevitable question of whether 

 
 (295) From the recurrence theorem, it must come arbitrarily close to it arbitrarily often then.  

 (296) I.e., slowly enough that it cannot produce any quantum jumps.  

 (297) On this, cf., e.g., M. Born, Vorlesungen über Atommechanik I, Berlin 1925, pp. 58 and 109.  

 (298) Such that the motion is perioidic.  
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adiabatic invariants can also be given for systems whose canonical equations exhibit a number of 

imprimitive integrals. 

 The simplest case of such imprimitive integrals is the one in which a number of cyclic 

coordinates appear, such that: 

 

(326) p1 = c1 , …, pn = cn     (m < n) 

 

are the imprimitive integrals that appear. The canonical system will then be immediately reduced 

to a canonical system for the unknowns pm+1 , …, pn , qm+1 , …, qn , such that the associated phase 

space will have dimension 2 (n – m). It will once more be assumed that the energy integral: 

 

(326.a)    H (c1, …, cr, pm+1, …, pn, qm+1, …, qn) = k 

 

represents a closed M2(n−m)−1 in that phase-M2(n−m) . Now, if slowly-varying parameters a appear 

once more in H then the cyclic impulses will be independent of them. One can then regard those 

(constant) cyclic impulses as parameters that are added to the a . The motion will then be described 

by the canonical system: 

(326.b) 
dq

dt


= 

H

p




, 

dp

dt


= −

H

q




  ( = m + 1, …, n), 

 

and from the results above, the volume of the region that is bounded by the closed energy-M2(n−m)−1 

in phase-M2(n−m) : 

 

(326.c) V = 1 1m n m np p q q   + +   

 

will be an adiabatic invariant of the reduced canonical system (326.b), but in that way, it also be 

an adiabatic invariant of the original system. 

 That can be easily generalized by saying that the canonical system (321) possesses a number 

of more general imprimitive integrals: 

 

(327)   F1 (p1, …, pn, q1, …, qn) = c1 , …, Fm (p1, …, pn, q1, …, qn) = cm , 

 

assuming that they lie in involution (cf., infra, no. 26), so all Poisson brackets will be: 

 

(327.a)      (F , F) = 0 . 

 

Namely, if one solves the m integrals (327) for p1, …, pm : 

 

(327.b) p = f (pm+1, …, pn, q1, …, qn, c1 , …, cm)  ( = 1, …, m), 

 

and in that way, takes H (p1, …, pn, q1, …, qn, c1 , …, cm) to a function: 
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(328) H (pm+1, …, pn, q1, …, qn, c1 , …, cm, a1 , …, ar) , 

 

then 

 

(329) H  = k 

 

might likewise represent a closed manifold in the phase space of pm+1, …, pn, qm+1, …, qn . The 

position coordinates q1, …, qm that still appear in H  can take on values that are fixed, in any case, 

but intrinsically arbitrary, such that this closed M2(n−m)−1 will also depend upon the m parameters 

q1, …, qm , in addition to the other parameters a, c . The volume that is enclosed by it: 

 

(330)    W = 1 1m n m np p q q   + +   

 

is therefore an adiabatic invariant (299) of the canonical system: 

 

(331)    
dq

dt


= 

H

p




, 

dp

dt


= − 

H

q




  ( = m + 1, …, n), 

 

so one must also regard the q1, …, qm as adiabatic parameters, in addition to the a, c . However, 

that property also remains preserved when one subsequently thinks of the q1, …, qm as arbitrarily 

variable, such that ultimately the phase volume (330) also proves to be an adiabatic invariant of 

the original canonical system (321) (300). 

 Now, however, every imprimitive integral (327) is on a par with the energy integral H, in the 

following sense: If one chooses any of them – say, F – and forms the canonical system from it: 

 

(332)    
dq

dt


= 

F

p








, 

dp

dt


= − 

F

q








  ( = m + 1, …, n) 

 

then that system, which possesses the m imprimitive integrals: 

 

(332.a)  H = k ,  F1 = c1 , …,  F−1 = c−1 , F+1 = c+1 , Fm = cm , 

 

will have the same trajectories as the system (331) in phase-M2(n−m)−1 . Therefore, if F = c is a 

closed M2(n−m)−1 in phase space then the volume that it encloses, which is an adiabatic invariant of 

the system (332), will be likewise an adiabatic invariant of the system (332), and therefore of the 

 
 (299) Which does not depend upon the choice of impulse components for which the system (327) is solved, 

moreover.  

 (300) Cf., T. Levi-Civita, “Drei Vorles. über adiab. Inv.,” Hamburg Abhandl. aus d. math. Sem. 6 (1928), pp. 323, 

esp. pp. 361. 
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system (321), such that a system with (m + 1) imprimitive integrals will yield precisely (m + 1) 

adiabatic invariants. 

 Now, if the canonical system can be solved by separation of variables, in particular, then along 

with H = k, there will be (n – 1) further imprimitive integrals that are quadratic in the p that are 

also in involution with each other. One will then have n adiabatic invariants in that case, for which 

one can make the quantization Ansätze. If one solves the (n – 1) integrals that are added to H = k 

for p1, …, pn−1 then one will get the canonical system: 

 

(333) ndq

dt
= 

n

H

p




, ndp

dt
= − 

n

H

q




, 

 

which will make the p1, …, pn−1 drop out of H  completely, along with the q1, …, qn−1 . Since the 

phase space will then reduce to a plane in which H = k represents a closed curve for constrained 

periodic motion, the area that is enclosed by that curve: 

 

(334)     W = n np q   = n np q  

 

will be an adiabatic invariant. If one successively replaces the integral H with one of the other 

quadratic integrals then that will correspondingly yield the (n – 1) adiabatic invariants: 

 

(335)     W = p q    = p q   ( = 1, …, n – 1). 

 

The n expressions (334) and (335) will yield precisely n quantum conditions for constrained 

periodic systems when one sets them equal to whole-number multiples of the Planck quantum of 

action [cf., V 28 (A. Smekal), no. 15]. 

 

___________ 

 



CHAPTER VI 

 

THE SYSTEMATIC INTEGRATION OF  

THE CANONICAL SYSTEM. 
 

 

 24. The 2n integrals of the equations of motion and their geometric interpretation. – For 

the systematic integration of the equations of motion in the spirit of the Jacobi school (cf., no. 15), 

one prefers to not start from the equations of motion in the form of the Euler equations, but to 

convert them into the associated canonical form (cf., no. 19): 

 

(336) 
dq

dt


 = 

H

p




, 

dp

dt


 = −

H

q




  ( = 1, …, n), 

 

H = H (p1, …, pn, q1, …, qn, t) . 

 

One can then interpret the individual solution: 

 

(336.a)   q = q (t, c1, …, c2n) ,  p = p (t, c1, …, c2n) 

 

as a curve (M1) in the (2n + 1)-dimensional phase space (p1, …, pn, q1, …, qn, t) (
301). If t does not 

appear explicitly in H then one ordinarily restricts oneself to the system of “trajectories” in the M2n 

of (p1, …, pn, q1, …, qn) that one likes to refer to as a system of streamlines of a fluid flow in that 

manifold, and indeed a spatially stable fluid, since one indeed has: 

 

H H

q p p q   

      
+ −            

 = 0 , 

 

and therefore, the sum over  is also equal to zero, while its vanishing represents the condition for 

spatial stability (cf., no. 23). 

 An integral (302) of the canonical system: 

 

(337)    F (p1, …, pn, q1, …, qn, t) = const. 

 

 
 (301) Cf. (258).  One curve goes through each point of phase space (except for singularities). 

 (302) In what follows, we will always consider the general case in which t enters into H explicitly, since we can 

easily reduce the results to the case in which t does not enter into H explicitly. 
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represents a (one-parameter family of, resp.) M2n in the (2n + 1)-dimensional phase space (303), on 

which the integral curves of the canonical systems are arranged. Therefore, the function F (304) 

must be a solution of the linear first-order partial differential equation that is associated with the 

canonical system (336): 

(337.a)    
1

nF F F F F

t q p p q    =

     
+ −       
  = 0 , 

which one can also write: 

(337.b)     ( , )
F

H F
t


+


 = 0 , 

 

since the sum represents the Poisson bracket of F and H that was introduced in no. 12. In total, 2n 

such integrals: 

(338)    

1 1 1 1

2 1 1 2

( , , , , , , ) ,

...............................................

( , , , , , , )

n n

n n n n

F p p q q t c

F p p q q t c

=


 =

 

 

will be required for the complete integration of the canonical system (305) that will give an 

analytical representation of the set of 2n integral curves. In the Jacobi school, one then refers to 

the integration of the canonical system as an integration problem of order 2n. 

 
 (303) Since the function F for such an integral is generally an infinitely-multivalued function of its arguments, that 

integral will basically play a role in only integration in the small. By contrast, knowing an integral curve lies on an 

M2n will say nothing at all about the way that one might approach integration in the large. [On this, cf., no. 23, esp. 

(294)] 

 (304) There can be no integral of the canonical system that is free of the impulse components. That is because an 

integral: 

f (q1, …, qn, t) = const. 

will imply the relation: 

1

1

n

n

f f f
q q

q q t

  
+

  
+ +  = 0 

 

between the velocity components (an analogous relation between the impulse components, resp.). However, such a 

relation is impossible since the impulse components at a space-time point can be prescribed arbitrarily. 

 (305)  If t does not enter into H explicitly then there will be (2n – 1) integrals that are free of t : 

 

(338.a)    

1 1 1 1

2 1 1 1 2 1

( , , , , , ) ,

................................................

( , , , , , ) ,

n n

n n n n

F p p q q c

F p p q q c
− −

=

=






 

 

[one of which is the energy integral H (p1, …, pn, q1, …, qn), moreover]. They determine the trajectories in the M2n of 

(p , q) . A relation of the form: 

 

(338.b)  t –  = G (p1, …, pn, q1, …, qn)  
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 Now, Hamilton-Jacobi theory has shown that one can represent the 2n integrals with help of 

the principal function [a complete solution to the Hamilton-Jacobi partial differential equation 

1 1( , , , , , , )n nS q q t c c , resp.]. On the other hand, since: 

 

1

S

q




 = p1 , …, 

n

S

q




 = pn , 

S

t




 = − H , 

 

one can obtain such a complete solution by a quadrature when one knows p1, …, pn , so as functions 

of the q1, …, qn , t (and n arbitrary constants), such that: 

 

(339)     p1 q1 + … + pn qn 

 

is a complete differential (306). Instead of the 2n integrals (338) of the canonical system, one 

therefore needs to know only n such integrals: 

 

(340)    

1 1 1 1

1 1

( , , , , , , ) ,

...............................................

( , , , , , , ) ,

n n

n n n n

F p p q q t c

F p p q q t c

=


 =

 

 

but they must be of a special type. The p1, …, pn must be computable from them as functions of 

the q1, …, qn , t, c1, …, cn such that they will make the expression (339) into an exact differential. 

One would then get a complete solution of the Hamilton-Jacobi differential equation by a 

quadrature, and the missing n integral can be obtained from it by mere differentiation and 

eliminations. C. G. J. Jacobi correspondingly posed the problem of determining n integrals (340) 

with the desired property (307). 

 
must then be added as a 2nth integral. That integral assigns the time duration to the individual trajectories that are given 

by (338.a), and indeed each curve is associated with 1 types of temporal evolution for the motion. Moreover, 

according to (337.b), the integrals (338.a) will satisfy the equation: 

 

(337.c)  (H, F) = 0 , 

 

while one will have: 

 

(337.d)  (H, G) = 1 

 

for the integral (338.b). The relation (338.b) has been called the “clock reading” of the mechanical process, cf., Ph. 

Frank, “Die Grundbegriffe the analytischen Mechanik als Grundlage der Quanten- und Wellenmechanik,” Phys. Zeit. 

30 (1929), pp. 209. In the terminology of no. 28, the energy integral and the clock reading are conjugate integrals. 

 (306) As was stated in no. 16.c: 

p1 q1 + … + pn qn – H t 

 

will indeed be a complete differential as well then. 

 (307) C. G. J. Jacobi, “Nova methodus, aequationes differentiales partiales primi ordinis inter numerum 

variabilium quemcunque propositas integrandi,” J. f. Math. 60 (1862), pp. 1 = Werke V, pp. 1. The treatise was 

published by A. Clebsch with the permission of Jacobi’s estate. 
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 The intrinsic meaning of that requirement can be seen in the following way: A system of 

integrals (340) of the desired type will determine an Mn+1 for each choice of numerical values for 

the c1, …, cn in the phase space of R2n+1 that will carry a system of n integral curves of the 

canonical system (336). If one now returns from the canonical system to the associated Euler 

equations: 

(341)     
d L L

dt q q 

  
−    

 = 0 

 

then the n chosen integral curves of the canonical system will correspond to a system of n 

extremals of that variational problem in the Rn+1 of the (q1, …, qn, t), such that in general one 

extremal will go through each point of the Rn+1 . In this conception of things, equations (340) yield 

the impulse components that are assigned to the point (q1, …, qn, t) by the extremal. If the integral 

(340) satisfies the demand that was imposed then the p will be the derivatives of a function 

1 1( , , , , , , )n nS q q t c c : 

p = 
S

q




 , 

 

i.e., the family of n extremals defines a field, and the function S is the value of the extremal 

integral for the field, such that the Mn that are defined by: 

 

1 1( , , , , , , )n nS q q t c c = const. 

 

will each be the 1 transversal Mn of a field for fixed numerical values of the c1, …, cn . 

 From what was explained in no. 21, the condition for the Pfaffian expression (339) to be a 

total differential is identical to the condition that the associated bilinear covariant: 

 

(342)    (1) (2) (1) (2)

1

( )
n

p q q p   


   
=

−  = 0 

 

for any two arbitrary directions of advance (1)q , (1) p  and (2)q , (2) p  that belong to an 

Mn+1 (340) in the phase-R2n+1 (
308). Now, one can effortlessly succeed in converting the condition 

 
 (308) That is because if one is to have: 

1 1( ) 0n np q p q + + =  

 

for every closed curve then the integrand in the integral (282.a): 

 
(1) (2) (1) (2)( ) 0p q q p   



   − =  

would have to vanish. 
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(342) into a condition between the partial derivatives of the functions (340) (309), and indeed that 

its precisely the same problem as in no. 11 of the transition from the Lagrange brackets to the 

Poisson brackets (310). According to no. 20, the argument for that is conveniently linked with the 

system of linear differential equations that is associated with the canonical system. In that way, 

one will likewise arrive, in a completely natural way, at the connection between an integral of the 

canonical system and a one-parameter group of transformations that take the integral curves of the 

canonical system into each other that was developed systematically by S. Lie (cf., also no. 18.b). 

 

 

 25. Connection between an integral and an infinitesimal transformation. – From no. 20, 

the Jacobi system of linear differential equations that belongs to the canonical system (336) for 

which one must make that connection has the form: 

 

(348) 

2 2

2 2

,

.

d H H

dt p p p q

d H H

dt q p q q



 
    



 
    


 


 

   
= +        


  

= − +       





 

 

A solution of (348) will mediate (cf., no. 20) the transition of an integral curve that is to be 

performed at constant t, and indeed, the integral curve of the canonical system (336) that is 

introduced in the coefficients of (348), to a neighboring integral curve. If one writes the solution 

of the Jacobi equations in the form: 

 

(349) 
1 1 1

1 1 1

( ( ), , ( ), ( ), , ( ), ) ,

( ( ), , ( ), ( ), , ( ), )

n

n

p t p t q t q t t

p t p t q t q t t

 

 

 

 

=


=
 

 

in order to emphasize the fact that the Jacobi equations themselves, and therefore their solutions 

as well, are meaningful only when an integral curve of the canonical system (336) is given then 

that will likewise express the idea that such a solution will mediate the transition to an 

infinitesimally-close integral curve for any integral curve, so in the spirit of S. Lie, it will then 

represent an infinitesimal transformation: 

 

(350) 

1 1 1

1 1 1

( ( ), , ( ), ( ), , ( ), ) ,

( ( ), , ( ), ( ), , ( ), ) ,

0

n

n

p p t p t q t q t t

q p t p t q t q t t

t

 

 

  

  



=


=
 =

 

 

 
 (309) Cf., C. G. J. Jacobi, “Nova methodus…,” J. f. Math. 60 (1862), pp. 1 – Werke V, pp. 1. 

 (310) It was already suggested in no. 21 that the Lagrange brackets and the bilinear covariants are essentially 

identical.  
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that takes every integral curve of the canonical system into an infinitesimally-close one (cf., also 

no. 18.b). One will get a one-parameter group of transformations that take the integral curves of 

the canonical system to each other by integrating (350) in a known way. [Cf., II A 6 (L. Maurer 

and H. Burkhardt), no. 4]. 

 Now, a first integral of the Jacobi equations (348), which must be linear and homogeneous in 

the ,  : 

 

(351) ( )A B   


 +  = const. 

 

might be found, which will make the A, B into known functions of time t for every integral curve 

of the canonical system (336). In order to suggest that, one might write: 

 

(351.a) 
1 1 1

1 1 1

( ( ), , ( ), ( ), , ( ), ) ,

( ( ), , ( ), ( ), , ( ), ) ,

n

n

A A p t p t q t q t t

B B p t p t q t q t t

 

 

=


=
 

 

just as in (349). The relation (311): 

 

2 2 2 2dA dBH H H H
A B A B

dt p q p p dt q q q p

 

     
         

 
           

− − + − −                            
    = 0 

 

must obviously be true for any solution ,  to the Jacobi equations (348). Due to the 

arbitrariness in  and , it must follow that the factors of  and  must vanish by themselves 

(312). Therefore: 

 

(351.b)      = A (t) ,   = − B (t) 

 

is likewise a solution of the Jacobi equations (348), and the formulas: 

 

(351.c)    q = A (t)  , p = − B (t)    ( t = 0) 

 

will likewise mediate the transition from the integral curve of the canonical system (336) in 

question to an infinitesimally-close one (313). 

 
 (311) In which the second derivatives of H are assumed to be known functions of time t. One must then imagine 

substituting a well-defined integral curve of the canonical system. 

 (312) Cf., H. Poincaré, Méthod. nouv. I, pp. 168. One can always interpret such a linear integral as the relationship 

between two solutions then, and from no. 20, that expresses the fact that the linear Jacobi equations (348) define a 

self-adjoint system.  

 (313) That means that the solution A, − B must be a linear combination of the different systems of displacements 
( )

q



 , 

( )
p




  that mediate the transition from the integral curve in question to a neighboring one. For one such 

system of displacements p , q , one must indeed have: 
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 Now, if one has an integral: 

 

(352) F (p1, …, pn, q1, …, qn, t)  = const. 

 

of the canonical system (336) then it will follow immediately that: 

 

(352.a)   1 1

1 1

n n

n n

F F F F

p p q q
   

   
+ + + + +

   
 = const. 

 

is an integral of the associated Jacobi system (348), in the sense of (351), (351.a). Thus: 

 

(336.b)      = − 
F

q




,   = 

F

p




 

 

represents a solution of the Jacobi equations (348), in the sense of (349), and one will have in: 

 

(353) q = 
F

p





,  p = − 

F

q





 

 

an infinitesimal transformation that will take every individual extremal to an (infinitesimally-

close) extremal. Since that is likewise true of the associated one-parameter group, one will have 

the theorem: 

 

 An integral (352) of the canonical system (336) belongs to a one-parameter group with the 

infinitesimal transformation (353) that takes the integral curves of the canonical system to each 

other. 

 

 The integral curves of the system (353), which is likewise a canonical system (as one might 

expect), are the “orbits” (314) of the one-parameter group. Since an orbit runs through every point 

in the phase-R2n+1, the orbits that run through the points of an individual integral curve of the 

canonical system (336) will generate an M2 . All of the 1 integral curves of the canonical system 

(336) that emerge from the original integral curve by the transformations of the one-parameter 

group will then lie on one such M2 , and indeed one will get it when one measures out segments 

on all orbits that belong to the same increase  . Correspondingly, the M2 will carry nets that are 

defined by 1 integral curves of the canonical system (336) and 1 orbits, i.e., integral curves of 

(353). 

 
( ) ( ) ( ) ( )( ) const.q p p q   

   


   − =  

 

since the Jacobi equations are self-adjoint. 

 (314) That word might enter in place of the usual term “trajectories of the group” here, as it did before in no. 18.b, 

since that might easily lead to confusion in the applications to mechanics. 
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 Now, since obviously the integral (352) of the canonical system is likewise an integral of the 

system (353), all integral curves of the canonical system that emerge from one of them by the 

transformations of the one-parameter group will have the same numerical values for the constants 

in the relation (352), or in other words: If an integral curve belongs to the M2n (351), so the entire 

M2 that arises from it by the one-parameter group will, as well. Basically, this argument only 

repeats what was done in no. 18.c, moreover, which was achieved by generalizing the results on 

cyclic coordinates there (315). The individual transformation of the group is now regarded as a point 

transformation in the phase space of (p, q, t), while at the time, it was interpreted as a 

transformation of the field elements in the Rn+1 of the (q1, …, qn, t) that will become a point 

transformation in the space of the (q1, …, qn, t) only in special cases, such as cyclic coordinates 

(316). Such a degeneracy will occur if and only if the function F (p1, …, pn, q1, …, qn, t) is a linear 

function that impulse components (317): 

 

(354) F (p1, …, pn, q1, …, qn, t) 

 

= A1 (q1, …, qn, t) p1 + … + An (q1, …, qn, t) pn + An+1 (q1, …, qn, t) , 

  

and therefore, the infinitesimal transformation (351) will assume the form (318): 

 

 
 (315) If qn is a cyclic coordinate then the following integral of the canonical system will be known: 

 

pn = const. 

 

The infinitesimal transformation of the associated one-parameter group of transformation will then read simply: 

 

q1 = 0 , …, qn−1 = 0 , qn =  , p1 = 0 , …, pn = 0 , 

 

which yields the “parallel displacement” in the qn-direction. The M2 here are the structures that one will obtain when 

one lays the curve: 

 

p1 = const., …, pn = const., q1 = const., …, qn−1 = const., t = const., 

 

along which only qn is variable, through each point of an integral curve 

 (316) In the case where, e.g., pn is a cyclic coordinate, one will have simply the parallel displacement in the pn -

direction. 

 (317) The simplest of those cases is just the case of cyclic coordinates.  

 (318) If one puts that transformation into the form of a parallel translation in the qn-direction by introducing new 

variables then the integral (354) will go to: 

pn = const., 

 

i.e., qn will become a cyclic coordinate. Thus, the case of an integral that is linear in the impulse components seems 

to be closely related to the case of cyclic coordinates. Cf., infra, no. 29, as well as E. T. Whittaker, Dynamics, pp. 

328. 
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(354.a)   

1

11 2
1 2

( , , , ) ,

,

0,

n

n n
n

q A q q t

A AA A
p p p p

q q q q

t

 



   

 

 



+

=


   
= − + + + +        

 =

 

 

in which the n differential equations in the first row define an infinitesimal transformation in only 

the q1, …, qn . The n equations in the second row then give the infinitesimal transformation of the 

impulse components p that it is coupled with (the velocity components q , resp.), such that the 

entire transformation (354.a) will represent an extended point transformation, in Lie’s terminology 

[cf., II A 6 (L. Maurer and H. Burkardt), no. 13]. 

 Special emphasis should be placed on the case in which the function H in the canonical system 

(336) is free of the independent variable t, and therefore: 

 

(355) H (p1, …, pn, q1, …, qn, t) = k 

 

will be an integral of the canonical system (energy integral). From (355), that integral is associated 

with the infinitesimal transformation: 

 

(355.a)    q = 
H

p





, p = −

H

q





, 

 

whose equations will then coincide with the canonical system itself, up to the independent 

variables. The projection of the integral curves in phase-R2n+1 onto the M2n of the (p, q), i.e., the 

trajectories of the motion will then be transformed into other ones by the one-parameter group of 

transformations that arises from the energy integral (cf., nos. 10 and 18.a), and the transformation 

will generate a different time ordering of the individual points along the trajectory. Now, since a 

comparison of (336) and (355.a) will further show that dt and  are proportional, so the difference 

between the old and new time values will have the same magnitude for all points of a trajectory, 

the transformation in the R2n+1 of p1, …, pn, q1, …, qn, t will also be generated by a parallel 

translation in t-direction (319). 

 The following relation, which comes close to the argument in no. 18, is important for the 

relationship between the integrals of the canonical system and the fields of extremals of the 

associated variational problem in (q1, …, qn, t)-space, on which the systematic integral of the 

equations of motion is based. 

 If one has a field of extremals for the variational problem that will all belong to the same M2n: 

 

F (p1, …, pn, q1, …, qn, t) = const. 

 

 
 (319) Or in other words: The independent variable t is the analogue of a cyclic coordinate. 
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when they are converted into integral curves of the canonical system then an integral curve will 

also simultaneously belong to the entire one-parameter family of integral curves of the field that it 

generates by way of the one-parameter group of transformations with the infinitesimal 

transformation (353). That is because since the p are given as functions of the q1, …, qn, t in the 

field, when one substitutes those functions in the right-hand side of: 

 

(356) q = 
F

p





, 

 

one will get an infinitesimal point transformation of the (q1, …, qn, t)-manifold, in which an integral 

curve of the field is associated with a neighboring integral curve of the Euler equations. However, 

they must also belong to the field, because from (356), they possess the components (320): 

 

p F
p

q p




  


 

+  
  

 = 
pF

p
p q




  


 

+     
 = 

F
p

q







−


. 

 

However, those are precisely the changes that the impulse components of the associated integral 

curves of the canonical system will experience under the infinitesimal transformation (353). If an 

integral curve of the manifold F = const. belongs to the field then all 1 integral curves of the M2 

that is spanned by the orbits of the group that run through the points of the original extremal will 

belong to the field. 

 

 

 26. The involution relation between two integrals and Poisson’s theorem. – If one has two 

integrals of the canonical system (336): 

 

(357)  F1 (p1, …, pn, q1, …, qn, t) = c1 , F2 (p1, …, pn, q1, …, qn, t) = c2 

 

then from no. 25, each of them will belong to the infinitesimal transformations: 

 

(357.a)    q = 1F

p





, q = − 1F

p





, 

 

 (320) One should observe that one has 
p

q








 = 

p

q








 = 

2
S

q q
 



 
. Since: 

 

F (p1, …, pn, q1, …, qn, t) = const. 

 

will further become an identity when one replaces the p1, …, pn with functions of the p1, …, pn , t, one will have: 

 

0.
pF F

q p q



  

 
+ =

  
  
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or 

(357.b)    q = 2F

p





, q = − 2F

p





, 

 

resp., of the integral curves to other ones, i.e., the right-hand sides of (357.a) and (357.b) are two 

solutions of the Jacobi equations (348). Now, since (258) in no. 20 says that two solutions: 

 
(1)q , (1) p  and (2)q , (2) p  

 

of those equations will satisfy the relation: 

 

(1) (2) (1) (2)

1

( )
n

p q q p   


   
=

−  = const., 

one will also have: 

(358) 1 2 1 2

1

n F F F F

p q q p    =

    
−      

  = const. 

 

Since the left-hand side of (358) is the Poisson bracket (cf., no. 12) that is constructed from the 

functions F1 and F2 (
321): 

(359)   (F1 , F2) = 1 2 1 2 1 2 1 2

1 1 1 1 n n n n

F F F F F F F F

p q q p p q q p

         
− + + −  

          
 , 

  

and (358) says that this Poisson bracket that is defined by two integrals will be constant along 

every integral curve, so along with F1 = const. and F2 = const., at the same time: 

 

(358.a) (F1 , F2) = const. 

 

will also represent an integral of the canonical system when the Poisson bracket is a new function 

of q , p , t that is independent of F1 and F2 (
322). 

 
 (321) If follows from the definition of the Poisson bracket (cf., no. 12) that: 

 

(359.a)    (F1, F2) = − (F1, F2) , (F, F) =  , 

 

as well as: 

(359.b)  
1 2 1 2

1 2 1 2 2 1

( , ) ( , ) ( , ),

( , ) ( , ) ( , ) .

G G F G F G F

G G F G G F G G F

+ = +

 =  + 





 

 

 Moreover, one should observe that the constancy of the Poisson brackets along the integral curves is inferred from 

precisely the same argument that gives the constancy of the Lagrange brackets in no. 21.  

 (322) In the terminology of Lie’s theory of groups are the symbols of the two infinitesimal transformations (357.a) 

and (357.b), resp.: 
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 As will be worked out in no. 12 [cf., exp. (119)], Poisson had defined those Poisson brackets 

based upon the Ansatz of his perturbation equations and verified by laborious calculations that 

they would be free of t when p1, …, pn, q1, …, qn are replaced with a solution of the canonical 

system. C. G. J. Jacobi was the person who first recognized that the following theorem would 

emerge from that fact, which Poisson only regarded as remarkable: A new integral of the canonical 

equations can be obtained from two known integrals by mere differentiation using the Poisson 

bracket. 

 In general, Jacobi seemed to have initially overestimated the significance of that theorem. He 

probably believed that all integrals of a mechanical problem could be defined by repeatedly 

forming the Poisson brackets of two known integrals (323). It seemed to him to be an exception 

when forming the Poisson bracket did not yield a new integral, but one of the cases: 

 
(357.c)  X1 f = (F1, f) , X1 f = (F1, f) . 

 

[Cf., II A 6 (L. Maurer and H. Burkhardt), no. 4] and the associated bracket expression (cf., II A 6, no. 5) is: 

 

(X1, X2) f = ((F1, F2), f) . 

 

Since every integral of the canonical system yields a one-parameter group of transformation that transforms the set of 

integral curves into itself, in Lie’s theorem of transformation groups, Poisson’s theorem means that the associated 

bracket expression that is defined by two infinitesimal transformations (357.c) will also produce an infinitesimal 

transformation of the integral curves. 

 (323) C. G. J. Jacobi, “Sur un théorème de Poisson,” C. R. Acad. Sci. Paris 11 (1841), pp. 529 – Werke IV, pp. 

143, where he called that remark la plus profonde découverte de M. Poisson (“Poisson’s most profound discovery”). 

 Jacobi proved this theorem by starting from the so-called Jacobi identity [cf. II A 5 (E. von Weber), as well as II 

A 6 (L. Maurer and H. Burkhardt), no. 5]. Namely, for three functions F1, F2, F3, one has: 

 

((F1, F2), F3) + ((F2, F3), F1) + ((F3, F1), F2) = 0 

identically. 

 Jacobi had considered the case in which time t did not appear explicitly in H, such that: 

 

H (p1, …, pn, q1, …, qn) = k 

 

would be an integral of the canonical system. Therefore, in order for a function: 

 

F (p1, …, pn, q1, …, qn) = c 

 

to be an integral of the canonical system, it is necessary and sufficient that one must have: 

 

(H, F) = 0 . 

If one has two integrals of the canonical system: 

 

F1 (p1, …, pn, q1, …, qn) = c1 , F2 (p1, …, pn, q1, …, qn) = c2 , 

and thus has: 

(H, F1) = 0 , (H, F2) = 0 , 

 

then it will follow from the Jacobi identity that when one introduces F3 = H : 

 

(H, (F1, F2)) = 0 , 

i.e.: 

(F1, F2) = const. 
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 1. The Poisson bracket is identically zero: (F1, F2)  0. 

 

 2. The Poisson bracket is identically constant: 

 

(F1, F2)  C . 

 

 3. The Poisson bracket is a function of both of them. 

 

 The construction of related functions F1, F2 : 

 

(F1, F2) =  (F1, F2) 

 

can occur (324). On the other hand, it was Jacobi who recognized the meaning of the first of those 

special cases, namely, the identical vanishing of the Poisson bracket of two integrals, for the 

systematic integration of the canonical system and utilized it (325). A deeper insight into the 

 
is an integral of the canonical system. (Cf., C. G. J. Jacobi, “Nova Methodus…,” Werke V, esp. pp. 46, as well as in 

Probleme der Mechanik, Werke V, pp. 217, esp. pp. 348). 

 (324)  C. G. J. Jacobi, “Nova Methodus…,” Werke V, pp. 1, esp. pp. 48, as well as Vorlesungen, Werke Suppl.-

Bd, pp. 270. 

 He explained the observation that, e.g., the Poisson bracket of two area integrals will always yield precisely the 

third area integral, so one will not leave the domain of the area integrals by forming the Poisson brackets (cf., “Nova 

Methodus…,” Werke V, esp. pp. 112), by saying that the area integrals are common to a large class of mechanical 

problems and therefore cannot succeed in integrating a particular mechanical problem. A complete integration of a 

mechanical problem can be achieved by forming the Poisson brackets of two integrals only when those integrals are 

peculiar to the problem being solved. S. Lie was the first to discover the intrinsic basis for the behavior of area 

integrals. The one-parameter group that arises from an area integral is a group of point transformations of (x, y, z)-

space, namely, the group of rotations around a coordinate axis. It is included as a subgroup in the three-parameter 

group of rotations around the coordinate origin, which is already determined by two of the one-parameter groups of 

rotations around each of two coordinate axes. 

 Corresponding statements are true for the center of mass integrals, each of which arises from a one-parameter group 

of parallel displacements in the direction of a coordinate axis. However, since the parallel displacements in a plane 

once more define a group, the Poisson bracket of two center of mass integrals will not give a new integral, but rather 

it is identically zero. 

 The motions in three-dimensional (x, y, z)-space, which define a six-parameter group, correspondingly belong to 

the first three center of mass integrals and the three area integrals. One will not leave the domain of those six integrals 

by forming the Poisson brackets. Rather, the Poisson brackets will always once more give one of the six integrals, as 

long as they do not vanish. 

 It was the theory of relativity that first gave rise to the extension of the group of motions in Euclidian space to the 

so-called Galilei group, and therefore to also classify the energy integral and the second center of mass integral (which 

are, however, interpreted as first integrals) within that sphere of ideas. Since those ten integrals corresponding to the 

ten-parameter Galilei group, one can once more not leave the realm of the ten integrals by forming the Poisson 

brackets. Cf., on this, the papers by F. Klein that were concerned with that: F. Engel, “Über die zehn allgemeinen 

Integrale der klassischen Mechanik,” Gött. Nachr. (1916), pp. 270 and F. Engel, “Nochmals die allgemeinen Integrale 

der klassischen Mechanik,” Gött. Nachr. (1917), pp. 189, as well as the presentation in F. Engel, Die Liesche Theorie 

der partiellen Differentialgleichungen erster Ordnung, (ed., by K. Faber), Leipzig and Berlin, 1932, Chap. 10, pp. 

348. 

 (325) The meaning of the vanishing of the Poisson bracket was explained in Lecture 32 of his Vorlesungen (Werke, 

Suppl.-Bd.), while the formation of new integrals by means of the Poisson bracket was treated in Lecture 34. 

Analogous things were done in “Nova Methodus…,” Werke V, pps. 22 and 47. 
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relationships was first achieved with the preparatory work of J. Bertrand (326) and E. Bour (327) 

by S. Lie with his introduction of the concept of function groups (328) [cf., also II A 4 (E. Von 

Weber), nos. 40 and 41]. Lie defined a function group to be the set of functions: 

 

(360)   1 (p1, …, pn, q1, …, qn), …, r (p1, …, pn, q1, …, qn), 

 

with the property that the Poisson bracket of any two of those functions will again be expressed 

as a function of the r functions: 

 

(360.a)     ( , ) = g (1, …, r) . 

 

 Now, if one has two integrals F1 and F2 of the canonical system then one can define their 

Poisson bracket. In the three special cases, the two functions F1 and F2 define a function group by 

themselves. By contrast, in the general case, one can append the Poisson bracket: 

 

(F1, F2) = F3 

 

of the two integrals and once more define the Poisson brackets (F1, F3), (F2, F3). If one of them 

(or both of them) produces a new integral then one appends it (both of them, resp.) to F1, F2, F3 . 

If one proceeds in the same way then the two integrals F1 and F2 will produce a certain number of 

integrals: 

 

(361)    F1 = c1,      F2 = c2,      …,      Fk = ck 

 

that represent a system of functions that can no longer be extended by defining the Poisson 

brackets. The k functions F1, F2, …, Fk, which are mutually independent, then define a k-parameter 

function group, and indeed that will be the smallest function group that includes the functions F1 

and F2 of the initial integrals. 

 Naturally, the set of 2n integrals of the canonical system: 

 

(362)    F1 = c1,      F2 = c2,      …,      F2n = c2n , 

 

 
 (326) J. Bertrand, “Sur la théorème de Poisson,” Note VII to t. I of Lagranges’s Mécanique analytique. Cf., J. L. 

Lagrange, Œuvres XI, pp. 484. 

 (327) E. Bour, “Sur l’intégration des équations de la mécanique analytique,” J. de math. 20 (1855), pp. 185. 

 (328) Cf., S. Lie, “Begründing einer Invariantentheorie der Berührungstransformationen,” Math. Ann. 8 (1875), 

pp. 215 = Werke IV, pp. 1, cf., esp., the second section, Werke IV, pp. 36. In that article, Lie referred to the function 

groups more briefly as “groups.” Only later was the term “function group” introduced in order to distinguish between 

the various transformation groups. Cf., S. Lie, Theorie der Transformationsgruppen II, Arch. f. Math. og Naturw. 1 

(1876), pp. 152 = Werke V, pp. 42, esp., pp. 68. 

 The original ideas that led Lie to the concept of function group were probably expressed most clearly in the treatise: 

S. Lie, “Zur Theorie der Transformationsgruppen,” Chritiania Forhandl. (1888), pp. 3= Werke V, pp. 553, esp., Section 

II, Werke V, pp. 554. 
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along with the 2n functions F1, …, F2n, also determine a function group, and indeed a 2n-parameter 

function group. That is because since 2n independent integrals are no longer present, one must 

necessarily have: 

 

(362.a)     (F, F) = g (F1, …, F2n) 

 

for any two of those functions. The k-parameter function group (361) is included in that 2n-

parameter functions group as a subgroup. 

 At this point, one must next investigate the special case in which one of the three exceptional 

cases that were given above: 

 

(F, F)  0 , (F, F)  C , (F, F)   (F, F) , resp., 

 

will appear when one starts from two integrals F1 = const., F2 = const., such that the two functions 

F1 and F2 determine a two-parameter function group. The first and second of those two exceptional 

cases are different, as well be shown. If: 

(F, F)  0 

 

then S. Lie said that the two functions F1 and F2 are in involution (329),  

 
 (329) S. Lie, “Kurzes Résumé mehrerer neuer Theorien,” Christiania Forhandlinger i Vidensk.-Sels. (1872), pp. 

24 = Werke III, pp. 1. The term “involution,” which is borrowed from geometry, shall then reproduce the following 

state of affairs. On the one hand, every integral is associated with an infinitesimal transformation on the manifold t = 

const.: 

(a)      1 1: :
F F

q p
p q

 

 

 
 

= −
 

, 

or 

(b)     1 1: :
F F

q p
p q

 

 

 
 

= −
 

. 

On the other hand, each of the two integrals: 

 

F1 = const., F2 = const., resp., 

 

determines a tangent M2n−1 in the manifold t = const.: 

 

(c)     1 1

1

0
n F F

dq dp
q p

 
  =

  
+ =    

 , 

or 

(d)     2 2

1

0
n F F

dq dp
q p

 
  =

  
+ =    

 , 

 

resp. If one now chooses the differentials in dq , dp in (c) to be the displacement components q , p then equation 

(c) will be satisfied since: 

(F1 , F2) = 0 , 

 



192 The General Methods of Integration in Analytical Mechanics 
 

whereas in the second case (330), F1 = c1 and F2 = c2 will be two so-called canonically conjugate 

integrals, with Lie’s terminology. The third exceptional case: 

 

(F, F)   (F, F) 

 

can be reduced to the second one, as J. Bertrand pointed out before (331). Here, one can 

immediately determine a function G (F, F) for which one has:  

 

(363)      (F, G) = 1 . 

 

Namely, one has: 

(F, G) = 1 2

2

( , )
G

F F
F





 = 1 2

2

( , )
G

F F
F







, 

 

in general, so one needs only to calculate G from: 

 

(364) 
2

G

F




 = 

1 2

1

( , )F F
 

by a quadrature. Conversely, since: 

 

(365) F2 =  (F, G) , 

  

one can also say that in the third exceptional case, F2 is an integral that is itself a function of the 

integral F1 and the integral G that is canonically conjugate to it. 

 The case of involution: 

 

(366)      (F, F) = 0 

 

has special meaning in terms of the systematic integration. The two one-parameter groups of 

transformations that belong to F1 and F2 collectively define a two-parameter group of 

transformations here (332). The 2 transformations of that group associate each individual integral 

curve of the canonical system with a set of 2 integral curves that fill up a characteristic M3 that 

belongs completely to the M2n−1 in which the starting integral curve lies: 

 
i.e., the displacement components of the transformation that arises from F2 will lie in the tangent M2n−1 that belongs 

to F1, and likewise, the displacement components of the transformation (a) that arises from F1 will lie in the tangent 

manifold (d) to the function F2 . That reciprocity of the relation corresponds completely to the involution relations of 

geometry. (Cf., the remarks of F. Engel in Bd. III on S. Lie’s Werke, esp. pp. 602). 

 (330) One can assign the numerical value of 1 to the constants with no loss of generality.  

 (331) J. Bertrand, loc. cit. (326), cf., J. L. Lagrange, Œuvres XI, pp. 488. 

 (332) S. Lie initially spoke of commuting (i.e., permutable) transformations; cf., S. Lie, “Kurzes Résumé …,” (329) 

= Werke III, pp. 1. 

 The composition constants of the two-parameter group [cf., II A 6 (L. Maurer and H. Burkhardt), no. 5] are equal 

to zero here. 
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(367) F = c1 , F = c2 . 

 

Since one can also imagine that this M3 is constructed from the characteristic M2 that belong to the 

two one-parameter groups that are generated by F1 (F2, resp.), when an integral curve belongs to 

a field, that must mean that the entire M3 should, as well: In other words, all of the integral curves 

that comprise it must belong to the field. Conversely, if one is to be able to select a field from the 

integral curves of the M2n−1 (367) then the two integrals (367) will be in involution. That is because 

if (F, F) is non-zero then the M2, which is generated by an integral curve of one of the groups 

(say, the one that belongs to F = const.), will indeed go to another M2 that is generated by the 

other group (that arises from F2) and no longer belongs to the M2n−1 (367). One can select a field 

from the 2n−2 integral curves of a M2n−1 : 

 

F = c1 , F = c2 

 

if and only if the Poisson bracket that is formed from F and F : 

 

(F, F) = 0 , 

so the two integrals are in involution. 

 An immediate generalization of that is the theorem: 

 

 If one has n integrals of the canonical system: 

 

(368)    F = c1 , F = c2 , …, F = cn 

 

that determine an Mn+1 with n integral curves then the n integral curves of such an Mn+1 (368) 

will always define a field of extremals of the Euler equations if and only if the Poisson bracket of 

any two of those integrals vanishes identically: 

 

(368.a) (F , F) = 0 , 

 

so the n integrals will be pairwise in involution. 

 

 The set of all one-parameter groups that arise from the individual integrals will then define an 

n-parameter group, and the transformations of that group will be generated by any integral curve 

from the n integral curves of the field (a characteristic Mn+1 that includes the extremals of the 

field, resp.). 

 The general infinitesimal transformation of that n-parameter group finds its analytical 

expression in: 
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(369) 

1 2
1 2

1 2
1 2

,n
n

n
n

FF F
q

p p p

FF F
p

q q q



  



  

    

    

   
= + + +       


  

= − + + +      

 ( t = 0). 

 

Here, one also convinces oneself that the integral curves of the Mn+1 (368) define a field, because 

for any two directions of advance (1)q , (1) p  and (2)q , (2) p  that belong to the Mn that arises 

from (368) by adding t = const., one has from (368) and (368.a) that: 

 

(1) (2) (1) (2)( )q p p q   


   −  = (1) (2)

,

( , )F F   
 

   
 
 
 
  = 0 , 

 

i.e., the bilinear covariant of two arbitrary directions of advance is always zero. If one therefore 

determines the p1, …, pn as functions of the q1, …, qn, t from the n relations (368) then: 

 

p1 dq1 + … + pn dqn 

 

will be an exact differential, and indeed it will be the differential of the function S of a field in (q1, 

…, qn, t)-space for a manifold t = const. Correspondingly, one has the differential of the field 

function S (q1, …, qn, t) in: 

S = p1 q1 + … + pn qn – H t , 

 

in which one has likewise replaced the p1, …, pn in H with the calculated functions. The systematic 

integration of the canonical system then comes down to finding n integrals that are pairwise in 

involution. If one has determined n such integrals, i.e., one half of the integrals that are required 

in order to complete the integration, then when one calculates the p1, …, pn as functions of the q1, 

…, qn, t, and the constants c1, …, cn, one will get an n-parameter family of fields, and therefore, 

according to no. 17, one will get a complete solution S (q1, …, qn, t, c1, …, cn) to the Hamilton-

Jacobi partial differential equation (333) from the quadrature: 

 

(370)   1 1( )n np q p q H t  + + −  = S (q1, …, qn, t, c1, …, cn) . 

 

With that, one then has the n other integrals immediately, because from no. 17, one will find them 

from one such complete solution by means of the relations: 

 

(371) 
1

S

c




 = 1 , …, 

n

S

c




 = n . 

 
 (333) The theorem of C. G. J. Jacobi [“Nova methodus…,” J. f. Math. 60 (1862), pp. 1 = Werke V, pp. 1, cf., esp., 

pp. 22] is expressed in that formalism. Jacobi referred to the theorem as the theorema gravissimum there. 



Chapter VI. – The systematic integration of the canonical system. 195 
 

In order to give them the form: 

(372)    

1 1 1 1

1 1

( , . , , . , ) ,

................................................

( , . , , . , ) ,

n n

n n n n

G p p q q t

G p p q q t





=


 =

 

 

one must only introduce the functions (369) for the c1, …, cn . On the other hand, the integrals 

(369) are naturally equivalent to the relations: 

 

(371.a)    
1

S

q




 = p1 , 

2

S

q




 = p2 , …, 

n

S

q




 = pn , 

 

which are indeed nothing by the relations (369), when solved for the p1, …, pn . 

 From (371), the n infinitesimal transformations that belong to the integrals (372): 

 

(373) ( )q

  = 
G

p









,  ( ) p

  = − 
G

q









 

have the form: 

(373.a)    

2
( )

1

2
( )

1

,

.

n

n

FS
q

c c p

p FS
p

c c c q

 


   

  


   

 

 

=

=

  
=  

    


  
= − +      





 

 

Each of them is a superposition of the infinitesimal transformation (334): 

 

(373.b)    ( )q

  = 0 , ( ) p

  = − 
p

c









, 

 

with the n infinitesimal transformations that arise from the integrals F = c . 

 Therefore (335): 

 
 (334) The infinitesimal transformation (373.b) obviously means the superposition of a field that belongs to certain 

values of the constants c1, …, cn with a neighboring field with altered values of the constants c . Therefore, (373) is 

also an infinitesimal transformation that takes the integral curves of the first field to those of that neighboring field, 

except that the integral curves of the field have been permuted with each other with respect to the infinitesimal 

transformation (373.b) 

 (335) Because F still remains unchanged under all of the transformations that arise from F1, …, Fn . Therefore, the 

change in F under the infinitesimal transformation (373) is equal to the change that the infinitesimal transformation 

(373.b) generates, so: 

( , )
pF F

G F
p c c

 
 

   

 
= =

  
 . 
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(374) (G, F) = 
F

c








 = 

0 ,

1 ,

 

 




=
  

and furthermore (336): 

 

(375) (G, G) = 0 , 

 

i.e., the integrals of the canonical system that arise from a complete solution of the Hamilton-

Jacobi equation and can, from no. 19, be divided into two subsets: 

 

(376) F1 = c1 ,  …, Fn = cn , 

 

and 

 

(376.a) G1 = 1 ,  …, Gn = n , 

 

which have the property: Any two integrals from one and the same subset are in involution. 

Moreover, an arbitrary integral from one subset is also in involution with all integrals of the other 

subset, with the exception of the integrals from the other subset that carry the same number. The 

Poisson bracket of will be equal to 1 for those two. Two such associated integrals were already 

referred to above as conjugate integrals of the canonical system (337). The 2n integrals (376) and 

(376.a) define a canonical basis (338) for the function group of the 2n integrals (339). 

 One can then recognize the meaning of the exceptional cases of Poisson’s theorem, in which 

the Poisson bracket of two integrals does not give a new integral. If one starts from the 

transformation groups that are coupled with the integrals then one can characterize them as 

 
 (336) Because from (373.a) and (374), the change in G under the transformation (373) is: 

 

2 2G p S S S
G

p c c c c c c c

 


        

  
         

= − + = − +                   
 . 

 

 (337) All of the functions of the same subset will then remain invariant under an infinitesimal transformation that 

arises from one of those integrals, and likewise all functions of the other subset, with the exception of conjugate 

functions. The manifold F = c will go to the manifold F = c +  under the transformation that arises from the G . 

That corresponds to the fact that the manifold G =  will go to the manifold G =  −  under the transformation 

that arises from the F . 

 (338) Cf., S. Lie, “Über partielle Differentialgleichungen erster Ordnung,” Christiania Forhandlingar i Vidensk. 

Sels. (1874), pp. 16 = Werke III, pp. 32, in particular, pp. 45.  

 (339) One can, correspondingly, go from every basis for the function group of the 2n integrals (i.e., from every 

system of 2n independent integrals) of the canonical system to such a canonical basis. On that subject, also cf., the 

arguments of J. Bertrand in the note: “Sur la théorème de Poisson,” in Lagrange’s Mécanique analytique (J. L. 

Lagrange, Œuvres XI, pp. 484). Just as one does with the 2n-parameter complete function group of the 2n integrals, 

one can also put any k-parameter subgroup that it contains into canonical form (cf., no. 28, in which the meaning of a 

k-parameter function group of k integrals that is obtained with the help of Poisson’s theorem in the context of the 

systematic integration of the canonical system will be treated.) 
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follows: In the three exceptional cases, the integral curves of the canonical system that belong to 

the M2n−1 : 

 

(377)     F1 = c1 , F2 = c2 

 

will go to integral curves under a transformation of the two one-parameter groups that arise from 

F1 (F2, resp.), all of which again belong to one and the same M2n−1 : 

 

(378)     F1 = const., F2 = const. 

 

However, whereas the Poisson bracket (F1, F2) will yield a new integral from F1 and F2 in the 

general case, that is no longer the case. Under a transformation of one of the group groups, only 

those integrals of the M2n−1 (377) will again go to integral curves of the same M2n−1 (378) for which 

the constant in: 

 

(379) (F1, F2) = const. 

 

have a fixed numerical value, such that a further decomposition of the integrals in the M2n−1 (377) 

into 1 subsets will be achieved in that way. 

 That explains the expression that Jacobi gave to Poisson’s theorem, in essence. For Jacobi 

himself and his immediate followers, it had the character of something wondrous. Therefore, it 

would seem explainable that many have attempted to generalize Poisson’s theorem (340), whether 

by formal calculations or by more intuitive arguments. 

 All of those extensions of the Poisson’s theorem will become directly understandable when 

one starts from the fact that Poisson’s theorem represents only the combination of the two facts: 

 

 1. Each integral of the canonical system (336); 

 

(380)  F (p1, …, pn, q1, …, qn, t) = const. 

 

belongs to a solution of the Jacobi equations (348): 

 
 (340) For example, E. Schering, “Verallgemeinerung der Poisson-Jacobischen Störungsformalen,” Gött. Abh. 19 

(1874), pp. 3 = Werke I, pp. 249 (cf., esp., pp. 271) gave the following theorem: If the function H of the canonical 

system is free of the independent variables t and one then knows an integral of the problem that depends upon t: 

 

F (p1, …, pn, q1, …, qn, t) = const. 

 

then F / t = const. will also be an integral of the problem. That is because one will indeed once more obtain an 

integral curve by displacing it in the t-direction under the given assumption. Therefore, the two equations: 

 

F (p1, …, pn, q1, …, qn, t) = const. 

and 

   F (p1, …, pn, q1, …, qn, t + t) = const. 

 

must be simultaneously true, and the theorem will follow from that immediately. 
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(381) q = 
F

p





,  p = − 

F

q





.  

 

 2. Any two solutions of the Jacobi equations will give a constant value to the bilinear 

covariant: 

(1) (1) (1) (1)

1

( )
n

p q q p   


   
=

− . 

 

 Now, that bilinear covariant is the element of the second-order characteristic integral invariant 

of the canonical system (cf., no. 21). However, along with that second-order integral invariant, 

there will also be characteristic integral invariants of order four, six, …, 2n of the canonical system, 

whose integrands likewise remain constant along an integral curve. If one then replaces the q, 

p in those integrands with systems of solutions to the Jacobi equations that are derived from 

integrals of the canonical system in the manner of (381) then one will get expressions that remain 

constant along the integral curves of the canonical system and can then possibly produce new 

integrals of the canonical system. For example, the fourth-order integral invariant (286) of the 

canonical system implies that if one uses the four integrals of the canonical system: 

 

(382)   F1 = c1 , F2 = c2 , F3 = c3 , F4 = c4  

 

in order to form the expression: 

(382.a)    

31 2 4

31 2 4

, 1 31 2 4

31 2 4

n

FF F F

p p p p

FF F F

q q q q

FF F F

p p p p

FF F F

q q q q

   

   

 

   

   

=

  

   

  

   

  

   

  

   

  = const. 

 

then that will be true along every integral curve of the system (341). A new integral can be derived 

analogously from six, eight, etc., integrals, and that sequence conclude with the fact that when one 

uses all 2n integrals of the canonical system: 

 

(383)    F1 = c1 , F2 = c2 , …, F2n = c2n 

 

to form the determinant of order 2n: 

 

 
 (341) That fact was expressed by H. Laurent, “Sur un théorème de Poisson,” J. de math. (3) 17 (1872), pp. 422, 

and should probably be referred to as Laurent’s theorem. 
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(383.a) 

21 2

1 1 1

21 2

1 1 1

21 2

2 2 2

21 2

2 2 2

21 2

21 2

n

n

n

n

n

n n n

n

n n n

FF F

p p p

FF F

q q q

FF F

p p p

FF F

q q q

FF F

p p p

FF F

q q q

 

  

 

  

 

  

 

  

 

  

 

  

 = const. 

 

then that will remain true along the individual integral curves. In this last case, it is obvious that 

the right-hand side of (383.a) must be a function of the 2n integrals (383), so it must belong to the 

2n-parameter function group of all integrals. However, it is also generally true that one will not 

arrive at the function group that is determined by the integrals that are used in the construction of 

expressions like (382.a), etc., so those expressions cannot produce anything essentially new in 

comparison to the simple Poisson brackets (342). One can also easily derive the expressions (382.a) 

directly (343). 

 
 (342) That was shown by S. Lie, “Begründung einer Invariantentheorie der Berührungstransformationen,” Math. 

Ann. 8 (1875), pp. 215 = Werke IV, pp. 1; cf., esp., § 26, pp. 300 (pp. 93, resp.).  

 (343) In fact, one has [cf., also (285)]: 
1 2 3 4

1 2 3 4

1 2 3 4
,

1 2 3 4

q q q q

p p p p

q q q q

p p p p

   

   

     

   

   

   

   

   

  

 

= 

1 2 1 33 4 2 4

1 2 1 33 4 2 4
,

q q q qq q q q

p p p pp p p p

      

        

      

      


 − 


  

+ 

1 4 2 32 3 1 4

1 4 2 32 3 1 4

q q q qq q q q

p p p pp p p p

      

      

      

      
 +   

− 

2 4 3 41 3 1 2

2 4 3 41 3 1 2

q q q qq q q q

p p p pp p p p

      

      

      

      


 +  



 

 

= 

1 2 1 33 4 2 4

1 2 1 33 4 2 4
2 2

q q q qq q q q

p p p pp p p p

      

         

      

      
−     
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  27. Simplifying the canonical system when one knows an integral. – From the results of the 

previous section, in order to perform the integration of the canonical system, one must determine 

n integrals that are pairwise in involution. For a systematic search for those integrals, one can 

appeal to the idea that the existence of a cyclic coordinate will make it possible to reduce the 

canonical system of order 2n to a canonical system of order (2n – 2), since the impulse component 

that belongs to the cyclic coordinate is constant. Namely, since the constancy of the impulse 

component means nothing but the fact that if one knows a first integral of the original canonical 

system (which be just pn = const. when qn is the cyclic coordinate) then that will suggest the 

question of whether knowing an arbitrary first integral of the canonical system: 

 

(384)     
dq

dt


= 

H

p




, 

dp

dt


= − 

H

q




   ( = 1, …, n) 

 

will imply a corresponding simplification (on this, cf., esp., no. 18.b). Now, from no. 9, when a 

cyclic coordinate qn appears, the reduced canonical system: 

 

(385) 
dq

dt


= 

H

p




, 

dp

dt


= − 

H

q




 ( = 1, …, n − 1) 

 

will determine the projections of the space-time curves in the Mn+1 of the (q1, …, qn, t) onto the Mn 

of the (q1, …, qn−1, t), resp., which means the same thing as the “cylindrical” M2 that is defined by 

the space-time curves and the generators that are parallel to the qn-direction. However, since those 

parallel generators are nothing but the orbits of the one-parameter group of parallel displacements 

in the qn-direction whose infinitesimal transformation: 

 

 

  + 

1 4 2 3

1 4 2 3
2

q q q q

p p p p

   

    

   

   
   . 

 

The sum of the fourth-order determinants is then composed of the sums of second-order determinants in the simplest 

way. Analogous statements are also true for the sums of determinants of order six, eight, etc. [cf., (287)]. That can 

then be adapted to determinants of the same form as (382.a), etc., to (382.a), which can be constructed from Poisson 

brackets in the same way. Cf., H. Poincaré, Méthod. nouv. III, pp. 23. 

 For example, when one denotes the determinant (382.a) by D, that will give: 

 

1 1 1 2 1 1 1

1 2 12

1 1 2 1 1 1 1

1 2 2 2 1 2 2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

n n n

n n n n n n n

n n n n n n n

n n n n n n n

F F F F F F F F

F F F F F F F F
D

F F F F F F F F

F F F F F F F F

+

+

+ + + + +

+

=  . 
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(386)    
1 1

0, ( 1, , ),

0, ( 0)n n

p n

q q q t

 

    −

= =


= = = = =
 

belongs to the integral: 

 

(387)      pn = cn , 

 

one can also say that the reduced system (385) determines the characteristic M2 that arises from 

the integral (387) that belongs to the cyclic coordinate. 

 Now, that can be adapted to an arbitrary first integral of the canonical system (384) (344): 

 

(388)    G (p1, …, pn, q1, …, qn, t) = const. = c . 

 

That is because, here as well, for each integral curve of the canonical system in the R2n+1 of (p, 

q, t), the orbits of the one-parameter group that arises from the integral (388), i.e., the integral 

curves of the system: 

(388.a)    q = 
G

p





,  p = − 

G

q





  (t = 0), 

 

will determine a characteristic M2 that is spanned by a net that is formed from 1 integral curves 

of the canonical system (384) and 1 orbits of the group (388.a). Thus, it is natural to use the given 

canonical system (384) in order to develop a system of equations for the determination of that 

characteristic M2 if one wishes to generalize the ideas that led from the original canonical system 

(384) to the simplified canonical system (385) in the case of cyclic coordinates. 

 In order to do that, one solves the integral (388) for one of the impulse components (say, pn) 

and writes out: 

 

(389)    pn + h (p1, …, pn−1, q1, …, qn, t, c) = 0 , 

 

in place of (388). It is obvious then how one would introduce the position coordinate qn on the 

characteristic M2 as the independent variable, along with t, such if one is to obtain the M2 then one 

would have to determine p1, …, pn−1, q1, …, qn−1 as functions of qn and t : 

 

(390) 
1 1 1 1

1 1 1 1

( , ) , ( , ) ,

( , ) , ( , ) ,

n n n n

n n n n

p p q t p p q t

q q q t q q q t

− −

− −

= =


= =
 

 

while (389) would then imply pn as a function of qn and t. 

 For that choice of coordinates on M2, one must employ qn as the independent variable on the 

orbits, since the curves t = const. are indeed on M2 . Their differential equations then read: 

 

 
 (344) The symbol G will be chosen to be the function symbol in order to coincide with the notation in no. 18.b.  
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(389.a) 
n

q

q




 = 

h

p




,       

n

p

q




 = −

h

q




,        t = 0        ( = 1, …, n – 1), 

 

which corresponds to the form (389) that the first integral took (345). 

 On the other hand, one will a new representation for the integral curves of the given canonical 

system (384) that lie on an M2 when one replaces the impulse coordinate pn in H (p1, …, pn, q1, …, 

qn, t) with the function (389), and thus takes H to: 

 

(391)   1 1 1 1

1 1 1 1 1 1

( , , , , , , , , )

( , , , ( , , , , , , , ), , , , ).

n n n

n n n n

H p p q q q t c

H p p h p p q q t c q q t

− −

− −= −
 

 

The canonical system (384) will then go to: 

 

(392)    

,

,

n

n

dq H H H h

dt p p p p

dp H H H h

dt q q p q



  



  

    
= = +

   


    
= − = − +       

 ( = 1, …, n – 1), 

to which one must add: 

(392.a) ndq

dt
 = 

n

H

p




. 

 

 Now, the 2 (n – 1) equations (392), when taken by themselves, represent a Pfaff system: 

 

 
 (345) If one writes: 

1 1

1 1

, , , , , , , ,n n

n
n

S S
q q q t c

q q

S
h

q
−

−

  
    


+


 = 0 , 

 

instead of (389), then one will see that one can go from the Hamilton-Jacobi equation of the parametric problem: 

  

1

1 1

, , , , , ,n

n

S S
q q t

q q
G

−

  
    

 − c = 0 

 

to the associated function problem with qn as the independent variable, which has the form: 

 

1 1
1 1, , , , , , , ,n

n n n

n n

dq dq
q q q t c dq

dq dq
g −

−

 
  
 

  = extrem. 

(Cf., no. 18.b) 
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(393)    

,

,

n

n

H h
dq dt dq

p p

H h
dp dt dq

q q



 



 

  
= +

 



   = − +     

  ( = 1, …, n – 1), 

 

and that will show, in particular, that it defines a completely-integrable system (346) of (2n – 2) 

total differential equations. Namely, every integral: 

 

(394)    F (p1, …, pn−1, q1, …, qn−1, qn, t) = const. 

 

of that system must simultaneously satisfy the two linear partial differential equations (347): 

 

(394.a) 

{ , } 0,

{ , } 0,
n

F
H F

t

F
h F

q


+ = 




 + =


 

in which one has set: 

(395)    {, } = 
1

1

n

p q q p    

−

=

    
−      

  , 

 

to abbreviate. Those two linear partial differential equations are then equivalent to the Pfaff system 

(393), and one can easily see that those two equations (394.a) define a complete system (348) in the 

 
 (346) That was emphasized by G. Morera, “I sistemi canonici d’equazioni ai differentiali totali nella teoria di 

gruppi di transformazioni,” Turin Atti dell’acc. di sc. 38 (1902-03), pp. 940. Cf., also the presentation in T. Levi-

Civita, “Drei Vorlesungen über adiabatische Invarianten,” Hamburg Abhandl. aus. math. Sem. 6 (1928), pp. 323, esp., 

pp. 352-358. 

 (347) This system of two linear partial differential equations is also the basis for the investigations of E. Bour, who 

first succeeded in lowering the number of unknown functions in the canonical system by two when one knows an 

integral. Cf., E. Bour, “Sur l’intégration des équations diff. de la mécanique analytique,” J. de math. 20 (1855), pp. 

185. 

 (348) In particular, it is a Jacobi system. If one denotes the left-hand side of (394.a) by X1 f (X2 f, resp.) then the 

bracket expression will be: 

   (X1, X2) f = { , } { , }

n

h F H F
t q

 
−

 
 

= , { ,{ , }} { ,{ , }}
n

h H
F h

t q
H F H F h

   
− + 

   
− . 

 

Upon appealing to the Jacobi identity, that will then imply that: 

 

(X1, X2) f = { , },
n

h H
H h F

t q

   
− + 

   
. 
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sense of the theory of linear partial differential equations [cf., II A 5 (E. von Weber), no. 13], 

from which the complete integrability of (393) will follow immediately. 

 However, the M2 that are obtained as solutions to the system (393) are precisely the desired 

characteristic M2 . That is because one finds on them, on the one hand, the orbits of the one-

parameter group, since one will indeed get the equations (389.a) when one sets dt = 0 in (393), and 

on the other hand, the integral curves of the canonical system that one gets when one adds the 

differential equation (392.a) to (393). However, the integration of the completely-integrable 

canonical system (393) comes down to the integration of an ordinary canonical system with (2n – 

2) independent functions p1, …, pn−1, q1, …, qn−1 . Namely, if one know the values (0)

1p , …, (0)

1np −
, 

(0)

1q , …, (0)

1nq −
 [and (0)

np  from (389)] at a point (0)

1 1 0( , )P q t  on an M2 then one will get the values p1, 

…, pn−1, q1, …, qn−1 at an arbitrary point P (qn, t) on M2 when one connects the two points by a 

curve qn (), t () and determines the changes p1, …, pn−1, q1, …, qn−1 along that curve. That is 

because due to the complete integrability of (392), the final values that one achieves are 

independent of the curve along which one arrives at P from P0 . Now, if one sets: 

 

(396)   

1 1 1 1

1 1 1 1

1 1 1 1

( , , , , , , ( ), ( ))

( , , , , , , ( ), ( ))

( , , , , , , )

n n n

n
n n n

n n

dt
H p p q q q t

d

dq
h p p q q q t

d

K p p q q

 


 




− −

− −

− −

+

=

 

 

along the chosen curve qn (), t () then equations (393) will read: 

 

(397)    
dq

dt


 = 

K

p




 ,  

dp

dt


 = − 

K

q




  ( = 1, …, n – 1) 

 

along the curve. Conversely, the integration of that canonical system with 2 (n – 1) unknown 

functions will yield the values of q1, …, qn−1, p1, …, pn−1 at an arbitrary point (qn, t), and thus the 

characteristic M2 (
349). Hence, the given canonical system has been reduced to a canonical system 

 
On the other hand, if one replaces the impulse component pn by (389) in the equation: 

 

( , )
G

H G
t


+


 = 0 , 

 

which says that G is an integral of the canonical system, then that will imply that: 

 

{ , }
n

h H
H h

t q

 
− +

 
 = 0 , 

 

such that the bracket expression (X1, X2) f will be, in fact, identically zero. 

 (349) S. Lie proceeded in such a way that he intersected M2 with the bundle of M2n :  
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that includes two less unknown functions when one known an arbitrary first integral, exactly as in 

the case of a cyclic coordinate. 

 The canonical system (397) belongs to the Hamilton-Jacobi partial differential equation: 

 

(400) 1 1

1 1

, , , , , ,n

n

V V V
K q q

q q



−

−

   
+  

   
 = 0 . 

 

A solution V (q1, …, qn−1, ) to that equation determines a field of the system (397), i.e., a family 

of n−1 extremals of the associated variational problem that cut the family of 1 manifolds V = 

const. However, one can derive the associated M2 that is a solution to the system (393) from any 

extremal, such that one will get a family of n−1 M2, and since precisely 1 integral curves of the 

original canonical system (384) lie on each M2, one will then also have a field of the original 

system. One will get the field function S (q1, …, qn, t) of that field in the same way that one does 

with V by going from the integral curves of the canonical system (397) to the M2 . However, the 

field function must (cf., no. 18.b) simultaneously satisfy the two partial differential equations (350): 

 

(398)     
( 0 )

n n
q q−  =  (t – t0)  

(1) (0)

1 0

n n
q q

t t


 −
= 

− 
. 

 

He could then arrive at any point P of M2 from P0 along the line of intersection that the M2n cut out with the correct 

value of  . Since he used t as the independent variable along that line of intersection, from (396), he had: 

 

(398.a)    K (p1, …, pn−1, q1, …, qn−1, t) = H h+ , 

 

and the system (397) read: 

(398.b) 
dq

dt


 = 

K

p




 , 

dp

dt


 = − 

K

q




   ( = 1, …, n – 1). 

It will be symmetric one sets: 

 

(399)    
( 0 )

n n
q q−  = 

(1) (0)
( )

n n
q q − ,      t – t0 = (t1 – t0)   

 

in which  is the independent variable, as in the text [G. Morera, loc. cit., (346)], such that from (396), one will have: 

 

(399.a)     K (p1, …, pn−1, q1, …, qn−1, ) 

 

  = 
(0) (1) (0)

1 0 1 1 1 1 1 0
( ) ( , , , , , , ( ) , ( ) )

n n n n n
t t H p p q q q q q t t t 

− −
− + − + −  

+ 
(1) (0) (0) (1) (0)

1 1 1 1 1 0
( ) ( , , , , , , ( ) , ( ) )

n n n n n n n
q q h p p q q q q q t t t 

− −
− + − + − . 

 

One will then get the associated M2 that is the solution to (396) from an integral curve of (397) when one simply takes 

 = 1 and simultaneously replaces 
(1)

n
q  with the variables qn, t1 . 

 One will get an integral of the system (396) from an integral of (397) in that way. 

 (350) From this standpoint, the condition: 

( , )
G

H G
t


+


 = 0 , 
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(401) 

1

1 1

1

1 1

, , , , , , 0,

, , , , , , 0,

n

n

n

n n

S S S
H q q t

t q q

S S S
h q q t

q q q

−

−

    
+ =  

    


   
+ =     

 

or also 

(401.a)  

1

1 1

1

1 1

, , , , , , 0,

, , , , , , 0.

n

n

n

n

S S S
H q q t

t q q

S S
G q q t c

q q

−

−

    
+ =  

    


  
− =    

 

 

Hence, one also finds, conversely, a function S (q1, …, qn, t) that is a simultaneous solution to the 

two partial differential equations (401) in such a way that one starts from a solution to the partial 

differential equation (400) and redefines it in the given way. 

 If the characteristic M2 are determined by integrating (393) then one will get the integral curves 

of the canonical system that lie on an individual M2 by a quadrature. That is because since the 

integral curves of an M2 all belong to a field, the expression: 

 

p1 dq1 + … + pn dqn – H dt 

 

must be an exact differential on that M2. When one introduces the functions (390) that represent 

the M2 for p1, …, pn−1, q1, …, qn−1 and introduces the pn from (389), one will then have that: 

 

(402)  ( , , )nS q t c  = 11
1 1

n
n n n

n n

qq
p p p dq

q q

−
−

 
+ + + 

  
   

+ 11
1 1 ( , )n

n n

qq
p p H q t dt

t t

−
−

 
+ + − 

  
  

 

is the field function for the field that is formed by the integral curves on the M2. Therefore, the 

integral curves of the canonical system on the M2 will be determined by the equation: 

 

(403) 
S

c




 =  . 

 

 
 

which says that G = c is an integral of the given canonical system, means that the two partial differential equations 

(401.a) possess a common solution. Cf., Bour, “Sur l’intégration des équations differ. part. du premier et du second 

ordre,” Paris J. Éc. Polyt. 22, cah. 39 (1862), pp. 149, cf., esp., pp. 164. 
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That relation corresponds to an integral of the given canonical system that is canonical conjugate 

to the starting integral (388) (in the canonical basis for the function group of all 2n integrals) that 

is used for the reduction. 

 The simplified canonical system (397) has (2n – 2) integrals that are naturally simultaneously 

integrals of the completely-integrable system (393). Those integrals likewise produce integrals of 

the given canonical system (384), and indeed they are integrals of the system that is in involution 

with the integral G = c that mediates the transition to the simplified canonical system (397) (351). 

Namely, if: 

 

(404)    f (p1, …, pn, q1, …, qn, t, c) = const. 

 

is an integral of the completely-integrable system (393) then f will be a solution to the two partial 

differential equations (394.a): 

(405)     

{ , } 0,

{ , } 0.
n

f
H f

t

f
h f

q


+ = 




 + =


 

 

If one now goes over to a function F (p1, …, pn, q1, …, qn, t) in such a manner that one replaces c 

with the function: 

G (p1, …, pn, q1, …, qn, t) 

then: 

 

(406) F (p1, …, pn, q1, …, qn, t) = const. 

 

will be, on the one hand, an integral of the original canonical system, since one has: 

 

( , )
F

H F
t


+


 = { , }

f
H f

t


+


 = 0 

 

from the first of equations (405). On the other hand, one has: 

 

(G, F) = − { , }
n n

G f
h f

p q

  
+ 

  
 

 

for the Poisson bracket, i.e., from the second of the equations (405), one has: 

 

(407) (G, F) = 0 . 

 
 (351) E. Bour, loc. cit. (347). With Lie’s terminology, the integrals define a (2n – 2)-parameter function group that 

is reciprocal to the two-parameter function group for which the integral G = c and integral that is canonically conjugate 

to it represent a basis. 
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 In that way, one ultimately gets the following path to the determination of the n integrals that 

are in involution for a canonical system with 2n unknown functions, which are required for one to 

perform the integration completely. One next determines an integral of the given canonical system 

itself and goes over to a canonical system with (2n – 2) unknown functions with the help of that 

integral. One once more determines an integral of that system, exhibits a new canonical system 

with (2n – 4) unknown functions (352), and proceeds in that way to canonical systems with (2n – 

6), …, 2 unknown functions. In total, one will then have to perform an operation of order 2n, 2n – 

2, …, 4, 2, with Lie’s terminology, in order to completely integrate the canonical system with 2n 

unknowns, and one only needs to add a quadrature to that. The individual canonical system that 

one exhibits in that way are auxiliary systems for that integration. They represent the completely-

integrable systems with 2, 3, …, n independent variables that determine the characteristic M2, M3, 

…, Mn on which the 1, 2, …, n−1, resp., integral curves of a field are arranged. 

 If several (say r) integrals: 

 

(408)  F1 (p1, …, pn, q1, …, qn, t) = c1 , …, Fr (p1, …, pn, q1, …, qn, t) = cr 

 

of the given canonical system have been found, instead of a single integral, and they are pairwise 

in involution: 

 

(408.a)      (F, F) = 0 

 

then one can exhibit a completely-integrable system with r independent variables directly [the 

associated canonical system with 2 (n – r) unknown functions, resp.]. That is because, from no. 

26, the integrals (408) generate an r-parameter group of transformations that is assigned to the 

individual integral curves of a characteristic Mr+1 . One can then next determine that Mr+1 and thus 

obtain a completely-integrable system with 2 (n – r) unknown functions whose integration is 

equivalent to that of the auxiliary canonical system with 2 (n – r) unknown functions in a manner 

that corresponds entirely to procedure for the special case of an individual integral. 

 In order to find that completely-integrable system, one solves the r integrals (408) for r of the 

impulse components p (say, for pn−r+1, …, pn): 

 

(408.b)  

1 1 1 1 1 1

1 1 1 1

( , , , , , , , , , , , , ) 0,

.................................................................................................

( , , , , , , , , , , , , )

n r n r n r n r n r

n r n r n r n r n r

p f p p q q q q t c c

p f p p q q q q t c c

− + − − − +

− − − +

+ =

+ 0




 =

 

 

 
 (352) The integrals of that system simultaneously produce integrals of the canonical system with (2n – 2) unknown 

functions that are all in involution with the integral of that system that served to simplify things. Hence, that will imply 

integrals of the given canonical system that are in involution with both known integrals of that system. With each 

further step, along with the integral that is used to simplify things, at the same time, the integral that is conjugate to it 

will single out all 2n integrals from the basis for the function group. 
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and imagines that the associated position coordinates qn−r+1, …, qn have been introduced, along 

with t, as the independent variables on the characteristic Mr+1 (
353). The involution relations (408.a) 

imply the corresponding relations for the functions (408.b) (354): 

 

(408.c)     (pn−r+ + f, pn−r+ + f) = 0 , 

 

which one can also write in the form: 

 

(409) 
n r n r

f f

q q

 

 − + − +

 
−

 
 + {f, f} = 0  (,  = 1, …, r), 

when one introduces: 

(409.a) {f, f} = 
1

n r f f f f

p q q p

   

    

−

=

    
−      

  , 

to abbreviate. 

 If one defines the function: 

 

(410)  H (p1, …, pn−r, q1, …, qn−r, qn−r+1, …, qn, t) 

= (p1, …, pn−r, − f1, q1, …, − f1, q1, …, qn, t) , 

 

which corresponds precisely to (391), then the relations: 

 

(411)     
F

t




 + (H, F) = 0    ( = 1, …, r), 

 

which express the idea that the F = c are integrals of the given canonical system, next imply the 

following relations for the functions (408.b) (355): 

 

 
 (353) On this topic, cf., T. Levi-Civita, “Drei Vorlesungen über adiabatische Invarianten,” Hamburg Abhandl. aus 

d. math. Sem. 6 (1928), esp., pp. 352. 

 (354) That is because, it will next follow from (408.a) that: 

 

, 1

( , ) 0
r

n r n r

n r n r

FF
p f p f

p p


   

   

− + − +

= − + − +


+ + =

 
 , 

and that will imply (408.c).  

 (355) That is because (411) can be rewritten as: 

 

1

( , )
r

n r

n r

fF
H p f

p t


 

 

− +

= − +

 
+ + 

  
  = 0 , 

which implies that: 

( , )n r

f
H p f

t



 − +


+ +


 = 0 , 

as well as (412). 
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(412) { , }
n r

f H
H f

t q





− +

 
− +

 
 = 0  ( = 1, …, r), 

 

in which the curly brackets mean the same abbreviations as in (409.a). In so doing, one employs 

the relations: 

(413)  
H

p




 = 

1

r

n r

fH H

p p p



  = − +

 
−

  
 , 

H

q




 = 

1

r

n r

fH H

q p q



  = − +

 
−

  
 . 

 

If one now introduces all of those relations into the given canonical system then that will give the 

relations: 

(414) 
1

1

,
r

n r

r

n r

fH
dq dt dq

p p

fH
dp dt dq

q q


 

 


 

 

− +

=

− +

=


= +  




  = − +     





  ( = 1, …, n – r), 

 

in place of the first (n – r) pairs of equations, to which one must add the r differential equations: 

 

(415)     dqn−r+ = 
n r

H
dt

p − +




   ( = 1, …, r), 

 

along with the r equations (408.b). The expressions (408.b) have likewise been substituted for 

pn−r+1, …, pn in their right-hand sides. 

 Equations (414) also represent a completely-integrable system of total differential equations 

here, since the associated (r + 1) partial differential equations: 

 

(416) 

{ , } 0,

{ , } 0
n r

H
t

f
q



− +


+  = 




 +  =


   ( = 1, …, r) 

 

define a complete (and in fact Jacobi) system (356). The Pfaffian equations (416) will then possess 

2n−2r Mr+1 as solutions, and those Mr+1 will be precisely the characteristic Mr+1 . That is because, 

 
 (356) That is because, on the one hand, one has from (414) [which follows in the same way as in (348)] that: 

  

{ , } { , } { , }, 0.
n r n r

f H
f F H F H f F

t q t q


 

 − + − +

   
− = − + = 

    
 

On the other hand: 
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on the one hand, the integral curves of the canonical system traverse it, since one will get them 

when one adds equations (415) to (414). On the other hand, the orbits of each of the r one-

parameter groups will also lie on them. That is because when one starts from integrals in the form 

(408.b), each of which is an integral curve of one of the r systems: 

 

  
n r

dp

dq



− +

 = 
f

q








, 

n r

dq

dq



− +

 = − 
f

p








 ( = 1, …, n – r), 

 

they will traverse the M2n+1−2r that one obtains when one adds the equations: 

 

t = const.,      qn−r+1 = const., …, qn−r+−1 = const.,      qn−r++1 = const., …, qn = const. 

 

( = 1, …, r) 

to the relations (408.b). 

 The system (414) can also be converted into a canonical system with 2 (n – r) unknown 

functions in precisely the same way as one did with the system (393). That is because due to the 

complete integrability of (414), one can find the values of p1, …, pn−r, q1, …, qn−r at an arbitrary 

point P of the Mr+1 from its values at a given point P in such a way that one connects P0 and P 

with an arbitrary curve: 

 

(417)   qn−r+1 = qn−r+1 () , …, qn = qn () , t = t () 

 

and calculates the change in the p1, …, pn−r, q1, …, qn−r along that curve. However, along that 

curve, the completely-integrable system (414) will go to the ordinary canonical system: 

 

(418)     
dq

d




 = 

K

p




, 

dp

d




 = −

K

q




  ( = 1, …, n – r), 

in which one has set: 

 

(419) K (p1, …, pn−r, q1, …, qn−r, ) 

 

  { , } { , }
n r n r

f F f F
q q

 

 − + − +

 
−

 
 

, { ,{ , }} { ,{ , }}
n r n r

f f
F f F f f F f

q q

 
   

 − + − +

  
= − + − 

  
 

   { , }, 0,
n r n r

f f
f f F

q q

 
 

 − + − +

  
= − + = 

  
 

 

since the first quantity in that Poisson bracket is zero, from (409). 
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= 1 1 1

1

( , , , , , , ( ), , ( ), ( ))
r

n r
n r n r n r n

dqdt
H p p q q q q t f

d d






  
 

− +
− − − +

=

+  , 

corresponding to (396) (357). 

 The (2n – 2r) integrals of (418) produce immediate integrals of the completely-integrable 

system (414), as well as integrals of the original given canonical system that are in involution with 

the integrals (408), and the system will go to (418) with their help (358). That is because an integral 

of the canonical system (418) [the completely-integrable system (414), resp.] simultaneously 

satisfies the (r + 1) partial differential equations (416), the first of which says that it is also an 

integral of the original canonical system after the reformation, while the following r equations 

express the idea that it will be in involution with the r integrals (408) after the reformation (359). 

 
 (357) That is the so-called fundamental theorem of S. Lie. The Hamilton-Jacobi equation that belongs to (418): 

 

1

1

, , , , , , 0n r

n r

V V V
K q q

q q



−

−

   
+ = 

   
 

 

is equivalent to the system of (r + 1) partial differential equations: 

 

1

1

, , , , , , 0n

n

S S S
H q q t

t q q

   
+ = 

   

, 

   
1

1

, , , , , , 0n

n

S S
F q q t c

q q
 

  
− = 

  

   ( = 1, …, r). 

 

S will emerge from V when one goes from the integral curves of the system (418) to the characteristic Mr+1 . Cf., S. 

Lie, “Allgemeine Theorie der partiellen Differentialgleichungen erster Ordnung,” Math. Ann. 9 (1876), pp. 245 = 

Werke IV, pp. 97, esp., § 10, Werke IV, pp. 136. 

 (358) They will then define a subgroup of the function group of the 2n integrals of the original canonical system 

that no longer includes the r integrals that are canonically conjugate to the r integrals (408) in involution, nor does it 

include the latter. 

 (359) If one has solved the canonical system (418), i.e., one has determined the characteristic Mr+1 : 

 

(420)   
1 1 1 1

1 1 1 1

( , , , ) , , ( , , , ) ,

( , , , ) , , ( , , , )

n r n n r n r n r n

n r n n r n r n r n

p p t q q p p t q q

q q t q q q q t q q

− + − − − +

− + − − − +

= =


= =
  

 

that are solutions of the completely-integrable system (414), then the solution to the given canonical system will 

naturally come down to a quadrature here, as well. That is because since the integral curves of a characteristic Mr+1 all 

belong to the same field, the expression: 

 

p1 dq1 + … + pn dqn − H dt = 
1 1

1 1 11

n r n r n r

n r n r n n

n r n

q q q
p p dq p p dq p H dt

q q t

  

  
  

− − −


− + − +

= = =− +

       
+ + + + + −     

       
    

 

will be the total differential of a function S of the (r + 1) variables t, qn−r+1, …, qn on Mr+1 , in which the r integrals 

(408) will appear, along with the constants c1, …, cr . The individual integral curves on the Mr+1 will then be fixed by 

the relations: 

(420.a)     

1

S

c




 = 1 , …, 

r

S

c




 = r . 
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 28. Simplifying the integration when one knows a function group of integrals. – The 

special case that was treated in the previous number, viz., when one knows a number of integrals 

of the canonical system that are all in involution with each other, does not generally exist. Rather, 

from the arguments in no. 26, one would generally expect that one will construct a system of 

integrals that forms a function group from two (or more) integrals by repeatedly forming the 

Poisson bracket. Let: 

(421) 

1 1 1 1

1 1

( , , , , , , ) ,

...............................................

( , , , , , , )

n n

k n n k

F p p q q t c

F p p q q t c

=


 =

 

 

be the integrals of one such function group, such that for any two of them, one has: 

 

(421.a)     (F, F) =  (F1, …, Fk)  ( = − ), 

 

in which zero or a constant can also appear in place of the function on the right-hand side. Since 

the k functions (421) are mutually independent, they define a basis for the function group. 

 In order to decide what simplifications of the integration can arise when one knows such a 

function group, S. Lie proceeded in such a way that he sought a so-called canonical basis (360) for 

the function group. He next had to establish whether there were functions in the function group 

that were all in involution with all functions in the basis (421) (and therefore with all functions of 

the function group) (361). Since one such distinguished function: 

 

(422) U (F1, …, Fk) 

 

must obviously satisfy the k equations (362): 

 
 

Those r relations are equivalent to the integrals of the original canonical system that are canonically conjugate to the 

r initial integrals (408). 

 (360) S. Lie, “Über partielle Differentialgleichungen erster Ordnung,” Christiania Forhandlingar i Vidensk.Selsk. 

(1872), pp. 16 = Werke III, pp. 32, esp., § 3, pp. 42. 

 (361) The functions that are in involution with all functions of the given function group likewise define a function 

group, namely, the so-called polar group of the given function group [cf., II A 5 (E. von Weber), no. 40]. The 

distinguished functions of a function group therefore simultaneously belong to the function group itself and its polar 

group. Cf., S. Lie, loc. cit. (360). 

 (362) Naturally, the Poisson brackets in (423) are thought of as being replaced with the functions (421.a). 

Obviously, one will then have to deal with only k independent variables F1, …, Fk, instead of the 2n independent 

variables p, q . 

 The idea of going from the 2n independent variables p , q  to the F1, …, Fk as independent variables defined the 

nucleus of the starting point for S. Lie’s theory of function groups. In that sense, the relations (421.a) define the 

Poisson brackets for the independent variables and thus exhibit the generalization of the relations: 

 

(p , p ) = 0 , (q , q ) = 0 , (p , q ) =  0 ( ),

1 ( ),

 

 



=
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(422.a) (F1, U) = 0 , (F2, U) = 0 , …, (Fk, U) = 0 , 

 

i.e., the k linear partial differential equations: 

 

(423) 

1 1 1 2 1

1 2

2 1 2 2 2

1 2

1 2

1 2

( , ) ( , ) ( , ) 0,

( , ) ( , ) ( , ) 0,

.............................................................................

( , ) ( , ) ( , )

k

k

k

k

k k k k

U U U
F F F F F F

F F F

U U U
F F F F F F

F F F

U U U
F F F F F F

F F

  
+ + + =

  

  
+ + + =

  

  
+ + +

 
0,

kF











= 

 

 

and conversely every solution of that system is a distinguished function, the existence of 

distinguished functions of the functions will depend upon whether the skew-symmetric 

determinant: 

(423.a) D = 

1 1 1

1

( , ) ( , )

( , ) ( , )

k

k k k

F F F F

F F F F

 

 

is equal to zero or non-zero. If it is non-zero then the function group will possess no distinguished 

functions. By contrast, if D = 0 then at least one distinguished function will exist (363). Now, since 

the skew-symmetric certainly vanishes when k is an odd number, there will be at least one 

distinguished function in the k-parameter function group as long as k is an odd number. Moreover, 

since as long one minor of a skew-symmetric determinant is non-zero, there will always be at least 

one non-zero principal of equal order (364), as well, while on the other hand, the principal minors 

of a skew-symmetric determinant are again skew-symmetric determinants, it will further follow 

that (365): If k is an odd number then the function group with the basis (421) will have either 1, 3, 

 
that were true for the original variables, in which one must imagine that the skew-symmetric system of  has been 

given. Obviously, those functions  cannot be chosen to be entirely arbitrary, rather they must satisfy a system of 

first-order partial differential equations, because one must also require the general validity of the Jacobi identity for 

those generalized Poisson brackets if one would like to construct the theory of function groups. That original thought 

of Lie [cf., S. Lie, “Zur Theorie der Transformationsgruppen,” Christiania Forhandlingar (1888), no. 13 = Werke V, 

pp. 533, esp., § II, pp. 554] was not established in the later presentations of the theory of function groups. It was first 

moved back to the focus of attention by C. Carathéodory, Variationsrechung, Leipzig and Berlin, 1935, Chap. 9. 

 (363) S. Lie, loc. cit. (360), Werke III, pp. 41. 

 If time does not appear explicitly then one will have in the energy integral: 

 

H = const. 

 

as a first integral that will be a distinguished function in every group that it belongs to. 

 (364) Cf., e.g., G. Kowalewski, Einführung in die Determinantentheorie, Leipzig, 1909, pp. 145. 

 (365) S. Lie, “Begründung einer Invariantentheorie der Berührungstransformationen.” Math. Ann. 8 (1875), pp. 

215 = Werke IV, pp. 1, cf., esp., Werke IV, pp. 44.  
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or 5 distinguished functions. If k is an even number then the number of distinguished functions 

will amount to either 0, 2, or 4, etc. In order to fix the number of distinguished functions in the 

function group, one then needs only to examine the determinant (423.a) (its odd-order principal 

minors, resp.). If the determinant (423.a) has rank r, in which r must be an even number, then there 

will be (k – r) distinguished functions in the function group. Naturally, those distinguished 

functions are also in involution with each other. 

 In order to find the (k – r) distinguished functions of the function group, one must select r 

linearly-independent equations from the k equations of the system (423), so perhaps (with a 

suitable numbering) the r linear partial differential equations: 

 

(424) 

1 1 1 2 1

1 2

1 2

1 2

( , ) ( , ) ( , ) 0,

...........................................................................

( , ) ( , ) ( , ) 0.

k

k

r r r k

k

U U U
F F F F F F

F F F

U U U
F F F F F F

F F F

  
+ + + =   



   
 + + + =

  

 

 

They define a complete system (366) [cf., II A 5 (E. von Weber), no. 13], and the determination of 

the (k – r) unknown functions will then require that one must determine an integral of a system of 

(k – r) [(k – r − 1), (k – r – 2), …, 2, 1, resp.] first-order ordinary differential equations for each of 

them, so an operation of order (k – r), (k – r – 1), …, 2, 1, resp., in the usual terminology (367). 

 
 (366) That is because if one denotes the left-hand sides by X1 U, …, Xr U then one will indeed have: 

 

X1 U = (F1, U), …, Xr U = (Fr, U) , 

 

and thus, from the Jacobi identity, one will have the bracket expression: 

 

(X , X) U = (F , (F , U)) − (F , (F , U)) 

  = (F , (F , U)) = ( (F1, …, Fk), U) 

  = 
1

1

( , ) ( , )k

k

F U F U
F F

   
+ +

 
, 

and it will follow from this that: 

(X , X) U = A1 X1 U + … + Ar Xr U . 

 

 (367) The general procedure employs the following ideas [cf., II A 5 (E. von Weber), nos. 13 and 15]. One then 

gives the complete system (424), which one solves for r of the derivatives – say, 

1

U

F




, …, 

r

U

F




 − the form of a Jacobi 

system: 
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 The (k – r) distinguished functions that are thus determined can then be taken from the basis 

for the function group (421), which will then take the form: 

 

(425) U1, …, Uk−2s , 1F , …, 
2sF  

 

when one sets the even number r = 2s. Therefore, one now has: 

 

(425.a) 
1 2 1 2

( , ) 0, ( , ) 0,

( , ) ( , , , , , ).k s

U U U F

F F U U F F

   

 



  

−

 = =


=
 

 

With the help of the integrals U1 = c1, …, Uk−2s = ck−2s that arise from the (k – 2s) distinguished 

functions, one can now reduce the given system (384) to a canonical system with 2 (n – k + 2s) 

unknown functions, say: 

 

(424.a)    

11 1.

1 1

21 2.

2 1

1 .

1

0,

0,

.......................................................

0.

k r

r k

k r

r k

r r k r

r r k

U U U
a a

F F F

U U U
a a

F F F

U U U
a a

F F F

−

+

−

+

−

+

  
+ + + =   


  

+ + + =
  




  
+ + + =   

 

 

One will then introduce new independent variables 2, …, r in [cf., II A 5 (E. von Weber), no. 17] in place of F2, …, 

Fr by setting: 
(0)

2 2
F F−  =  

(0)

2 1 1
( )F F − , …, 

(0)

r r
F F−  =  

(0)

1 1
( )

r
F F − . 

 

(If one interprets F1, …, Fr as ordinary rectangular coordinates of an Rr then 2, …, r will represent the coordinates 

of the line bundle through the point 
( 0 )

1
F , …, 

( 0 )

r
F .) If one then sets F1 − 

( 0 )

1
F  = 1 then the system (424.a) will go to 

a corresponding Jacobi system: 

(424.b)    

11 1.

1 1

21 2.

2 1

1 .

1

0,

0,

.......................................................

0 ,

k r

r k

k r

r k

r r k r

r r k

U U U
b b

F F

U U U
b b

F F

U U U
b b

F F







−

+

−

+

−

+

  
+ + + =   


  

+ + + =
  




  
+ + + =   

 

 

which has the property: Every solution of the first equation of the system is likewise a solution of the other (r – 1) 

partial differential equations. 

 However, that one partial differential equation is equivalent to a system of (k – r) first-order ordinary differential 

equations. 
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(426) 
dq

d




 = 

K

p




, 

dp

d




 = − 

K

q




 ( = 1, 2, …, n – k + 2s), 

 

as in no. 27. In that way, since the integrals 
1F  = 1, …, 

2sF  = 2s are in involution with the 

integrals U1 = c1, …, Uk−2s = ck−2s that are used for the reduction, they will go to 2s integrals: 

 

(427)    G (p1, …, pn−k+2s, q1, …, qn−k+2s, ) =  ( = 1, …, 2s) 

 

of the canonical system (426). They represent a function group: 

 

(426.a) (G , G) =  (G1, …, G2s) , 

 

in which no distinguished function exists now (368). 

 However, according to S. Lie, the basis for a function group that has no distinguished functions 

can be put into canonical form, i.e., one can introduce a basis: 

 

(428) 
1 2

1 2

, , ,

, ,

s

s

  


  
 

 

for the function group (427) such that the functions  and  will represent canonically-conjugate 

integrals of (426) when they are set equal to constants, such that one will have: 

 

(428.a)    

( , ) 0, ( , ) 0 ( , 1, , ),

0 ( )
( , ) .

1 ( )

s   

 

 

 

 

  =   = =



  =  =

 

 

In order to achieve that, one must start with one of the functions G – say, G1 – and then determine 

the function K (G1, …, G2s) in such a way that one will have: 

 

(G1, K) = 1 1 1 2 1 2

1 2 2

( , ) ( , ) ( , )s

s

K K K
G G G G G G

G G G

  
+ + +

  
 = 1 . 

The two functions: 

G1 = 1, K = 1 

 

obviously define a two-parameter function group by themselves that is included in the 2s-

parameter function group (427) as a subgroup. If one now takes those two functions 1 and 1 

from the basis of the function group (427) then the remaining (2s – 2) functions in the basis can be 

chosen such that they will be in involution with 1 and 1 and likewise define a subgroup of 2s-

 
 (368) One can easily verify that by direct calculation.  
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parameter function group (427) (369). That (2s – 2)-parameter subgroup can be treated in the same 

way as the (2s)-parameter group (426), such that one will arrive at the canonical basis (428) for 

the group (427) in s steps. 

 There will then be a system in involution of precisely s functions in the function group with no 

distinguished functions G1, …, G2s . Such a thing is defined by, e.g., the functions 1, …, s of 

the canonical basis (428). On the other hand, a system in involution that is included in the function 

group (427) cannot consist of more than s functions. The original k-parameter function group (421) 

that was given will then contain a system in involution of (r + s) parameters (k = r + 2s), while no 

system in involution will have more than (r + s) parameters. 

 From no. 27, an (r + s)-parameter system in involution that is contained in the k-parameter 

function group will make it possible to convert the given canonical system into one that contains 

2 (r + s) unknown functions. The remaining s integrals that are included in the function group are, 

in a certain sense, worthless for the integration process (369.a). They belong to the (r + s) integrals 

that lie on the individual characteristic Mr+s+1 that are the solutions of the simplified canonical 

system [the corresponding completely-integrable system with (r + s + 1) independent variables, 

resp.], which determine the r+s integral curves. When one recalls the equations for the Mr+s+1, 

they must then be included among the r+s integrals of the form (420.a) in (359). 

 Therefore, if a k-parameter function group of integrals is known for the given canonical system 

then if one is to integrate the system, one will generally have to look for one of the (k – s)-parameter 

systems in involution of greatest extent that is contained in the group, and one can reduce the given 

canonical system to a canonical system that includes 2 (k – s) fewer unknown functions by using 

those (k – s) integrals. One will then conclude the integration in the way that was given at the 

conclusion of no. 27, whereby one must also finally recover the s unused integrals of the canonical 

basis for the function group. In order to find the system in involution of greatest extent, one must 

 
 (369) S. Lie, “Begründung einer Invariantentheorie der Berührungstr.,” Math. Ann. 8 (1875), pp. 89 = Werke IV, 

pp. 1 (see esp., pp. 46) showed the following: He imagined determining the polar groups H1, …, H2n−2s to the 2s-

parameter function groups G1, …, G2s, whose functions would satisfy: 

 

(G , H) = 0 , 

 

from the definition of the polar group. If one now adds the two functions 1 and 1 to the function group of the H 

then another function group will arise, and indeed one whose number of parameters is equal to (2n – 2s + 2), and for 

which the functions: 

1, 1, H1, …, H2n−2s 

 

will represent a basis. Its polar group will then be a (2s – 2)-parameter function group, and any basis 
1

G

, …, 

2 2s
G



−
 

for that function group will fulfill the conditions: 

 

1
, )(G




 = 0 , 

1
, )(G




 = 0 , , )(G H

 


= 0 . 

 

The functions 
1

G

, …, 

2 2s
G



−
 must obviously be contained in the group G1, …, G2s, since it indeed subsumes all of the 

functions for which one has (G , H) = 0 . They can then be taken from the basis for the given function group, along 

with 1, 1, and will then define a subgroup with the required property in their own right. 

 (369.a) On this topic, one can cf., the article by G. D. Mattioli, “Sulla riduzione di rango dei sistemi canonici 

mediante integrali generici,” Roma Lin. Rend. (6) 15 (1932), pp. 437.  
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solve a series of complete systems of first-order partial differential equations with the independent 

variables F1, …, Fk of the original basis (421) of the function group. Namely, if p functions: 

 

V1 (F1, …, Fk) , …, Vp (F1, …, Fk) 

 

have been found, every two of which are in involution, then one will get a further function V (F1, 

…, Fk) that is in involution with all of them as a solution to the complete system: 

 

(V1, V) = 0 , …, (Vp, V) = 0 , 

 

although those equations will not generally be mutually independent (369.b), such that one must 

single out individual equations from them. 

 If one would like to systematically enumerate the operations that are required for the 

integration, in the spirit of Lie, then it would be convenient for one to imagine that the integration 

proceeds in the following way: One first determines the (k – 2s) distinguished functions that are 

included in the group, which will require that one must solve a system of (k – 2s), (k – 2s – 1), …, 

3, 2, 1 ordinary differential equations in each case, so an operation of order of (k – 2s), (k – 2s – 

1), …, 3, 2, 1, with Lie’s terminology. One then goes on to exhibit the canonical basis for the 

group, which will come down to an operation of order (2s – 2), (2s – 4), …, 4, 2 (370). 

 That general line of reasoning will determine the number of necessary operations in the most 

unfavorable case. However, some significant simplifications can enter in particular cases, namely, 

when one knows subgroups of the function group (421) (371). One can next determine whether such 

a subgroup possesses distinguished functions and how many of those distinguished functions are, 

at the same time, distinguished functions of the total k-parameter function group. If: 

 

(429)    G1, G2, …, Gi, Gi+1 , …, Gk 

 
 (369.b) For example, if V is a distinguished function of the function group then the equation (V , V) = 0 will be 

fulfilled identically for any function V (F1, …, Fk). 

 (370) That is because when one starts from G1, one must look for a function: 

 

K1 (G1, …, G2s) 

that fulfills the condition: 

1 1 1
1 1 1 1 2 1 2

1 2 2

( , ) ( , ) ( , ) ( , ) 0s

s

K K K
G K G G G G G G

G G G

  
= + + + =

  
, 

 

i.e., since (G1, G1) = 0, it will be a function that satisfies a linear partial differential equation with (2s – 1) independent 

variables, such that the determination of that function will come down to determining an integral of a system of (2s – 

2) first-order ordinary differential equations. One then determines a function K2 (G1, …, G2s) that satisfies the two 

conditions: 

(G1, K2) = 0 , (K1, K2) = 0 . 

 

Those two linear partial differential equations with 2s independent variables, which define a complete system, possess 

the two known solutions K2 = G1 and K2 = K1 . One will then have to solve a system of (2s – 2) first-order ordinary 

differential equations, for which one already knows two integrals, which will come down to the solution of a system 

of (2s – 4) first-order ordinary differential equations [cf., II A 5 (E. von Weber), nos. 13 and 11]. 

 (371) On this subject, cf., S. Lie, loc. cit. (369), esp. Werke IV, pp. 51, et seq.   
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 is a basis for the k-parameter function group (421), and: 

 

(429.a)     G1, G2, …, Gi 

 

is a basis for the i-parameter function subgroup then the common distinguished functions must be 

solutions of the (2k – i) partial differential equations: 

 

(G1, U) = 0 , (G2, U) = 0 , …, (Gk, U) = 0 , 

 

1i

U

G +




 = 0 , …, 

k

U

G




 = 0 . 

 

One can decide, with no further analysis, how large the number w of its common solutions is and 

then find the distinguished functions by operations of order w, w – 1, w – 2, …, 2, 1. Hence, one 

will then already know w of the distinguished functions of the function group (429), such that the 

problem of determining its distinguished functions will be reduced to lower-order operations. 

However, even for the further operations for determining the largest-possible system of involution 

in the function group (429), it will be preferable in situations to first ascertain all distinguished 

functions of the function subgroup (429.a) (to determine the largest-possible system in involutions 

in that subgroup, resp.). Naturally, that will also be a system in involution for the k-parameter 

function group (429) then, such that one will already know a number of solutions for the 

determinations of the largest-possible system in involution in that function group. Naturally, one 

can begin with the determinations of the still-unknown distinguished functions of the group (429) 

for the determination of that largest-possible system in involution that is contained in (428). 

 It is obvious how to diminish the order of the operations even further when a function subgroup 

is again contained in the subgroup in its own right (372). 

 

 

 29. Integrals of special form. In particular, ones that are rational in the impulses. – The 

general arguments in regard to the significance of knowing integrals for a given mechanical 

problem will be completed by investigations that bring integrals of a particular form under 

consideration. In so doing, one directs one’s attention to the dependency of the integral on the 

impulse components. That is obvious, since indeed, of the ten general integrals of the Galilei 

group, which appear, in total or in part, in many mechanical problems, nine of them, namely, the 

center of mass integrals and the area integrals, are linear in the impulses, while the energy integral 

proves to be quadratic in the impulse components. 

 
 (372) Obviously, the distinguished functions bring with them a complication of the integration problem, in a certain 

sense, when their number is large, and in that way, they will diminish the advantage in the integration that occurs 

when one knows the function group. Since there are only systems in involution with n parameters in the 2n-parameter 

function group of all integrals, the number of distinguished functions in a function group must naturally always remain 

below n. 
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 If one makes that standpoint one’s own then the integrals that are linear and homogeneous in 

the impulse components, so the ones that generally possess the form (373): 

 

(430) 1

1 1 1( , , ) ( , , )n

n n na q q p a q q p+ +  = const., 

 

will prove to be the simplest class of integrals. According to no. 25, the one-parameter group of 

transformations of the p, q that take of the space-time lines to other ones that belong to such an 

integral (430) has the infinitesimal transformation: 

 

(431) q1 = 1

1( , , )na q q  , …, qn = 
1( , , )n

na q q   ( t = 0), 

 

(431.a) 

1

1 1

1 1

1

1

,

.........................................................

.

n

n

n

n n

n n

a a
p p p

q q

a a
p p p

q q

 

 

   
= − + +  

  




   = − + + 
   

 

 

However, equations (431) define a system of n first-order differential equations between the q1, 

…, qn in their own right, and in which the impulse components p1, …, pn do not enter at all. Thus, 

they likewise already represent the infinitesimal transformation of a one-parameter transformation 

group by themselves, and indeed a transformation group for the position coordinates q1, …, qn 

alone. Since that one-parameter group also takes each space-time line of the motion in the Rn+1 of 

the (q1, …, qn, t) to another such space-time line, an integral that is linear in the impulse 

components will imply the existence of a one-parameter group of transformations of only the 

position coordinates that take all of the space-time line of the motion in the Rn+1 of the (q1, …, qn, 

t). Equations (431.a) represent the infinitesimal transformation of the impulse components that 

they produce (374). 

 Even when one has the more general linear integral: 

 

 (373) In the ordinary case where the kinetic energy is a quadratic form 1
2

, 1

n

T g q q  
 =

=  , so the Mn of the q1, 

…, qn is a Riemannian space with the arc-length element 2

, 1

n

ds g dq dq  
 =

=  , the following is true: The left-hand 

side of (430) must be a scalar. Therefore, since the impulse components p1, …, pn represent the components of a 

covariant vector, the 
1

a , …, 
n

a  will represent the components of a contravariant vector. 

 (374) One can arrive at it in such a way that one first derives the extended point transformation that produces the 

infinitesimal transformation of the velocity components 
1

q , …, 
n

q  from the transformation of the q1, …, qn and then 

goes over to the infinitesimal transformation of the impulse components by means of the relations between the velocity 

and impulse components. 

 In particular, if the Lagrangian function L is quadratic in the velocity components then the impulse components 

will be connected with the impulse components in such a way that an integral that is linear in the impulse components 

will, at the same time, represent an integral that is linear in the velocity components. 
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1

1 1 1 1( , , , ) ( , , , ) ( , , , )n

n n n na q q t p a q q t p a q q t+ + +  = 0 , 

 

instead of (430), the relations: 

 

(431.b) q1 = 1

1( , , )na q q  , …, qn = 
1( , , )n

na q q  ,  t = 0 , 

     

which correspond to (431), will represent an infinitesimal point transformation in the Rn+1 of the 

q1, …, qn, t that transforms the system of space-time lines of motion into itself. 

 One can then introduce new coordinates 
1q , …, 

nq  in place of the position coordinates q1, …, 

qn such that the transformation group of the position coordinates will become the group of “parallel 

translations” in the direction of one of the new coordinates, say 
nq  (375). That is to say, however:  

With the new coordinates, 
nq  will be a cyclic coordinate of the system. Thus, if a mechanical 

problem possesses an integral that is linear in the impulse components then it will go to a problem 

with one cyclic coordinate when one introduces suitable new position coordinates (by contrast, 

cf., the more general conception of things in no. 9). 

 If several integrals exist that are linear in the impulse components then one can indeed employ 

any one of them in order to introduce a cyclic coordinate. Meanwhile, for the canonical system 

that has been reduced by two units with the help of the cyclic coordinate, only the integrals that 

are in involution will again be integrals. If r linear integrals that are in involution exist then they 

will determine an r-parameter group of transformations of the position coordinates q1, …, qn . If 

one puts into the normal form of parallel translations in r directions then the system of equations 

of motion will contain r cyclic coordinates after one introduces the new coordinates (375.a). 

 If one would like to employ linear integrals directly to simplify the equations of motion then 

that would suggest that one might appeal to the concept of quasi-coordinates (no. 2). If one 

introduces them in such a way that the individual linear integral is equivalent to the constancy of 

a quasi-component of impulse then one will have a direct generalization of the concept of cyclic 

 
 (375) In order to do that, one must form the (n – 1) first integrals of the differential equations (431.b) that are 

independent of  and introduce those integrals as the first (n – 1) of the new coordinates: 

  

1 (q1, …, qn, t) = 
1

q

, …, n−1 (q1, …, qn, t) = 

1n
q



−
, 

to which one then adds: 

n
q


 = 

1( , , , )

n

n

n

q

a q q t


 , 

 

where the q1, …, qn in 
n

a  are replaced with 
1

q

, …, 

1n
q



−
. In fact, one will then have: 

 

1
q


 = 0 , …, 

1n
q



−
 = 0 , 

1n
q



−
 = 1   . 

 

M. Lévy has discussed that result for the special problem of determining the geodetic lines of an arc-length element 

in “Sur les conditions que doit remplir un espace, pour qu’on y puisse déplace un système invariable…,” C. R. Acad. 

Sci. Paris 86 (1878), pp. 875. 

 (375.a) Cf., on this, also É. Delassus, “Sur les integrales linéaires des équations de Lagrange,” C. R. Acad. Sci. Paris 

153 (1911), pp. 40. 
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coordinates (375.b). However, can also employ the left-hand sides of the integrals that are linear in 

the q  directly to define the quasi-components of the velocity. For example, if k integrals that are 

linear in the q  exist: 

11 1 1 1, 1n n na q a q a ++ + +  = c1 , 

……………………………… 

1 1 , 1k kn n k na q a q a ++ + +  = ck 

 

then one can, corresponding to (39) and (39.a), introduce quasi-components of the velocity  , of 

which: 

n−k+1 = c1 , …, n = ck 

 

are constant and give the equations of motion a form like (40.a). 

 P. Woronetz, has appealed to the process that he developed as an Ansatz for the equations of 

motion with non-holonomic constraints (cf., no. 4) in order to simplify the equations of motion 

when linear integrals exist (375.c). 

 One can generally pose the problem of characterizing the mechanical problems whose 

equations of motion possess linear integrals or more general integrals of a prescribed form. Since 

the individual mechanical problem is constrained, on the one hand, by the form of the kinetic 

energy T (by the associated arc-length element ds = 2T dt , when one has a Riemannian space, 

resp.), and on the other hand, by the force components Q1, …, Qn, which possibly arise from a 

potential , the conditions that characterize the appearance of integrals of a particular form for the 

equations of motion: 

(432)     
d T T

dt q q 

  
−    

 = Q   ( = 1, …, n) 

 

will split into two classes, one of which refers to the kinetic energy and the other of which refers 

to the force components. The conditions in the first class will then coincide with the one that the 

differential equations of the geodetic lines of the arc-length element must possess an integral of 

the prescribed form (376). 

 
 (375.b) Cf., on this, G. Hamel, “Über die virtuellen Verschiebungen in der Mechanik,” Math. Ann. 59 (1904), pp. 

416, esp., pp. 430, in which the connection between the constancy of a quasi-impulse and an infinitesimal point 

transformation is treated. Hamel’s considerations must be inverted for the consideration of linear integrals. 

 (375.c) P. Woronetz, “Transformation der dynam. Gleich. vermittels linearen Integrale der Bewegung,” Kiev 

(1906), in Russian, = Fortschr. d. Math. 37 (1906), pp. 728; cf., also A. Bilimovitch, “Der Bewegungsgleichungen 

konservativer Syst. mit linearen Bewegungenintegralen,” Math. Ann. 69 (1910), pp. 586. 

 (376) That connection was treated systematically for the linear integrals by M. Lévy. Cf., M. Lévy, “Sur les 

conditions pour qu’une forme quadratique de n différentielles puisse être transformées de façon que ses coefficients 

perdent une partie de la totalité des variables qu’ils renferment,” C. R. Acad. Sci. Paris 86 (1878), pp. 463, in which 

he expressed the theorem in this book about the connection between linear integrals and cyclic coordinates for the 

geodetic lines in 
n

R . Moreover, one already finds the theorem that a two-dimensional surface can be bent into a 

surface of revolution (angle of rotation – cyclic coordinate) if and only if the equations of the geodetic lines possess 

an integral that is linear in the impulse (velocity, resp.) components in the Thèse of F. Massieu, “Sur les intégrales 
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 Moving beyond the linear integrals, one must next further ask about the integrals of the 

equations of motion that are quadratic in the impulse components. The simplest of those integrals 

is the energy integral: 

 

(434)    H = T +  = 1
2

g p p

  +   = k  

 

(its generalization for rheonomic constraints, resp.). Its existence depends upon the fact that the 

independent variable, namely, time t, plays the role of a cyclic coordinate (cf., no. 10). Further 

quadratic integrals are known in the case when the Hamilton-Jacobi differential equation can be 

integrated by separating the variables (cf., no. 19), and indeed one will then have a system of n 

quadratic integrals that includes the energy integral. That is because equations (232) are identical 

to: 

 

(435)  2p  = (1) ( 1)

1 1( ) { ( ) ( )} ( )n

nk q c q c q q          −

−+ + + −   ( = 1, …, n), 

 

and when one solves this for the constants k, c1, …, cn−1, one will get n expressions that are 

quadratic in the p . Each of those quadratic integrals belongs to a one-parameter group of 

transformations, although there seems to have been no investigations of its meaning up to now. 

 One must pose the question of whether that theorem can be inverted, i.e., whether the existence 

of n quadratic integrals will imply that the equations of motion can be solved by separation of 

variables. That is easy to answer for two degrees of freedom. In that case, when a second quadratic 

integral exists in addition to the energy integral, one must always, in fact, integrate the Hamilton-

Jacobi equation that belongs to the problem by separating the variables and the integration of the 

 
algébriques des problèmes de mécanique,” Paris, 1861 [cf., also, C. R. Acad. Sci. Paris 49 (1859), pp. 352]. M. Lévy 

treated the same problem in C. R. Acad. Sci. Paris 86 (1878), pp. 947. E. Bour, “Théorie de la deformation des 

surfaces,” J. Éc. Polyt. 22, cah. 39 (1862), pp. 1 (esp., pp. 79) also referred to it. 

 V. Cerruti treated the problem in more a modern notation in “Sopra una proprietà degli integrali di un problema di 

meccanica che sono lineari rispetto alle component della velocità,” Roma Linc. Rend. (5) 41 (1895), pp. 283, in which 

he gave not only the conditions that the arc-length element must satisfy, but he also showed that in order for the 

contravariant force components Q


 to admit an integral that is linear in the velocity components: 

 

1 1 1 1
( , , ) ( , , )

n n n n
a q q q a q q q+ +  = const., 

it must satisfy the condition that: 

 

(433)   g Q q


 
 = g Q a

 


  = 0 , i.e., Q a



  = 0 . 

 

 For the most important of the linear integrals, viz., the first center of mass integral and the area integrals, G. 

Bisconcini, “Di una classificazione dei problemi dinamici,” Il nuovo Cimento (5) 1 (1901), pp. 253, followed the 

ideas of T. Levi-Civita and gave normal forms for the arc-length elements that belong to such center of mass and 

surface integrals and whose associated infinitesimal transformations will define the six-parameter group of motions 

in Euclidian R3 (one of its subgroups, resp.). 
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equations of motion with the help of quadratures alone will be possible (377). However, that result 

has no special significance, since one indeed always comes down to quadratures in this case as 

soon as an arbitrary further integral is known, along with the energy integral. [Cf., (282)] 

 G. di Pirro (378) treated the condition for further quadratic integrals to appear along with the 

energy integral for the general case of a system of n degrees of freedom, but generally only under 

the assumption that the kinetic energy T possessed an orthogonal form. More generally, P. Stäckel 

showed that (379): m quadratic integrals will appear when the n variables q1, …, qn can be arranged 

into m classes such that the Hamilton-Jacobi equation can be split into m equations that each 

include only the variables from one class. P. Painlevé also gave a similar treatment of the question 

(380). Moreover, will arrive at the existence of quadratic integrals when one asks a different 

question, namely, when one investigates when two mechanical problems (whose kinetic energy is 

a quadratic form in the velocity components and whose forces depend upon only the position 

coordinates) will possess the same trajectories (381). (Cf., infra, no. 36) 

 If one proceeds systematically then one can pose the question of the integrals of the equations 

of motion that are whole rational functions or even more general fractional rational functions of 

the impulse (velocity, resp.) components. However, an examination of that question beyond the 

first principles has not materialized. For example, T. Levi-Civita (382) showed that for force-free 

motion, i.e., for the differential equations of the geodetic lines of an Mn with the arc-length element: 

 

2ds = 
22T dt  = 

, 1

n

g dq dq  
 =

 , 

 

a homogeneous whole rational function of the q  will represent an integral: 

 

1 1m mr r r rA q q  = const. 

 

 
 (377) Cf., e.g., the presentation in G. D. Birkhoff, Dynamical Systems, pp. 48. That theorem was first given for the 

special case of the differential equations of the geodetic lines on ordinary surfaces by M. Massieu, loc. cit. (376) [cf., 

also III B 3 (R. von Lilienthal), no. 18]. 

 (378) Cf., G. di Pirro, “Sugli integrali primi quadratici delle equazioni della meccanica,” Ann. di mat. (2) 24 

(1896), pp. 315. G. Pennacchietti had already posed the question of quadratic integrals in some special cases in 

Mailand Lomb. Ist. Rend. (2) 18 (1885), pp. 242 and pp. 269, as well as G. Vivanti, Mailand Lomb. Ist. Rend. (2) 25 

(1892), pp. 689. 

 (379)  P. Stäckel, “Über quadratische Integrale der Differentialgleichungen der Dynamik,” Ann. di mat. (2) 25 

(1897), pp. 55. 

 (380)  P. Painlevé, “Sur les intégrales quadratiques des équations de la dynamique,” C. R. Acad. Sci. Paris 124 

(1897), pp. 221. Cf., also the note by T. Levi-Civita, ibid., pp. 392. 

 (381) That question comes from a generalization of the problem of mapping two surfaces to each other in such a 

way that the geodetic lines of one will go to the geodetic lines of the other. Cf., G. Darboux, Théorie des surfaces, 

III, Chap. 3. That is basically also the approach that R. Liouville took when he sought to treat the question of quadratic 

integrals with some specialized methods, cf., R. Liouville, “Sur les équations de la dynamique,” Acta math. 19 (1895), 

pp. 251. 

 (382) T. Levi-Civita, “Sugli integrali algebrici delle equazioni dinamiche,” Turin Atti 31 (1895/96), pp. 816. 
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if and only if the covariant derivatives [cf., III D 10 (R. Weitzenböck), Part. 2, no. 19] of the 

1 mr rA  define a semi-symmetric system (383). 

 On the other hand, if the equations of motion have the form (432) with T = g q q   , and 

an integral exists that is a fractional rational function of the velocity components then the quotient 

of the highest-order terms in the numerator and the denominator must be an integral of the 

associated differential equation of the geodetic lines (384). In general, the relationship between the 

integrals of the equations of motion (432) and the integrals of the associated problem of geodetic 

lines was investigated as a generalization of the ideas of G. Darboux (385) by P. Painlevé (386). 

Finally, one must still bring the integrals that depend upon the velocity (impulse, resp.) 

components algebraically under consideration. G. Koenigs (387), and the T. Levi-Civita (387.a) 

could show that the existence of an algebraic integral would necessarily imply that of a rational 

integral (388). 

 Up to now, it was assumed that the force components Q depended upon only the position 

coordinates q1, …, qn (and possibly time t). By contrast, the force components Q can also depend 

upon the velocity components 1q , …, nq , so one must generalize the results. Hence, should the 

system of equations of motion, which might be written in the form: 

 

(436) 
,

q q q  
 

 



 
+  

 
  = Q , 

possess an integral: 

 

(437) 1 1( , , , , , , )n nF q q q q t  = C , 

 

in which F is a prescribed function, then one must have: 

 

 

 (383) That is intended to mean: If 
1 1r r rm m

A
+

 is the covariant derivative of 
1r rm

A  with respect to 
1rm

q
+

, and one adds 

those of the derivatives whose indices emerge from r1…rm rm+1 by cyclic permutations then all of those sums must 

vanish. 

 (384) It follows for the equations of geodetic lines themselves that for an integral that is fractional rational in the 

direction coefficients, the quotient of the highest-order terms in the numerator and the denominator must likewise 

already be an integral. 

 (385) G. Darboux, C. R. Acad. Sci. Paris 108 (1889), pp. 449.  

 (386) P. Painlevé, “Sur les intégrales de la dynamique,” C. R. Acad. Sci. Paris 114 (1892), pp. 1168. 

 (387) G. Koenigs, “Sur les intégrales algébriques des problèmes de la dynamique,” C. R. Acad. Sci. Paris 103 

(1886), pp. 460. 

 (387.a) T. Levi-Civita, loc. cit. (382). 

 (388) The question of the appearance of algebraic integrals plays a major role in the two main problems in analytical 

mechanics – viz., the n-body problem, as well as that of the top. H. Bruns has proved that for the three-body problem, 

there can be no integrals beyond the ten integrals that arise from the Galilei group that are algebraic functions of p , 

q , t [cf., VI2 12 (E. T. Whittaker), no. 4]. In particular, the known investigations of S. Kowalewski in the theory of 

the top were guided by the goal of arriving at a new algebraic integral [cf., IV 6 (P. Stäckel), no. 36]. 
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(438)   
,

F F F
q Q q q

t q q



  
   

 



     
+ + −   

      
   = 0 

 

identically in the q, q , t. If one, with J. Bertrand (389), imagines that the kinetic energy T has 

been given then one can seek to determine the force components Q (Q , resp.) in such a way that 

equation (438) will become an identity. Naturally, that is not possible in general. However, in some 

special case, the Q  can be given uniquely from that demand (390), or several solutions can also 

be possible. In the latter case, the given integral would be common to several mechanical problems, 

such as would be true of, e.g., the center of mass and area integrals. Furthermore, J. Bertrand 

examined the conditions that a function would have to satisfy in order for its forces Q  to be 

determined in the given way. In that way, he went into more detail regarding the integrals that are 

rational in the velocity components (391). 

 

 

 30. Stationary motions for cyclic coordinates and their generalization. – It is not rare for a 

problem to arise in which one does not perform the general integration of the equations of motion, 

but must determine a certain, more specifically characterized, class of solutions. E. J. Routh (392) 

treated an important example of that, namely, the stationary motion (steady motion) of a 

mechanical system with n degrees of freedom such that the last r of its general coordinates q1, …, 

qn (namely, qn−r+1, …, qn) are cyclic (hidden) coordinates. One will get a distinguished case of the 

motion of such a system when the acyclic (observable) coordinates remain constant such that the 

system will ostensibly appear to be at rest, while in reality the apparent state of equilibrium will 

be maintained by the (unobservable) motion in the cyclic coordinates (393). The Lagrangian 

function of the system: 

 

(439) 1 1( , , , , , )n n rL q q q q −  = T –   

 

 
 (389) J. Bertrand, “Sur les intégrales communes a plusieurs problèmes de mécanique,” J. de math. 17 (1852), pp. 

121. 

 (390) In that case, one can differentiate the identity (438) with respect to the 
1

q , …, 
n

q , which will give n linear 

equations for the unknowns Q1, …, Qn, from which one can possibly calculate them. 

 (391) J. Bertrand, “Mémoires sur quelqu’unes des forms les plus simples que puissant prendre les intégrales des 

équations différentielles du movement d’un point matériel,” J. de math. (2) 2 (1857), pp, 113, in which he generally 

assumed that the kinetic energy had the form T = 
2 21 ( )

2
x y+ . For that form of T, he treated the cases in which the 

integral was a whole rational function of order one, two, or three, as well as a fractional rational function of order one 

in the velocity components. An extension to the Euclidian R3 was given by G. Vivanti, Rend. circ. mat. Palermo 6 

(1892), pp. 127. 

 (392) E. J. Routh, A treatise on the stability of a given state of motion, London, 1877, referred to a trajectory whose 

linear “Jacobi equations” (cf. no. 20) included coefficients that were independent of time as a steady motion. 

 (393) The meaning of such a motion is based in the fact that its stability can be resolved with the help of the energy 

criterion. 
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which one might assume does not contain time t explicitly, in agreement with Routh, is such that 

one will have: 

 

(440)     T +  = H = k 

 

for the energy integral of the motion. Since the cyclic impulse components are constant: 

 

(441) pn−r+1 = 
1n r

T

q − +




 = c1 , …, pn = 

n

T

q




 = cr , 

 

by the Routh transformation (cf., no. 9), one will then obtain, in place of the original Lagrangian 

function L, the modified function: 

 

(442)   
1 1 1( , , , , , , , , )n n r rL q q q q c c

−
 = 

1

r

n rL q c 


− +

=

−  , 

 

which represents the Lagrangian function for the observable motion of the system. Hence, should 

rest prevail in observable coordinates, then the associated Euler equations: 

 

(443)     
d L L

dt q q 

   
−    

  (r = 1, …, n – r) 

would have to be satisfied by: 

 

(444)    q1 = 1 , …, qn−r = n−r , 

 

and therefore: 

 

(444.a) 1q  = 0 , …,  n rq −  = 0 . 

 

However, since L  does not depend upon time explicitly, that means that one has to calculate the 

values (444) from the equations: 

 

(445) 
1

L

q




 = 0 , …, 

n r

L

q



−




 = 0 , 

 

in which the velocity components are set equal to zero (394). In order to determine the motion in 

cyclic coordinates, one must then calculate the values of the derivatives 1n rq − + , …, nq  from (441), 

 
 (394) Since one has: 
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which will then prove to be constant, such that the cyclic coordinates themselves will become 

linear functions of time (395): 

 

(446) qn−r+1 = a1 t + 1 , …, qn = ar t + r . 

 

 For fixed numerical values of the cyclic impulses (441), equations (445) [(444), resp.] will 

determine a certain Mr in the Rn of the q1, …, qn on which the qn−r+1, …, qn vary arbitrarily. It 

represents a characteristic Mr that belongs the r integrals (441). That is because it is created from 

an orbit (444), (446) of the r-parameter group of parallel displacements in the directions of qn−r+1, 

…, qn that arises from the r integrals (441). r orbits lie on that Mr [corresponding to the r arbitrary 

constants 1 , …, r in (446)], which emerge from one of them by way of the r parallel 

displacements in the r-parameter group. Moreover, since one can prescribe the numerical values 

of the cyclic impulses arbitrarily, one does not have just a single Mr, but a family of r such Mr on 

which each of the r orbits lie. In total, one has then found 2r special orbits of the system. 

 If one employs the associated canonical system for the equations of motion, in place of the 

Euler equations, then the Euler equations (443) will correspond to the canonical system: 

 

(447)    
dq

dt


 = 

H

p




,  

dp

dt


 = − 

H

q




  ( = 1, …, n – r), 

 

in which one imagines that the cyclic impulses have been replaced with the constant values (441) 

in H. One will then get the stationary motion (444), (446) from the equations: 

 

(448)    
H

p




 = 0 ,  

H

q




 = 0  ( = 1, …, n – r), 

 

 

   
L

q






 = 

L

q





   ( = 1, …, n – r), 

 

from (442), one can also determine the values (444) from the (n – r) equations: 

 

(445.a)  
L

q





 = 0    ( = 1, …, n – r), 

 

in which one has given the velocity components 
1

q , …, 
n r

q
−

 the value zero, and the velocity components 
1n r

q
− +

, …, 

n
q  are then replaced with the r values that follow from (441). (German translation, pp. 77) 

 (395) Watt’s centrifugal governor when the prime mover has constant angular velocity will serve as a simple 

example of such a motion. E. J. Routh, Advanced Rigid Dynamics. (German translation, pp. 81) 
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which will simultaneously yield the coordinates (444), as well as the constant values of the 

impulses p1, …, pn−r that belong to (444.a) (396). One must again append the values (446) of the 

qn−r+1, …, qn to them. The r integrals (441) determine an M2n−r in the space of (p , q) on which 

the 2n−r orbits lie. Among them, the orbits that are given by (448) and (446) are distinguished by 

the fact that the energy H assumes the value for all of them, and indeed, an extremal value. 

 T. Levi-Civita (397) generalized that Routh motion for cyclic coordinates by replacing the 

special r integrals (441) with r general integrals: 

 

(449)  F1 (p1, …, pn, q1, …, qn) = c1 , …, Fr (p1, …, pn, q1, …, qn) = cr 

 

of the canonical system: 

(450)    
dq

dt


 = 

H

p




,  

dp

dt


 = − 

H

q




  ( = 1, …, n), 

 

which one assumes are in involution, such that one will have: 

 

(449.a) (F, F) = 0 

 

for it. Here, as in no. 27, if one solves the relations (449) for r of the impulse components, say for 

pn−r+ , …, pn : 

 

(451) pn−r+ + f (p1, …, pn−r, q1, …, qn, c1, …, cr) = 0   ( = 1, …, r), 

 

then one can next determine (cf., no. 26) the characteristic Mr that belongs to the integrals (449). 

In order to do that, one appeals to the completely-integrable Pfaffian system (cf., no. 27): 

 

 
 (396) The impulses that belong to the observable coordinates are constant, but generally non-zero. For example, in 

the simplest case, one has: 

p  = 
T

q





 = 

1 1 n n
g q g q

 
+ +  

   = 
, 1 1n r n r n n

g q g q
 − + − +

+ +   ( = 1, …, n – r), 

 

in which the 
1n r

q
− +

, …, 
n

q  are replaced with the values that are calculated from: 

 

c = pn−r+ = 
, 1 1 ,n r n r n r n r n n

g q g q
 − + − + − + − +

+ + . 

 

 (397) T. Levi-Civita, “Sulla determinazione di soluzioni particolari di un sistema canonico, quando se ne conosce 

qualche integrale o relazione invariante,” Roma Linc. Rend. (5) 101 (1901), pp. 3 and pp. 35. An extended and 

generalized presentation is found in T. Levi-Civita, “Sur la recherche des solutions particulières,” Warschau Prace 

matematyczno-fisycne 17 (1906), pp. 1, cf., also T. Levi-Civita and U. Amaldi, Lezioni II, 2, pp. 339, et seq. 
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(452)    
1

1

,

,

r

n r

r

n r

fH
dq dt dq

p p

fH
dp dt dq

q q


 

 


 

 

− +

=

− +

=

 
= +

 



  = − +     





 

 

in which H  arises from H, in such a way that the functions (451) are substituted for the pn−r+ , …, 

pn . 

 As a generalization of (448), T. Levi-Civita posed the 2 (n – r) equations: 

 

(453) 
H

p




 = 0 ,  

H

q




 = 0  ( = 1, …, n – r), 

   

from which one can calculate the p , …, pn−r , q , …, qn−r as functions of the qn−r+ , …, qn . 

However, those functions determine a characteristic Mr . That is because the relations (453) are 

2( )n r−  integrals of the likewise completely-integrable system (398): 

 

(454)    
1

1

,

,

r

n r

r

n r

f
dq dq

p

f
dp dq

q


 

 


 

 

− +

=

− +

=


= − 


 =

 




 

since indeed one will have: 

 

H
d

p

 
   

 = 
2

1

,
r

n r

n r

H H
f dq

p p q
 

   

− +

= − +

    
+        

  

 

from those equations, so from (453), one will have: 

 

H
d

p

 
   

 =  
1

,
r

n r

n r

H
H f dq

p q
 

 

− +

= − +

  
+ 

  
 = 0 , 

 

and that will imply that: 

 
 (398) This method of proof is in P. Burgatti, “Sopra un teorema di Levi-Civita riguardante la determinazione di 

soluzioni particulari di un sistema Hamiltoniano,” Roma Linc. Rend. (5) 111 (1902), pp. 309. 

 One should observe that the coefficients of the differentials on the right-hand side of (452) are independent t. The 

entire argument will proceed in an entirely-similar way when H and the F1, …, Fr also depend upon t, but the 

coefficients on the right-hand side of (452) will not include one of the coordinates qn−r+ , …, qn . In the event that the 

coordinate qn−r+ does not appear, one must not go over to (454) then, but a system that arises from (452) when one 

sets the coefficient of dqn−r+ equal to zero, and calculates p , …, pn−r , q , …, qn−r as functions of t, qn−r+ , …, qn−r+−, 

qn−r++, …, qn . from it. That would likewise determine a characteristic Mr . 
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H
d

p

 
   

 = 0 , 

analogously. 

 If one imagines that the constants c1, …, cr in (449) can be chosen arbitrarily then equations 

(453) will determine a family of r characteristic Mr . 
r integral curves of the canonical system 

lie on each of those characteristic Mr that one will obtain by a quadrature (cf., no. 27). 

 However, according to T. Levi-Civita, it is not necessary for the relations (449) that facilitate 

the reduction should be integrals. Rather, one can make the same argument in the case where one 

knows only r invariant relations (399): 

 

(455)  F1 (p1, …, pn, q1, …, qn) = 0 ,  …, Fr (p1, …, pn, q1, …, qn) = 0 

 

that are involution. One can then arrive at equations (453) in the same way, but one will not get 

only a single Mr with r integral curves. One must determine those integral curves by means of 

the system: 

1n rdq

dt

− +  = 
1n r

H

p − +




, …, ndq

dt
 = 

n

H

p




, 

 

whose right-hand sides are functions of qn−r+1 , …, qn , which will then require at most an (r – 1) 

operation (in Lie’s terminology) (400). 

 Just as in Routh’s special case, those r orbits are singled out from the 2n−r orbits on the 

M2n−r (455) by the fact that the energy H assume the same extreme value for all of them (401). 

 
 (399) That is: 

dF

dt


 = (H, F) 

 

is not identically zero, but only when one recalls (455). P. Painlevé, L’intégr. des équations diff. de méc., pp. 286, 

referred to such a relation as an intégrale première particularisée. 

 (400) Cf., T. Levi-Civita, Roma Linc. Rend. (5) 101 (1901), pp. 3.  

 (401) The special position that is enjoyed by canonical systems emerges when one seeks to adapt those arguments 

to general differential systems with (2n + 1) variables: 

 

(a)   dx0 : dx1 : … : dx2n = X0 (x0, x1, …, x2n) : X1 : … : X2n , 

 

cf., T. Levi-Civita, Warschau Prace mat. fis. 17 (1906), pp. 1. Just as the canonical system: 

 

()    
dq

dt


 = 

H

p





, 

dp

dt


 = − 

H

q





   ( = 1, …, n) 

has the integral: 

 

()      H = k , 

 

which determines a cylindrical (in the t-direction) M2n in the phase-R2n+1 of the (q , p , t), one must also assume that 

one knows a first integral: 
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(b)  f (x0, x1, …, x2n) = c  

 

that determines an M2n (a family of M2n, resp.) in the R2n+1 of the (x0, x1, …, x2n). 

 If one now ignores the appearance of cyclic coordinates in the canonical system () then, corresponding to (448), 

one will have to pose the relations: 

()     
H

q





 = 0 , 

H

p





 = 0   ( = 1, …, n), 

 

to which one would have to add the identity relation: 

( )        
H

t




 0 . 

 

They determine a point 
(0)

p


, 
(0)

q


 in the M2n of the (p , q) [a curve, resp., namely, a parallel to the t-direction in the 

R2n+1 of the (p , q , t)]. That is the one stationary solution to the canonical system that one will get in this case. For 

the general system of differential equations (a) with the first integral (b), when one sets: 

 

(c)    

0

f

x




 = 0 , 

1

f

x




 = 0 , …, 

2 n

f

x




 = 0 , 

 

corresponding to (), that will yield a system of 2n independent equations that determine an M1, in general, so one 

stationary integral curve. T. Levi-Civita (cf., loc. cit., pp. 37) deduced the meaning that this stationary solution had 

in comparison to the other solutions. 

 Now, if the canonical system () has r cyclic coordinates then r of the equations () will be fulfilled identically. 

Thus, equations () will not determine an M1 in this case, but an Mr+1 with the property that every integral curve that 

has a point in common with the Mr+1 will belong to it completely. Correspondingly, equations (c) can also establish 

an M+1 (  0) with the same property instead of an M1 . 

 For a canonical system, the appearance of r cyclic coordinates is always coupled with the existence of r first 

integrals, namely, the r relations (441). One can correspondingly start from them (the more general relations that T. 

Levi-Civita introduced, resp.). If one assumes in the same way that for the general system (a), along with the integral 

(b), one knows r further integrals, or more generally, invariant relations: 

 

(d)   f0 (x0, x1, …, x2n) = 0 , …, fr (x0, x1, …, x2n) = 0 , 

 

that determine an M2n−r in conjunction with (b), then one can set: 

 

(e)     F = f + 1 f1 + … + n fn 

 

and prescribe the relations: 

(f)    

0

F

x




 = 0 , 

1

F

x




 = 0 , …, 

2 n

F

x




 = 0 . 

 

In that way, precisely one stationary integral curve will once more be determined on the M2n−r then, while one will get 

an M+1 only in exceptional cases. In contrast to that, one will always get an Mr+1 for the canonical system when one 

follows the procedure in the text in the event that the invariant relations satisfy the given assumptions. 

 The behavior of the canonical systems is precisely analogous to that of the Pfaffian systems, which arise from a 

Pfaffian expression (i.e., a linear differential form) in the way that was given in no. 21. It was treated by T. Levi-

Civita, “Sulle soluzione stazionarie dei sistemi pfaffiani,” Roma Linc. Rend. (6) 191 (1934), Nota I, pp. 261 and Nota 

II, pp. 369. Based upon the concept that É. Cartan introduced of the higher-order dérivée extérieure of a Pfaffian 

form (cf., no. 20), he could introduce relations for a Pfaffian system that are the natural generalizations of the 

involution relations for canonical systems and subsume them as special cases. If one has not only a first integral: 
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(g)  f (x0, x1, …, x2n) = 0 

 

for a Pfaffian system, but also r invariant relations: 

 

(h)  f (x0, x1, …, x2n) = 0 , …, fr (x0, x1, …, x2n) = 0 , 

 

that are in involution (in the general sense) with each other and with (g) then one will always get an Mr+1 on which r 

stationary integral curves lie from the Ansatz of (e) and (f), precisely as one does with the canonical system. 

 

___________ 



CHAPTER VII 

 

THE CANONICAL TRANSFORMATION 
 

 

 31. The canonical system as the characteristic Pfaffian system of a linear differential 

form. The bilinear covariant. Historical connection with the perturbation calculations. (401.a) 

– From what was explained in the previous chapter, the simplifications in the integration of the 

equations of motion will be implied by essentially their canonical form: 

 

(456) 
dq

dt


 = 

H

p




, 

dp

dt


 = − 

H

q




   ( = 1, …, n). 

 

If one is compelled to introduce new coordinates in place of the p, q for any reason, such as, e.g., 

in perturbation calculations, then the canonical form will not be preserved, in general, and one 

would sacrifice the advantage that it would give in integrating the transformed equations. Thus, 

one might try to choose the new coordinates in such a way that the transformed system will again 

possess the canonical form. A coordinate transformation with that property will then be referred 

to as a canonical transformation. 

 In order to determine those canonical transformations, one will most conveniently appeal to 

the Pfaff problem [cf., II A 5 (E. von Weber), no. 18, et seq.], in which the results of no. 21 will 

take on new meaning. A linear differential form (a so-called Pfaffian expression): 

 

(457) d = X1 (x1, …, xm) dx1 + … + Xm (x1, …, xm) dxm 

 

is associated with the so-called characteristic Pfaffian system (402). One arrives at it (cf., no. 21) 

most simply when one forms the bilinear covariant (403): 

 

(458)    d – d d = 
, 1

( )
m XX

x dx x dx
x x


   

   

 
=

 
− −    

  

 

and sets the factors of  x equal to zero in it: 

 

(459) 1
1

1

m
m

m

X XXX
dx dx

x x x x

 

 

    
− + + −            

 = 0 

 

( = 1, …, m) . 

 
 (401.a) For the historical development, see also Chapter III. 

 (402) It is also referred to as the “first Pfaff system” of the differential form.  

 (403) Cf., no. 21, pp. 671, et seq.  
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If one now introduces new coordinates into the linear differential form (457), such that it will go 

to, say: 

 

(457.a)   d = Y1 (y1, …, ym) dy1 + … + Ym (y1, …, ym) dym , 

 

then the system of differential equations (459) will be converted into the characteristic Pfaffian 

system for the linear differential form (457.a) under that coordinate transformation. One will then 

need only to form the bilinear covariant of the Pfaffian expression (457.a): 

 

(458.a)    d – d d = 
, 1

( )
m YY

y dy y dy
y y


   

   

 
=

 
− −    

  

 

and then set the factors of  y in it equal to zero, in order for: 

 

(459.a) 1
1

1

m
m

m

Y YYY
dy dy

y y y y

 

 

    
− + + −            

 = 0 

 

( = 1, …, m) 

 

to be the system of differential equation to which the system (459) will go under the coordinate 

transformation. 

 Now [cf., no. 21, eq. (296)], the canonical system (465) is the characteristic Pfaffian system 

of the linear differential form (404): 

 

(460)   d = p1 dq1 + … + pn dqn – H (p1, …, pn, q1, …, qn, t) dt , 

 

such that one will arrive at it when one introduces new coordinates into the canonical system (456). 

In that way, one will easily obtain, e.g., the form of the perturbation equations, as Lagrange gave 

them (cf., no. 12). Namely, let, say, (460) be the linear differential form of the unperturbed motion. 

For the perturbed motion, let it be the corresponding form: 

 

(461) 
d

  = p1 dq1 + … + pn dqn – (H + ) dt , 

 

in which the perturbing function  can now be thought of as depending upon, more generally than 

in no. 12, not only the position coordinates q , but also the impulse components p . If one then 

introduces the constants c1, …, c2n of the unperturbed problem in place of the q , p as new 

variables in the perturbed problems by way of the transformation formulas: 

 
 (404) The Ansatz for the equations of motion was studied systematically from this standpoint by G. Morera, “Sulle 

equazioni dinamiche di Hamilton.” Turin Atti 39 (1904), pp. 364. In it, he investigated, in particular, how one would 

have to consider non-holonomic constraints on the mechanical system for the derivation of the canonical system from 

the bilinear covariant [cf., also the citation in (78)]. 
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(462)   q  =  (t, c1, …, c2n) , p =  (t, c1, …, c2n) 

 

then the linear differential form (461) will go to the differential form: 

 

(463)  
d

  = 1 2

1 1 11 2

n n n

n

n

q q q
p dc p dc p H dt

c c t

  

  
  = = =

       
+ + + − −      

       
   , 

 

whose bilinear covariant will assume the form (405): 

 

(464)  
d dd   −   = 

2 2

, 1 1

[ , ]( ) ( )
n n

c c c dc c dc c dt t dc
c

       
   

   
= =


− + −


   

 

when one introduces the Lagrange brackets [cf., eq. (96)]. The equations of motion (456) will 

correspondingly go to: 

(465) 21
1 2[ , ] [ , ] n

n

dcdc
c c c c

dt dt
 + +  = 

c

 


   ( = 1, …, 2n) 

 

under the transformation (462) (406), and those are precisely Lagrange’s perturbation equations 

(95). In order for that system to again take the canonical form, it is necessary and sufficient that 

all of the Lagrange brackets vanish except for those of the 2n brackets for which the one index 

differs from the other by exactly n and half of them equal (+ 1), while the other half equal (− 1). 

Now, Lagrange remarked that that will occur when one selects the 2n constants c1, …, c2n suitably 

(cf., the conclusion of no. 12), e.g., when one chooses the initial values (0)q , (0)p  of the q , p at 

time t = t0 to be varying constants (407). 

 Whereas Lagrange hit upon the idea of a canonical transformation largely at random, W. R. 

Hamilton (408) (cf., also no. 14) found the systematic way that would lead to the canonical form 

for the perturbation equations. Namely, he started from the principal function: 

 

 
 (405) In so doing, one should observe that (462) is the solution to the unperturbed problem, such that one will then 

have: 

1 11

0.
n nq q

p H p
c c t c

 

 
  = =

     
− − =   

      
   

 (406) The relation: 
2

1

0
n

dc
c


 =


=


  

 

gets added to that, which expresses the idea that the q , p must have the same values for the perturbed and unperturbed 

problem, respectively.  

 (407) That is because the Lagrange brackets will then have the correct values for t = t0, and those values will be 

preserved for all t, since they are independent of time t (cf., nos. 12 and 21). 

 (408) W. R. Hamilton, “Second essay on a general method in dynamics,” Trans. Phil. Soc. London 2 (1835), pp. 

95.  
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(0) (0)

1 1 0( , , , ; , , , )n nS q q t q q t  

 

of the unperturbed problem (cf., no. 14) and employed the equations: 

 

(466) 
S

q




 = p , 

(0)

S

q




 = − (0)p    ( = 1, …, n) 

 

in order to introduce the constants (0)q , (0)p  of the unperturbed problem as the new variables in 

the perturbed problem. Namely, since one has: 

 

(467) dS = (0) (0)

1 1

n n

p dq H dt p dq   
 = =

− −  , 

 

when one regards t0 as a fixed parameter [cf., eq. (153)], the linear differential form (461) of the 

perturbed problem will go to the form: 

 

(468) 
d

  = (0) (0) (0) (0)

1 1( )n np dq p dq dt dS+ −  +  

 

under the transformation (466), whose bilinear covariant will be: 

 

(468.a)  
d dd   −   = (0) (0) (0) (0)

1 1

1

( ) ( )
n

n np dq p dq dt d t


   
=

+ −  −   

 

since the exact differential will make no contribution. The characteristic Pfaffian system will then 

read: 

(469)    

(0)dq

dt


 = 

(0)p

 


, 

(0)dp

dt


 = −

(0)q

 


, 

 

i.e., the perturbation equations have the canonical form. 

 C. G. J. Jacobi (409) took up Hamilton’s ideas and likewise generalized them in such a way 

that he replaced Hamilton’s principal function S with an arbitrary complete solution S (q1, …, qn, 

t, c1, …, cn) of the Hamilton-Jacobi partial differential equation: 

 

(470)    1

1

, , , , , ,n

n

S S S
H q q t

t q q

   
+  

   
 = 0 

 

 
 (409)  C. G. J. Jacobi, “Note sur l’intégration des équat. diff. de la dynamique,” C. R. Acad. Sci. Paris 5 (1837), 

pp. 61 = Werke IV, pp. 131, as well as in Probleme der Mechanik, in the case where a force function exists, as well as 

the theory of perturbations, Werke V, esp., Theorem IX, pp. 355. 
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and defined the transformation by the equations: 

 

(471) p = 
S

q




,  

S

c




 = −  , 

 

in which the relations S / c = −   represent the equations of the space-time lines of the 

unperturbed problem (410). Now, since: 

 

dS = 
1 1

n n

p dq H dt dc   
 


= =

− −  , 

 

the differential form (461.a) will go to: 

 

(472) 
d

  = 
1

n

dc dt dS 



=

−  +  

 

under the transformation (471), from which the perturbation equations will once more emerge in 

canonical form: 

(472.a) 
dc

dt


 = 






, 

d

dt


 = −

c

 


. 

 

 At the same time, Jacobi achieved the breakthrough that this argument was basically entirely 

independent of the perturbation calculations (411). If one introduces new coordinates P , Q into 

the canonical system in place of the p , q with the help of an arbitrary function U (q1, …, qn, Q1, 

…, Qn) by way of the formulas: 

(473) p  = 
U

q




, − P = 

U

Q




   ( = 1, …, n) 

 

then the transformed system will once more be canonical. That is because the linear differential 

form (460) that belongs to (456) will go to: 

 

(473.a) d = 
1

n

P dQ H dt dU 
=

− +  

 

under the transformation (473), and its characteristic Pfaffian system will have the form: 

 
 (410) Cf., eq. (186), in which a different sign was chosen for the constants  .  

 (411) C. G. J. Jacobi, Werke IV, pp. 136, as well as Probleme der Mech., Werke V, Theorem X, pp. 371. 

 Moreover, it is indicative of the direct connection with the perturbation calculations that Jacobi seemed to feel that 

the general canonical transformation was only a transition from one system of canonical perturbation equations to 

another canonical system of perturbation equations. 
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(473.b) 
dQ

dt


 = 

H

P




, 

dP

dt


 = −

H

Q




. 

 

That expresses the fact that one will obtain a canonical transformation that corresponds to the 

formulas (473) from a substitution function (412) like U (q1, …, qn, Q1, …, Qn) that can be chosen 

arbitrarily. Jacobi had also already given a generalization of the Ansatz (473) of the canonical 

transformation (413). Namely, one is occasionally given a number of relations between the old and 

new position coordinates for the system from the outset by the nature of the problem itself. In that 

spirit, if one prescribes r relations between the old position coordinates q1, …, qn and the new ones 

Q1, …, Qn, say: 

 

(474)  (q1, …, qn, Q1, …, Qn) = 0  ( = 1, …, r) 

 

then one will need only to introduce r Lagrangian factors and replace the arbitrary function U 

with the expression: 

U + 1 1 + … + r r , 

 

and one will then get a canonical transformation from: 

 

(475) 

1
1

1
1

,r
r

r
r

U
p

q q q

U
P

Q Q Q



  



  

 
 

 
 

 
= + + +   




   = − + + +      

 

 

when one calculates the old coordinates q , p as functions of the new ones Q , P  from (474) 

and (475) by eliminating 1, …, r . In that way, r can assume the values 0, 1, …, n (414). In fact, 

the differential form (460) will go to: 

 

(476)   d = 
1 1

1

n

r rP dQ H dt dU d d 


   
=

− + + + +  

 

under the transformation (475), such that the characteristic Pfaffian system will again assume the 

canonical form (473.b). 

 
 (412) The term was first used by E. Schering, “Hamilton-Jacobische Theorie für Kräfte, deren Maß von der 

Bewegung der Körper abhängt,” Gött. Abh. 18 (1873), pp. 3 = Werke I, pp. 193. In that article, Schering was also the 

first to treat the canonical transformation of the bilinear covariant [cf., eq. (8) in that treatise (Werke I, pp. 212)], from 

which he then derived the canonical equations [cf., eq. (8)] as the characteristic Pfaffian system. He then used the 

bilinear covariant in the usual form from eq. (13) onwards (Werke I, pp. 230). 

 (413) C. G. J. Jacobi, Probleme der Mech., Werke V, esp., § 38, pp. 373, et seq. 

 (414) In the case of r = n, one will have a transformation that allows one to represent the new position coordinates 

Q1, …, Qn as functions of the old position coordinates q1, …, qn . 
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 Finally, one can further generalize the transformation in such a way that one also replaces the 

independent variable t with a new variable T. The problem is then to introduce new variables P , 

Q , T in place of the original variables p , q , t by a transformation: 

 

(477)    

1 1

1 1

1 1

( , , , , , , ) ,

( , , , , , , ) ,

( , , , , , , )

n n

n n

n n

p P P Q Q T

q P P Q Q T

t P P Q Q T

 

 







=


=
 =

 

 

such that a canonical system will once more arise from every canonical system. 

 The transformations that are defined in that way will take every canonical system to another 

canonical system might also have the same function H. Those are the canonical transformations 

in the proper sense. By contrast, it seems that for an individual canonical system (456) with a fixed 

function H, one might also possibly ask the question of what the transformations would be that 

would only take that one system to another canonical system (415) (cf., no. 34), in which one must 

 
 (415) S. Lie, “Die Störungstheorie und die Berührungstransformationen,” Arch. for Math. og Naturvodensk. 2 

(1877), pp. 129 = Werke III, pp. 295. There, the problem is treated as Problem III, and the last of formulas (477) is 

assumed in the form t = T. – Whereas the proper canonical transformations must take the bilinear covariant: 

 

(a)    ( ) ( )p dq q dp H dt dH t
   

   − − −  

 

for the original system to: 

 

(b)     ( ) ( )P dQ Q dP K dt dK t
   

   − − − , 

 

only the differential form (b) needs to exist for the desired transformation (S. Lie argued). However, it does not need 

to arise from (a) under the transformation, but it can arise from a different system of associated second-order 

differential forms under the transformation. 

 For the transformation of a bilinear differential form, cf., S. Kantor, “Über einen neuen Gesichtspunkt in der 

Theorie des Pfaffschen Problems, der Funktionengruppen und der Berührungstransformationen,” Wien Sitzungsber. 

110 (1901), IIa, pp. 1147. In that article, he juxtaposed the normal form of a (skew-symmetric) bilinear differential 

form in 2r variables: 

(478)  

1

( )
r

r rx dx dx x   


 + +

=

−  

 

with the general (skew-symmetric) bilinear differential form in 2r variables: 

 

(478.a)    
2

1 2

, 1

( , , ) ( )
r

rc u u du u du u    
 

 
=

−  

 

in precisely the same way that the theory of quadratic differential forms (i.e., the arc-length element for an Mr) 

juxtaposes the general form: 

(479)     
1

, 1

( , , )
r

rg u u du du  
  =

  

with the Euclidian normal form: 
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further demand, in particular (as would seem natural based upon the applications to the theory of 

perturbations), that the form of the function K (P1, …, Pn, Q1, …, Qn, t) can be prescribed from the 

outset for the newly-created canonical system: 

 

(480) 
dQ

dt


 = 

K

P




, 

dP

dt


 = −

K

Q




. 

 

Meanwhile, in contrast to the opinion of S. Lie, C. Carathéodory drew attention to that problem 

statement without pointing out its intrinsic connection with the canonical form. That is because if 

one imagines, on the one hand, integrating the canonical system (456): 

 

(481)   p = p (t, c1, …, c2n) ,  q = q (t, c1, …, c2n) ,  

 

and on the other hand, the canonical system (480), as well: 

 

(481.a)   P = P (t, c1, …, c2n) , Q = Q (t, c1, …, c2n) ,  

 

then one will need only to set: 

 

(482)     c =  (C1, …, C2n)   ( = 1, …, 2n) 

 

in which the  are completely-arbitrary functions, in order to obtain a transformation of the 

desired kind. Namely, every integral curve of the one system will be associated with an integral 

curve of the other system by (482). Therefore, when one eliminates c, C from equations (481), 

(481.a), and (482), one must obtain the transformation that takes the canonical system (456) to the 

canonical system (480). However, since an arbitrary system of differential equations can go to a 

corresponding system that is it associated with it the same way, no problem will arise that is 

specifically linked with the canonical form of the differential equations. 

 

 

 32. The substitution function. – Should the transformation (477) take any canonical system: 

 

(479.a)  2

1

r

dx
 =

 . 

 

Just as an arbitrary quadratic differential form (479) cannot always be brought into the Euclidian form (479.a) by a 

coordinate transformation, similarly, a bilinear form (478.a) cannot always be brought into the normal form (478). For 

the quadratic differential form (479), in order for the transformation to (479.a) to be possible, it is necessary that the 

curvature tensor must vanish. For the differential form (478.a), one must correspondingly be able to give 2r functions 

U1 (u1, …, u2r), …, U2r (u1, …, u2r) with whose help one can put the 2r (2r – 1) / 2 coefficients c into the form: 

 

c = 
U U

u u

 

 

 
−

 
. 
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(483) 
dq

dt


 = 

H

p




, 

dp

dt


 = − 

H

q




   ( = 1, …, n) 

to another canonical system: 

 

(483.a) 
dQ

dT


 = 

K

P




, 

dP

dT


 = − 

K

Q




   ( = 1, …, n), 

then the relation: 

 

(484)    
1

( ) ( )
n

p dq q dp H dt dH t   


   
=

− − −  = 0 

 

would have to go to the relation: 

 

(484.a)    
1

( ) ( )
n

P dQ Q dP K dT dK T   


   
=

− − −  = 0 

 

under that transformation, i.e., one would need to have (416): 

 

(484.b)       
1

( ) ( )
n

p dq q dp H dt dH t   


   
=

− − −  = 
1

( ) ( )
n

P dQ Q dP K dT dK T   


   
=

− − − . 

 

It will then follow from that relation (484.b) that the linear differential form that belongs to (483): 

 

(485)     
1

n

p dq H dt 
=

−  

 

can differ from the linear differential form that belongs to (483.a): 

 

(485.a)     
1

n

P dQ K dT 
=

−  

 

and to which (485) will go under the transformation (477), by only the total differential of a 

function of the P , Q , T (416.a). The relation: 

 

(485.b)   
1

n

p dq H dt 
=

−  = 
1

n

P dQ K dT 
=

− + dW , 

in which: 

 
 (416) The proportionality of the two expressions can be easily converted into an equality (cf., no. 34).  

 (416.a) Because the bilinear covariant of a total differential is identically zero. 
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(485.c)    W = W (P1, …, Pn, Q1, …, Qn, T) 

 

is an arbitrary function of the given variables, must then become an identity as a result of the 

transformation (477) (416.b). 

 In order to capture the essence of the transformation (477) thus-characterized more precisely, 

one can follow C. Carathéodory (417) and imagine that the solutions of the canonical systems 

(483) and (483.a) have been determined as functions of the independent variables t (T, resp.) and 

the initial values (0)p
, (0)q

 ( (0)P
, (0)Q , resp.) that belong to t0 (T0, resp.): 

 

(486) 

(0) (0) (0) (0)

1 1

(0) (0) (0) (0)

1 1

( , , , , , , ) ,

( , , , , , , )

n n

n n

p f t p p q q

q f t p p q q

 

 

 =


=

 

or 

(486.a) 

(0) (0) (0) (0)

1 1

(0) (0) (0) (0)

1 1

( , , , , , , ) ,

( , , , , , , ) ,

n n

n n

P F T P P Q Q

Q G T P P Q Q

 

 

 =


=

 

     

resp. If one defines the principal functions: 

 
(0) (0)

1 1 1( , , , , , , )n nS q q t q q   [ (0) (0)

2 1 1( , , , , , , )n nS Q Q T Q Q , resp.] 

 

for the variational problems that belong to the canonical systems (483) [(483.a), resp.] then one 

will have: 

1

n

p dq H dt 
=

−  = (0) (0)

1

1

n

p dq dS 
=

+  

and correspondingly (417.a): 

1

n

P dQ K dt 
=

−  = (0) (0)

2

1

n

P dQ dS 
=

+ . 

 

It will then follow from (485.b) that: 

 

 
 (416.b) It follows immediately from the definition that the composition of two canonical transformations will again 

be a canonical transformation. The canonical transformations will then have the group property, and indeed the set of 

all canonical transformations will define an infinite group, due to the appearance of the arbitrary functions. Cf., II A 

6 (L. Maurer and H. Burkhardt), no. 22. 

 (417) C. Carathéodory, “Les transformations canoniques de glissement et leur application à l’optique 

géometrique,” Roma Linc. Rend. (6) 12 (1930), pp. 353. 

 (417.a) Therefore, when one thinks of t as being fixed in advance, formulas (486) will mediate a canonical 

transformation between the 
(0)

p


, 
(0)

q


 and the p , q . If one regards t as a variable parameter then one will have a 

one-parameter family of canonical transformations. Similarly, formulas (486.a) represent a family of canonical 

transformations between the 
(0)

P


, 
( 0 )

Q


 and the P , Q for which the parameter of the family is T. C. Carathéodory 

referred to those special canonical transformations as sliding transformations, because an individual point will slide 

along the space-time line along with its impulse vector as t (T, resp.) varies (cf., no. 34). 
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(487)   (0) (0) (0) (0)

1 1

n n

p dq P dQ   
 = =

−   = dW – dS1 + dS2 = dV , 

 

in which, as C. Carathéodory showed, V can depend upon only the (0)P , (0)Q , while it is 

independent of T (417.b): 

 

(487.a) V = (0) (0) (0) (0)

1 1 ),( , , , ,n nV P P Q Q , 

 

as long as one imagines that W, S1, and S2 are represented as functions of (0)P
, (0)Q  with the help 

of (477), (486), and (486.a) (417.c). 

 The transformation (477), which takes the canonical system (483) with the given function H 

to the canonical system (483.a) with the given function K, is then well-defined when one, on the 

one hand, prescribes the function V [the associated function V 
, resp., (417.d)], which exhibits the 

connection between the integral curves of both systems, along with the relations: 

 
 (417.b) That says: The function V mediates a transformation that associates every integral curve of the one canonical 

system with an integral curve of the other canonical system. 

 (417.c) The functional determinant of a canonical transformation is always non-zero, cf., (424.a). 

 Since one further has that due to the fact that: 

 

p dq = − q dp + d (p q) , 

the transformation: 

p



 = − q , q




 = p , 

 

i.e., the permutation of one pair of variables p , q with the same index, will also be a canonical transformation, 

namely, it represents a so-called elementary canonical transformation, with C. Carathéodory’s terminology (cf., C. 

Carathéodory, Variationsrechnung, Leipzig and Berlin 1935, Chap. 6), one can then assume (once one has possibly 

performed a number of elementary canonical transformations) that the functional determinants: 

 

P

q








, etc., 

 

will be non-zero, such that all of the conversions that one has imagined performing in the text will actually be possible. 

 (417.d) It is assumed in so doing that one can solve the transformation formulas: 

 
(0)

p


 = 
(0) (0) (0) (0) (0)

1 1
( , , , , , )

n n
p P P Q Q


, 

(0)
q


 = 

(0) (0) (0) (0) (0)

1 1
( , , , , , )

n n
q P P Q Q


, 

 

for the 
(0)

1
P , …, 

(0)

n
P , and in that way, one can take V to a function V


 of the 

(0)

1
q , …, 

(0)

n
q , 

( 0 )

1
Q , … 

( 0 )

n
Q . 

 V and V

 are coupled by the relation: 

(0) (0)

1(0) (0)

1

, , , , ,
n

n

V V
V V Q Q

Q Q

  
= − −

 

 
 
 

 , 
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(488)    (0)p  = 
(0)

V

q




,  (0)P  = − 

(0)

V

Q




,  

 

and on the other hand, prescribes the last of the transformation formulas (477): 

 

(488.a)    t =  (P1, …, Pn, Q1, …, Qn, T) 

 

arbitrarily. In that way, from (487), the function W will then be given in the formula (485.b) by: 

 

(489) W = S1 – S2 + V , 

 

in which one must express the quantities q , 
(0)q , (0)Q , and t in the right-hand side in terms of P , 

Q , T by means of (486), (486.a), (488), and (488.a). Conversely, the transformation (477) will 

also be determined for given functions H and K when the function W (P1, …, Pn, Q1, …, Qn, T) is 

prescribed arbitrarily. 

 For the applications in mechanics, essentially the only special case that comes under 

consideration is the one in which the independent variables remain unchanged, so the relation 

(488.a) will have the form: 

 

(490) t = T . 

 

The relation (485.b) will then simplify to: 

 

(491)  
1 1

( )
n n

p dq P dQ H K dt   
 = =

− − −   = dW (P1, …, Pn, Q1, …, Qn, t) , 

 

which must become an identity under the transformation: 

 

(492)    
1 1 1

1 1 1

( , , , , , , ) ,

( , , , , , , ).

n

n

p P P Q Q t

q P P Q Q t

 

 





=


=
 

 

If it is possible to solve the second group of those equations for the P1, …, Pn and to give the 

transformation formulas (492) the form: 

 

(492.a)    
1 1 1

1 1 1

( , , , , , , ) ,

( , , , , , , )

n

n

p g q q Q Q t

P h q q Q Q t

 

 

=


=
 

 

which one can regard as a partial differential equation for the determination of V

 when one is given the function 

(0)

1
(V P , …, 

(0)

n
P , 

( 0 )

1
Q , … 

(0)
)

n
Q . V


 would then be determined as the complete solution to that differential equation 

with the constants 
(0)

1
q , …, 

(0)

n
q . 
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then the relation (491) will go to: 

 

(493)  
1 1

( )
n n

p dq P dQ H K dt   
 = =

− − −   = dW  (q1, …, qn, Q1, …, Qn, t) . 

 

Now, should that be true identically in the q , Q , t then one would need to have: 

 

(494) p = 
W

q




,      P = − 

W

Q




,      K = H + 

W

t




, 

 

such that one will necessarily be led to a generalization of the Ansatz by which C. G. J. Jacobi 

(cf., no. 31) first arrived at a canonical transformation upon starting from Hamilton’s theory of 

perturbations. The canonical transformation in the form (492) then arises from a single function 

W  (q1, …, qn, Q1, …, Qn, t), and according to E. Schering (418), that is again referred to as a 

substitution function (419). The general transformation (477), under which time is also transformed, 

 
 (418) E. Schering, loc. cit. (412), Werke I, pp. 214.  

 (419) One sees from these formulas (494) that the integration of the canonical system (483) can also be regarded 

as a problem in canonical transformation, because the integration of the system (483) will be complete when one takes 

it to a system of the form: 

(495)     
dQ

dt


 = 0 , 

dP

dt


 = 0 

 

by a canonical transformation (492). Since K obviously cannot include the P , Q , it would be simplest for one to 

take K  0. From (494), one must then determine the substitution function W

 from the partial differential equation: 

 

1

1

, , , , , ,n

n

W W W
H q q t

q qt

   
 
 
 

  
+

 
 = 0 , 

 

i.e., from the Hamilton-Jacobi equation of the given canonical system, and indeed as a complete solution to the 

equation. If one denotes the n essential constants in one such solution by Q1, …, Qn then the equations: 

 

(496)     
1

W

Q




 = − P1 , …, 

n

W

Q




 = − Pn , 

together with: 

(496.a)     
1

W

q




 =     p1 , …, 

n

W

q




 =    pn , 

 

will represent the canonical substitution. However, from the results of no. 17, equations (496) are precisely the 

equations of the integral curves of the given canonical system (483). That remark is also found in E. Schering, loc. 

cit. (412), Werke I, pp. 218. 

 If one has the special case in which H is independent of t, and therefore, the energy integral exists: 

 

H = k 

then one will have: 

W

 = − k t + V , 
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differs from the transformation (492) by the fact that the function K of the transformed canonical 

system can no longer be prescribed now when the substitution function W is prescribed arbitrarily, 

but must be determined by way of the substitution W corresponding to (494). Conversely, should 

K be a prescribed function (such as, e.g., in perturbation theory), then the substitution W could not 

be given arbitrarily (419.a). 

 One will get the special case that Jacobi was the first to treat when one further assumes that 

the transformation (492) does not include time t explicitly, so it possesses the form: 

 

 
in which V is a complete solution to the differential equation: 

 

1

1

, , , , , n

n

V V
H q q

q q

 
  
 

 

 
 = k . 

 

If one correspondingly takes V (q1, …, qn, k, c1, …, cn−1) to be one such complete solution and sets: 

 

k = Q1,  c1 = Q2 ,  …, cn−1  = Qn 

then the relations: 

− 

1

V
t

Q


+


 = − P1 , …, 

n

V

Q




 = − Pn , 

   

1

V

q




 = p1 , …, 

n

V

q




= pn 

 

will enter in place of (496) and (496.a). The transformation: 

 

   

1

V

Q




 = − 

1
P


, …, 

n

V

Q




 = − 

n
P


, 

   

1

V

q




 = p1 , …, 

n

V

q




= pn 

 

will then convert the canonical system (483) into: 

 

   1
dQ

dt
 = 0 , 1

dP

dt



 = 1 , 

   
dQ

dt


 = 0 , 

dP

dt





 = 0    ( = 2, …, n), 

according to (495). 

 (419.a) From (499), W

 must satisfy the partial differential equation: 

 

1

1

, , , , , ,n

n

W W W
H q q t

q qt

   
 
 
 

  
+

 
 = 1

1

, , , , , ,n

n

W W
K Q Q t

Q Q

  
 − −
 
 

 

 
 . 

 

For the determination of the transformation, cf., no. 34. 
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(497)    
1 1 1

1 1 1

( , , , , , ) ,

( , , , , , ).

n

n

p p P P Q Q

q q P P Q Q

 

 

=


=
 

 

In so doing, one must assume that the function W is independent of t, so W   will naturally be 

independent to t, as well. Obviously, from (494), one will then have: 

 

(497.a) K = H , 

 

i.e., the function K will arise from H simply by introducing the new variables by means of (497). 

 As E. Schering (419.b) had shown before, the transformation (492), in which t appears 

explicitly, can be reduced to the Jacobi special case in which t does not appear explicitly. In order 

to do that, one takes the temporal derivative of the function W 
 that appears in (493): 

 

(494.a) 
W

t




 = E , 

such that from (494): 

 

(494.b) E = K – H , 

 

and imagine that E is expressed as a function of the P , Q , t. If one then writes down the canonical 

system: 

(498) 
dQ

dt


= 

E

P




, 

dP

dt


= −

E

Q




   ( = 1, …, n) 

then its solutions: 

(498.a)    
1 1

1 1

( , , , , , , ) ,

( , , , , , , ) ,

n n

n n

P P t P P Q Q

Q Q t P P Q Q

 

 

   

   

 =


=

 

 

in which the P

 , Q

  might be the initial values of the P , Q for any value t
 of t, will produce a 

canonical transformation of the P , Q into the P

 , Q

  . That is because  (Q1, …, Qn, t, 1Q , …, 

)nQ  is the principal function of the variational problem that the canonical system (498) belongs 

to, so one will have: 

(498.b)    d  = 
1 1

n n

P dQ E dt P dQ   
 

 

= =

− −   . 

 

If one combines that relation with (491) then it will follow that: 

 

 
 (419.b) E. Schering, “Verallgemeinerung der Poisson-Jacobischen Störungsformeln,” Gött. Abh. 19 (1874), pp. 3 = 

Werke I, pp. 247, cf., esp. pp. 259. 
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(499)    
1 1

n n

p dq P dQ   
 

 

= =

−   = d (W + ) , 

 

in which the time t can no longer appear in the function: 

 

(499.a) 
1 1( , , , , , )n nU P P Q Q    = W +  . 

 

The relations between the p , q and the P

 , Q

  that one obtains when one substitutes (498.a) in 

(492) must then be free of t and represent a canonical transformation with the same form as 

Jacobi’s special case. 

 One can also attempt to classify the general canonical transformation (477), under which the 

independent variable t is also transformed, within Jacobi’s special case. That is because one can 

correspondingly set simply: 

(500) 
1 1

1 1

, ,

,

n n

n n

t q H p

T Q K P

+ +

+ +

= − =


= − =
 

 

in the relation (485) and corresponding introduce a relation of the form: 

 

(500.a)   
1 1

1 1

n n

p dq P dQ   
 

+ +

= =

−   = dW (P1, …, Pn+1, Q1, …, Qn+1) 

 

in place of (485.b) (420), in which one should observe that here the function W depends upon one 

more independent variable than the similarly-denoted function in (485.c). If: 

 

(501) 
1 1 1 1

1 1 1 1

( , , , , , ) ,

( , , , , , )

n n

n n

p P P Q Q

q P P Q Q

 

 





+ +

+ +

=


=
 ( = 1, …, n + 1) 

 

is the most general transformation that fulfills that condition then one can get from it to the desired 

transformation of the form (477) in the following way: The p1, …, pn, pn+1, q1, …, qn, qn+1 are not 

independent, but are coupled by the relation: 

 

(502)    pn+1 + H (p1, …, pn, q1, …, qn, qn+1) = 0 , 

 

which is combined with (501). If that relation (502) goes to the equation: 

 

(503)    F (P1, …, Pn, Pn+1, Q1, …, Qn, Qn+1) = 0 

 

 
 (420) Cf., G. Morera, “Sulla trasformazione delle equazioni differenziali di Hamilton, Nota I,” Roma Acc. Linc. 

Rend. (5) 121 (1903), pp. 113 (cf., esp., no. 5, pp. 119). 
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under the transformation and one solves it for Pn+1 (
421) then one will get: 

 

(503.a)    Pn+1 + K (P1, …, Pn, Q1, …, Qn, Qn+1) = 0 . 

 

Thus, the function cannot be chosen arbitrarily here, unlike before, but is determined by the 

transformation. That was to be expected, since the function W in (500.a) indeed no longer includes 

an independent variable, so it will have a more general character than the likewise-denoted 

function (485.c). Now, if the function K is established in that way then one will get the desired 

transformation of the form (477) when one substitutes that function for Pn+1 in the transformation 

formulas (501). Therefore, one can now drop the formula: 

 

pn+1 = n+1 (P1, …, Pn, − K, Q1, …, Qn+1) 

 

from (501), since it must be identical to (502) as long as one introduces the newly-obtained 

expressions for the p1, …, pn, q1, …, qn, qn+1 in the function H. Finally, if one again writes t in 

place of qn+1 and T in place of Qn+1 then one will get the desired general transformation of the form 

(477). 

 For the connection between the canonical transformation that is defined by (491) and its 

substitution function, one should observe the following: If the second group of transformation 

formulas (492) [(497), resp.] cannot be solved for the P1, …, Pn then when one eliminates the P1, 

…, Pn from them, one will get a number – say, k – of relations: 

 

(504)    

1 1 1

2 1 1

1 1

( , , , , , , ) 0,

( , , , , , , ) 0,

................................................

( , , , , , , ) 0

n n

n n

k n n

q q Q Q t

q q Q Q t

q q Q Q t

 =


 =


  =

 

 

between the p , Q, and t. One can then solve the transformation formulas (492) for n – k of the 

P, say, for P1, …, Pn−k, and the p1, …, pn, the P1, …, Pn, and ultimately W 
  will be functions in 

which the Pn−k+1, …, Pn can appear, in addition to the p , Q, and t. However, one sees immediately 

from the formulas (493) that one must have: 

 

1n k

W

P



− +




 = 0 , …, 

n

W

P




 = 0 , 

 

such that the Pn−k+1, …, Pn cannot appear in the W 
, but rather W 

 will also be a function of only 

the q1, …, qn, Q1, …, Qn, t now. If one now considers the auxiliary conditions (504) using the 

method of Lagrange factors then one will generally obtain a canonical transformation when one 

 
 (421) One can also arrange the calculation in such a way that this solution will be possible. Cf., G. Morera, loc. 

cit. (420).  
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is given the function W  , as well as the functions 1, …, n, arbitrarily as functions of the q1, …, 

qn, Q1, …, Qn, t and writes out the equations: 

 

(505) 

1
1

1
1

,

,

k
k

k
k

W
p

q q q

W
P

Q Q Q



  



  

 

 





   
= + + +

  


   
= − + + +      

 

 

which will establish the transformation, in conjunction with equations (504). In that way, the 

function H will be replaced with the new function (422): 

 

(505.a)    K = 1
1

k
k

W
H

t t t
 

   
+ + + +

  
. 

 

 The transformation (492) will be especially simple when one takes the function W 
 to be 

identically zero (cf., no. 34) in the expression (493), so one tries to determine the transformation 

in such a way that it makes the relation: 

 

(506)    
1 1

( )
n n

p dq P dQ H K dt   
 = =

− − −   = 0 

 

into an identity. The transformation formulas (505) then simplify to: 

 

 
 (422) E. Schering, “Verallgemeinerung der Poisson-Jacobischen Störungsformeln,” Gött. Abhandl. 19 (1874), pp. 

3 = Werke I, proceeded in this case in such a way [cf., (417.c)] that he converted equation (493) by an elementary 

canonical transformation into: 

 

1 1 1 1

n n k n n

n k n k

p dq P dQ Q dP d W P Q dS       
   

−


= = = − + = − +

 
− + = + = 

 
    , 

 

in which 
1

n

n k

S W P Q 




= − +

= +   is then expressed as a function of the q1, …, qn, Q1, …, Qn−k, Pn−k+1, …, Pn . The 

transformation formulas for the canonical transformation will then be: 

 

1 1

1 1

1 1

1 1

, , , ,

, , , .

n k n k n

n k n k n

n k n k n

n k n k n

S S S S
p p p p

q q q q

S S S S
P P Q Q

Q Q P P

− − +

− − +

− − +

− − +

   
= = = =

   

   
= − = − = − = −

   
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(507)    

1
1

1
1

,

,

k
k

k
k

p
q q

P
Q Q



 



 

 

 

  
= + +  




    = − + +     

 

 

which takes the canonical system (483) to a canonical system with the function: 

 

(507.a)    K = 1
1

k
kH

t t
 

  
+ + +

 
. 

 

 In particular, should the transformation be completely free of t, so it will possess the form 

(497), then one will have to assume that the functions i are free of t : 

 

(508)    

1 1 1

1 1

( , , , , , ) 0,

.............................................

( , , , , , ) 0,

n n

k n n

q q Q Q

q q Q Q

 =


  =

 

such that: 

 

(508.a)      K = H . 

 

The formula that emerges from (506): 

 

(509) 
1 1

n n

p dq P dQ   
 = =

−   = 0 

 

will again lead to the formulas (507) for the transformation, but the independent variable t will no 

longer appear explicitly in the expressions on the right-hand side (423). Formulas (509) and (507) 

show that multiplying the p by a factor will imply multiplying the P by the same factor. In that 

case, the p in the first group of transformation formulas (497) must be homogeneous of degree 

one in the P1, …, Pn, while the q  in the second group must be homogeneous of order zero in P1, 

…, Pn . Therefore, one ordinarily refers to those transformations as homogeneous canonical 

transformations. 

 If the number k of equations (508) is equal to n then the old position coordinates q can be 

calculated as functions of the new position coordinates Q using those n equations: 

 
 (423) E. Mathieu started from that condition for the canonical transformation in “Mémoire sur les équations 

différentielles canoniques de la mécanique,” J. de math. (2) 19 (1874), pp. 265. Finally, he also gave the condition a 

more general form by adding a complete differential, but he did not arrive at the general form (493). It is remarkable 

insofar as he only started from the bilinear covariant, which he adopted from Lagrange, in his application of that to 

the perturbation calculation. Instead of the general case of k relations (508), he only considered the case in which k = 

1. 
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(510.a)     q =  (Q1, …, Qn) , 

 

and the canonical transformation will degenerate into an extended point transformation. From 

(509), the new and old impulse components are coupled by the linear relations: 

 

(510.b) P = 
1

n

p
Q




 



=




  

[cf., also the formulas (431) in no. 29]. 

 

 

 33. Conditions for a transformation to be canonical. – Should a transformation: 

 

(511) 
1 1 1 1

1 1 1 1

( , , , , , ) ,

( , , , , , )

n n

n n

p P P Q Q

q P P Q Q

 

 





+ +

+ +

=


=
 

 

take every canonical system to another canonical system, then from what was developed in the 

precious section, the (abbreviated) bilinear covariant of the new system 
1

( )
n

P dQ dP Q   


 
=

−  

must emerge from transforming the bilinear covariant 
1

( )
n

p dq dp q   


 
=

−  of the original 

system. Now, by means of (511), one will have the relation: 

 

(512)  
1

( )
n

p dq dp q   


 
=

−   

= 
, 1 1

( )
n n

P dQ dP Q
P P P P

   

   
      

   
 

= =

     
− −  

     
   

+ 
, 1 1

( )
n n

Q dQ dQ Q
Q Q Q Q

   

   
      

   
 

= =

     
− −  

     
   

+ 
, 1 1

( )
n n

P dQ dP Q
P Q P Q

   

   
      

   
 

= =

     
− −  

     
  . 

 

In order for the right-hand side to be equal to 
1

( )
n

P dQ dP Q   


 
=

− , the following three classes 

of equations must be satisfied (424). 

 

 
 (424) The first two are identities when  = . 
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(513)    

1

1

1

0,

0,

0 ( ),

1 ( ).

n

n

n

P P P P

Q Q Q Q

P Q P Q

   

    

   

    

   

    

   

   

     

 

=

=

=

     
− =  

    
     

− =  
    

        − =  
 =     







 

 

However, the sums are precisely the Lagrange brackets of the functions (511) that were introduced 

in no. 12, such that one can write the conditions (513) in the form (424.a): 

 

(513.a)    

[ , ] 0,

[ , ] 0,

0 ( )
[ , ]

1 ( )

P P

Q Q

P Q

 

 

 

 

 




=


=
  = 
 =

 

 
 (424.a) It follows immediately from this that the functional determinant of a canonical transformation (511): 

 

1 1

1 1 1 1

1 1

1 1

1 1 1 1

1 1

n n

n n

n n n n

n n

n n

n n n n

P P P P

P P P P
D

Q Q Q Q

Q Q Q Q

  

  

  

  

  

   

  

   
=

  

   

  

   

 

 

is always non-zero, because one easily finds that: 

 

1 1 1 1 1 1

1 12

1 1 1 1 1 1

1 1 1

[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]
1.

[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

n n

n n n n n n

n n

n n n n n

P Q P Q P P P P

P Q P Q P Q P P
D

Q Q Q Q Q P Q P

Q Q Q Q Q P Q P

= =
 

 

Cf., the corresponding calculation (342), in which the Poisson brackets are introduced in place of the Lagrange ones. 
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by appealing to the notations that were defined by (96). 

 One can also express the condition in terms of Poisson brackets, instead of the Lagrange 

brackets. In order to do that, one needs only to observe that from the arguments in no. 26, the 

Poisson bracket that is formed from two arbitrary functions: 

 

(514) (F, G) = 
1

n F G F G

p q q p    =

    
−      

  

 

will transform contragrediently to the bilinear differential form ( )p dq dp q   


 − . 

Therefore, one has that: 

 

1

( )
n

p dq dp q   


 
=

−  = 
1

( )
n

P dQ dP Q   


 
=

−  

 

for the transformation (511), so if the transformation (511) takes the functions: 

 

  F (p1, …, pn, q1, …, qn) and G (p1, …, pn, q1, …, qn) 

to 

  F  (p1, …, pn, q1, …, qn) and G  (p1, …, pn, q1, …, qn) , 

 

resp., then the relation (425): 

 

(515)     (F, G) = ( , )F G  

 

must also be true, i.e., the transformation (511) must take the Poisson bracket expression (514) of 

two arbitrary functions to the Poisson bracket of the transformed function. Now, since one has: 

 

(516)  
F G F G

P Q Q P   

   
−

   
 = 

, 1

n F G F G

p p p p P Q Q P

   

         

   

=

         
− −              

  

  + 
, 1

n F G F G

q q q q P Q Q P

   

         

   

=

         
− −              

  

  + 
, 1

n F G F G

p q q p P Q Q P

   

         

   

=

         
− −              

  

 

when one sums the Poisson brackets of the function in (511) over , it will follow that: 

 
 (425) Also cf., on this, S. Kantor, “Über einen neuen Gesichtpunkt in der Theorie des Pfaffschen Problem…,” 

Wien Sitzungsber. 110 (1901), IIa, pp. 1147, esp., pp. 1161, et seq. Conversely, the invariance of the bilinear covariant 

also follows from the relation (515). 
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(516.a) ( , )F G  = 
, 1

( , )
n F G F G

p p p p
 

     

 
=

    
− 

    
  

  + 
, 1

( , )
n F G F G

q q q q
 

     

 
=

    
− 

    
  

  + 
, 1

( , )
n F G F G

p q q p
 

     

 
=

    
− 

    
 . 

 

Should the right-hand side of this reduce to the Poisson expression (F, G) then the relations (426): 

 

(517) ( , ) = 0 , ( , ) = 0 , ( , ) = 
0 ( )

1 ( )

 

 




=
  

 

would have to be true, which express the conditions for (511) to be a canonical transformation 

with the help of the Poisson brackets. In that form, they say that the functions  ,  are the 

canonical basis for a function group (cf., no. 28). Thus, if a number of functions   and  are 

given, say: 

(518)  
1

1

,

,





 

 





 

 

that satisfy the conditions (517) then (n – ) functions  and n –  functions  can be determined 

in such a way that that they will define a canonical transformation, along with the given functions 

(518) (427). 

 If the more general transformation enters in place of (511): 

 

(519) 
1 1

1 1

( , , , , , , ) ,

( , , , , , , )

n n

n n

p P P Q Q t

q P P Q Q t

 

 





=


=
 

 

then one will immediately come back to the results that were achieved above when one regards it 

as a transformation of the 2 (n + 1) variables and combines the original coordinates p, q with: 

 

(520)  qn+1 = t ,  pn+1 = − H , 

 

corresponding to (500), and analogously combines the new coordinates with: 

 

(520.a) Qn+1 = T = t = qn+1 ,  Pn+1 = − K . 

 
 (426) Cf., E. Bour, “Sur l’intégration des équ. diff. part. du premier et du sec. ordre,” J. Éc. Polyt. 22, cah. 39 

(1862), pp. 149, esp., pp. 156, et seq. 

 (427) Such extensions of incomplete given canonical transformations to complete ones were treated by E. 

Schering, loc. cit., (422), namely, Werke I, pp. 257, et seq. 
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The transformation formulas (519) can then be replaced with: 

 

(521)   

1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1 1 1

( , , , , , , ) , ( 1, , ),

( , , , , , , ) ,

( , , , , , , ) ,

( , , , , , , ) , ( 1, , ),

( ) ,

n n n

n n n n n

n n n n

n n n

n n n n

p P P Q Q Q n

p P P Q Q Q

P E P P Q Q Q

q P P Q Q Q n

q Q Q

 

 

 



 



+

+ + +

+ +

+

+ + + +

= =


=


= +
 = =


= =

 

 

in which the function E (P1, …, Pn, Q1, …, Qn, t) is added, corresponding to (494.b). For that 

transformation, one must then have: 

 

(522)  
1

( )
n

p dq dp q   


 
=

−  − ( H dt – dH  t)  

= 
1

( )
n

P dQ dP Q   


 
=

− − ( K dt – dK  t) , 

i.e.: 

(522.a)   
1

1

( )
n

p dq dp q   


 
+

=

−  = 
1

1

( )
n

P dQ dP Q   


 
+

=

− . 

 

 The conditions for the fulfillment of that relation can be written in the following way with the 

help of the Poisson brackets: On the one hand, since Pn+1 appears only in the function n+1 , the 

relations (517) for the Poisson brackets of the functions (519) must remain valid. On the other 

hand, one must add the further conditions: 

 

(523)    

1 1

1 1

1 1

( , ) 0, ( , ) 0,
( 1, , )

( , ) 0, ( , ) 0,

( , ) 0,

n n

n n

n n

n
 

 

   


   

 

+ +

+ +

+ +

= =
=

= =
 =

 

 

in which the Poisson brackets are thought of as being formed from the 2 (n + 1) variables. From 

(521), the second and third row in that: 

 

(524)  (, n+1) = 0 ,  (, n+1) = 0 , (n+1 , n+1) = 1 

 

are fulfilled identically, and therefore do not need to be mentioned explicitly. By contrast, the 

equations of the first row imply the conditions (428)  

 

(525)    
t




 = (, E) , 

t




 = (, E) , 

 
 (428) Cf., E. Schering, loc. cit. (412), cf., esp., Werke I, pp. 237.  
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that must be added to (517), in which the Poisson brackets are once more thought of as being 

formed from the 2n variables P1, …, Pn, Q1, …, Qn . 

 If one chooses the Lagrange brackets, instead of the Poisson brackets, for the conditions then 

in addition to the conditions (513.a), which are true unchanged for the functions (519), one must 

add the further relations (429): 

 

(526)   
1

1

[ , ] ,

[ , ] .

n

n

E
Q t

Q t Q t Q

E
P t

P t P t P

   


   

   


   

   

   

=

=

      
− = = −  

      


     
− = = −       





 

 

 If not all of the functions are given, but only some of the functions , , and possibly the 

function E, then they must satisfy the condition equations (517), (525) that one can define with 

them. Then and only then can the system of functions be extended to a complete canonical 

transformation (430). 

 

 

 34. Connection between canonical transformations and contact transformations. – S. Lie 

(431) had already recognized the relation between canonical transformations and the contact 

transformations that he had studied systematically quite early on [cf., III D 7 (H. Liebmann), esp. 

no. 6, in which the connection between canonical transformations and contact transformations is 

already referred to]. In order to bring the connection between the two domains into view, one can 

start from the special case (497) of the canonical transformations and extend the ideas that were 

developed by W. R. Hamilton (cf., no. 13) in order to explain the contact transformations of the 

special form that comes into play here in the following way: One understands an element in the Rn 

of the (q1, …, qn) to mean the pairing of a point (q1, …, qn) with a vector (p1, …, pn) that belongs 

to it. According to Lie, such an element is united with its neighboring element (q1 + dq1, …, qn + 

dqn) and (p1 + dp1, …, pn + dpn) when an occupancy z (q1, …, qn) of the Rn of the (q1, …, qn) can 

be given that possesses the vectors at the two neighboring points as gradients, i.e., when one has: 

 

(527)     p1 dq1 + … + pn dqn = dz . 

 

If one now considers a transformation of the element (p, q) into the correspondingly-defined 

element [point (Q1, …, Qn) and vector (P1, …, Pn)] in the Rn of the (Q1, …, Qn): 

 

(528)  p =  (P1, …, Pn, Q1, …, Qn) , q =  (P1, …, Pn, Q1, …, Qn) 

 

 
 (429) Cf., E. Schering, loc. cit. (412), cf., esp., Werke I, pp. 239. 

 (430) E. Schering, “Verallgemeinerung der Poisson-Jacobischen Störungsformeln…,” Werke I, pp. 258. 

 (431) S. Lie, “Die Störungstheorie und die Berührungstransformationen,” Arch. for Math. og Naturvid. 2 (1877), 

pp. 129 = Werke III, pp. 295. 
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then that transformation will be a contact transformation if and only if it takes two united elements 

into two elements that are once more united, i.e., two elements (Q1, …, Qn, P1, …, Pn) and (Q1 + 

dQ1, …, Qn + dQn, P1 + dP1, …, Pn + dPn) whose vectors P1, …, Pn [P1 + dP1, …, Pn + dPn, resp.] 

can be regarded as the gradients of an occupancy function Z (Q1, …, Qn) in the Rn of the (Q1, …, 

Qn). It must follow from (527) then, by way of (528), that: 

 

P1 dQ1 + … + Pn dQn = dZ , 

 

resp., which amounts to the same thing as saying that the transformation (528) must make the 

equation: 

 

(529)   P1 dQ1 + … + Pn dQn =  [dz – (p1 dq1 + … + pn dqn)] 

 

an identity, in which  can initially be a function of the (2n + 1) variables z, p1, …, pn, q1, …, qn. 

Meanwhile, since the transformation formulas (528) are free of z (432), it will follow that Z must 

possess the form: 

 

(530) Z = A z + U (p1, …, pn, q1, …, qn) 

 

as a function of z, p1, …, pn, q1, …, qn, in which A, which is identical to , proves to be a constant 

(432.a). One can set the constant A equal to 1 with no further discussion, because that only amounts 

to introducing A z in place of z and correspondingly introducing A p in place of p , such that (529) 

will go to: 

 

(530.a)  P1 dQ1 + … + Pn dQn = p1 dq1 + … + pn dqn + dU (p1, …, pn, q1, …, qn) . 

 

However, that is precisely the relation that defines the canonical transformation in the special case 

in which the time remains unchanged and the transformation of the (q, p) does not enter in, 

according to no. 32 [cf., eq. (488)]. Hence, when one adds the relation (432.b): 

 

z = Z + W (P1, …, Pn, Q1, …, Qn) 

 

those canonical transformations, those canonical transformations (497) will then be contact 

transformations of the (x, p), with Lie’s terminology. In that way, with S. Lie, one will not refer 

to the quantity z as an occupancy of the Rn of the (q1, …, qn), but as a coordinate that is on a par 

with the q1, …, qn and is fundamental to the interpretation of the transformation of the Rn+1 of the 

(z, q1, …, qn). The individual element that now belongs to the coordinates z, q1, …, qn, p1, …, pn 

 
 (432) S. Lie (cf., Theorie der Transformationsgruppen II, Leipzig 1890, pp. 125) used the name “contact 

transformation in the x, p” for these special contact transformations. Namely, he denoted the coordinates of the point 

by x , instead of q . 

 Also cf., the presentation by L. P. Eisenhart, “Contact transformations,” Annals of Math. (2) 30 (1929), pp. 211.  

 (432.a) Cf., S. Lie, loc. cit. (432). 

 (432.b) In which W is thought of as arising from (− U) in (530) by the transformation (528). 
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determines a point in that Rn+1 with a planar Mn that goes through it, and two manifolds contact at 

a point when they have an element in common there. The term contact transformation shall 

correspondingly express the idea that two manifolds that have an element in common will always 

go to two manifolds that have the transformed element in common under the transformation. In 

that sense, the argument that was posed will show that a canonical transformation in 2n variables 

like (497) can be regarded as a special contact transformation of an Rn+1, and that one can also 

conversely interpret a contact transformation in the (x, p) in an Rn+1 as a canonical transformation 

in 2n variables. 

 The general contact transformation, as it is established by (529), can also be interpreted as a 

canonical transformation, but generally not as one in 2n variables. Rather, in order to interpret it, 

one must go to (2n + 2) variables by multiplying the relation (529) by  / , in which  shall 

represent a new variable. If one then sets (432.c):  

 




 = − P0 , Z = Q0 , 

   = − p0 , z = q0 

then (529) will go to: 

 

P0 dQ0 + P1 dQ1 + … + Pn dQn = p0 dq0 + p1 dq1 + … + pn dqn , 

 

and one will see that one has a homogeneous canonical transformation in (2n + 2) variables. 

Conversely, it will follow that the canonical transformation (497) can be regarded as a contact 

transformation in the Rn of the (q1, …, qn) if and only if it is a homogeneous canonical 

transformation. 

 Accordingly, the general canonical transformation (477), under which time is also transformed, 

will not generally represent a contact transformation of the Rn+1 of the (q1, …, qn, t), either. It is 

only when one has dW  0 in the relation (485.b), so when the function W is a constant, that one 

will have a contact transformation of the Rn+1 (
433). That is because one can then give (485.b) the 

form: 

1

n p
dt dq

H




=

−  = 
1

n PK
dT dQ

H H




 =

 
− 

 
 , 

 

and that will be identical to (529) when one takes: 

 

z = t ,      Z = T ,       = 
K

H
 

 

 
 (432.c) One always has   0 . 

 (433) C. Carathéodory, “Les transformations canoniques de glissement et leur application à l’optique 

géométrique,” Roma Linc. Rend. (6) 122 (1930), pp. 353. 
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and replaces p with p / H and P with P / H . As C. Carathéodory showed, the general 

transformation (477) can easily be converted into the special one for which one has W = const. 

identically. Namely, if one imagines that one has determined the solution of the canonical system 

(483) that assumes the values p = p

 , q = q

  for t = t : 

 

(531)    
1 1

1 1

( , , , , , , ) ,

( , , , , , , )

n n

n n

p p t p p q q

q q t p p q q

 

 

   

   

 =


=

 

and adds the relation: 

 

(531.a) t = 
1 1( , , , , , , )n nt p p q q       , 

 

which is initially completely arbitrary, then when one introduces latter into (531), one will obtain 

a canonical transformation: 

(532)    

1 1

1 1

1 1

( , , , , , , ) ,

( , , , , , , ) ,

( , , , , , , )

n n

n n

n n

p f t p p q q

q q t p p q q

t h t p p q q

 

 







 =


=
 =

 

 

that takes the individual element ( , , )q t p 

    to the element (q, t, p) by displacing along the 

extremal of the variational problem that the canonical system (483) belongs to. Due that sliding of 

the element along the extremal, C. Carathéodory referred to those special transformations as 

sliding transformations. When S is the principal function of the variational problem in question, 

the relation: 

(532.a) 
1

n

p dq H dt 
=

−  = 
1

( )
n

p dq H dt dS 


   

=

− +  

 

will be true for them. The sliding transformations are then certain canonical transformations. 

 One can derive a canonical transformation from the two canonical transformations (477) and 

(532) that couples the p

 , q

 , t
 and P, Q, T with each other and for which one will get: 

 

1 1

( )
n n

p dq H dt P dQ K dT   
 

   

= =

   
− − −   

   
   = d (W – S) 

 

when one subtracts (532.a) from (485.b). One then needs only to choose the arbitrary function h 

in (532) such that one continually has: 

d (W – S) = 0 , 

and one will have the relation: 
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(533)   
1 1

( )
n n

p dq H dt P dQ K dT   
 

   

= =

   
− − −   

   
   = 0 , 

 

which says that the transformation: 

 

(533.a)    

1 1

1 1

1 1

( , , , , , , ) ,

( , , , , , , ) ,

( , , , , , , )

n n

n n

n n

p P P Q Q T

q P P Q Q T

t P P Q Q T

 

 







 = 


= 
 = 

 

 

is a contact transformation. The general canonical transformation (477) the arises by composing 

a sliding transformation of the canonical system (483) with a contact transformation (339.a). 

 The incorporation of the canonical transformations into the theory of contact transformations 

that Lie constructed systematically draws attention to the property of the canonical transformations 

that the set of all of them defines an infinite group of transformations. Now, when Lie picked out 

a one-parameter group from that infinite group, he showed that for the simplest case of the contact 

transformations in x, p, as they are represented by the transformations (528), together with (530.a), 

the differential equations that establish those infinitesimal transformations will possess precisely 

the canonical form: 

(534)    

1 1

, ,

( , , , , , ).n n

q p
p q

p p q q

 

 

   
 

= = −
 

  = 

 

 

Conversely, every such canonical system of equations with an arbitrarily-chosen function  (p1, 

…, pn, q1, …, qn) will represent a one-parameter group of contact transformations in the (x, p) 

(canonical transformations in 2n variables whose infinitesimal transformation it represents, resp.). 

 Conversely, according to Lie, one can think of every finite contact transformation as arising 

from the “infinite repetition” of a suitable infinitesimal transformation, i.e., the P , Q , to which 

the original quantities p , q will go under the finite contact transformation, are the solutions to 

(534): 

 
 (339.a) The canonical transformation (492), which is distinguished from the general canonical transformation by the 

fact that time remains untransformed (t = T), can naturally be also interpreted in the given way as the composition of 

a sliding transformation and a contact transformation. Meanwhile, since time must be transformed, in addition, under 

the contact transformation, one has made no use of such an interpretation. Rather, one cares to regard t as a parameter 

that remains unchanged under that transformation. In place of (491), one will then have the relation: 

 

1 1

n n

p dq P dQ d W   
 



= =

− =   

 

(in which the differential d


 refers to only the variables P



, Q




), and one sees from the analogy with (530.a) that 

with this way of looking at things, the transformation is a contact transformation of the x, p, with Lie’s terminology. 
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(534.a)    
1 1

1 1

( , , , , , , ) ,

( , , , , , , )

n n

n n

P g p p q q

Q h p p q q

 

 





=


=
 

 

that belong to a suitable parameter value  =  and assume the values p (q, resp.) for  = 0 (434). 

If the relations (534.a) are identical to the transformation formulas (528) when  =  , in that 

sense, then the function U in (530.a) must be constrained by the function  (534) and conversely. 

One will get that connection immediately when one defines the principal function (cf., no. 16): 

 

(535)  V (q1, …, qn, Q1, …, Qn)  

 

= 1
1 1 1

0

( , , , , , )n
n n n

qq
p p p p q q





 

 
+ + −  

 
  

 

of the variational problem that belongs to the canonical system (534) (435), in which the contact 

transformation (534.a) will next take on the representation: 

 

(535.a) P = 
V

Q




, p = −

V

q




   ( = 1, …, n) 

 

when one sets  =  . If one solves the second n of those equations for Q1, …, Qn (436) and 

introduces the values thus-obtained: 

 

Q = h ( ,  p1, …, pn, q1, …, qn) 

 

into V (V /  Q , resp.) then the first n of those equations will take the form: 

 

P = g ( ,  p1, …, pn, q1, …, qn) . 

At the same time, the relation: 

P dQ p dq   −   = dV 

 

 
 (434) In this, the transformation, which is to be regarded as a passive transformation (viz., the introduction of new 

variables), has been reinterpreted as an active transformation that associates an element p , q with a new element P , 

Q . However, that naturally serves only to clarify the connect between finite and infinitesimal transformations. One 

must always establish that the transformation should serve to introduce new coordinates here (for unvaried integral 

curves) in its own right. 

 (435) It should be remarked in passing that the function V in (533) satisfies the two partial differential equations: 

 

1

1

, , , , , n

n

V V
Q Q

Q Q

  
    

  = C , 
1

1

, , , , , n

n

V V
q q

q q

  
− −    

  = C . 

 

 (436) Which is assumed to be possible, for the sake of simplicity. One can easily free oneself from that assumption.  
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which is equivalent to (535.a), will go to the relation (530.a). For the variation of p dq 


  under 

the infinitesimal transformation (534), one will correspondingly obtain: 

 

1

n

p dq 



=

 
 
 
  = d V = 1

1

n

n

d p p
p p

  
+ + −  

  
 , 

 

in which the right-hand side includes the differential of the integrand of the variational problem 

that belongs to the canonical system (534) and whose principal function is the function V. 

 Entirely-analogous arguments can be presented in the case when the independent variable t 

also enters into the transformation, except that the condition (530.a) will then take the form: 

 

(536)  P1 dQ1 + … + Pn dQn = p1 dq1 + … + pn dqn + 
W

dW dt
t

 
− 

 
 , 

 

because t is regarded as a parameter that is held constant under the transformation. If one again 

thinks of a finite contact transformation as being generated by the infinite repetition of the 

infinitesimal transformation of a one-parameter group, in the spirit of Lie, then its infinitesimal 

transformation will also be further given by a canonical system: 

 

(537)    q = 
p





,  p = − 

q





, 

 

except that now the parameter t (which is kept constant under the transformation) also appears in 

 =  (p1, …, pn, q1, …, qn, t) (
437). 

 An associated finite contact transformation will again be represented by the solutions to the 

canonical system (537): 

(538)    
1 1

1 1

( , , , , , , , ) ,

( , , , , , , , ) ,

n n

n n

P g p p q q t

Q h p p q q t

 

 





=


=
 

 

in which one must set  =  . On the other hand, one can appeal to its representation by the 

principal function: 

 

(539)  V (q1, …, qn, Q1, …, Qn, t) 

 

= 1
1 1 1

0

( , , , , , , )n
n n n

qq
p p p p q q t





 

 
+ + −  

 
  

 
 (437) The transformations of the one-parameter group in the phase-R2n+1 of the (p1, …, pn, q1, …, qn, t), which arise 

from an integral of the equations of motion (cf., no. 25), are then contact transformations in the Rn+1 of the (q1, …, qn, 

t) [cf., no. 18.c]. 
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of the variational problem that the canonical system (537) belongs to, which will make it take the 

form: 

(539.a) P = 
V

Q




,  p = − 

V

q




. 

 

Those are 2n formulas that one can combine into the relation: 

 

(539.b) P dQ p dq   −  = dV − 
V

t




. 

 

The function that appears in (536): 

W (p1, …, pn, q1, …, qn, t) 

 

will be obtained from V (Q1, …, Qn, q1, …, qn, t) when one solves the second group of equations 

(539.a) for Q1, …, Qn and introduces the values thus-found in V. If one combines (439.b) with the 

identity: 

H dt − H dt  0 , 

 

in which H  might arise from H by the transformation (539.a), then that will give: 

 

(540)   ( )
V

P dQ H dt p dq H dt
t

   

 
− − − − 

 
   = dV , 

 

and one will once more see that the function K (P1, …, Pn , Q1, …, Qn, t) of the transformed 

canonical system is coupled with the function H (p1, …, pn, q1, …, qn, t) of the original canonical 

system by (438): 

(540.a) K = 
V

H
t


−


. 

On the other hand, if V / t is: 

 

(540.b)    
V

t




 = − E (P1, …, Pn , Q1, …, Qn, t) , 

 

when one expresses the q in it in terms of P, Q, t then, as one will infer from (539.a), the function 

V (p1, …, pn , Q1, …, Qn, t) will satisfy the partial differential equation: 

 

 
 (438) In the theory of perturbations,  was obviously the Hamiltonian function of the unperturbed motion, while 

K represented the perturbing function. If the transformation formulas, as in (528), are independent of t then K will be 

the function that arises from H itself by the transformation. 
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(540.c) 1

1

, , , , , ,n

n

V V V
E Q Q t

t Q Q

   
+  

   
 = 0 , 

 

from which one can determine it when E is given (439). However, it will follow from this that a 

canonical transformation that depends upon t : 

 

p =  (t, P1, …, Pn , Q1, …, Qn) , 

q =  (t, P1, …, Pn , Q1, …, Qn) , 

 

i.e., a family of canonical transformations with t as the parameter of the family, will represent a 

solution of the canonical system (439.a): 

 

(540.d) 
dq

dt


 = 

E

p




,  

dp

dt


 = −

E

q




. 

 

 Up to now, the contact transformation was thought of as being determined by the function W 

(V or U, resp.), so the function K was then calculated from H. However, even in his earliest 

investigation, S. Lie could already characterize a contact transformation in the x, p by saying that 

the transformation functions defined the canonical basis for a function group by appealing to the 

Poisson brackets (440). He arrived at that notion when he posed the problem in such a way that he 

did not give W to begin with, but demanded that there should be a canonical transformation that 

takes a canonical system with a prescribed function H : 

 

(541)    
dq

dt


 = 

H

p




,  

dp

dt


 = −

H

q




 

 

to another canonical system with the prescribed function K: 

 

(542)    
dQ

dt


 = 

K

P




,  

dP

dt


 = −

K

Q




. 

 

That problem will become especially simple when the independent variable t does not appear in 

the two functions H and K. Namely, one will get (440.a) such a contact transformation when one 

defines two canonical function groups (cf., no. 28): on the one hand, the function group: 

 

 
 (439) Cf., also G. Morera, “Sulla trasformazione delle equaz. diff. di Hamilton, Nota I,” Roma Linc. Rend. (5) 121 

(1903), pp. 113, esp., pp. 118. 

 (439.a) That way of looking at things in in S. Lie, loc. cit. (431), § 2 = Werke III, pp. 303. 

 (440) “Kurzes Résumé mehrerer neuer Theorien,” Christiania Forhandlingar (1873), pp. 24 = Werke III, pp. 1.  

 (440.a) Cf., S. Lie, loc. cit. (431), esp., Werke III, pp. 302. 
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(541.a)   
1 2 1 1

1 2 1 1

, , , , ( , , , , , ) ,

, , , , ( , , , , , ) ,

n n n

n n n

H H H H H p p q q

G G G G G p p q q

 

 

=


=
 

 

in which H1 coincides with the function H in (541) (441), and on the other hand, the function group: 

 

(542.a)   
1 2 1 1

1 2 1 1

, , , , ( , , , , , ) ,

, , , , ( , , , , , ) ,

n n n

n n n

K K K K K p p q q

L L L L L p p q q

 

 

=


=
 

 

in which one should have K1 = K (442), and then set (443): 

 

(543)   
1 1 1 1

1 1 1 1

( , , , , , ) ( , , , , , ) ,

( , , , , , ) ( , , , , , ).

n n n n

n n n n

H p p q q K P P Q Q

G p p q q L P P Q Q

 

 

=


=
 

 

 
 (441) Obviously, due to the fact that: 

 

   (H1, H) = (H, H) = 0 ,  (H1, G) = (H, G) = 0   ( = 2, …, n), 

 

the functions H2, …, Hn, G2, …, Gn will be integrals of the canonical system (541). Along with H1 = H = const., one 

G1 – t = const. as the last integral. 

 (442) Therefore, K2, …, Kn, L2, …, Ln, L1 – t are integrals of the canonical system (542), along with K1 (= K).  

 (443) That is because if one considers: 

 

p



 = H (p1, …, pn, q1, …, qn) ,  q




 = G (p1, …, pn, q1, …, qn) 

 

to be a coordinate transformation then it will be a canonical (contact, resp.) transformation, and indeed, it will take the 

system (541) to: 

(544)      

1 11, 0,

0, 0

dq dp

dt dt

dq dp

dt dt

 

 

 


= =





= =

    

( 2, , ).n =

 

Likewise: 

P



 = K (P1, …, Pn, Q1, …, Qn) ,  Q




 = L (P1, …, Pn, Q1, …, Qn) 

 

is a contact transformation that takes the system (542) to: 

 

(544.a)      

1 11, 0,

1, 0

dQ dP

dt dt

dQ dP

dt dt

 

 

 


= =





= =

    

( 2, , ).n =

 

However, the transformation: 

p



 = P




, q




 = Q




, 

 

takes the canonical system (544) to the canonical system (544.a). 
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 If the independent variable t appears explicitly in the function H (K, resp.) in the canonical 

systems (541) and (542) then one can proceed in the same way as long as one only introduces the 

new quantities: 

(545)   
1 1

1 1 1 1

( , , , , , , ), ,

( , , , , , , ) ( , , , , , , ) ,

n n

n n n n

v H p p q q t u t

H p p q q u v H p p q q u

= =


= − +
 

 

in order to convert the canonical system (541) into (444): 

 

(545.a)    

, ,

, ( 1)

dq dpH H

dt p dt q

dv H du H

dt u dt v

 

 

 

 

  
= = −

 


 
= = − =  

  

( 1, , )n =

 

 

and correspondingly introduces the new quantities: 

 

(546)   
1 1

1 1 1 1

( , , , , , , ), ,

( , , , , , , , ) ( , , , , , , )

n n

n n n n

V K P P Q Q U U t

K P P V Q Q U V K P P Q Q U

= =


= − +
 

 

in order to convert the canonical system (542) into: 

 

(546.a)    

, ,

, ( 1).

dQ dPK K

dt P dt Q

dV K dU K

dt U dt V

 

 

 

 

  
= = −

 


 
= = − =  

  

( 1, , )n =

 

 

One must then define the two canonical function groups: 

 

(547)    H1, …, Hn , H , G1, …, Gn , G

 (= u) , 

 

and 

 

(548)    K1, …, Kn , K , L1, …, Ln , L  (= U) , 

 

in which the H1, …, Hn , G1, …, Gn , must be independent of v (the K1, …, Kn , L1, …, Ln  must be 

independent of V, resp.) (445). The transformation then be given by the Ansatz: 

 
 (444) Cf., G. Morera, “Sulla trasformazione delle equaz. diff. di Hamilton, Nota I,” Roma Linc. Rend. (5) 121 

(1903), pp. 113, esp., pp. 119. 

 (445) If one considers the fact that one has: 
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(549) 

1 1 1 1

1 1 1 1

( , , , , , , ) ( , , , , , , ) ,

( , , , , , , ) ( , , , , , , ) ,

( 1, , ),

n n n n

n n n n

H p p q q t K P P Q Q t

G p p q q t L P P Q Q t

n

 

 



=


=
 =

 

 

in which one already considers the fact that: 

 

(549.a) u = U = t . 

 

That must be combined with the relation: 

 

H (p1, …, pn, v, q1, …, qn, u) = K (P1, …, Pn, V, Q1, …, Qn, U) 

or (446): 

 

(549.b)  − v + H (p1, …, pn, q1, …, qn, u) = − V + K (P1, …, Pn, Q1, …, Qn, U) , 

 

resp. 

 Those arguments once more make it clear [cf., (419)] that the problem of integrating a canonical 

system can also be regarded as a problem in canonical transformation. In fact, the integration of 

the given system (541) will indeed be complete when it can be converted into a canonical system 

(542) whose function K does not depend upon the P1, …, Pn, Q1, …, Qn , so it will either be 

identically constant or a function of only the variable t. That is because the system (542) will then 

assume the form (447): 

(550)     
dP

dt


 = 0 , 

dQ

dt


 = 0 . 

 

 

( , )H u


 = − 
H

v





 = 1 

 

[the Poisson brackets are formed from (2n + 2) independent variables when H

 appears in them] then one can infer 

the following relations from the canonical form of the function group: 

 

( , )H H



 = 

H

t





+ (H, H) = 0 , 

( , )H G



 = 

G

t





+ (H, G) = 0 , 

 

i.e., those functions H , G determine a system of 2n integrals: 

 

  H = c , G =    ( = 1, …, n) 

 

of the canonical system (541). Naturally the same thing is true of K , L with respect to the canonical system (542). 

 (446)  Cf., also, S. Lie, loc. cit. (431), esp., Werke III, pp. 308. 

 (447) Cf., e.g., E. T. Whittaker, Analytical Dynamics, pp. 310. 
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 Finally, in order to show that the most general transformation that takes an individual canonical 

system to another canonical system is not a contact transformation (448), S. Lie likewise appealed 

to the relative integral invariants. As before: 

 

(551) p dq   

 

is a relative integral invariant of the original system, just as: 

 

(552) P dQ   

 

is a relative integral invariant of the transformed system. Now, (552) will no longer arise from the 

transformation of (551) (449), but rather from a different first-order relative integral invariant, 

which might possess the form: 

 

(553)  1 1 1 1[ ( , , , , , ) ( , , , , , ) ]n n n nL p p q q p M p p q q q   


 +  . 

 

Now, in order to determine the most general form of that relative integral invariant (553), Lie (450) 

imagined introducing new variables into the canonical system: 

 

(554) 
dq

dt


 = 

H

p




, 

dp

dt


 = −

H

q




 [H = H (p1, …, pn, q1, …, qn)], 

 

and determining a function group for H1 = H with the canonical basis (451): 

 

(555)     H1 , …, Hn , G1 , …, Gn    (H1  H) 

 

and performing the coordinate transformation: 

 

(555.a)     p

  = H , q

  = G . 

 

The canonical system (554) will then take the form: 

 

 
 (448) Such that when one applies it to other canonical systems, it will not generally produce a system of canonical 

form.  

 (449) That would lead to the canonical transformations in the proper sense.  

 (450) S. Lie, loc. cit. (431), esp., Werke III, pp. 313.  

 (451) Whose functions are then integrals of (554), except for G1 .  
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(556) 

1 11, 0,

0, 0,

dq dp

dt dt

dq dp

dt dt

 

 

 


= =



 = =


   

( 2, , )n =

 

 

while the relative integral invariant (553) will go to: 

 

(553) 1 1[ ( , , ) ( , , ) ]n nL p q p M p q q   


        +  . 

 

However, should that be a relative integral invariant of the system (556), then it must give a 

function 
1( , , , , , , )n n np p q q     such that one will have: 

 

(557.a) 
1

L

q










 = 

p






, 

1

M

q










 = 

q






, 

 

i.e., the functions L

  ( M 

 , resp.) in the relative integral invariant (557) will possess the form: 

 

(557.b) 

1 1 2

1 1 2

( , , , , , ) ,

( , , , , , ).

n n

n n

L dq l p p q q
p

M dq m p p q q
q

 



 



     



     




= + 


 = +

 





 

 

Now, since one will obtain the relative integral invariant (553) from the integral invariant (557) 

that was thus determined by performing the inverse of the transformation (555.a), one will see 

immediately that it does not need to possess the form: 

 

1

n

p q 



=

 . 

 

That is because since the transformation (555.a) is a contact transformation, the relative integral 

invariant (557) must also possess the form: 

1

n

p q 


 

=

  

in this case, so one must have: 

L

  = 
p






, M 

  = p
q










+


, 
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while from (557.b) the L

 , M 

  do not need to possess that special form (452). 

 

____________ 

 
 (452) Analogous considerations are also found in G. Morera, “Sulla trasformazione delle equaz. diff. di Hamilton, 

Nota II,” Roma Linc. Rend. (5) 121 (1903), pp. 149.  



CHAPTER VIII 

 

THE EQUIVALENCE PROBLEM AND RELATED TOPICS 
 

 

 35. Transformation of one mechanical problem into another. Concept of equivalence. – 

One cares to refer to two mechanical systems with the same number of degrees of freedom for 

which the integration of their Lagrangian equations of motion possesses a certain relationship as 

analytically equivalent. Of course, that concept of equivalence of two mechanical systems is still 

not established completely by that. The most restricting formulation was given by P. Stäckel (453), 

who demanded that the equations of motion of both system, which might be: 

 

(558)     
d T T

dt q q 

  
−    

 = Q    ( = 1, …, n), 

or 

(559)     
d

dt q q 

   
−    

T T
 = 

Q   ( = 1, …, n), 

 

would have to go to each other under a transformation of the position coordinates: 

 

(560)     q =  (q1, …, qn)   ( = 1, …, n). 

 

In so doing, Stäckel restricted himself to the case in which the coefficients of the kinetic energies 

in the two problems: 

 

(561)   T = 1
2

,

g q q  
 

 , or T = 1
2

,

  
 

g q q , resp., 

 

did not include time t explicitly, but depended upon only the position coordinates: 

 

(561.a)   g = g (q1, …, qn) ,  

g  = 

g (q1, …, qn) , 

 

such that it would seem reasonable, in the spirit of no. 6, to regard the spatial Mn of the (q1, …, qn), 

[(q1, …, qn), resp.] as Riemannian spaces whose arc-length elements are: 

 

(561.b)   
2ds = 

,

g dq dq  
 

 ,  
2d s  = 

,

d d  
 

 g q q , 

 

 
 (453)  P. Stäckel, “Über die Differentialgleichungen der Dynamik und den Begriff der analytischen Äquivalenz 

dynamischer Probleme,” J. f. Math. 107 (1891), pp. 319. 
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and the mechanical problems will then be denoted briefly by: 

 

(561.c)     (ds, Q) , ( , )d 

 s Q  . 

 

Stäckel also imagined that the components of applied forces were functions of only the position 

coordinates, but it was sometimes necessary to allow them to depend upon the velocity 

components, while he cared to exclude the explicit appearance of time here, in general (454). In 

order to compare the equations of motion (558) and (559), it seems convenient to introduce the q 

into (559) in place of the q by means of the transformation formulas (560), which might make 

equations (559) go to: 

(559.a)     
d

dt q q 

  
−    

T T
 = Q  , 

with 

T = 1
12

( , , )ik n i kq q q qg , 

 

Q (q1, …, qn) = 
q






 


Q , 

2d s  = 
1( , , )ik n i kq q dq dq g , 

 

and then recalculate (558) and (559.a) in the form: 

 

(562)     
, 1

n

q q q  
 

 

=

 
+  

 
 = Q

   Q g Q 




 
= 

 
  

or 

(563)     
, 1

n

q q q  
 

 





=

 
+  

 
 = 

Q     




 
= 

 
Q g Q , 

 

resp., in which the 
 



 
 
 

 are the Christoffel three-index symbols of the arc-length element ds, 

and 
 





 
 
 

 are those of the arc-length element ds. In order for both mechanical problems to be 

 
 (454) For the transformation of the force components, one should observe that the virtual work: 

 

Q q
 
 , 

 


  Q q , resp., 

is an invariant. 



276 The General Methods of Integration in Analytical Mechanics 
 

analytically equivalent in the Stäckel sense, it will then be necessary and sufficient (455) that one 

must have: 

(564)    
 



 
 
 

 = 
 





 
 
 

, Q  = Q   (, ,  = 1, …, n). 

 

The left-hand group in equations (564) generally implies the relation: 

 

(565)      gik = c gik , 

 

in which one understands c to mean a constant (456). The fact that Q  = Q  then further implies 

the relations: 

(566)  Q = Q




 g  = g Q

 
 

 g = c g g Q

 
 

 
 
 

   = c Q 

 

for the covariant force components (457). 

 In contrast to this narrow conception of the notion of equivalence, two mechanical problems 

suggest an obvious extension of it. Instead of demanding that the space-time lines of the motion 

should go to each other under the transformation (560), one can restrict oneself to the requirement 

that only the trajectories of a mechanical problem should go to each other under the transformation 

(560) (458). Since each of the two systems of equations (558) [(559), resp.] possesses 2n – 1 

integrals that are free of time, that demand can be expressed by saying that 2n – 1 integrals of 

 
 (455) Cf., P. Stäckel, loc. cit. (453), pp. 326.  

 (456) P. Stäckel, loc. cit. (453), pp. 337. Here, the word “generally” means that the Riemann curvature tensor of 

the quadratic differential form 
2

ds  should have rank (n – 1). If it had a lower rank then that would be an exceptional 

case. For example, if the coefficients g of 
2

ds  are constant, i.e., the Riemann curvature tensor vanishes identically, 

then in order to have equivalence, it would suffice for the g to be likewise constant, but have entirely arbitrary values, 

moreover, that are completely different from the g . That would seem to be the most degenerate case compared to 

(565). In the intermediate cases, the q1, …, qn will split into m categories, such that one will have: 

 

  
1 2

1 1

2 (1) (2) ( )

, 1 , 1 , 1

m

m

nn n
m

n n

ds g dq dq g dq dq g dq dq        
      −= = + = +

= + + +   , 

1 2

1 1

2 (1) (2) ( )

1 2

, 1 , 1 , 1

m

m

nn n
m

m

n n

d C g dq dq C g dq dq C g dq dq        
      −= = + = +

= + + +  s , 

 

in which the 
( )

g



 depend upon only the 

1 1n
q

 − +
, …, 

n
q


 (n1 + n2 + … + nm = n). Cf., G. Fubini, “Ricerche gruppali 

sulle equazioni della dinamica, Nota III,” Roma Linc. Rend. (5) 122 (1903), pp. 145, esp., pp. 146. 

 (457) For Q = 0, one also has Q = 0 then, which agrees with the fact that the geodetic lines of the two arc-length 

elements ds and ds are identical, from (565). Stäckel considered the equivalence of the motion of a material line on a 

rectilinear surface with the motion of a point on a rectilinear surface as an example of that. 

 (458) In the spirit of this requirement, the applied forces shall depend upon only the position coordinates when one 

establishes the requirement in the manner that was given above. 
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equations (559) that are free of t should go to 2n – 1 corresponding integrals of (558) under the 

transformation (560). That suggests that in order to emphasize the fact that the individual points 

of two trajectories of (558) and (559) that are associated with each other in that way will be reached 

at completely-different times, one should use a symbol for time in (559) that is different from the 

one in (558) and correspondingly replace equations (559) with (459): 

 

(567)     
d

dt  

   
−    

T T

q q
 = 

Q   ( = 1, …, n), 

in which one now has: 

q = 
d

d

q

t
. 

 

 Here, it would be convenient to employ the transformation (560) in order to replace the q with 

the q and give those equations the form: 

 

(568)     
d

dt q q 



  
−    

T T
 = Q   

dq
q

d





 
= 

 t
, 

in which: 

T = 

2
1

2

d

d

 
 
 

s

t
 = 1

12
( , , )ng q q q q  

  , Q = Q (q1, …, qn) . 

 

In the spirit of the requirement that was imposed, in the Rn of the (q1, …, qn), the trajectories of the 

two mechanical problems with the equations of motion (558) [(568, resp.) must be identical (460). 

Now, the individual trajectories will belong to the arc-length ds (ds, resp.) according to whether 

 
 (459) Cf., e.g., P. Appell, “Sur des transformations de mouvements,” J. f. Math. 110 (1892), pp. 37. P. Appell had 

already treated the special case of a point in a plane with the equations of motion: 

 
2

2

d x

dt
 = X , 

2

2

d y

dt
 = Y , 

and applied the projective transformation: 

 

x = 
a x b y c

a x b y c

+ +

  + +
, y = 

a x b y c

a x b y c

+ +

  + +
 

 

to it, along with the transformation of time: 

K d t = 2( )

dt

a x b y c  + +
. 

 

Cf., P. Appell, “De l’homographie en mécanique,” Am. J. Math. 12 (1889), pp. 103 and ibid. 13 (1890), pp. 153. 

Further literature on the development of that idea can be found in the cited article (viz., J. f. Math., 110). 

 (460) Cf., P. Painlevé, “Mémoire sur la transformation des équations de la dynamique,” J. de math. (4) 10 (1894), 

pp. 5.  Painlevé refers to such system as correspondants. 
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one regards them as the trajectories of equations (558) or (568), respectively. On the other hand, 

since one knows the velocity of motion along the trajectory as a function of arc-length for each of 

the two problems from the equations of motion (cf., no. 6), the individual points of the trajectory 

will be associated with the time at which they are reached by relations of the form (461): 

 

(569) dt =  (s) ds 

 

or 

 

(570) d t =  (s) d s . 

 

In that way, one will have likewise achieved an association of the differentials of time dt (d t, resp.) 

for the individual trajectories. On the other hand, when one observes that the individual trajectory 

will always be well-defined as soon as one gives one of its points and the associated velocity, one 

will see that this association must have the form (462): 

 

(571) d t = 
1 1( , , , , , )n n

dt

f q q q q
. 

 

Obviously, that transformation of time must take the equations of motion (568) to the equations of 

motion (558). 

 A very simple case of such equivalent trajectories for two systems (ds, Q) and (d s, Q) is 

when one has: 

 

(572)    ds = d s (i.e., gik = gik),  Q = c Q , 

 

since one will then need only to set: 

(572.a)  d t = 
1

dt
c

, 

 

in order to convert the equations of motion (568) into (558). At the same time, that trivial case still 

has a certain significance to it, because if one chooses, e.g., c = − 1, i.e., if one changes the direction 

of the applied forces, then it will follow that: 

 

d t = i dt , 

 
 (461) A trajectory will belong to 1 space-time lines since time does not appear explicitly in it (cf., no. 6).  

 (462) Cf., T. Levi-Civita, “Sulle trasformazione delle equazioni dinamiche,” Ann. di mat. (2) 24 (1896), pp. 255, 

esp., pp. 268. 

 Instead of introducing the velocity components 
1

q , …, 
n

q  into f, one can also think of introducing the direction of 

the trajectory dq1: … : dqn and the geodetic curvature Kg (cf., no. 6). 
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i.e., from no. 6: The true motion of the one problem is the conjugate of the other one (463). Now, 

in general a mechanical problem (ds, Q) will possess only one problem with equivalent 

trajectories that differ from those of the former only slightly, namely, the problem: 

 

(573)   d s2 = 2C ds ,  Q = c Q , and thus d t = 
C

dt
c

,  

 

which P. Painlevé then referred to as correspondants ordinaires (464) (i.e., a trivial 

correspondence). In so doing, one generally assumes that the force components Q (Q, resp.) of 

the two mechanical problems with equivalent trajectories, on the one hand, depend upon only the 

position coordinates, and on the other hand, do not arise from potential. 

 Therefore, as P. Appell already showed (465), in the case of this trivial correspondence, the 

vanishing of the force components of the one problem will have the vanishing of the force 

components of the other problem as a consequence. However, for two force-free mechanical 

problems, the trajectories are nothing but the geodetic lines of the two arc-length elements ds (d s, 

resp.), and the question of the equivalence of the trajectories of the mechanical problems will then 

become simply the question of when two different arc-length elements that one imprints upon an 

Mn will lead to the same geodetic lines (when two Riemannian Mn can be mapped to each other 

in such a way that the geodetic lines of the one go to the geodetic lines of the other, resp.). That 

question was initially treated for n = 2 in the differential geometry of surfaces in ordinary R3 [cf., 

III D 6.a (A. Voss), no. 9] and from that point onward, it was adapted to a general n (cf., also no. 

 
 (463) Cf., P. Appell, “Sur une interpretation des values imaginaires du temps en mécanique,” C. R. Acad. Sci. 

Paris 87 (1878), pp. 1074, who gave an application to the plane pendulum, in which he could clarify the meaning of 

the imaginary periods of the elliptic integrals that appeared. 

 (464) The mechanical similarity of two motions [cf., IV 6 (P. Stäckel), no. 8] falls withing that category. Namely, 

if  is the ratio of the lengths and  is the ratio of the masses then if q1, …, qn are introduced as dimensionless quantities 

then one will have: 

C = 
2

  , 

such that (573.a) will go to: 

d t = dt
c


  

and the relation: 

 

(574)  
2

c = 
2

   

 

will reproduce the mechanical similarity, in which  is the ratio of the time units. If the q are dimensionless then the 

Q will have the dimension of [force  length], such that if  denotes the ratio of the forces then one will have: 

 

c =   , 

 

and (574) will go to the known formula for mechanical similarity: 

 

(574.a)      
2

   =   . 

 (465) P. Appell, loc. cit. (459), esp., pp. 40. 
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36). Now, if two arc-length elements ds and d s have the same geodetic lines then one can also 

give a non-trivial correspondence between two mechanical problems with forces. That is because 

every system of applied forces Q (q1, …, qn) for the problem the arc-length ds can determine a 

system of applied forces Q (q1, …, qn) for the other problem with the arc-length element d s [cf., 

(483)] in such a way that the two problems will have equivalent trajectories (466). It is important in 

this case that the association (571) of the times must possess the simplified form: 

 

(575)      d t =  (q1, …, qn) dt , 

  

in which only the position coordinates (467) will appear (cf., no. 36). The case in which the applied 

forces Q arise from a potential: 

 

(576)    Q = − 
q




   =  (q1, …, qn) 

 

requires special treatment. From no. 10, the equations of motion will then possess the energy 

integral: 

 

(577) T +  = k , 

 

and the trajectories can be combined into natural families of 2n−2, each of which is characterized 

by the numerical value of k. The trajectories of such a family can then be regarded as the geodetic 

lines of the arc-length element: 

 

(578)     ds
 = 2( )k ds− . 

 

Now here, as G. Darboux (468) showed, a mechanical problem (ds, ) will have the equivalent 

trajectories to the problem (ds, ) for which (469): 

 
 (466) Cf., P. Painlevé, loc. cit. (460), pp. 52. Conversely, as Painlevé showed there (at least for n > 2), the arc-

length elements ds and ds must possess the same geodetic lines when two mechanical problems (ds, Q) and (ds, Q) 

have equivalent trajectories if one preserves the arc-length elements for two different systems of applied force Q

 , 


Q  ( Q


 , 


Q , resp.).  

 (467) If one allows the applied forces Q (Q , resp.) to also depend upon the velocity component then one can 

always determine a system of applied forces 
1 1

( , , , , , )
n n

q q q q


 
Q  for a system of applied forces Q (q1, …, qn, 

1
, , )

n
q q  when the arc-length elements ds and ds are given in such a way that the equations of motion of both 

mechanical problems will be taken to each other under the prescribed time transformation (575). Cf., P. Appell, loc. 

cit. (459), pp. 38. 

 (468) G. Darboux, C. R. Acad. Sci. Paris 108 (1889), pp. 449, as well as P. Painlevé, loc. cit. (460), pp. 10 and 35. 

 (469) The associated time association is: 

 



Chapter VIII – The equivalence problem and related topics. 281 
 

(579)    d s = ds  + ,  = 
 

 

 +

 +
. 

That is because one has: 

 

d s  = 2( )k d −  s  = 2 k ds
 

 
 

  +
−  + 

 + 
 = 2

k
k ds

k

 
 

 






 −
− − −  

− 
 

= k ds   − , 

when one further sets: 

(579.a)    k = − 
k

k

 

 





−

−
  or k   = 

k

k

 

 

+

+
. 

 

That Darboux transformation will imply the correspondants ordinaires of the given mechanical 

problem (ds, ). It will enter in place of the trivial correspondence in the case where a potential 

exists. 

 

 

 36. Geodetic mapping between two Mn . Correspondence of arc-length elements and a 

general correspondence between mechanical systems with applied forces. – The investigation 

of the non-trivial correspondence between two mechanical problems began with the consideration 

of force-free systems. One then deals with the correspondence between two arc-length elements, 

i.e., with a map between two Riemannian Mn with the arc-length elements: 

 

(580)     
2ds  = 

,

g dq dq  
 

  

and 

 

(580.a)     
2d s  = 

,

dq dq  
 

 g , 

that takes the geodetic lines of the one Mn to the geodetic lines of the other. The time association 

(571) will then have the simplified form (470): 

 

(581)     d t = 
1( , , )n

dt

q q
, 

 
d

dt

t
 = 

d k

ds k 

−

− 

s
 = ( )

k 

   
 

+

−
 + , 

 

or when one eliminates k with the help of the energy integral (577): 

 

d   − t  = ( )( ) T dt    + + + . 

It will then have the form (571). 

 (470) Cf., T. Levi-Civita, “Sulle trasf. delle equ. din.,” Ann. di mat. (2) 24 (1896), pp. 255, esp., pp. 273.  
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and indeed, when one denotes the discriminants of the two quadratic forms (580) [(580.a), resp.] 

by G (G, resp.), one will have: 

(581.a)  = 

1

1nG
C

+ 
 
 G

, 

 

in which one understands C to mean a constant. When one appeals to the Christoffel three-index 

symbols, that will give conditions for the correspondence of (580) and (580.a) in the form of the 

equations (471): 

(582)     

,

1 ln
,

2

1 ln
.

2

s

r

r s r s

j j

r s r s

r r q

r r r r

r r q











    
=    

    


    
= −    

   


     = −   
    

  

(  and )

( )

j r s

r s




 

 

They will take a simpler form when one introduces the covariant derivatives of the Ricci calculus 

[cf., III D 10 (R. Weitzenböck), Part 2, no. 19] of 2( ) g  relative to the differential form (580). 

They will then read simply (472): 

 

(583)    2 2 2

( ) ( ) ( )( ) ( ) ( )rs t st r tr s  + +g g g  = 0 , 

 

and that will say that: 
2

,

q q  
 

 g  = const. 

or 

(584) 

2

1

,

nG
q q  

 

+ 
 
 

g
G

 = const. 

 

is a first integral of the differential equations of the geodetic lines of the arc-length element (580) 

(473). The existence of a corresponding arc-length element then implies the existence of a quadratic 

 
 (471) Cf., T. Levi-Civita, loc. cit. (470), pp. 270. 

 (472) T. Levi-Civita, loc. cit. (470), pp. 276. 

 (473) That theorem was first proved by P. Painlevé, loc. cit. (460), pp. 43, who showed that: 

 

( 1) / 2
( )

n

G

ds
+

 and 
( 1) / 2

( )
n

d
+

G

s
 

 

are Jacobi multipliers (cf., no. 22) for the equations of the geodetic lines of ds, as well as for those of d s. 
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integral (cf., no. 29) (474), as U. Dini had already shown for n = 2 [cf., III 6.a (A. Voss), no. 9]. For 

n = 2, U. Dini had likewise determined the arc-length elements of all surfaces that would be 

mapped to each other in the sense of the correspondence of arc-length elements, i.e., such that the 

geodetic lines of the one surface will go to the other one (475). As a generalization of that argument, 

T. Levi-Civita determined the form of the corresponding arc-length element by the method of the 

Ricci calculus (476). Upon introducing a suitable orthogonal system of curve congruences [cf., III 

D 11 (L. Berwald), no. 20] with the direction cosines (477) (h) r , the coefficients g (g , resp.) 

of two arc-length elements can be expressed in full generality in the form: 

 

(585) 

( ) ( )

1

( ) ( )

1

,

,

n

h h

h

n

h h h

h

g  

  

 

  

=

=


=



 =




g

  

 

in which the invariants h are the roots of the equation: 

 

(585.a)     | g –  g | = 0 . 

 

 
 Naturally, one also has that conversely: 

 

(584.a)  

( 1)/2

,

const.

n

g q q
G

  
 

+

  
= 

 


G
 

 

is an integral of the equations of the geodetic lines of the arc-length element d s. One can think of introducing: 

 

q


 = 
dq

ds

 , q



 = 

dq

d



s
 

into (584) and (584.a). 

 (474) The quadratic integral will coincide with the trivial quadratic integral g q q
    = const., only when g 

= c g , i.e., in the case of the trivial correspondence.  

 (475) Cf., the presentation by G. Darboux, Théorie des surfaces, v. III, Book 6, Chap. 3, esp., pp. 49, et seq. The 

arc-length elements of the two surfaces are: 

 
2

ds  = 
2 2 2 2

1 2 1 1 1 1 2 2
( ) ( ) ( ) ( )( ) ( )q q q dq q dq −   −   

or 

   
2

ds  = 
2 2

2 21 1 1 2
1 2

2 1 1 2

1 1 ( ) ( )

( ) ( ) ( ) ( )

q q
dq dq

q q q q

    
− +            

. 

 

They will then have the so-called Liouville form (cf., no. 19). 

 (476) T. Levi-Civita, loc. cit. (470), pp. 280. 

 (477) The (h) r ( ( )

r

h
 , resp.) are covariant (contravariant, resp.) direction cosines relative to the arc-length element 

ds. 
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With the help of such a representation, one will then get the conditions for the correspondence of 

the arc-length elements in the form: 

 

(586)    

1
( )2

1

( )

1

( ) ( )

1 1

( ) 0, ( , ,  are distinct),

( ) , ( ),

( )
0, ( ),

( )
,

h i hij

n
ri

i i iji j

r r

n
ri
j

r r

n n
r ri
j i i

r rr r

h i j

i j
q

i j
q

q q

  


   

 


  
  

=

=

= =

− =


 − = 
 



=  


  

= −
 





 

  

 

in which the hij are the rotation coefficients [cf., III D 11 (L. Berwald), no. 20] of the orthogonal 

system of curves. 

 If the n roots h of equation (585.a) are all different from each other then the orthogonal system 

of curves will consist of the curves of intersection of n systems of mutually-orthogonal Mn−1 such 

that when one employs the parameters of the family as coordinates, the two arc-length elements 

will take the form: 

(587)    
2ds  = 

2 2

1

n

H dq 
 =

  and 2d s  = 
2 2

1

n

H dq  



=

  

in which: 

(587.a)    

1 1 2 2

2 2

1

( ) ( ) ( )
,

1
,

( )

( ) | |,

n n

n

q q q

C

q

H V q



 

    


  



 

 
=


=




=



 = −




 

 

and the prime on  suggests that the multiplication index  cannot assume the value  in the 

product (478). With a slight generalization, two corresponding arc-length elements can then be put 

into the form: 

(588) 

2 2

1
1

2 2

1
11 2

| | ,

| | ,
( )( ) ( )

nn

nn

n

ds dq

C
d dq

c c c

  




  




 

 
  

=
=

=
=

  
= −  

  


 
= −  + + +  







s

 

 
 (478) T. Levi-Civita, loc. cit. (470), pp. 286. That representation of the arc-length element was already achieved in 

some special cases by R. Liouville, “Sur les équ. de la dynamique,” Acta math. 19 (1895), pp. 251, as well as G. di 

Pirro, “Sulle trasformazioni delle equazioni delle dinamica,” Palermo Rend. del circ. mat. 9 (1895), as well as ibid. 

10 (1896), pp. 241, and G. Picciati, “Sulla trasformazione delle equazione della dinamica in alcuni casi particolari,” 

Venedig Atti dell’istit. (7) 7 (1896), pp. 175. 
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in which c is understood to mean a constant. From (584), one will have the following quadratic 

integral for the geodetic lines of the arc-length element ds: 

 

(589)  
2

1 1 1
1

1

( ) ( ) ( ) ( ) | |
n n

nc c c c q    




     − +
=

=

 + + + +  −  
  = const., 

 

and since that relation must exist identically in c, it will imply n quadratic integrals. 

 If the roots of (585.a) are not all different then in the special where one has (n – m) simple 

roots, 1, …, n−m , and one m-fold root n, one will have only (n – m) families of Mn−1 that intersect 

each other orthogonally. Meanwhile, one can add m families of Mn−1 that are orthogonal to the 

former (n – m) families. In general, they cannot intersect each other orthogonally. The arc-length 

element will then take the form: 

 

(590)    
2ds = 2 2

1 , 1

n m n

n m

H dq a dq dq    
  

−

= = − +

+  , 

 

while the arc-length element ds will assume the form: 

 

(590.a)    
2d s = 2 2

1 , 1

n m n

n

n m

H dq a dq dq     
  

 
−

= = − +

+  . 

The equations (479): 

(591)    

1 ,

1
,

1

n m n

n

n

C





  



 


 

−


=



=



=



   ( = 1, …, n – m) 

 

enter in place of the relations (587.a), from which, one will then get: 

 

(592)   

2 2

1

1
1

( ) | | ,

( , , ) | | ,

n m

n m

n m n

H V q

a K q q

    


   


 

 

−

=

−

− +
=


= −


 = −





 

 

such that when one absorbs V (q) into q , the arc-length element will take the form: 

 

 
 (479) T. Levi-Civita, loc. cit. (470), pp. 293. 
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(593) 

2 2

1 1
1 , 1

2 2

1
11

1
, 1

| | | | | | ,

1
| |

( ) ( )( )

1
| | .

n m n mn m n

n m

n mn m

n m n

n m n

n m

ds dq K dq dq

C
d dq

c c c c

K dq dq
c

         
 

  

  


 

    


 

     

 
   

 


− −−

= =
= = − +

−−

=
=−

−

=
= − +

  
= − − + −  

 


 
= −   

+ + + +  



+ − 

+ 

  





 





s




 

 

One will then get (n – m + 1) quadratic integrals (480) from the quadratic integral: 

 

(594)   2

1
1

1

1
( ) ( )( ) | |

n mn m

n m nc c c q
c

  


 

    


−−

−
=

=


+ + + −

+
  

       + 
1

, 1

1
| |

n m n

n mn

K q q
c

    


 

 


−

=
= − +


− 

+ 

   = const., 

which is true identically in c. 

 From this point onward, the case in which equation (585.a) has arbitrarily-many multiple roots 

will be easy to grasp. 

 The investigation of the non-trivial correspondence between two mechanical problems with 

applied forces has also been successfully addressed, even if it has also still not attracted as much 

attention as force-free motion. One can initially establish that the relation (571) between the two 

time differentials d t and dt, into which the velocity components also enter here, must have the 

form (481): 

(595)    d t2 = 
2

2
, 11

1
( , , )

n

rs r r

r sn

dt
c q q

q q =

 
− 

 
  , 

 

and that the function  that enters into it mediates the relation between the components of the 

applied forces on the two systems, which reads: 

 

(596) Q = 2 Q . 

 

On the other hand, the bracketed factor in (595) will lead to a quadratic integral of the equations 

of motion (558), and indeed that quadratic integral will be (482): 

 
 (480) T. Levi-Civita, loc. cit. (470), pp. 297.  

 (481) P. Painlevé, loc. cit. (460), pp. 13 and 59, as well as T. Levi-Civita, loc. cit. (470), pp. 272. 

 (482) Naturally: 
2/ ( 3) 2/ ( 3)2

2

2 2
,

1 1
const.

n n

rs r s

r s

dt
c q q

G d G


 

+ +

      
= + =     

      


G G

t
 

 

is correspondingly a quadratic integral of the equations of motion (568). P. Painlevé, loc. cit. (460), pp. 65.  
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(597)   

2/ ( 3) 2

2

n
G d

dt


+

   
   
   

t

G
 = 

2/ ( 3)

2

2
, 1

1
1

n n

rs r s

r s

G
c q q



+

=

  
−  

   


G
 = const. 

 

An exception will occur when the left-hand side is to be identically constant. However, one must 

then have crs = 0, and from (582), one will have: 

 

(598)  = 

1/ ( 1)n
G

C

+

 
 
 G

, 

 

and from (581.a), that means that the two arc-length elements ds and ds have the same geodetic 

lines (483). 

 If the applied forces have a potential: 

 

(599)    Q = − 
q




,   =  (q1, …, qn) 

 

then the quadratic integral (597) will coincide with the energy integral (484): 

 

(599.a)     T +  = const. 

 

If that occurs then one can perform a Darboux transformation that takes the problem (ds, ) to 

another ( , )ds   such that the arc-length element ds
 of this new problem and the arc-length 

element d s of the problem (ds, ), which have equivalent paths, have the same geodetic lines. 

From (579.a), the geodetic lines of d s will then correspond to one of the natural families of 

trajectories (485) of (ds, ). 

 The problem of exhibiting necessary and sufficient conditions for two mechanical problems 

with applied forces to have equivalent trajectories was taken up by J. E. Wright (486), who 

appealed to T. Levi-Civita’s Ricci calculus as a paradigm for it. In some special cases, he 

 
 (483) One then sees immediately from (596) in this case how one can determine a system of applied forces Q that 

is associated with any system of applied forces Q in such a way that the two mechanical problems will have equivalent 

paths. 

 (484)  P. Painlevé, loc. cit. (460), pp. 67. 

 (485) If the forces in both mechanical problems arise from potentials then one can go from one to the other by a 

Darboux transformation in such a way that the two new arc-length elements will have the same geodetic lines. In the 

two original problems, a well-defined natural family for the one problem will then correspond to a well-defined natural 

family of the other problem. Including the energy integral, the two mechanical problems will each have three quadratic 

integrals. Moreover, when one is not dealing with a Darboux transformation, there will no longer be a natural family 

of trajectories of the first problem that individually go to a natural family for the second problem. 

 (486) J. E. Wright, “Corresponding dynamical systems,” Ann. di mat. (3) 16 (1909), pp. 1. Cf., also J. E. Wright, 

“Invariants of quadratic differential forms,” Cambridge Tracts 9 (1908), esp., pp. 80, et seq. 
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determined the form that the arc-length elements and the applied forces of two systems with 

equivalent paths would need to have (486.a). 

 

 

 37. Mechanical problems whose trajectories go to each other under a group of 

transformations. – A transformation: 

 

(600)     q =  (q1, …, qn)   ( = 1, …, n) 

 

will take the equations of motion of a mechanical problem: 

 

(601)     
d T T

dt q q 

  
−    

 = Q   ( = 1, …, n) 

to the new equations: 

(602)     
d T T

dt  

  
−    q q

 = Q    ( = 1, …, n), 

 

which P. Painlevé called homologous to (601). Now, should the transformation (600) transform 

the trajectories of (601) into themselves, then the homologous mechanical problem (602) would 

need to have the same paths as the problem (601), or in Painlevé’s terminology: A transformation 

(600) will take the trajectories of a mechanical system to themselves when that homologous system 

of equations (602) that it generates by way of (601) is simultaneously a system of equations that 

corresponds to (601) (487). 

 It will be especially significant when one does not have a single transformation in (600), but a 

group of transformations of one or more parameters, since one will then succeed in linking up with 

the arguments of S. Lie that allow one to gain some advantages for the integration of equations 

from the existence of such groups [cf., II A 4.b (E. Vessiot), nos. 13 and 18]. Lie (488) himself has 

already investigated when the geodetic lines of a surface in three-dimensional Euclidian space will 

 
 (486.a) On the basis of a remark by P. Stäckel, “Über Transformationen von Bewegungen,” Gött. Nachr. (1898), pp. 

157, and in connection with the research of T. Levi-Civita, A. Malipiero, “Sulla transform. delle equ. della din,” 

Venedig Atti del ist. (8) 32 (= 602) (1901), pp. 469, investigated when two Riemannian Mn could be mapped to each 

other in such a way that one family of 2n−3 geodetic lines of the one Mn will go to a family of 2n−3 geodetic lines of 

the other Mn . 

 A question that is related to those arguments is that of the nature of mechanical problems that have a number of 

common integrals, cf., the conclusion of no. 29. J. Drach has recently reconsidered the Bertrand articles that were 

cited there [cf., (389) and (391)] from the standpoint of rational theories of integration in “Sur les intégrales communes 

à plusieurs problèmes de mécanique,” C. R. Acad. Sci. Paris 157 (1913), pp. 1516 [cf., II A 4.b (E. Vessiot), no. 38] 

and extended them. Another type of treatment was given by G. Pennachietti, “Sugl’integrali delle equ. della din.,” 

Catania Atti dell’acc. Gionenia (4) 2 (1890), as well as in some other work. 

 (487) P. Painlevé, “Sur les mouvements des systèmes dont les trajectoires admettent une transformation 

infinitésimale,” C. R. Acad. Sci. Paris 116 (1893), pp. 21. 

 (488) S. Lie, “Untersuchungen über geodätische Kurven,” Math. Ann. 20 (1882), pp. 357. 
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be transformed to themselves by a group of transformations, and G. Fubini (489) had carried out 

the corresponding investigations for a general Riemannian Mn with the arc-length element: 

 

(603)     2ds  = 
, 1

n

g dq dq  
 =

 . 

If: 

(604) X f = 
1

1 1

1

( , , ) ( , , )n

n n

n

f f
q q q q

q q
 

 
+ +

 
 

 

is the symbol for an infinitesimal transformation (490) then the changes that the curly Christoffel 

three-index symbols 
 



 
 
 

 of the arc-length element (603) will experience under that 

infinitesimal transformation will be given by: 

 

(605)  
 



 
 
 

 = 
2

1 1

n n

q q q q q q

   


      

          


   = =

            
+ + − +        

             
  , 

 

and the conditions for the infinitesimal transformation (604) of the geodetic lines of ds to go to 

themselves will read (491): 

(606) 2
 



 
 
 

 = ( ) 

 

 
 



 
+  

 
. 

 

If one knows such infinitesimal transformations then the integration of the geodetic lines will be 

simplified (492). 

 It is obvious how one might adapt these arguments to mechanical problems. If one restricts 

oneself to problems in which the applied forces arise from a potential in so doing: 

 

 
 (489) G. Fubini, “Sui gruppi di trasformazioni geodetiche,” Turin Mem. della Acc. d. sc. (2) 53 (1903), pp. 261. 

An overview of all of his relevant investigations was given in G. Fubini, “Applicazioni della teoria dei gruppi continui 

alla geom. diff. e alle equ. di Lagrange,” Math. Ann. 66 (1908), pp. 202. 

 (490) The 


  are provided with upper indices in order to emphasize the contravariant character of 
1

 , …, 
n

 . In 

what follows, one must observe that dq1, …, dqn are also the components of a contravariant vector, so they are 

“falsely” indexed then. 

 (491) Cf., G. Fubini, loc. cit. (489), pp. 267. One sets: 

 




  = 

0 ( ),

1 ( )

 

 

 


=
 

in (606) in the known way.  

 (492) For n = 2, cf., S. Lie, loc. cit. (488), pp. 431.  
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(607)    Q = − 
q




,   =  (q1, …, qn) , 

 

so one will then have the energy integral: 

 

(608) T +  = k , 

 

then one will automatically direct one’s gaze to the individual natural families of trajectories that 

are characterized by the numerical value of k, and the analogy with the problem of geodetic lines 

will become even closer in such a way that one can (cf., no. 10) speak of the trajectories of the 

individual natural families as the geodetic lines of the arc-length elements (493): 

 

(609)     ds  = 2( )k ds−    ( 2ds  = 
22 T dt ). 

 

 Correspondingly, O. Staude (494) initially posed the question of when a one-parameter group 

of transformations will take each individual natural family of trajectories into itself for n = 2 and 

then (495) for n = 3. P. Stäckel (496) treated the same problem for general n. Now, it will follow 

immediately from no. 35 that a transformation that takes every natural family to itself must take 

the mechanical problem (T, ) into its Darboux transform. Indeed, from no. 35, the same thing 

will also be true when one generalizes the problem by no longer demanding that every individual 

natural family should go to itself, but more generally allowing the transformation to permute the 

individual natural families with each other as a whole (497). From (579). the infinitesimal 

transformation (604) must take the arc-length element ds to ds  + , so: 

 

(610) ( )X g dq dq    = ( ) g dq dq    +  , 

 

whereas, on the other hand,  must go to a piecewise-linear function of , which will have the 

relation: 

 
 (493) In that way, one must observe, moreover, that the analogy between the geodetic problem of the arc-length 

element (609) and the corresponding mechanical problem (ds, ) breaks down in the question of correspondence. An 

arc-length element d

s  that corresponds to ds


 can, in fact, never imply a mechanical problem (ds, ) that 

corresponds to (ds, ). Cf., P. Painlevé, loc. cit. (460), pp. 77. 

 (494) O. Staude, “Über die Bahnkurven eines auf einer Oberfläche beweglichen Punktes, welche infinitesimal 

Transformationen zulassen,” Leipzig Berichte 44 (1892), pp. 429. 

 In conjunction with (609), A. Kneser treated the problem in “Das Prinzip der kleinsten Aktion und die infinitesimale 

Transformation der dyn. Probl.,” Dorpat Sitzungsber. d. naturforsch. Ges. 10 (1894), pp. 501. 

 (495) O. Staude, “Über die Bahnkurven eines in einem Raume von drei Dimensionen beweglichen Punktes, 

welches infinitesimal Transformationen zulassen,” Leipzig Ber. 45 (1893), pp. 511. 

 (496)  P. Stäckel, “Über dynamische Probleme, deren Differentialgleichungen eine infinites. Transf. gestatten,” 

Leipzig Ber. 45 (1893), pp. 331. Cf., also A. Kneser, loc. cit. (494). 

 (497) P. Stäckel did that in “Anwend. von Lie’s Theorie der Transformationsgruppen auf die Differentialgleich. d. 

Dynamik,” Leipzig Ber. 49 (1897), pp. 411. From (579.a), there can be at most two natural families that are 

transformed into themselves in that way ( k

 = k). 
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(611) X () =  +   + 2   

 

as a consequence, in which one understands , ,  to mean constants (498), so one will still have: 

 

(611.a)       +  = 0 

 

in particular (499). Now, should every individual one of the natural families remain invariant then 

since the function  must transform cogrediently with k, from (579) and (579.a),  must also 

remain invariant, so one must have (500): 

 

(612)    X () = 0 , i.e.,  =  =  = 0 , 

 

and since one will then have  = 0, (610) will simplify to: 

 

(613)     
2( )X ds  = 

2ds  , 

 

i.e., the arc-length element will be multiplied by a constant under the transformation. In order to 

exhibit the condition equations for every individual family of trajectories to go to itself under the 

infinitesimal transformation (604), P. Stäckel (501) introduced the contravariant vector: 

 

(614)      = g
q








  

and the expressions (502): 

 
 (498) Cf., G. Fubini, “Richerche gruppali relative alle equazioni della dinamica, Nota I,” Roma Linc. Rend. (5) 

121 (1903), pp. 502. 

 (499) That is because from the properties of the Darboux transformation, one must have: 

 
2

( )X ds  = 
2

( )ds  + , 

whereas one must have, on the other hand: 

 
2

( )X ds  = 
2 2 2

( ) ( )ds ds    +  +  +  + , 

from (610) and (611). 

 (500) The orbits of the one-parameter group that is generated by the infinitesimal transformation will then lie on 

the manifold  = const. For n = 2, they will coincide with the equipotential curves of the potential on the surface, as 

O. Staude remarked, loc. cit. (494). He also showed that those equipotential curves are the enveloping curves of a one-

parameter family in the 2 trajectories of the natural family and then also that the trajectories could themselves appear. 

 For this, cf., A. Kneser, loc. cit. (494), § 4. 

 (501) P. Stäckel, loc. cit. (496), pp. 336.  

 (502) For   ,   , they will be the curly three-index symbols 
 





  
 
  

 of the arc-length element ds

 as in (609). 

In general, one has: 

 



 
 
 

= 
1 1

2( ) 2( )k kq q

 

 

 

 
 





  
 

− −  

 
− −

 
. 
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(615)     
 



 
 
 

 = 
1

2( )
g

k





 



 
−  

−  
 

 

and then defined the 
 



 
 
 

 corresponding to (605), in which he replaced the {…} with (…) on 

the right-hand side of (605). The conditions then took the form: 

 

(616) 2
 



 
 
 

 = ( ) 

 

 
 



 
+  

 
, 

which is analogous to (606). 

 A continuous group that takes the trajectories into themselves is finite, and indeed a group with 

at most n (n + 2) parameters (503). P. Stäckel had determined normal forms for the dynamical 

problems with one and two-parameter groups and gave the infinitesimal transformations of the 

group (504). By recasting that line of reasoning, G. Fubini (505) could determine all groups for n = 

3 and also took up the case of a general n already (506). Finally, P. Painlevé (507) made a few 

remarks about the structure of the group for general n, in which he also considered the fact that the 

applied forces might not arise from a potential, and he referred to the advantage that the existence 

of such a group would bring with it in the integration of the equations of motion. 

 

____________ 

 

 Herren G. Hamel and C. Carathéodory have helped with the proofreading. Hamel contributed 

a series of worthwhile remarks regarding the first part, while Carathéodory contributed remarks in 

regard to the entire treatise, and the author owes a debt of gratitude to both of them. 
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(Completed in December 1933) 

 

 
 

 (503) By contrast, the group of canonical transformations is an infinite group. That was a source of confusion to E. 

Schuntner, “Über die Äquivalenz und Klassifikation dynamischer Probleme,” Ann. di mat. (4) 9 (1931), pp. 307, 

along with an Addendum in Ann. di mat. (4) 10 (1932), pp. 83, whose reasoning then seemed to be completely faulty. 

On that, cf., the critique of W. Wirtinger, Wien Monatsh. 39 (1932), pp. 241. 

 (504) P. Stäckel, loc. cit. (496). 

 (505) G. Fubini, “Ricerche gruppali sulle equazioni della dinamica, Nota II,” Roma Linc. Rend. (5) 122 (1903), 

pp. 60. 

 (506) G. Fubini, “Ric. gr…, Nota III,” Roma Linc. Rend. (5) 122 (1903), pp. 145. 

 (507) P. Painlevé, loc. cit. (487).  


