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TRANSLATOR’S PREFACE 
 

 

 This translation was based on a book that was edited and introduced by Klaus Knothe. The 

book, in turn, was based on unpublished typewritten documents with handwritten annotations, and 

it included Prange’s Habilitationsschrift, along with an extended bibliography and some 

supporting documents of a biographical nature. Since the latter documents were not available to 

the translator, as they are stored in the archives of various German universities, the translator 

decided to omit them from the translation, along with Knothe’s references to them. The italicized 

annotations and footnotes were typically due to Knothe, and often reflect the fact that some of the 

handwritten comments in the original manuscript were ultimately illegible. 

 There are three aspects of Prange’s treatise that make it distinctive among other treatments of 

the subject in question:  

 

 1. The parallel treatment of the deformation of finite structures and the deformation of 

continuous media. 

 

 2.  The duality between force and displacement.  

 

 3. The duality between the equilibrium conditions for forces (stresses) and the compatibility 

conditions for strains. 

 

 The first of those concepts is particularly useful in dealing with the role of homology in the 

appearance of internal stresses that are not due to external loads. The second one has the effect of 

leading to the duality of the principle of virtual forces and the principle of virtual displacements. 

The third one relates to essentially a Legendre transformation for statics and the Mayer reciprocity 

theorem for isoperimetric problems in the calculus of variations. 

 It is the translator’s belief that those three aspects of Prange’s treatise make it sufficiently 

compelling as to justify an English version of it. 

 

 David Delphenich, Spring Valley, OH, USA, July 2022. 

 

__________



EDITOR’S INTRODUCTION 
 

 

0.1 – A brief biography of Georg Prange. 

 

 HEINRICH FRIEDRICH WILHELM GEORG PRANGE was born on January 1, 1885, in 

Hannover as the son of the merchant Georg Prange and died there on February 3, 1941, at the age 

of fifty-six. 

 From Easter of 1891 on, Prange attended the preschool at the Höheren Bürgerschule I that 

existed back then, and from Easter of 1894 on, he attended the humanistic Gymnasium (Lyzeum 

II) in Hannover. He passed the matriculation examination at that school in Spring of 1903. He then 

decided to study mathematics: From the Summer semester of 1903 to the Summer semester of 

1904, he studied at the University of Göttingen, in the Winter semester of 1904/05 and the Summer 

semester of 1905, he studied at the University of Munich, and in the Winter semester of 1905/06, 

as well as the Summer semester of 1906, he once more studied at Göttingen. We then know whose 

lectures Prange attended in the Winter semester of 1905/06 and the Summer semester of 1906: He 

studied projective geometry with Klein, number theory and algebra with Minkowski, as well as 

integral equations with Hilbert. However, he also studied things related to the natural sciences and 

engineering sciences, such as thermodynamics with Voigt, graphical methods in mechanics and 

physics with Runge, and surveying with Wiechert, and finally psychology with Müller. Prange 

listed his academic teachers in his Curriculum Vita, which is added to his dissertation [110]: In 

Göttingen, in addition to the aforementioned Hilbert, Klein, Minkowski, Runge, and Wiechert, 

they included professors Baumann, Liebisch, Mollwo, G. F. Müller, Peter, Riecke, Schilling, 

Schulthess, Schwarzschild, Voigt, and Zermelo. In Munich, they included von Bayer, von 

Braunmühl, Doehlmann, Lindemann, Lipps, Pringsheim, Roentgen, and E. von Weber. 

 From Summer of 1906 to 1910, Prange had to suspend his studies, which actually lacked only 

a formal diploma, due to a serious illness (probably pulmonary tuberculosis). It was only in June 

1912 that Prange could complete the test for a higher teaching position in the subjects of pure and 

applied mathematics, as well as physics, before the test committee in Göttingen. 

 From Fall of 1910 on, Georg Prange was employed as a helper (teaching assistant) with the 

lectures of C. H. Müller (1), who had been previous appointed briefly as a professor of mathematics 

at the Technische Hochschule in Hannover. After passing his test in Göttingen, Prange took up a 

position as an assistant in mathematics at the Technische Hochschule in Hannover under C. H. 

Müller in September 1912, which he held until 1921, when he taught supplementary mathematics 

and physics at the Bismarck School in Hannover during World War I from August 1915 to 

Christmas 1918. 

 At the beginning of his assistantship, Prange addressed the relationship between engineering 

mathematics and mathematics, and in particular, the variational principles of the theory of 

elasticity. He next provided the necessary mathematical tools in his dissertation that he submitted 

to the University of Göttingen: Die Hamilton-Jacobische Theorie für Doppelintegrale (mit einer 

Übersicht der Theorie für einfachen Integralen). His main dissertation reviewer was Hilbert, 

 
 (1) Conrad H. Müller was a coeditor of the Encyklopädie der mathematischen Wissenschaften with Felix Klein.  
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whose influence upon that work cannot be known. The oral examination took place on December 

21, 1914, with a half-hour test in each of applied mathematics (Runge), physics (Voigt), and 

mathematical analysis (Hilbert). The dissertation was published in 1915 as a university document 

[110]. 

 Already in 1916, Prange presented a Habilitationsschrift to the University of Hannover on the 

topic of “Das Extremum der Formänderungsarbeit,” in which he presented his own work on: 

 

“the Menabrea-Castigliano school of thought, which was highly controversial in 

engineering mechanics, and… (presented) the theory of frameworks and the theory 

of three-dimensional bodies completely in parallel.” 

 

The supervisor of the Habilitationsschrift was C. H. Müller. Based upon his successful habilitation, 

Prange became Privatdozent in mathematics at the Technische Hochschule in Hannover on July 

22, 1916. He held two-hour lectures on the following semester on a mathematical subject, and two-

hour lectures on a topic in applied mathematics from engineering mechanics [113] and replaced 

Salkowski on the subject of “graphical and numerical methods in analysis.” 

 In 1920, Prange concerned himself with a rehabilitation at the University of Halle. In 

December 1920, Prange was issued the required habilitation certificate for an inaugural lecture 

before the philosophy faculty that he presented on February 26, 1921 on the topic of “W. R. 

Hamilton’s Bedeutung für die geometrischen Optik und die Mechanik” (2). On February 26, 1923, 

Prange was consequently assigned a teaching position in applied mathematics with the philosophy 

faculty at the University of Halle that he took up in the Summer semester of 1921. 

 In the Summer semester of 1921, Prange was called to the Technische Hochschule in 

Hannover, and his appointment as a professor of mathematics there became effective on October 

1, 1921. He held that position up to his death despite being invited to three other places [viz., Brünn 

(Brno today), Dresden, and Karlsruhe]. 

 The biographical facts that were established here were taken from the Catalogus Professorum 

1831-1981 [134] at the University of Hannover, the Curriculum Vita that is included in the 

dissertation [110], as well as the Curriculum Vita on the occasion of his appointment at Halle, and 

information that was stored in the university archives at the universities of Göttingen [57], Halle-

Wittenberg [47], and Hannover [138]. 

 

 

0.2 − Prange’s Habilitation. 

  

 The editor was already aware of Prange at the end of his sixtieth year. In 1966, a two-part 

article by Orovas and McLean [105, 106] on the topic of “Historical Development of Energetical 

Principles in Elastomechanics” appeared in the journal Applied Mechanics Review, in which Part 

I treated the period from Heraclitus to Maxwell, and Part II treated the period from Cotterill to 

 
 (2) The inaugural lecture might have been closely connected with the book Allgemeine Mechanik [102] that 

appeared in 1923 and his editing and commentary on W. R. Hamilton’s Systems of rays [51]. Prange was concerned 

with translating Hamilton’s work in 1915 and 1916 [117] and planned to publish a work entitled “Bedeutung 

Hamiltons und die Entwicklung der geometrischen Optik und der Mechanik im neunzehnten Jahrhundert “[113]. 



iv The Extremum of Deformation Work 

 

Prange. Prange’s work in the field of elastomechanics was first full appreciated in that survey 

article (see pages 928-930 in [106]). 

 

 “Prange gave the first complete fundamental classification and unified 

representation of the entire conceptual framework of the classic variational 

principles in elasticity, in which he linked the methods of the fundamental calculus 

to the variational principles of elastomechanics.” 

 

Somewhat later, it made explicit reference to the Habilitation: 

 

 “Prange gave, in his habilitation dissertation, an integrated representation of the 

entire spectrum of variational principles of elastomechanics from a purely-

mechanical point of view, excluding thermodynamic considerations.” 

 

In summation, Orovas and McLean finally stated: 

 

 “Prange was able to demonstrate the analogy existing between the fundamental 

relations in mechanics of deformable solids and rigid-body mechanics: the 

Menabrea Principle corresponds to the Principle of Least Action; the Equations of 

Equilibrium and Compatibility correspond to the Differential Equations of Motion; 

the Cotterill-Castigliano theorem corresponds to the derivation of Hamilton’s 

Varying Action.” 

 

 The basic ideas in Prange’s work include analogies between the calculus of variations 

in the realm of analytical mechanics, to which HAMILTON-JACOBI theory belongs, in 

particular, and the variational calculations in the problems of elasticity theory. An 

adaptation of Hamilton-Jacobi theory to problems in the theory of elasticity had already 

been carried out in the dissertation of MAX BORN [10] and by HELLINGER [53]. 

 In a dissertation by ARWED WALTER in 1868 [147] that was mentioned by 

TRUESDELL and TOUPIN [141], which is currently accessible in the library at Humboldt 

University, just like KIRCHHOFF ([58], Vorl. 11, § 5), he did not go into the adaptation 

of HAMILTON-JACOBI theory to the problems in the theory of elasticity, but only the 

extension of HAMILTON’s principle to the dynamical problems for continuous media. 

 Prange wished to publish his Habilitationsschrift as a book, but that never came to pass 

[112, 50], due to the first World War. In the library at the University of Hannover, up until 

recently, there was a photocopy of the typewritten draft of it with numerous handwritten 

entries, but it was lost without a trace in the meantime. It, or another version of it, must 

have been available to Orovas and McLean [105, 106]. Passages from the second part of 

their survey paper are obviously English translations of Prange’s formulations. 

 In 1970, the editor had prepared a copy of the text from the library of what was the 

Technische Hochschule in Hannover at the time, and that text was used as the basis for a 

word processor version. The handwritten formulas that were inserted were obviously 

flawed in some places. Comments to the effect of “text unclear,” as well as missing 
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passages, showed that the handwritten insertions into the typewritten copy could not have 

originated with Prange himself. One might therefore assume that the transcript, or at least 

the insertion of the corrections, first came about after Prange’s death (so between 1941 and, 

say, 1960). The identity of whomever it was that inserted the handwritten formulas into the 

text is not known. 

 A copy of another typewritten document with handwritten corrections and insertions 

exists in the library of Professor Erwin Stein in Hannover, which came to light during the 

editing of this work. That copy was most graciously placed at the editor’s disposal. It 

involved a copy of the original in the library of the Institute for Mathematics at the 

Technischen Universität Hannover (Inv.-Nr. 5324) That version is far and away more 

complete than the version in university library. It is also quite certain that the numerous 

handwritten insertions and annotations in Stein’s version came from the pen of Prange 

himself. The original copy that exists in the university library is probably a copy of the 

version in the Institute B for mathematics. The passages that are missing from the 

university library version were almost exclusively handwritten insertions on the backs of 

the individual pages, some of which were just barely legible. 

 The Stein version was employed by the editor to correct the word processor version on 

the basis of that judgement, and in so doing, almost all of the handwritten insertions were 

incorporated. The present text then comes relatively close to the version that Prange 

presented. 

 The typescript of Prange’s work then includes not only an introduction, but two 

chapters: 

Chapter 1: The framework 

Chapter 2: The continuous elastic body 

 

 In a treatise that was directly connected with the latter, Prange attempted to also explain 

the theory of beams mathematically. That paper was published in 1919 in the Zeitschrift 

für Architektur- und Ingenieurwesen under the title “Die Theorie des Balkens in der 

technischen Elastizitätslehre” [112]. That structure of that article was largely parallel to 

that of Chapters 1 and 2 in the Habilitationsschrift.  

 

 

0.3 − Prange’s later work. 

 

 Besides the Habilitation from 1916, which is published for the first time here, and the 

publication that was closely connected with it that appeared in the Zeitschrift für Architektur- und 

Ingenieurwesen with the title “Die Theorie des Balkens in der technischen Elastizitätslehre” in 

1919, it is not known whether there were other works by Prange on continuum mechanics and 

structural mechanics. The theoretical foundations from the field of the calculus of variations that 

are required by the Habilitation were made available in the dissertation that appeared in 1915 as a 

university publication on the subject of “Die Hamilton-Jacobische Theorie für Doppelintegrale 

(mit einer Übersicht der Theorie für einfache Integrale).” 
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 In a handwritten Curriculum Vita on the occasion of his application to Halle [113], Prange 

referred to an already-completed “essay” that was concerned with the significance of Hamilton on 

the development of geometrical optics and mechanics in the Nineteenth Century that was to appear 

in the Göttinger Abhandlungen. However, its publication did not seem to result, and that work is 

lost without a trace. 

 In 1923, CONRAD H. MÜLLER and GEORG PRANGE published a book with the title 

Allgemeine Mechanik. Grundlegende Ansätze und elementare methoden der Mechanik des 

Punktes under der Punktsysteme [102]. (A review of the book by H. REISSNER is in [119].) 

Prange appeared as the translator, editor, and commentator in a 1933 publication on HAMILTON’s 

Abhandlungen über Strahlenoptik [51]. The translation already existed before 1920 [114]. In 1935, 

a contribution by Prange on the topic of “Die allgemeinen Integrationsmethoden der analytischen 

Mechanik,” whose composition he took up in place of P. Stäckel, who had died, was included in 

the edition of the Encyklopädie der mathematischen Wissenschaften [114]. (Review by HAMEL 

in [49]) A final book by Prange that appeared after his death was edited by WERNER VON 

KOPPENFELS: Vorlesungen über Integral- und Differentialrechnung (Band 1: Funktionen einer 

reellen Veränderlichen) [116]. In his planned multi-volume work, he dealt with the publication of 

his lectures on higher mathematics at the Technischen Hochschule Hannover. Further transcripts 

of his lectures are in the university library at Hannover. One will likewise find a later unpublished 

work from 1939 on the subject of “Geodätischen Linien” [115] in the Hannover university library. 

 

 

0.4 − Is the publication of Prange’s Habilitationsschrift justified? 

 

 In regard to any plans to publish Prange’s Habilitationsschrift, which was written between 

1914 and 1916 and was available only in the form of copies of two differing typewritten 

documents, one must ask what grounds there might be for publishing such a thing eighty years 

later. Why did Prange himself not publish a revised version of the Habilitationsschrift later, 

especially since he was active in science and publishing up to his death? The list of monographs 

that were cited above make it clear that Prange was by no means confined to mathematical 

questions during his academic employment, but he also dealt with mechanical problems. The 

Allgemeine Mechanik that he published with C. H. Müller in 1923 and the survey article in the 

Encyklopädie der mathematischen Wissenschaften in 1935 are evidence of that fact, even if neither 

of the two works are concerned with the field of continuum mechanics. 

 The question of what grounds there might have been for Prange’s reluctance to publish his 

Habilitationsschrift cannot be answered unambiguously as long as no further documents emerge 

from Prange’s estate. One can only speculate. It is conceivable that in his later years, Prange 

himself did not attach the same significance to his Habilitationsschrift that he did to his survey 

article in 1966. It is also conceivable that he was disenchanted by the lack of any reaction to his 

paper on the “Theorie des Balkens in der technischen Elastizitätstheorie” that was published in a 

civil engineering journal. Only HAMEL cited Prange’s paper in his Theoretischen Mechanik [50]. 

The Habilitationsschrift and its abstract first became known to the international community in the 

survey paper by Orovas and McLean [105, 106] and some later publications (e.g., [5, 13, 104]). 

Finally, it is also conceivable that in his later years, Prange had a revised edition of his 
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Habilitationsschrift in mind but was prevented from succeeding in that ambition by the second 

World War, if not his death. The last viewpoint seems to be supported by the numerous insertions 

and additions in Prange’s hand to the typescript in the Institute B for Mathematics and a 

memorandum in the archives of Springer Verlag. 

 In a visit to Springer Verlag on August 27, 1942, ARNO SCHLEUSNER had accordingly been 

encouraged to edit Prange’s Habilitationsschrift. Indeed, his title did not coincide with the title in 

the typescript (in the memorandum, the title was Die Grundlagen der Elastizitätstheorie), and the 

page count is somewhat less than the 40-50 pages that were given, but there can hardly be any 

doubt that he was dealing with Prange’s Habilitationsschrift. Prange’s wife gave her approval to 

the publication, as she was obviously in possession of the manuscript. An interesting aspect of the 

memorandum was that HAMEL supported the project and that in a lecture series (3) at the 

extension university to the Technische Hochschule Berlin, MARGUERRE, HAMEL, 

GRAMMEL, and KLOTTER would have referred to the fundamental significance of the paper 

and its relevance. Finally, it is also interesting that a handwritten memorandum by a colleague at 

Springer Verlag on August 28, 1942, suggested that a paper permit was hardly to be expected. 

Obviously, Schleusner also had no success in his attempt to interest the O.K.W. (Oberkommando 

der Wehrmacht) in his plan. It is an irony of fate that the publication of the Habilitationsschrift 

failed twice because of shortages that were related to the war. 

 Whatever reasons SCHLEUSNER might have had for editing Prange’s Habilitationsschrift are 

unknown. One is also reduced to speculation here, as well. It is conceivable that Schleusner had 

participated in the lecture series and that the inducement to publish came from Hamel, especially 

since Hamel referred to Prange (4) in his book on mechanics [50] in connection with the lecture 

series. In a paper from 1938 [133], Schleusner had already pursued the goal of presenting the 

various forms in which the energy principles were applied, along with their mutual relationships 

and differences (5). Indeed, the canonical transformation did not appear in Schleusner, as opposed 

to Prange and later Hamel [50], but it is conceivable that a suggestion by Hamel might have fallen 

on fertile ground. 

 
 (3) It is very likely that it was treated in that lecture series, which were published by MARGUERRE in extended 

form with the title of “Neuere Festigkeitsprobleme des Ingenieurs” in 1950 [71]. In the Introduction, Marguerre wrote: 

 “Neuere Festigkeitsprobleme des Ingenieurs” was the title of a lecture series that were held in the Winter of 1941 

before the engineers of the large Berlin companies… 

 The publication was still scheduled during the war, but the printing house fell victim to a bombing raid in 1944. The 

book included contributions by FLÜGGE, GRAMMEL, KLOTTER, MARGUERRE, and MESMER. The only thing 

missing from the book was a lecture by HAMEL on the Ansätze for the theory of elasticity for large deformations, 

since Hamel had included his thoughts on that in his new book on mechanics [50]. Prange was not mentioned in the 

book. 

 (4) In Chapter VII, § 9, “Die Minimalprinzipe der Elastizitätstheorie,” of his book [50], Hamel remarked: “From a 

lecture that was given at the extension university of the Technischen Hochschule.” In the concluding section of that 

book, he said: “The basic ideas that we employ go back to Hilbert in a lecture during the Winter semester of 1905/06 

and were developed further by BORN in his Göttinger Preisschrift of 1906. PRANGE had used them in his Hannover 

Habilitationsschrift, which has unfortunately been published only partially. (GEORG PRANGE: ‘Das Extremum der 

Formänderung’).” In saying that, Hamel had obviously started from the assumption that the publication in 1919 [112] 

was part of the Habilitation. 

 (5) For the sake of completeness, let it be mentioned at this point that Zweiling asserted in a monograph [153] that 

he was the author of the Schleusner paper, which the former could not publish since he was being politically persecuted 

by the Third Reich, so Schleusner agreed that he would publish it under his own name. 
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 For the editor, there are two reasons that justify the publication of Prange’s Habilitation, even 

though it is more than eighty years since its writing and more than fifty-five years since the death 

of Prange. One of them is the historical significance of the Habilitationsschrift, which brought the 

development of energy principles in the theory of elasticity to a convincing conclusion. However, 

the second one is the interdisciplinary character of the work, in which problems of mathematics 

(in particular, the calculus of variations) are coupled with questions of continuum mechanics (the 

theory of elasticity) and structural statics (the engineering strength of materials and structural 

mechanics). In order to elucidate both aspects of the problem, an analysis of the historical context 

and contents of the Habilitationsschrift would be required. 

 

 

0.5 – The historical context and contents 

of Prange’s Habilitationsschrift. 

 

The mathematical background: Felix Klein [23, 140] and David Hilbert [118]. 

 

 Prange came from the Göttingen School of Klein, Hilbert, Minkowski, and Runge, and it was 

the first two that impressed him the most, whether directly or indirectly. 

 FELIX KLEIN (1849-1925) studied in Bonn, Göttingen (under Clebsch), and Berlin. Both his 

conferral of a doctorate in 1868 and Habilitation in 1871 took place in Bonn, and in connection 

with that, he became a Privatdozent at Göttingen in 1871/72. Already in 1872 (when he was thirty-

three years old), Klein was proposed to the University at Erlangen on the initiative of his teacher 

Clebsch. In his Inaugural Address there, he presented his conceptual picture that would prove 

decisive for his later activities in regard to organizing the sciences. 

 

 “One cannot lose sight of the unity of all science and the ideal of a total picture 

in one’s specialized studies. Hence, the humanistic and mathematical-natural 

scientific picture belong together and should not be put into opposition. On the 

other hand, along with pure mathematics, applied mathematics must also be 

cultivated in order to preserve their connections with the ancillary domains in 

science, such as physics and engineering… 

 Regularly-repeated elementary lectures and lectures on special topics should be 

held for a small number of interested parties that are both supported by exercises 

and seminars…” [140] 

 

 In 1875, he was called to the Technische Hochscule in Munich. While there, Klein, along with 

A. Brill, reorganized the mathematical curriculum for the engineering sciences along the lines of 

his conception of things. A series of individual lectures were combined into a four-semester lecture 

on higher mathematics. His concepts were adopted by numerous other Technische Hochschules 

and has left its imprint to this day in mathematical education for the engineering sciences. 

 In his inaugural lecture at Leipzig (1880-86), Klein, in turn, placed the relationship of new 

mathematics to its applications at the center of his considerations. In organizational terms, he 

generally first presented corresponding arguments after his call to Göttingen (1886). He himself 
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held lectures on not only mathematics, but also a variety of engineering applications (mechanics, 

potential theory, theory of tops). In terms of publications, he was active as the editor of the journal 

Mathematische Annalen and the Encyklopädie de mathematische Wissenschaften mit Einschluß 

ihere Anwendungen, for which he was especially involved as the editor of the volume on 

mechanics. 

 Motivated by his experiences during a sabbatical in the USA (1893), Klein put forth his 

arguments for the integration of mathematics, physics, and engineering into a Neuen Göttinger 

Programm and in the following years concerned himself with gaining the support of industry for 

the institutes of applied mathematics, applied mechanics, and applied physics. An essential step 

towards the achievement of that goal was the founding of Göttinger Vereinigung zur Förderung 

der angewandten Physik und Mathematik. In 1902, an institute for geophysics was founded, and 

in 1905, institutes for the applied study of electricity, as well as applied mathematics and 

mechanics, were founded. 

 In parallel with his ambition to integrate mathematics, natural science, and engineering, Klein 

was making a concerted effort to attract the best minds in pure mathematics to Göttingen. They 

already included David Hilbert, since 1895, and later Minkowski (1902), Runge (1904), and 

Landau (1909). 

 DAVID HILBERT (1862-1943) had studied in Königsberg and Heidelberg, and in 1885, he 

was conferred a doctorate in Königsberg. After a brief visit with Klein in Leipzig and Paris, Hilbert 

was habilitated at Königsberg in 1886, and there he was first a Privatdozent and then an 

extraordinary professor from 1886 to 1895. In 1895, he was called to Göttingen as a successor to 

Weber on the initiative of Klein. 

 In Göttingen, Hilbert first concerned himself with investigations in number theory and the 

axiomatic foundations of geometry. In 1889, he turned to the Dirichlet problem, and then to the 

calculus of variations. In September of 1889, he presented his proof of the existence of a solution 

to the Dirichlet problem [55] at the annual meeting of the German Mathematical Society and thus 

contributed to its revival. From 1899 to 1901, Hilbert held lectures on the calculus of variations at 

Göttingen, which gave rise to a variety of advanced research in its neighboring fields. 

 

• In the year 1906, the prize-winning dissertation of the future Nobel laureate MAX BORN 

(1882-1970) was published with the title of Untersuchungen über die Stabilität der 

elastischen Linie in Ebene und Raum unter verschiedenen Grenzbedingungen (6). In the 

context of his dissertation, Born addressed Dirichlet’s stability principle for the elastic line. 

The foregoing is closely analogous to the HAMILTONIAN transformation in analytical 

mechanics (7). In a footnote to his dissertation, Born referred to the fact that the relevant 

part of the Appendix to it was closely based upon a lecture that HILBERT gave on the 

mechanics of discrete masses in the Winter semester of 1905/06. 

 

 
 (6) Although published, Born’s dissertation, like Prange’s Habilitation, has been largely forgotten today. Born was 

not mentioned in a publication in 1984 [44] that treated a very similar problem. 

 (7) Consequently, OROVAS also spoke of the BORN-PRANGE canonical variational principle in the introduction 

to [13].  
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• In the year 1909, a paper by WALTHER RITZ appeared with the title “Über eine neue 

Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik,” 

[121,122], in which, building upon Hilbert’s investigations into Dirichlet’s variational 

principle, Ritz developed what he called the numerical method for solving boundary-value 

problems (8). Ritz died in July of 1909, since he (and presumably Prange, as well) had been 

afflicted with tuberculosis, and against the advice of his doctor he declined to go to a 

sanitorium, but feverishly continued his scientific work. 

 

• In 1914, a former assistant to Hilbert named ERNST HELLINGER (1883-1950), while a 

Privatdozent in Marburg, published a survey article on “Die allgemeinen Ansätze der 

Mechanik der Kontinua” in the Encyklopädie der mathematischen Wissenschaften that was 

edited by Klein and C. H. Müller. On one page of that article, in reference to Born, it was 

shown how, in the general case of three-dimensional continua, by adapting the canonical 

transformation of dynamics, the principle of the minimum potential energy could next be 

converted into canonical form in which the deformations and stresses would appear as 

unknown state quantities, and how one would arrive at the principle of Menabrea-

Castigliano by introducing the equilibrium conditions as auxiliary conditions. 

 

• GEORG PRANGE’s dissertation (published in 1915) and Habilitation of 1916 are in close 

proximity to those works. 

 

 Felix Klein’s program of integration, in which he sought to connect mathematics, natural 

science, and engineering, and the fundamental investigations of David Hilbert on the calculus 

of variations represents the nutrient medium for Prange’s scientific work in his dissertation 

and habilitation. 

 

 

The elasticity-theoretical background [68, 139, 137]:  

Cauchy, Saint-Venant, Clebsch, Voigt, and Love. 

 

 The foundations of the linear theory of elasticity had already been laid [68, 139, 137] by the 

time that Prange undertook his studies (1903-1906). In an 1822 publication, AUGUSTIN LOUIS 

CAUCHY (1789-1857) had created all of the essential building blocks for the theory of elasticity: 

He introduced the stress tensor as an extension of the hydrostatic pressure that EULER had 

employed and presented the equilibrium conditions (equations of motion, resp.) in terms of the 

stress components. The kinematical connection between the displacements and strains, and 

therefore, the strain tensor, was likewise presented. Cauchy also gave the material law between the 

stresses and strains, for which he required two constants in the isotropic case. In that way, it was, 

above all, debatable as to how many constants were necessary for one to formulate the law of 

elasticity in the isotropic case and the more general anisotropic one. LOUIS MARIE HENRI 

 
 (8) According to a remark in the Lexikon der Mathematik [42], that numerical method was one component of Ritz’s 

Habilitation. 
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NAVIER (1785-1836), based upon atomistic considerations, was a proponent of the theory that 

one elastic constant would suffice. Cauchy vacillated in his book in 1822, but gave two constants, 

which generally made the associated derivation unclear at times [137]. In the first textbook on the 

theory of elasticity [65], GABRIEL LAMÉ (1795-1850) likewise worked with two constants. The 

final proof of the “multi-constant” theory was first implied by VOIGT’s experimental studies. 

 WOLDEMAR VOIGT (1850-1919) taught Prange at Göttingen. Born in Leipzig, after the 

German-French War of 1870/71, he went to Königsberg and studied physics under Franz 

Neumann. In 1874, he was conferred a doctorate for work that he did on the elastic properties of 

rock salt. After teaching at Königsberg, in 1883, he was called to Göttingen, where he built up 

their course offering in theoretical physics. His special interest was in the elastic properties of 

crystals. In 1910, he published his Lehrbuch der Krystallphysik [144]. His extensive experimental 

studies left no doubt that two constants were required for the description of the elastic behavior of 

materials in the isotropic case and twenty-one in the anisotropic (or aelotropic) case. 

 For the mathematician, the problem was basically solved as soon as the existence of a solution 

was proved. However, the practitioner (i.e., the engineer) was also interested in giving a concrete 

form to the solution in terms of known functions, since no numerical processes for finding 

approximate solutions were available then, as opposed to the current situation. There were only a 

few results in regard to solutions for three-dimensional problems [137]. The essential contributions 

to the development of the theory of elasticity then came from the theory of one and two-

dimensional continua. In two papers that added up to over 400 pages, in 1855 and 1856, BARRÉ 

DE SAINT-VENANT (1797-1886) clarified how the foundations of the three-dimensional theory 

of elasticity could be ascertained for the displacements and stresses in a prismatic beam under 

stretching, bending, shear bending, and torsion without making Bernoulli’s assumption. 

CLEBSCH presented Saint-Venant’s theory seven years later in his monograph on the theory of 

elasticity. 

 ALFRED CLEBSCH (1833-1872) was born in Königsberg and while there, like Voigt, he 

studied under Neumann and was conferred a doctorate in 1854. Already in 1858, he was called to 

the Polytechnicum in Karlsruhe as a professor of mechanics. During that activity, he wrote his 

book on the Theorie der Elasticität fester Körper [18], which was the second monograph on the 

theory of elasticity after that of Lamé. Barré de Saint-Venant, along with Alfred-Aimé Flamant, 

translated Clebsch’s book into French [126], and added a wealth of remarks and commentaries. 

Whereas the work of Clebsch, which was reported on by Szabó [137], for example, is hardly 

accessible anymore, Saint-Venant’s adaptation of it [126] recently appeared in 1966 as a reprint. 

The trail of Clebsch also led to Prange: In 1863, Clebsch was called to Giessen as a professor of 

pure mathematics, and in 1868 he went to Göttingen. In 1872, he was chosen to be Rector at 

Göttingen. He died of diphtheria in the same year [139]. Already in 1868, after the death of his 

teacher in Bonn, Klein would come into contact with Clebsch, who was supposed to edit a 

geometric work from Plücker’s estate, and part of that task fell upon Klein, who developed it into 

the theme of his dissertation. In 1868, Klein was one of Clebsch’s students at Göttingen, who 

proposed Klein for his call to Erlangen. After the death of Clebsch, Klein undertook the task of 

instructing Clebsch’s “orphaned” students. One of several attempts to bring Klein to Göttingen as 

the immediate successor to Clebsch failed, which was “fortunate,” as Courant assessed it in a 

memorial address in 1925 [23]. 
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 It is somewhat surprising from Prange’s close connection to Clebsch and Klein, as well as 

Göttingen, that no reference to Clebsch’s Elastizitätstheorie showed up in Prange’s work, since 

Prange based it almost exclusively upon the monograph of LOVE [67, 68], which appeared 

somewhat later and was generally more comprehensive. 

 A. E. H. LOVE (1863-1940) was one of the exceptional proponents of the theory of elasticity 

and geophysics in England, who first studied at Cambridge and also did scientific work there from 

1887 to 1899. From 1899 on, he was a high school teacher at Oxford. The first edition of his main 

work Treatise on the Mathematical Theory of Elasticity appeared in two volumes in 1892/93. In 

the second edition (1906), whose German translation by Timpe has appeared already, addressed 

questions of engineering science more rigorously. That version was also employed by Prange (9). 

To this day, Love’s Theory of Elasticity is still the undisputed standard text on the theory of 

elasticity. Love’s historical introduction is also interesting, which gives a delightful glimpse into 

the story of the theory of elasticity up to around 1900. 

 As would emerge from his Habilitation, Prange was eminently familiar with the 

foundations of the theory of elasticity that had been created during the Nineteenth Century. 

He based them predominantly on the German translation of Love’s textbook [67]. No 

influence of Clebsch is recognizable. Even the influence of Voigt, under whom Prange had 

studied, is not immediately noticeable. 

 

 

The structural-analytic background [111, 139, 136, 106]: Castigliano, Müller-Breslau, and 

Mohr. 

 

 We shall follow Straub [136] in his assessment that “in the first half of the Nineteenth 

Century…structural analysis had split off from theoretical mechanics as a special topic.” Straub 

referred to NAVIER as the “creator” of structural analysis, since he was the first to give the 

differential equations of the bending of beams their form that is still customary [137]. Navier’s 

book [103] is a compilation and application of many laws and methods from the realm of 

continuum mechanics that were known before him, and in particular, the application of the theory 

of elasticity to the practical problems of construction. 

 If one would like to interpret the difference between structural analysis and the mathematical 

theory of elasticity then one might fall back on a statement by Love, even if it was concerned with 

the difference between the mathematical theory of elasticity and engineering mechanics [68]: 

 

 “The history of the mathematical theory of elasticity shows clearly that the 

development of the theory has not been guided exclusively by considerations of its 

utility in technical mechanics. Most of the men by whose researches it has been 

founded and shaped have been more interested in natural philosophy than in 

material progress, in trying to understand the world than in trying to make it more 

comfortable. From this attitude of mind, it may possibly have resulted that the 

 
 (9) In his treatment of the theory of beams [112], Prange did not start from Saint-Venant’s continuum-mechanically 

consistent solution, as it was presented by Love and Clebsch, but worked under the hypothesis that the cross-section 

would remain planar, as with almost all of Navier’s structural analysis; confer page 2.74. 
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theory has contributed less to the material advance of mankind than it might 

otherwise have done. Be that as it may, the intellectual gains which have accrued 

from the work of those men must be estimated very highly…” 

 

 One driving force for the development of structural analysis in Europe in the Nineteenth 

Century was the industrial revolution, and in particular, the construction of railroad bridges [62]. 

CULMANN’s 1864 book Graphische Statik [25] (10) summarized the procedures for calculating 

with frameworks, and WINKLER’s book Lehre von der Elastizität und Festigkeit summarized the 

analytical methods for calculating with beams and arch structures for civil engineers that were 

employed in construction. 

 Graphical statics was an impressive instrument with which one could treat a multitude of 

technically-important constructions relating to bridges and steel structures. It must be extended by 

analytical and numerical procedures as soon as one has to deal with frameworks or beams (arch 

structures, resp.) that are statically indeterminate. Castigliano was the first to do that convincingly, 

as one sees that in the abundance of his predecessors (11). 

 CARLO PIO ALBERTO CASTIGLIANO (1847-1884) was born in Asti, Italy. After three 

years of working as a teacher, in 1870 he was next a student at the university and then at the 

polytechnic school [Reale Scuola d’Applicatione degli Ingegnen] in Turin [64]. His thesis included 

the theorems that are still connected with his name and some applications to the theory of 

structures. It was published in extended form in Italy [14, 15] along with a later 1875 paper. The 

international professional community was first made aware of his work in the French version of 

his book and its translations into German and English [11, 12, 13]. At the point in time when the 

French edition appeared, Castigliano was employed by the Upper Italian railroad as an engineer. 

For the hall roof constructions that were cited as examples in the book, one might recall the typical 

train stations of the second half of the Nineteenth Century. The theoretical part of the book, which 

takes up more than half of it, takes up the arguments of Saint-Venant and Clebsch, even though 

those names did not show up in Castigliano’s book. Starting from the three-dimensional theory of 

elasticity, Castigliano also gave the stress distribution in beam sections for various loads at their 

ends, and from there he arrived at expressions for the dependency of the “deformation work” 

(density of deformation energy) in beams on the forces on the beam sections, which included the 

effects of torsional moments and lateral forces. 

 Castigliano’s work was propagated in Germany most zealously by HEINRICH MÜLLER-

BRESLAU (1851-1925), who was a follower of Emil Winkler who was called to the Chair of 

Building Construction and Iron Bridges at the Technische Hochschule in Berlin [52]. In 1886, the 

first edition of his book appeared with the title Die neueren Methoden der Festigkeitslehre und der 

 
 (10) An interesting side note to this is that Culmann held that in order to properly apply graphical statics, one 

required a basic knowledge of projective geometry, and despite the strong objections of his colleagues in the German 

Technischen Hochschulen, he then moved away from that viewpoint in the second edition [123]. Prange must have 

been aware of the fundamental conflict between a method that were purely oriented towards applications, whose 

proponents were, above all, Mohr and Müller-Breslau, and a method that would capture the mathematical foundations 

since he studied projective geometry with Klein and graphical statics with Runge in parallel in the Winter semester of 

1905/06. 

 (11) For this, one might confer the historical remarks in Prange’s Habilitation and the survey article by Oravas and 

McLean [106]. 
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der Statik der Bauconstruktionen ausgehend von dem Gesetze der virtuellen Verrückungen und 

den Lehrsätzen über die Formänderungsarbeit [97]. The concepts that were developed for 

calculating with statically-indeterminate constructions are still valid to this day. 

 Even before Müller-Breslau, OTTO MOHR (1835-1918) had already addressed the problem 

of calculating with statically-indeterminate frameworks in Germany. From 1868 to 1873, Otto 

Mohr was a professor in Stuttgart, and was then called to teach the subjects of graphical statics, 

railroad engineering, and hydraulic engineering at the Technische Hochschule in Dresden. In 1874 

and 1875, he published some contributions to the theory of frameworks [80, 81, 83]. When a first 

paper of Müller-Breslau appeared in 1883, in which Castigliano’s method was referred to as 

equivalent to that of Mohr [94], Mohr reacted indignantly [85]. Mohr’s riposte was the starting 

point for a controversy that was partially expressed in a polemical tone of voice. From the initial 

publication of Müller-Breslau’s main work [97], in which he answered with a critical overview of 

Mohr’s critique, he revived the “slugfest” [87, 98]. The objective background for that controversy 

is hard to understand today. Greatly simplified, it took the form: Mohr employed a formulation 

based upon principles that corresponded to the principle of virtual forces. Müller-Breslau placed 

Castigliano’s theorems, in which the concept of “deformation work” played a decisive role, on a 

par with the latter. The better part of the controversy revolved around the concept of deformation 

work, whose “extensibility” Mohr reprimanded against, and the associated minimal requirement. 

 Above all, what was most contentious was whether both principles were equivalent, or could 

they be replaced in various problem statements (temperature, support lowering, mounting stresses, 

large deformations, nonlinear-elastic material behavior, etc.), and what sort of conception of work 

that one would employ in such situations. It was also unclear what sort of connection existed 

between the statements of virtual work and the energy principles that were known to mechanics. 

Finally, it was unclear whether an extension of the methods of structural analysis to more general 

two or three-dimensional continua would be possible. 

 The controversy was revived once more in connection with an article by WEINGARTEN in 

the year 1901 [148], but Müller-Breslau and Mohr did not generally participate in it, since it mostly 

involved WEINGARTEN, WEYRAUCH, HERTWIG, MERTENS, and FÖPPL. A presentation 

of the details of the entire controversy would go beyond the scope of this introduction. One is 

referred to Prange’s historical remarks, the discussions in Jahrbuch für die Fortschritte der 

Mathematik in the year 1889 [60], the survey articles of Grüning [45] and Dohmke [26], the treatise 

of Orovas and McLean [106], and two articles by Kurrer [63, 64]. 

 As was just mentioned, the controversy was discussed in the 1889 Jahrbuch für die Fortschritte 

der Mathematik [60]. The reviewer [F. K., that is, Friedrich KÖTTER (Berlin)] first addressed the 

book by Müller-Breslau [97] and connected it with two papers by MOHR and MÜLLER-

BRESLAU in Civilingenieur [87, 97]. In the second phase of the controversy, the last two 

contributions came from the mathematician WEINGARTEN and the engineer WEYRAUCH in 

the year 1909 and appeared in the Nachrichten der königlichen Gesellschaft der Wissenschaften 

zu Göttingen. It is then most likely that the controversy was also known to Klein and Hilbert, who 

lectured their students on problems from the domains of physics and engineering in their seminars. 

Born’s dissertation [10] in is the background to that controversy, as well as the brief discussion in 

the survey paper by Hellinger [53], and finally Prange’s dissertation and Habilitation. 
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 Prange had touched upon the various principles and laws of structural analysis in the context 

of general laws of variation in the theoretical study of elasticity in his Habilitationsschrift and in 

the 1919 article that appeared with the title “Die Theorie der Balkens in der technischen 

Elastizitätslehre” [112]. In the Habilitationschrift, frameworks and beams were treated in parallel, 

while beams were treated more extensively in the 1919 paper. The definitive idea in that is the 

application of the canonical transformation of Hamilton-Jacobi theory in the calculus of variations 

that was known to analytical mechanics to the principle of the extremum of total energy. 

Displacements (Prange called them Verrückungen) appear in the principle of the extremum of 

potential energy as unknown state quantities. In the corresponding canonical variational problem 

that arises after the canonical transformation, displacement quantities and force quantities are the 

unknown varied state quantities. That new variational principle (which is currently connected with 

the names of Born, Hellinger, Prange, and Reissner) includes the principle of the extremum of 

potential energy, as well as another extremal principle that is referred to as the Menabrea-

Castigliano principle. 

 All of that is illustrated in the graphical overview in Fig. 1. For Prange, the starting point was 

the principle of virtual displacements. He then showed the equivalence of that principle with 

equilibrium conditions and the static boundary conditions, and then went on to the principle of the 

extremum of potential energy. The principle of virtual displacements is the varied form of that 

extremal principle. A new expression  for the potential (12) is obtained from the potential energy 

E with the canonical transformation. If one demands that the displacement quantities and the 

strains that belong to the force quantities must be compatible then one will once more get the the 

force quantities should fulfill the equilibrium conditions then that will imply the Menabrea-

Castigliano principle, which is itself again equivalent to the compatibility conditions. It is 

surprising that the principle that is currently known as the principle of virtual force does not emerge 

clearly from the dual construction of the varied form of the Menabrea-Castigliano principle in the 

diagram. 

 Prange defined various expressions for the deformation work and showed that those 

expressions would be implied inevitably when one started with the canonical transformation with 

corresponding assumptions. 

 Up to the time that Prange composed his Habilitationsschrift, procedures in which force 

quantities appeared as unknowns (Kraftgrößenverfahren) were employed almost exclusively in 

practice. Works in which the displacement components appeared in the solution to the problem 

were not available to Prange. A corresponding procedure for calculating the auxiliary stresses in 

frameworks was already being used in 1880 by MANDERLA [69] and in 1892 by MOHR [88]. 

Today, that group of procedures is referred to as deformation methods (or displacement quantity 

methods). A comprehensive presentation of the deformation methods was first found in 1914 by 

BENDIXEN [6] and in 1926 in the book by OSTENFELD [107]. It speaks for Prange’s foresight 

that the fact that the variational-theoretic foundations of the displacement-quantity procedures and 

the force-quantity procedures are completely on a par with each other emerges clearly from his 

theoretical presentation, along with the dual construction of both processes. One first finds a 

 
 (12) Prange employed that new symbol for only frameworks and the three-dimensional continuum, but not for 

beams. 
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similarly-clear presentation of that duality, although with a view to matrix statics, in ARGYRIS 

[2, 3]. 
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 In his Habilitationsschrift and in the related publication on the theory of beams, Prange 

had managed to create a clear, unified framework in which all of the principles, laws, and 

procedures that were employed in structural analysis for frameworks and beam structures 

could be organized by starting from the Hamilton-Jacobi theory. An adaptation of the 

conceptual framework to three-dimensional continua was possible in complete analogy using 

the tools of the calculus of variations. 

 Prange had solved all of the open problems regarding the foundations of classical structural 

analysis in his Habilitationsschrift. The fact that his Habilitationsschrift was not known to the 

scientists of the era that were working in the field of structural analysis should not be surprising, 

since it was never published. However, not even his related work in 1919 on the theory of beams 

[112], which appeared in the Zeitschrift für Architektur und Ingenieurwesen, like many of the 

papers of Müller-Breslau and Mohr, found any actual resonance. One can only speculate about 

why that would be true. Was the 1919 article too “mathematical” for civil engineers? Did the civil 

engineers consider the problems that had been raised in the controversy between Müller-Breslau 

and Mohr to have been solved? At the very least, the latter seems rather unlikely. In the year 1938, 

an article by SCHLEUSNER appeared on the topic of “Das Prinzip der virtuellen Verrückungen 

und die Variationsprinzipien der Elastizitätstheorie” [133], in which the principle of virtual 

displacements appeared along with the principle of virtual force. For Schleusner, as for Prange, it 

was indisputable that both principles could be regarded as two forms of variational principles. 

Since Schleusner obviously did not know of Prange’s work at that point in time, he did not employ 

the canonical transformation in order to take each principle to the other, so that transition was less 

clear. Schleusner, as an engineer, and parallel to him, MARGUERRE, as a mechanician [70, 72], 

were the two people of that era who recognized the necessity of a precise formulation of the energy 

principle most clearly. At the very least, for Schleusner, who was also a practicing structural 

engineer, the principle of virtual forces was still the most important one from the standpoint of 

applications. 

 Even to this day, for many students of construction and mechanical engineering (and not just 

for students), everything else regarding the intrinsic connection between Castigliano’s laws and 

the principle of virtual work is clear. However, at the beginning of this century, despite persistent 

ambiguities, in structural analysis, one was in a position to perform calculations for statically-

indeterminate structures in which hardly anyone was interested in whether one employed the 

“Mohr method” or the “Castigliano method.” The issue of achieving clarity in the fundamental 

questions was not especially compelling to the engineers as long as no practical necessity for it 

existed. The statement that KÖTTER made in his discussion of Müller-Breslau’s main work [60] 

still rings true that “the intended audience for the book is generally not so much inclined towards 

a theoretical discussion of it as towards the practical utility of the methods that are developed in 

it.” 

 Today we know that there is essentially more to be found in Prange’s work. Hellinger’s and 

Prange’s adaptation of the “canonical transformation” from the realm of many-body mechanics to 

the realm of continuum mechanics opened the door to the development of further variational 

principles, but the time was not ripe for that in 1916. More than thirty years later, E. REISSNER 

[120] rediscovered the Hellinger-Prange variational principle and also used it in practice. In the 

meantime, since the first electronic computing systems became available, the possibilities that 
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were given by those “mixed variational principles” could be exhausted. A wealth of advanced 

developments came about in the years that followed in the context of finite-element formulations, 

among which, the “hybrid” formulation that was given by PIAN [108, 4], in particular, has proved 

to be exceptionally fruitful. 

 

 

0.6. Appendix to the Introduction. 

 

 (Knothe’s editing of Prange’s Habilitationsschrift included a number of documents of a largely 

administrative nature, along with various correspondences, that were not available to the translator. 

If one wishes to confer them, they are included in Knothe’s German version of this book.) 

 

 

0.7. Comments on the editing of the text. 

 

 The main source for the following reproduction of Prange’s Habilitationsschrift was the copy 

of the typescript in the library of E. Stein (Institut für Baumechanik und numerische Mechanik at 

the University of Hannover). The numerous handwritten corrections and additions are mainly due 

to Prange, as a comparison to the handwritten Curriculum Vita [113] or his letters [117] will show, 

but some of them were barely legible. The passages that were unambiguously associated with 

Prange were included in the following text, but the illegible passages have been pointed out. 

 The following guidelines were adhered to in the adaptation of the handwritten version to a 

printed version: 

 

• Prange’s spelling is the spelling that is appropriate for the current era, as was also the case 

in the publication of 1919 [112]. Since no unified rules for punctuation were known at the 

time, the currently-accepted rules were followed. The formulas were included in the 

punctuation throughout. That also corresponds to the publication of 1919. 

 

• Text that was underlined in the typescript was set in cursive (italic) in the edited version. 

Names that were underlined in the text were reproduced in the edited version in SMALL 

CAPITALS. Footnotes in the typescript were written in smaller type in the edited version, in 

which the numbering was correlated with the chapters, and not the pages, as in the 

typescript. The names of authors in the footnotes were only partially underlined in the 

typescript, while in the edited version, they were written in SMALLER CAPITALS 

throughout. Comments and additions by the editor were written as cursive footnotes. 

 

• For the structure of the chapters, Prange employed the paragraph format, e.g., Chapter I, 

§ 1. For the word processor, the section format was employed instead, so e.g., 1.1. 

Correspondingly, the chapter number was included in the numbering of the equations, so 

e.g., (2.30), instead of (30), which is what Prange would have written. 

 

__________ 
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INTRODUCTION 
 

 

 In the engineering study of elasticity – in particular, in the statics of buildings – an important 

role is played by the “minimum deformation work,” which is an expression that has given rise to 

much confusion due its vagueness, because that “minimum” can be regarded in different ways, 

such that misunderstandings would be inevitable. When the variables upon which the expression 

that is to be made a minimum depends change, that will seldom give the neighboring state, 

compared to which a minimum is to occur. The type of variation that is carried out in each 

individual case will not be established more precisely, such that the same expression can exhibit 

different interpretations. 

 That lack of exactness was perpetuated by the fact that the engineering theory of elasticity was 

influenced essentially  by the study of frameworks, which is where it was first developed. 

 In the theory of frameworks, the various conceptions that can appear with the “minimum 

deformation work” have such a close kinship that one can easily combine them into a general 

concept that cannot be rigorously classified. With frameworks, one deals with the extremum of an 

ordinary function, in particular, a quadratic form in finitely-many variables, in which only the 

coordinates will change. If one adapts that argument to continuous bodies then the extremum of a 

triple integral will enter in place of that function that must be treated by the calculus of variations. 

In that way, the dependency of the values of the integral will lead to different problems that one 

can pose, on the one hand, from selecting functions in the interior, and on the other, from selecting 

the “boundary values.” In engineering, one never has the opportunity to stress that clearly because 

the basic problems in elasticity for continuous bodies cannot be solved by the present means of 

analysis in a way that admits numerical calculation, which is all that would be of interest in 

engineering. Therefore, in the engineering theory of continuous bodies, in particular, for the most 

important special case of beams, one confines oneself to the study of loads that take the form of 

isolated forces and gets around the complications in the integration by representing the stress 

components as linear functions of the isolated forces by making special assumptions about those 

components. The deformation work will then become a quadratic function of the isolated forces, 

such that the difference between continuous bodies and frameworks will be blurred somewhat by 

that. 

 In what follows, we shall attempt to give a presentation of that entire sphere of thought that 

comes under consideration from the standpoint of the mathematical theory of elasticity. In 

particular, we shall make a clear distinction between the various intersecting lines of reasoning, 

and in that way simultaneously point out the intrinsic connection between them. With the use of 

the methods that were developed to a great extent for the purpose of analytical mechanics, that will 

arrive at the so-called Hamilton-Jacobi theory of the calculus of variations. 

 The starting point for the discussion is the Ansatz of the principle of virtual displacements. By 

the generality of its character, it will govern any problem in statics. The associated variational 

formula will be interpreted as the extremal condition for the total potential energy, i.e., the sum of 

the external forces and the deformation work. We apply the Legendre transformation to that 

extremal problem, and in that way give rise to a general canonical variational problem whose 

extremal conditions will give not only the equilibrium conditions, but also the compatibility 
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conditions. Whereas the principle of virtual displacements makes that a special case of the general 

principle when we regard the compatibility conditions as being fulfilled, we will conversely obtain 

a new principle when we assume, conversely, that the equilibrium conditions are fulfilled. That 

new principle represents a conception of things that is connected with the so-called Menabrea 

principle in the engineering theory of elasticity. It demands that the deformation work should be 

an extremum with the equilibrium conditions as the auxiliary conditions and yields the 

compatibility conditions as the extremal conditions. The associated extremal value of the 

deformation work will be considered in the context of its dependency upon the boundary values 

of the functions that appear in the integral of the variational problem, and the two theorems that 

are named after Castigliano on the derivatives of those extremal values will be stated. Considering 

the dependency of the extremum on the boundary leads to the problem of determining the boundary 

values, which are now regarded as variable, such that one will again obtain the precise extremum 

(extremum extremorum) of all the extreme values. With that, one arrives at a new extremal problem 

that represents a second way of looking at Menabrea’s principle from the engineering theory of 

elasticity. For that reason, both approaches will be given the same name since they are not 

essentially different for frameworks. That is shown in more detail in the first chapter of the 

following presentation. Namely, precisely the same theory that was depicted for continuous bodies 

above will be given for frameworks in it. One will also arrive there along the path that was just 

described when one suitably adapts the idea of the Legendre transformation to the realm of the 

differential calculus. 

 The arguments that will be given will lead to an extension of the Menabrea-Castigliano sphere 

of thought for frameworks, as well as continuous bodies, which is introduced by German 

engineers, in particular, such as considering internal stresses and temperature changes, introducing 

a general relationship between stress components and the quantities of deformation in place of 

Hooke’s law, and the like. Since all of the new expressions that enter in place of the deformation 

work in that way will be implied necessarily by the guiding principles of canonical 

transformations, the apparent arbitrariness in that new picture will vanish, and will become the 

intrinsic basis for the “extendibility” of the concept of deformation work (13). 

 Each chapter concludes with a section on the historical context of the development of the 

questions that were treated in it in order to underscore the relationship between the various Ansätze 

and developments that one finds in the literature and the presentation of the theory that is given 

here. 

 

__________ 

 

 
 (13) Naturally, it would not be in the spirit of this treatise to pose the questions in the way that would be most 

convenient to the applications in engineering practice.  



 

 

CHAPTER 1 

 

THE FRAMEWORK 
 

 

 1.1. The frame member and its deformation. – We understand a rod to mean a body whose 

one dimension (viz., length) exceeds the other two (viz., cross-section) considerably. In particular, 

a frame member (14) is a homogeneous rod of constant cross-section that can be compressed or 

stretched, but not bent or twisted. Such a frame member can admit or transmit only those forces 

that act in the direction of its axis and are distributed uniformly over its cross-section, such that all 

longitudinal fibers will be stretched (compressed, resp.) in the same way. Since the individual 

cross-sections of the rod can displace only as a whole, and thereby remain parallel to themselves, 

we can ignore the expansion of the cross-section completely and regard a frame member as a one-

dimensional structure, and indeed as a line that can admit forces that have the rod line, i.e., the 

centerline of the rod – as their line of action, and whose individual points can be displaced by a 

deformation only along the rod line. 

 

 In order to establish the individual points of the rod, we would like to introduce the coordinate 

x along the rod line, while the two endpoints might possess the coordinates x1 and x2 . 

 We now imagine that a force P1 is applied to one endpoint and that the elastic rod has assumed 

a certain equilibrium position under its influence, in which a stress  (x) might be produced at each 

of its points. During the transition to that new equilibrium position, the individual points shall be 

displaced by the segment x, which is regarded as a function of x. In particular, the displacements 

of the two endpoints shall be equal to x1 and x2, resp. 

 
Figure 1. 

 

 In order to investigate the equilibrium state further, we superimpose the actual displacement 

x of a point of the rod with a virtual displacement  x, which is also a function of x. In particular, 

let its values at the two endpoints be  x1 and  x2, resp. From the principle of virtual 

displacements, if equilibrium is to prevail then the work done by the internal and external forces 

must be equal to each other. 

 Now, the work done by external forces under that virtual displacement is: 

 

P1   x1 + P2   x2 . 

 

 
 (14) Here, one imagines the so-called theory of elementary frameworks, in which one deals with rods that are 

connected by frictionless joints. In reality, frame members will also be subject to bending, since they are riveted, and 

therefore so-called secondary stresses can appear.  

− x P1 x1 x2 P2 + x 
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 The virtual work done by internal forces arises in such a way that any two points that bound a 

frame member dx will be displaced by the segment d ( x) under the virtual displacement. It is 

therefore the virtual work done by the stress in the rod  (x) for each element dx in the rod. 

 

 (x)  d ( x) , 

so for the entire rod, it will be: 
2

1

( )
( )

x

x

d x
x dx

dx





   . 

 

 In engineering, the virtual work done by the internal forces is refers to as the deformation work 

done by the virtual displacement. 

 The equilibrium condition will then be expressed by the following equation: 

 

P1  x1 + P2  x2 − 
2

1

( )
( )

x

x

d x
x dx

dx





  = 0 ,   (1.1) 

 

which must exist for every system of displacements  x. 

 If we now choose, in particular, the virtual displacements to be equally big for all points along 

the rod line,  x = c, then d ( x) / dx = 0, and we will get: 

 

P1 + P2 = 0 , 

i.e.: 

P2 = − P1 = P .               (1.2) 

 

The two forces must then be in equilibrium. 

 On the other hand, if we perform the virtual displacement in such a way that we fix the two 

endpoints of the rod,  x1 =  x2 = 0, then it will follow from (1.1) by partial integration that: 

 

−  
2

2

1

1

( )
( ) ( )

x
x

x

x

d x
x d x x dx

dx


   +   = 

2

1

( )
x

x

d x
x dx

dx


   = 0 , 

 

from which, we further conclude that (15): 

 

( )d x

dx


 =     (x) = const.    (1.3) 

 

The stress will then have a constant value along the rod line. We call that constant stress the tension 

in the rod and denote it by S. 

 
 (15) From the so-called “fundamental lemma of the calculus of variations,” O. Bolza, Vorlesungen über 

Variationsrechnung, Leipzig and Berlin (1909), pp. 25.   
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 In order to determine the magnitude of the tension, we observe that as a result of (1.2) and 

(1.3), equation (1.1) will go to: 

 

(P – S) ( x1 −  x2) = 0 ,     (1.4) 

 

in which the second factor  x1 −  x2 represents the change in length of the entire rod and can 

be chosen to be non-zero then. Equation (1.4) will then determine the tension to be: 

 

S = P , 

 

i.e., its magnitude is equal to the magnitude of each of the forces that are applied to the rod, and 

it will have the same sign as P2, so it will have a positive sign when the rod is stretched and a 

negative sign when the rod is compressed, which should be clear from Fig. 1. 

 

 

 1.2. The framework, and in particular, its equilibrium. – One constructs a framework out 

of frame members in such a way that one puts a certain number of them between n given points in 

space and connects the ones that come together at each individual point – viz., the so-called nodes 

of the framework – so that they articulate there (16). If the framework is to not be in motion then, 

as one easily convinces oneself (17), the n nodes must be connected by at least (3n – 6) rods, while 

the highest number of possible connecting rods obviously amounts to n (n – 1) / 2. We assume in 

what follows that the framework includes r rods, such that: 

 

3n – 6  r  1
2

( 1)n n − .      (1.5) 

 

 We imagine that such a framework is loaded with a force P1, P2, …, Pn at each of the n nodes, 

under whose effect a certain equilibrium configuration might occur, and each rod will be subject 

to a certain tension. We think of those rods as having been enumerated from 1 to r in some way, 

such that their lengths will be l1, l2, …, lr and S1, S2, …, Sr . Let the n nodes be given by their 

coordinates relative to a three-axis, rectangular coordinate system. We would also like to 

enumerate them, and indeed in such a way that we denote the coordinates of the first point by x1, 

x2, x3, and correspondingly, those of the kth point by x3k−2, x3k−1, x3k, and those of the nth point by 

x3n−2, x3n−1, x3n . We denote the components of the forces P1, …, Pn that act at the nodes with respect 

to the coordinate axis analogously, so those of P1 will be X1, X2, X3, those of Pk will be X3k−2, X3k−1, 

X3k, and finally those of Pn will be X3n−2, X3n−1, X3n . Let the displacements of the nodes that occur 

as a result of that loading be: 

 

x1, x2, x3, …, x3n−2, x3n−1, x3n . 

 

 
 (16) E.g., by a ball joint.  

 (17) Cf., e.g., A. FÖPPL, Vorlesungen über technische Mechanik, Bd. II, 2nd ed., pp. 268. For the planar framework, 

the number of necessary rods will amount to 2n − 3, ibid., pp. 194. 
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 Any rod will connect two nodes; say, the rod h connects nodes  and . Thus, for every rod, 

there will exist a relation of the following type: 

 

fk = 
2 2 2

3 2 3 2 3 2 3 2 3 2 3 2( ) ( ) ( ) hx x y y z z l     − − − − − −− + − + − −  = 0  (h = 1, 2, …, r). (1.6) 

 

 The partial derivatives of the function fk with respect to the coordinates of the node  : 

 

3 2

hf

x −




 = 

3 2 3 2

h

x x

l

 − −−
, 

3 1

hf

x −




 = 

3 1 3 1

h

x x

l

 − −−
,  

3

hf

x 




 = 

3 3

h

x x

l

 −
 (1.7) 

 

give the direction cosines of the direction of the rod that points from node  to node , and likewise 

the derivatives of the coordinates of point  : 

 

3 2

hf

x  −




 = −

3 2 3 2

h

x x

l

 − −−
, 

3 1

hf

x  −




 = − 

3 1 3 1

h

x x

l

 − −−
, 

3

hf

x 




 = − 

3 3

h

x x

l

 −
 (1.7a) 

 

give the direction cosines of the opposite direction (which points from node  to node ) for the 

same rod, while the derivatives of fh with respect to the coordinates of all of the other nodes will 

vanish since they do not enter into (1.6) at all (18): 

 

hf

x




 = 0  (  3 – 2, 3 – 1, 3, 3 – 2, 3 – 1, 3) .  (1.7b) 

 

 In order to examine the equilibrium state of the framework, we once more appeal to the 

principle of virtual displacements. We assign a virtual displacement  x1, …,  x3n to each of 

the n nodes in the equilibrium configuration and then calculate the virtual work that is done by the 

external forces and tensions as a result of it. From the principle of virtual displacements, both of 

them must be equal to each other. 

 In order to calculate the virtual work done by the r tensions, we observe that the three 

component sums of the tensions in all rods that radiate from node  are equal to: 

 

1 3 2

r
h

h

h

f
S

x = −




 ,  

1 3 1

r
h

h

h

f
S

x = −




 ,  

1 3

r
h

h

h

f
S

x =




 , 

 

in which the sums can be extended over all r rods since from (1.7b), the tensions in the rods that 

do not radiate from node  will be multiplied by precisely zero. The virtual work that is done by 

all of the tensions that act node  is then: 

 

 
 (18) This type of notation is used (with inessential modifications) by A. FÖPPL, loc. cit., pp. 239.  
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3 2 3 1 3

1 3 2 3 1 3

r
h h h

h

h

f f f
S x x x

x x x
  

  

  − −

= − −

   
 +  +      

  , 

 

and the total work done by tension will be found from that by summing over all nodes: 

 
3

1 1

n r
h

h

h

f
S x

x


 


= =

 
 

 
   .          (1.8) 

 

 Since the virtual work done by external forces is further equal to: 

 
3

1

n

X x 



=

 ,       (1.8a) 

 

the principle of virtual displacements will then imply the equation: 

 
3

1 1

n r
h

h

h

f
X S x

x
 

 


= =

 
−  

 
  = 0     (1.9) 

as the equilibrium condition. 

 That work will be referred to as the deformation work done on the framework by the virtual 

displacement. 

 That equation can be given a somewhat-different form that often proves to be preferable. 

Namely, varying the relation (1.6) and considering (1.7b) will give: 

 
3

1

n
hf x

x


 


=




  =  lh , 

 

and when we choose the variation  x to be the virtual displacement  x and correspondingly 

replace  l with  l , that will further give: 

 
3

1

n
hf x

x


 


=





  =  l ,    (1.10) 

 

in which  l is the elongation of rod h as a result of the virtual displacement. Equation (1.9) can 

also be written: 
3

1 1

n r

h h

h

X x S l 


 
= =

 −   = 0          (1.11) 

then (19). 

 
 (19) Since Sh  lh is the deformation work that is done on the individual rod by the virtual elongation of the rod 

 lh , equation (1.11) expresses the idea that when one calculates the deformation work of the framework, one must 
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 We next choose the virtual displacement as if it could also be performed on a rigid body. The 

most general such displacement is composed of three parallel displacements along the three 

coordinate axes and three rotations about the coordinate axes. The elongations  l of all frame 

members will be zero under those displacements, such that equation (1.11) will become simply: 

 
3

1

n

X x 



=

 = 0              (1.12) 

for them. 

 For a virtual displacement that is parallel to the x-axis, one has: 

 

 x =  x = … =  x3n− = const., 

 

while all remaining  x will be equal to zero. That implies the condition: 

 

3 2

1

n

X 


−

=

 = 0      (1.13) 

 

for the external forces. It follows analogously for the virtual displacements that are parallel to the 

y and z-axis that: 

3 1

1

n

X 


−

=

 = 0 ,  
3

1

n

X 
=

 = 0 .    (1.13a) 

 

 If the virtual displacement consists of a rotation through an angle  around the x-axis then: 

 

 x =  x = … =  x3n− = 0 , 

and 

  x = − x3  , …,  xn−1 = − xn  , 

  x =    x2  , …,  xn  =  xn−1  . 

 

 It will then follow from (1.12) that: 

 

3 1 3 3 3 1

1

( )
n

x X x X   


− −

=

−  = 0 ,    (1.14) 

 

and analogously, that will give: 

3 3 2 3 2 3

1

( )
n

x X x X   


− −

=

−  = 0 , 

 
simply take the sum of the virtual deformation works of the individual rods, such that the changes in the angles between 

the rods can be neglected, since the part of the work that is due to that will be a second-order infinitesimal. (By 

contrast, the changes in the angles themselves are not by any means of second order.) 
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(1.14a) 

3 2 3 3 3 2

1

( )
n

x X x X   


− −

=

−  = 0 

 

for the rotations around the y and z-axes. 

 Equations (1.13) and (1.14) together say that the external forces that act upon the framework 

must fulfill the equilibrium conditions for the forces on a rigid body. 

 In engineering practice, those six condition equations between the external forces are employed 

in a somewhat-different way. When the framework is intended to be a supporting structure, the 

motions that it can perform as a rigid body will be inhibited by suitable fasteners that might be so 

arranged that they do not impede the elastic deformation in any way, as we would initially like to 

assume, for simplicity. Of the six motions that were considered above, we might inhibit the parallel 

displacements by, say, fixing one node absolutely. A second node that is connected to it by a rod 

shall further be capable of moving only along a straight line that goes through the fixed node. In 

that way, only a rotation of the entire framework around that line as its axis will be possible. We 

inhibit it when we demand of a further node that it must remain in a fixed plane that goes through 

the aforementioned line. We choose the fixed node of the framework to be the origin of our three-

axis coordinate system, with the line that runs through as the x-axis and the plane that goes through 

it to be the (x, y)-plane. 

 Corresponding to those fastening conditions, we divide the external forces, i.e., the 3n 

components (X1, X2, …, X3n), into two groups. In the first group, we first include the components 

of the forces that act upon the fixed node, as well as the y and z-components of the force that acts 

upon the node that can move only along the x-axis, and finally the z-component of the force that 

acts upon the points that can move only in the (x, y)-plane. We take the second group to include 

the components of the remaining (3n – 6) components. We shall call the six components in the 

first group the support reaction of the framework and denote them by R1, R2, …, R6 , while we 

shall refer to the (3n – 6) components in the second group as the loads on the framework or external 

forces (also active forces), in the more restricted sense. We would now like to change our 

numbering of the coordinates of the nodes and the components of the external forces that act upon 

them in such a way that we now number the (3n – 6) components of the second group from 1 to 

(3n – 6): X1, …, X3n−6 . They should always be thought of as given, whereas the reactions R1, R2, 

…, R6 can then be calculated by means of equations (1.13) and (1.14) (20). We correspondingly 

denote the associated nodal displacements by x1, …, x3n−6 . Due to the fastening conditions, the 

points of application of the six reactions will either remain unchanged or move perpendicular to 

 
 (20) We have excluded the externally statically-indeterminate frameworks with our choice of fastening conditions 

and restricted ourselves to the internally statically-indeterminate ones, which will be called statically-indeterminate in 

what follows, per se. In practice, the fastening conditions are not prescribed in such a simple way, either, since all 

fasteners are elastically compliant, in reality. Those questions, as well as how one reduces externally statically-

indeterminate systems to ones that are internal statically indeterminate are treated thoroughly in the engineering 

literature. In particular, confer O. MOHR, Abhandlungen aus dem Gebiet der technischen Mechanik, Berlin, 1906, 

passim, as well as H. MÜLLER-BRESLAU, Die neueren Methoden der Festigkeitslehre, 4th ed., Leipzig, 1913, and 

Die graphische Statik der Baukonstruktionen, 3rd ed., Leipzig, 1908. 
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those reactions. Therefore, the reactions will obviously do no work under a virtual displacement 

of the framework, and in place of (1.11), one will have: 

 
3 6

1 1

n r

h h

h

X x S l 


 
−

= =

 −    = 0 ,    (1.15) 

and 

3 6

1 1

n r
h

h

h

f
X S x

x
 

 


−

= =

 
−    

  = 0 ,    (1.15a) 

 

in place of (1.9), resp. Since the  x are arbitrary displacements, that will give the (3n − 6) 

equilibrium conditions for the tensions: 

 

1

r
h

h

h

f
S

x=




  = X ( = 1 2, …, 3n – 6).  (1.16) 

 

 The problem of finding the magnitudes of the tensions in all rods – viz., the so-called stress 

problem – is especially important in engineering. When the number of rods in the framework is as 

small as possible, i.e., precisely (3n – 6), those (3n – 6) equilibrium conditions will determine all 

unknown tensions, and the stress problem will be resolved with no further analysis. One therefore 

calls such frameworks statically determinate. However, as soon as the number of rods is greater 

than (3n – 6), equations (1.16) will no longer suffice to solve the stress problem. The framework 

will then be called statically indeterminate, and the solution of the stress problem will then require 

that one must appeal to elasticity. 

 

 

 1.3. The intervention of elasticity. Solving the stress problem for statically-indeterminate 

frameworks. – We now imagine that the individual frame members are elastic and assume that 

each of them obeys Hooke’s law, that is, in our case, the elastic rods experience elongations l that 

are proportional to the tensions S : 

l =  S , S = 
1

l


 .        (1.17) 

 

 The proportionality factor  is expressed in terms of the so-called Young modulus E of the 

material, the length l and the cross-section F of the rod in the following way: 

 

 = 
l

E F
.         (1.17a) 

 

 Since all tensions are known from the equilibrium conditions (1.16) for statically-determinate 

frameworks, one will also know all elongations of the rods from (1.17), and with that, the new 

lengths that the frame members will assume in the deformed state. Now, a geometrical or 
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kinematical argument will show that the lengths of the rods can be given arbitrarily in a statically-

determined framework, but in such a way that the distances between all nodes will be determined 

by them (21). Therefore, the displacements of the nodes that come about as a result of the 

deformation can also be calculated from the elongations of the rods, and we will also control the 

elastic deformation of statically-determined frameworks directly. 

 We now make use of that fact in order to resolve the stress problem for statically-indeterminate 

frameworks, as well. For a statically-indeterminate framework, we can (and generally in many 

different ways) ignore (r – 3n + 6) rods without the remaining system, which should include all n 

nodes, ceasing to be a figure that does not move. Such a remaining system will include 3n – 6 rods, 

so it will be statically determinate. We would then like to call it a statically-determinate principal 

system for the given statically-indeterminate framework. 

 The distances between all nodes of the given framework are determined from the lengths of 

the rods in that statically-determinate principle system, and therefore the lengths of its other (r – 

3n – 6) rods, which are the so-called superfluous rods. The dependency might possess the form: 

 

3 6 1 1 1 2 3 6

3 6 2 2 1 2 3 6

3 6 1 2 3 6

( , , , ) ,

( , , , ) ,

.............................

( , , , ).

n n

n n

r r n n

l l l l

l l l l

l l l l







− + −

− + −

− + −

= 


= 


= 

    (1.18) 

 

 By taking the differentials of those equations, we will obtain the elongations l3n−6+1, …, lr 

of the superfluous rods as functions of the elongations l1, …, l3n−6 of the statically-determined 

principal system. 

 The stress problem for the statically-indeterminate framework is likewise solved when the 

relations (1.18) are known. Namely, we can introduce the rod elongations l into the equilibrium 

conditions (1.18) in place of the tensions using (1.17). Initially, nothing would be gained by doing 

that since the 3n – 6 equations would still not suffice to determine the r unknowns l. However, 

one can eliminate the elongations l3n−6+1, …, lr of the superfluous rods from them by taking the 

differential of the relation (1.18), and the remaining l1, …, l3n−6 will be determined uniquely 

from them. Nonetheless, if they are known then the elongations of the superfluous rods will also 

be determined by the differentials of (1.18). We will then know the elongations of all r rods then, 

and we can easily calculate all tensions from then by using (1.17). Naturally, we will likewise 

master the deformation of the framework with that. 

 In the theory of frameworks, one does in fact initially imagine that equations (1.18) have 

actually been posed in each case (22), even though that will already lead to apparently-effortless 

calculations in some simple cases. However, one will soon see that it would be simpler to directly 

pose the linear relations for the rod elongations l instead of the relations (1.18), which refer to 

the lengths of the rods themselves, and which one does not need at all for the further calculations. 

 
 (21) Cf., e.g., A. FÖPPL, Vorlesungen über technische Mechanik, II, pp. 195.  

 (22) Cf., M. LÉVY, La statique graphique et ses applications aux constructions, Paris 1874, as well as L. F. 

MENABREA, Atti della R. accademia dei lincei (2) 2 (1873-1875), pp. 201, et seq. 
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The first to tread that path was MAXWELL (23). He succeeded in representing the changes in 

length of the superfluous rods as linear functions of the changes in length of the rods of the 

principal system by an argument that again employed concrete representations of the elastic 

deformation by appealing to the so-called Clapeyron theorem. 

 Independently of him, MOHR (24) achieved the same representation later, by appealing to the 

principle of virtual displacements directly. After removing the external forces, he also dropped the 

superfluous rods from the given framework and considered the remaining, statically-determinate, 

system. We imagine that two forces of absolute value one are applied to the nodes of the system 

that were connected by superfluous rods l3n−6+2 that have the direction of the superfluous rod that 

was dropped and are equal and opposite to each other. They will create a stress state (1)

1s , (1)

2s , …, 

(1)

3 6ns −
 in the principal system that is determined completely by the equilibrium conditions of the 

principal system, which are linear equations of the form (1.16). (In engineering practice, those 

stresses s are ascertained by simple graphical methods with a suitable choice of the principal 

system.) We would like to apply the principle of virtual displacements to equation (1.15) for the 

equilibrium state of the principal system, and indeed in so doing we would like to think of the 

elongations of the rods of the principal system l as being given arbitrarily, which will also 

determine the displacements x of all nodes. Since only the two unit forces act as external forces, 

the only two nodal displacements that come under consideration will be the ones to which those 

unit forces are applied. 

 One can easily give the work done by the two unit forces under the virtual displacement directly 

since for each of those displacements, the work will be equal to the projection of the displacement 

of the node in the direction of the force, i.e., onto the first superfluous rod. Taken together, those 

two projections are equal to the elongation of the connecting line between those two nodes, i.e., 

they are equal to l3n−6+1 . Equation (1.15) for the principle of virtual displacement then implies 

that: 

l3n−6+1 − 
3 6

(1)

1

n

h h

h

s l
−

=

  = 0 ,           (1.19) 

 

with which we have then found the first of the desired conditions for the elongations of the rod. If 

we also apply the same process to all of the remaining pairs of nodes that are connected by 

superfluous rods then we will find the further relations: 

 

l3n−6+1 − 
3 6

(2)

1

n

h h

h

s l
−

=

  = 0 , 

…………………………..        (1.19a) 

 
 (23) J. Cl. MAXWELL, “On the calculation of the equilibrium and stiffness of frames,” Phil. Mag. 27 (1864), pp. 

294, and also Scientific Papers, 1, pp. 598.  

 (24) O. MOHR, “Beitrag zur Theorie der Bogenfachwerkträger,” Zeitschrift des Architekten- und Ingenieurverains 

zu Hannover (1874), pp. 223. O. MOHR, “Beiträge zur Theorie des Fachwerks,” ibid. (1874), pp. 509, ibid. (1875), 

pp. 17. Naturally, the Mohr process, which is based upon the abstract principle of virtual displacements, also subsumes 

the cases (like the so-called temperature stresses) that are initially overlooked in the MAXWELL representation.   
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l3n − 
3 6

( 3 6)

1

n
r n

h h

h

s l
−

− +

=

  = 0 . 

 

 These (r – 3n + 6) conditions (1.19) and (1.19a) for the rod elongations are referred to as the 

compatibility conditions for the framework in the terminology of the theoretical study of elasticity. 

In technical practice, one introduces the terms elasticity conditions or condition equations for 

them. They directly represent the (r – 3n + 6) equations by means of which we can eliminate 

enough l from the equilibrium conditions (1.16) (by introducing the modified l) that the 

remaining ones will be determined uniquely. 

 If one only wishes to solve the stress problem then it would be simpler to replace the lh in 

equations (1.19) and (1.19a) with the tensions Sh by using (1.17). We will then get r – 3n + 6 

condition equations or compatibility conditions for the tensions. Together with the 3n – 6 

equilibrium conditions (1.16), they will determine all r tensions. 

 A path to solving the stress problem for the statically-indeterminate framework that is simpler 

in principle was pursued by Castigliano (25). Just as we can avoid the compatibility conditions for 

the deformation components (stress components, resp.) completely in the theory of elasticity by 

introducing the displacement components in place of the six deformation components, here we can 

also arrive at a solution to the problem without explicitly exhibiting the elasticity relations by 

observing that from equation (1.10) the rod elongations must be expressible in terms of the 

displacements of the nodes of the framework in the form: 

 

lh = 
3 6

1

n
hf x

x


 

−

=





 , 

and therefore, we will also have: 

Sh = 
3 6

1

1 n
h

h

f
x

x


 

−

=





       (1.20) 

from (1.17). 

 If we introduce those expressions into the (3n − 6) equilibrium conditions (1.16) then the (3n 

− 6) unknowns x can be calculated from them. However, if the x are known then we will find 

all tensions inversely from (1.20). In practice, that theoretically-simpler solution to the stress 

problem is always coupled with laborious calculations that do not contribute to the clarification of 

the question that is essential to the engineer, so it has never been adopted into engineering practice. 

 

 

 1.4. The minimum of total energy. Canonical transformation. Menabrea’s principle. – 

For the following considerations, which are true for both statically-determinate and statically-

indeterminate frameworks, we once more appeal to the expression (1.15) for the principle of virtual 

displacements: 

 
 (25) A. CASTIGLIANO, Dissertazione di laurea, Turin, 1873.  
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3 6

1 1

n r

h h

h

X x S l 


 
−

= =

 −    = 0 ,           (1.15) 

and substitute: 

Sh = 
1

h

h

l


  

 

in the second term using (1.17). It will then read: 

 

1

1r

h h

h h

l l
=

   , 

 

and will then be the variation of the sum of squares: 

 

 (lh) = 
2

1
2

1

( )r
h

h h

l

=


  .    (1.21) 

 

 In the first term in (1.15), the external forces X are given constants, so we can regard that term 

as the variation of a linear function of the x . If we set (26): 

 

 (x) = 
3 6

1

n

X x 


−

=

       (1.22) 

then we can write (1.15) as: 

 [ (x) +  (lh) ] = 0 ,          (1.23) 

or when we introduce: 

E =  + ,          (1.24) 

more briefly as: 

E = 0 .     (1.21a) 

 

 The equation of the principle of virtual displacements is then equivalent to the one that the 

function E must be an extremum. 

 From (1.22), the function  can be regarded as the potential or potential energy of the given 

external forces. On the other hand, the individual terms in the sum of the squares (1.21) are equal 

to the deformation works for the individual rods that are actually done under the elastic 

deformation of the framework as a result of its loading by the external forces. That is because, as 

one can also always let those external forces increase from their initial values to their final values, 

the lh and Sh will always be determined by them at each moment (since one only goes through 

the equilibrium state). One can also characterize the state that exists at each moment by giving the 

associated values 
hl , and therefore by regarding them as independent variables. The 

hS  will then 

 
 (26) One should probably call that function the virial of the given external forces.  
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be functions of the 
hl , and indeed the relation (1.17) will also be true for each instant while the 

elastic deformation is being produced. Now since the deformation work that is done on rod h is: 

 

h hS d l  = h
h

h

l
d l




  

 

at each instant, it will follow that the total deformation work done on rod h by our elastic 

deformation will be: 

0

hl

h
h

h

l
d l






  = 
( )

2

2

h

h

l




 . 

 

The function  is then equal to the total deformation work done on the framework. E itself is then 

the sum of the potential energy of the external forces and the deformation work (of the potential 

energy of the internal forces), so E is the total potential energy of the framework. The relation 

(1.23a) says only that the equilibrium state of the framework will be characterized by the fact that 

the total potential energy will possess an extremal value for it (27). In that way, the function E is 

regarded as a function of the (3n – 6) nodal displacements x . Those nodal displacements vary 

arbitrarily, and the framework remains connected under the variation, but the varied states are not 

equilibrium states. Equilibrium will exist only when E is an extremum. 

 The nodal displacements x appear in the two terms  and  that comprise E in different 

ways. Whereas  is a linear function of the nodal displacements x,  initially depends 

quadratically upon the rod elongations lh , in which one introduces: 

 

lh = 
3 2 3 2 3 1 3 1 3 3

3 2 3 1 3

( ) ( ) ( )h h hf f f
x x x x x x

x x x
     

  

− − − −

− −

  
 −  +  −  +  − 

  
,  (1.26) 

 

from (1.6). Thus, only the 3r differences between the nodal displacements appear in that. For the 

following argument, we would like to regard those differences as independently variable. E will 

then be a function of, on the one hand, the nodal displacements x, and on the other, the 

differences between the nodal displacements (x − x) (28): 

 

E = E [(x − x), x] =  [(x − x)] +  (x) .  (1.27) 

 
 (27) On this, cf., L. DONATI, Memorie della R. Accademia di Bologna (4) 10 (1889), pp. 267, et seq., A. FÖPPL, 

Vorlesungen über technische Mechanik, Bd. V, pp. 259. 

 (28) This dependency of the function E upon the x and their differences (x − x) is similar to the way that the 

Lagrangian function L = T –  (where T is the kinetic energy and  is the potential energy) in analytical mechanics 

depends upon coordinates q and their differential quotients with respect to time, namely, the associated velocities: 

 

L = 1 2
1 2, , , , ,

dq dq
q q

dt dt
L

 
 
 

 . 
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 We would now like to apply a transformation to that function E that represents a type of 

extension of the so-called Legendre transformation in the realm of the differential calculus. We 

set the derivatives of E with respect to the differences of the x equal to new unknowns, say: 

 

3 2 3 2( )

E

x x − −



  − 
 = 3h−2 , 

3 1 3 1( )

E

x x − −



  − 
 = 3h−1 ,         (1.26) 

  
3 3( )

E

x x 



  − 
 = 3h , 

 

in which the lower indices of the  indicate that they belong to rod h. In order to see the meaning 

of these new unknowns, we observe that from (1.21) and (1.23): 

 

3 2 3 2( )

E

x x − −



  − 
 = 

3 2 3 2( )

h

h

lE

l x x − −

 

   − 
 = 

3 2

h h

h

l f

x  −

 


, 

 

such that we will then have: 

3h−2 = 
3 2

h
h

f
S

x −




,     (1.27) 

and analogously: 

3h−1 = 
3 1

h
h

f
S

x −




, 3h = 

3

h
h

f
S

x 




,    (1.27a) 

  

i.e., the three components of the tension Sh along the three coordinate axes. In the spirit of the 

Legendre transformation, E is now replaced with the new function H (29): 

 

 
 (29) In analytical mechanics, this transformation corresponds to the so-called canonical transformation of Poisson 

(Hamilton, resp.), by which the derivatives of the Lagrangian function L with respect to the unknowns q   are set equal 

to new unknowns p : 

L

q




 =  p ,      (a) 

 

in which the p are the so-called impulses. In that way, the Hamiltonian function: 

 

( , )q p L q q−  = H (p, q) 

 

will appear in place of the Lagrangian function, which depends upon the impulse p (in addition to the q) (unreadable 

word in the original). 



1.4. – Minimum total energy. Canonical transformation. 17 

 

3 2 3 2 3 2 3 1 3 1 3 1 3 3 3

1

[ ( ) ( ) ( )]

[( ), ] ( , ) ,

r

h h h

h

h

x x x x x x

E x x x H x

     

   

− − − − − −

=

  −  +   −  +   − 

−  −   =  


  (1.28) 

 

which is to be regarded as depending upon the new variables  (in addition to the x). The 

coordinate differences that appear on the left-hand side are then to be thought of as expressed in 

terms of the  by means of equations (1.26). The sum extends over all frame members. 

 Since that sum is equal to 
1

r

h hh
S l

=
 , from (1.27) and (1.25), and since the differences of the 

x also occur in E only in the combination lh, it would be convenient from now on to no longer 

regard the 3r differences of the x as independent variables, but only their r combinations lh (
30). 

In order to perform the Legendre transformation, we will then have to introduce the derivatives: 

 

h

E

l



 
 = h

h

l




 = Sh     (1.26a) 

 

as new variables, and indeed in the new function: 

 

1

( , )
r

h h h

h

S l E l x
=

 −    = H (Sh, xl) .   (1.28a) 

 

 We will then get [see eqs. (1.26a), (1.21), and (1.22)]: 

 

H (Sh , xl) = 
1

( , )
r

h h h

h

S l E l x
=

 −    , 

3 6
2 21

2

1 1 1

r r n

h h h h

h h

S S X x 


 
−

= = =

− +     = H (Sh , xl) , 

or 

H (Sh , xl) = 
3 6

21
2

1 1

r n

h h

h

S X x 



−

= =

+   .   (1.28b) 

 

We would now like to introduce a new function  with the help of the function H by the Ansatz: 

 

 (Sh , xl) = 
1

( , )
r

h h h

h

S l H l x
=

 −    

 
 (30) That is analogous to the view that one often finds it more convenient to consider the gradient of a certain 

function z = z (x, y) in a certain direction 
z

s




 = 

z x z y

x s y s
+

   

   
, instead of the two partial derivatives z / x, z / y . 
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= 
3 6

1 1

( , )
r n

h
h h

h

f
S x H l x

x
 

 

−

= =

 
 −   

 
     (1.29) 

 

and ask what the extremum of this function  would be when we regard the Sh and x in it as 

independent variables (31). The variations of the tensions Sh and the nodal displacements x will 

then prove to be independent of each other. No relation will then exist between the tensions and 

the rod elongations that are determined by the nodal displacements in the varied state. Such a thing 

will first be introduced by the extremum requirement. If we next fix the x in  and imagine that 

only the Sh are variable then the extremum condition will become: 

 

hS




 = 

3 6

1

n
h

h

f H
x

x S


 

−

=

 
 −

 
  = 0 , 

or from (1.28b): 

h Sh = 
3 6

1

n
hf x

x


 

−

=





  = lh .       (1.30a) 

 

 That says that the tensions are expressed in terms of the rod elongations (nodal displacements, 

x, resp.) by way of Hooke’s law. The other requirement, viz., that  will also be an extremum 

for those x, leads to the equilibrium conditions. That is because if we introduce the expressions 

for the tensions Sh that were found above into the function , eq. (1.29), then it will go to the 

function E whose extremum will, as we know, lead to the equilibrium conditions, cf., eq. (1.23a). 

However, the direct Ansatz  /  x will also lead to the equilibrium conditions. Namely, it will 

imply that: 

x



 
 = 

1

r
h

h

h

f H
S

x x =

 
−

  
  = 0 , 

or from (1.28b) (32): 

 

 (31) The transition from E to  in analytical mechanics is analogous to the transition from the variational problem 

for Hamilton’s principle: 
1

0

1 2 1 2( , , , , )

t

t

L q q q q dt  

to the canonical variational principle. 

 (32) Equations (1.30a) and (1.30b) are the analogues of the canonical equations of mechanics: 

 

dq

dt
 = 

H

p




, 

dp

dt
 = −

H

q




, 

 

the first of which expresses the connection between the velocity components and the impulse, while the second one 

expresses the equations of motion. The equations: 
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1

r
h

h

h

f H
S

x x =

 
−

  
  = 0 .    (1.30b) 

 

 We will then have the following result of our extremum condition on  (Sh, x): The first 

group (1.30a) implies the relations that exist between the tensions and rod elongations (the 

displacements of the nodes, resp.) on the basis of Hooke’s law. (For statically-indeterminate 

frameworks, we can derive the compatibility conditions for the tensions from that.) The second 

group (1.30b) represents the equilibrium conditions. Collectively, the two groups simultaneously 

resolve the stress problem, as well as the deformation problem, completely and for statically-

determinate, as well as statically-indeterminate frameworks. 

 As we just saw, the previous requirement (1.23a) that the function E (x) must be extremized, 

which was equivalent to the principle of virtual displacements, will arise from the general 

requirement of the extremum of the function  as a function of the Sh and the x when we assume 

that the first group of equations (1.30a) is fulfilled, i.e., the compatibility conditions for the 

deformations are valid. 

 It is now natural to assume that the second group of equations (1.30b) is fulfilled and ask 

whether there is an extremum problem that will lead to the first group, i.e., the compatibility 

conditions. 

 The function that is to be extremized here is obtained immediately, because from (1.29) and 

(1.28b),  will possess the form: 

 (Sh, x) = 
3 6

21
2

1 1 1

n r r
h

h h h

h h

f
S X x S

x
 

 


−

= = =

 
−  − 

 
    . 

 

 Should the equilibrium conditions (1.30b) be fulfilled, as we assume here, then the first term 

will drop out, and the extremum of the function , which will yield the compatibility conditions 

when one considers the auxiliary conditions, is equivalent to the extremum of the function: 

 

( )hS  = 
21

2

1

r

h h

h

S
=

  .     (1.31) 

 

 

( )E x

x





 

 
 = 0 , 

 

which are the conditions for the minimum of E (x), correspond to the Lagrange equations (of the second kind) in 

mechanics: 

d LL

qdt q

 
−  

 



 
 = 0 . 
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 That function represents the sum of the deformation works of the individual frame members 

under elastic deformation when they are caused by the tensions Sh . Naturally, one can speak of an 

extremum of that function, with equations (1.30b) as the auxiliary conditions, only when one is 

dealing with a statically-indeterminate framework. That is because for a statically-determinate 

framework, the equilibrium conditions determine all tensions, and the function (1.31) will assume 

only a single, well-defined value. That agrees with the fact that indeed no compatibility conditions 

will exist for the tensions in this case either. 

 However, for a statically-indeterminate framework, we compare the stress states in the 

individual rods that satisfy the equilibrium conditions for the nodes under that extremum 

requirement and attempt to characterize those of them (the so-called stress diagram) for which the 

rods take on lengths under the elastic stresses such that they can be once more combined into the 

given framework. It is only in the special stress state that we first sought that we could refer to the 

sum (1.31) of the deformation works in the individual rods as the deformation work done on the 

framework, strictly speaking. Nonetheless, it is customary in engineering literature to refer to the 

function   as the deformation work done on the framework even for a general choice of the Sh. 

However, when one speaks of the extremum of the deformation work, one then speaks of the 

extremum of the function ( )hS , with the equilibrium conditions: 
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r
h

h

h

f
S

x=




  = X  ( = 1, 2, …, 3n – 6) 

as auxiliary conditions. 

 In order to show once more that the extremum of   will actually lead to the compatibility 

conditions for the stresses without referring to the foregoing argument, we consider the auxiliary 

conditions using the method of Lagrange factors. 

 If 1, 2, …, 3n−6 are the Lagrange factors then we must look for the extremum of: 
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as a function of the Sh . That immediately leads to the equations: 
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h h h
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S

x

 
=


+


  = 0 ,         (1.32) 

 

which are, in fact, the first group of equations (1.30a) and are equivalent to the compatibility 

conditions. We further remark that the Lagrange factors that were introduced agree with the 

displacements of the nodes, up to sign. That latter principle is much-employed in the engineering 

theory of elasticity. It is what one calls Menabrea’s principle, after the Italian military engineer 

MENABREA. Later on, we shall consider it from a somewhat-different perspective. 

 

 



 

 1.5. Deformation work as a function of external forces. Castigliano’s theorems. Maxwell’s 

reciprocity theorem. – One can calculate all of the forces X1, …, X3n−6 from the equilibrium 

conditions for the nodes and the compatibility conditions for the framework: 

 

Sh = 
3 6

( )

1

n
ka X 



−

=

 ,     (1.33) 

 

whose constant coefficients depend upon the structure of the framework, and for statically-

indeterminate frameworks, also upon the dimensions and elastic properties of the frame members. 

If one introduces the values (1.33) of the Sh into the function (1.31) ( )hS  then it will assume an 

extremal value that is consistent with the equilibrium conditions and for which the compatibility 

conditions will be fulfilled, from the previous section. We denote it by ( )k . The deformation 

work done on the framework that ( )k  represents will then be a quadratic form in the external 

forces: 

( ) ( )k

hS  = 
3 6

, 1

n

ik i k

i k

c X X
−

=

            (1.34) 

 

whose coefficients cik can be constructed from the ( )ka  in a simple way (33). 

 Along with that expression for the deformation work done on the framework as a function of 

the external forces, we can pose another one that determines the dependency of the deformation 

work on the displacements of the nodes. Namely, if the displacements of the nodes are given and 

we demand that an equilibrium state of the framework should occur then we can easily determine 

the external forces for which the nodal displacements would have the given values. That is because 

from (1.10), we can calculate all rod elongations lh from the nodal displacements x, and 

therefore also know all tensions Sh for the individual rods from Hooke’s law. The equilibrium 

conditions will then immediately imply the external forces X that must be applied to the nodes in 

order to justify the deformation of the framework that belongs to the given displacements of the 

nodes x . In order to calculate the deformation work that will be performed under the transition 

of the framework from the stress-free natural state to the desired equilibrium state, we appeal to 

the expression (1.21): 

 
 (33) If we would like to pursue the analogy between our representation and analytical mechanics further then this 

representation of the deformation work would be the analogue of the principal function or varied action that W. R. 

HAMILTON introduced, i.e., the action integral whose integration path is an extremal: 

 
( 2) ( 2)

1 1 2

( ) (1)
1 1 2

, , ,

1 2 1 2

, , ,

( , , , , , , )
k

t q q

t q q

L q q q q t dt  . 

 

Just as one must choose precisely the extremal from the manifold of integration paths that can connect two given 

reference points and prescribe them such that value of the integral is determined by the two limits in that context, here 

we must choose from all possible Sh that fulfill the equilibrium conditions at the nodes for given external forces X, 

precisely the ones that make the function an extremum, which will then make that extremal value into a function of 

the external forces. 
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 = 
2

1
2
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( )r
h

h h

l

=


 ,     (1.21) 

 

and replace the lh in them with the nodal displacements x . In order to suggest that we regard 

the state of the framework that belongs to the given nodal displacements as an equilibrium state 

that is attained under the action of suitable external forces, we denote the expression (1.21) by (g). 

Since the lh are homogeneous and linear in the x, the deformation work (g) done on the 

framework will be a quadratic form in the x : 

 

(g) (x) = 
3 6

, 1

n

ik i k
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x x
−

=

  ,         (1.35) 

 

in which the ik are constants that are easy to calculate. 

 We will get the following two representations of the quadratic forms (1.34) and (1.35) from 

EULER’s theorem on homogeneous functions: 
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and 

(g) (x) = 
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 ,       (1.35a) 

which we will need shortly. 

 The two functions ( ) ( )k X  and (g) (x) are two expressions for the actual work done on 

the framework. We would now like to derive a new expression for the common value of the 

deformation work. If the two systems X (x, resp.) belong to the same state of deformation of 

the framework then their values will agree. Namely, from Hooke’s law (1.17), one has: 
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If we replace the rod elongations lh with the displacements of the nodes x by means of equations 

(10): 

lh = 
3 6

1

n
hf x
x


 
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


  

then that will give: 
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(g) = ( )k = 
3 6

1
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X x 


−

=

 .         (1.36) 

 

 One then has the theorem that the deformation work is equal to one-half the work that would 

be done by the external forces if they acted with their final values throughout the total deformation. 

That theorem goes by the name of Clapeyron’s theorem. 

 If we combine that equation (1.36) with (1.34) and (1.35) then we will get the two relations: 
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or as we can also write, from (1.34a) [(1.35a), resp.]: 
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and 
3 6

1

n

X x 


−

=

  = 
( )3 6

1

gn

x
x


 

−

=





 .    (1.37b) 

 

In the first of those equations, the X are entirely-arbitrary variables, while in the second one, it is 

the x . We then conclude that: 

 
( )k

X




  = x ,  

( )g

x




 = X .           (1.38) 

 

Those two formulas include the so-called theorems of Castigliano on the derivatives of the 

deformation done on a framework, which are proved in the manner that was given above. We can 

express them in words as follows: 

 

 If the deformation work done on a framework is represented as a function of the (3n – 6) 

components X of the external forces then its derivative with respect to any of those components 

will be equal to the displacement x of the associated node in the associated direction, 

 

and conversely: 
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 If the deformation work done on a framework is expressed as a function of the (3n – 6) 

components x of the nodal displacements then its derivative with respect to any of those 

components will be equal to the associated force component X (34). 

 

 Both theorems are true for statically-determinate, as well as statically-indeterminate 

frameworks. 

 In engineering practice, one often applies them in a slightly-different form. For example, if 

X3n−2, X3n−1, X3n are the three components of force P that is applied to node , i.e.: 

 

X3n−2 = P cos (x, P) ,  X3n−1 = P cos (y, P) ,  X3n = P cos (z, P) , 

 

and we introduce the deformation work ( )k  in place of the three components of the force P itself 

then we will have: 
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or [cf., (1.38)]: 

 
( )k

P




 = x− cos (x, P) + x− cos (y, P) + x cos (z, P) =  ,  (1.38a) 

 

in which  is the projection of the displacement of node  onto the direction of the force P that 

is applied to that node. When we likewise introduce the displacement p of node  into the 

expression for the deformation work (g) in place of the three components x−, x−, x of 

that displacement, we will get, in an entirely-analogous way: 

 
( )g

p




 =  ,           (1.38b) 

 

in which  is the projection of the force that is applied to node  onto the direction of the 

displacement. 

 Castigliano’s theorems, when formulated as in (1.38), give the differential quotients of the 

deformation work ( )k  [(g), resp.] with respect to the for components (the components of the 

nodal displacements, resp.). Here we have appealed to the local differential of the deformation 

work in eqs. (1.38a) and (1.38b), and from that, we defined derivatives with respect to the resultant 

P of the components of the force that acts on node  (the resultant p of the components of the 

displacement of node , resp.). In practice, it is often convenient to go a bit further and combine 

 
 (34) In the original version of this treatise, two handwritten theorems were given on the back of page 27 that 

logically belonged here. The handwriting, as well as the imprecise way of expressing them, suggest that they were not 

due to the principal editor (Prange?). We will then forgo repeating them. 
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several of the forces that act on the framework into groups of forces and then regard those forces 

as functions of one parameter. In the total differential of the deformation work, the differentials of 

the X will then be determined by that parameter, and the transition to the (directional) derivatives 

with respect to that parameter will yield a certain statement about the displacements of the 

application points for the force group. 

 We thus come to the many corollaries to Castigliano’s theorems. As an example, we take the 

most important case that relates to frameworks. Two forces P and P might act at two nodes  

and , which are both equal in absolute magnitude and act along the line that connects the nodes 

but point in opposite directions. If we now imagine that the deformation work is expressed as a 

function of the external forces then if only P and P vary, we will have (35): 
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( ) ( )k k

P P
P P

 

 

 
 
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 

 =  P +  P , 

 

in which  is the displacement of node  and  is the displacement of node , both of which have 

the direction of the connecting line. If we regard those forces P and P as functions of one 

parameter P such that we set: 

P = P , P = − P , 

 

i.e., if we vary the two forces in such a way that the two forces remain equal to each other: 

 

P = − P = P , 

 

then the factor  −   that appears on the right in the equation above will represent the change 

in length  of the connecting line between both nodes. If we refer to the given force-group as a 

“tension” P between the two nodes then the equation: 

 
( )k   = ( −  ) 

 

will show that the derivative of the deformation work ( )k  with respect to the tension P will be 

equal to the change in length  of the line that connects the two nodes: 

 
( )k

P




 =  .      (1.39) 

 

 The system of coefficients of the quadratic form: 

 

 
 (35) In the following equations, we will deviate slightly from the original versions, in that, e.g., we will not write 

( )k
d , but 

( )k
  , i.e., the variation symbol  will be written in place of d. 
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that represents the deformation work as a function of the external forces is symmetric: 

 

cik = cki , 

which agrees with the identity: 
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 The bilinear form that belongs to the quadratic form: 
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will then be a symmetric bilinear form. Since cik = cki , one will have: 
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 If we imagine that Y1, …, Y3n−6 are external forces that act upon the framework then that will 

express the deformation work in the form: 
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 If we correspondingly denote the nodal displacements that are produced by those forces Y by 

y1, y2, …, y3n-6 then from the first Castigliano theorem, along with the relation: 
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Equation (1.42) will then go to the new equation: 
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That is the analytical expression for the so-called Maxwell reciprocity theorem: 

 

 If two systems of forces that act upon a framework: 

 

X1, …, X3n−6  (Y1, …, Y3n−6, resp.) 

 

produce the nodal displacements: 

 

x1, …, x3n−6  (y1, …, y3n−6, resp.) 

 

then the product of the forces in the second system of forces with the displacements that are 

produced by the first system will equal the product of the forces in the first system with the 

displacements that are produced by the second system (36). 

 

 Maxwell’s theorem can be given a series of special versions that one often finds expressed in 

the literature by specializing the two systems of forces. (Moreover, we would come to the same 

theorem if we had started from the expression for the deformation work in terms of nodal 

displacements and had applied the second Castigliano theorem.) 

 If we would like to pursue the analogy between our representation and analytical mechanics 

further then that representation of the deformation work as a function of the external forces would 

be the analogue of the varied action that W. R. Hamilton introduced, i.e., the action integral, when 

its integration path is an extremal: 
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t q q

t q q

L q q q q t dt  . 

 

No matter how one chooses precisely that extremal from the manifold of all integration paths that 

connect two given limit points and prescribes it such that the value of the integral is determined 

by the two limits, here we will have to choose from all possible values of the Sh that fulfill the 

equilibrium conditions at the nodes for given external forces X precisely that value that makes the 

function an extremum, which will the make that extremal value a function of the external forces. 

 

 

 1.6. A different perspective on Menabrea’s principle. – For statically-determinate 

frameworks, all (3n – 6) undetermined tensions will be determined as linear functions of the 

external forces by the equilibrium conditions (1.16) alone. In engineering practice, the solution of 

those (3n – 6) linear equations in (3n – 6) unknowns can always be easily achieved by well-

developed graphical processes, so the representation of the deformation work   as a function of 

 
 (36) As its derivation will show, that reciprocity theorem is based essentially upon the identity (1.41). From the 

analogy with analytical mechanics that we have repeatedly appealed to, it then seems to be the analogue of a large 

class of reciprocity theorems that were first obtained by Hamilton by differentiating the “varied action” twice with 

respect to the same variables, but in different orders. 
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the external forces X can always be achieved for the statically-determined framework with relative 

ease. (Of course, one can then no longer speak of an extremum of the deformation work, since the 

tensions Sh will be determined completely by the equilibrium conditions, so it cannot be varied in 

any way.) We then drop the index k from   accordingly. 

 In that way, one can imagine separating a statically-determined principal system from a 

statically-indeterminate framework with r rods such that we mentally cut (r – 3n + 6) of its rods in 

two when they have been chosen suitably (37). The tensions in the principal system thus-determined 

will then keep the values that they had in the original (statically-indeterminate) framework when 

we imagine that the principal system is loaded with not only the external forces of the original 

framework on the lips of the cut, but also the tensions in the rods that were cut (which are, of 

course, initially unknown). We now decompose the function   for the indeterminate framework: 

 

  = 
2
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r

h h

h

S
=

 , 

 

i.e., the sum of the deformation works done on the individual rods (which is not, however, the 

deformation work done on the framework initially), into two summands, one of which refers to 

the rods of the statically-determinate system, while the other refers to the superfluous rods, so for 

a suitable numbering of the rods: 

 

 = 
3 6

2 2
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n r

h h k k

h h n

S S 
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= = −

+   = (1) (2) +  .   (1.44) 

 

 As we just said, it is now possible to express the tensions Sh in the first terms as functions of 

the external forces and the tensions – S3n−5, …, – Sr that are applied to the associated principal 

system by only solving the equilibrium equations. We must choose negative signs when we 

calculate the tensions in the superfluous rods in a statically-indeterminate framework as a result of 

the external forces. We consider the external forces X to be given as fixed, while the tensions 

S3n−5, …, Sr are regarded as being capable of varying arbitrarily. That variation is possible with no 

further analysis as long as we include only the equilibrium conditions in our calculations, i.e., 

immediately when we restrict our consideration to the statically-determinate principal system such 

that the two lips of the cut can be displaced arbitrarily with respect to each other. If we imagine 

the entire statically-indeterminate framework then that will say that a variation of the tensions in 

the superfluous rods will produce changes in lengths for those rods such that they will no longer 

fit together in the framework. That will first be the case when we remove or add material to the 

lips of the cut that we have in mind. That is because for given tensions S3n−5, …, Sr, on the one 

hand, the deformation of the statically-determined principal system will be completely determined, 

so the distance between two nodes that were originally connected by a superfluous rod will have 

a well-defined length, while on the other hand, the associated superfluous rod will have a well-

 
 (37) The statically-indeterminate framework will then be contrasted from the statically-determinate one in a manner 

that is similar to how multiply-connected surfaces or bodies relate to the simply-connected ones in geometry. 
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defined length when it is stressed with the given tension that does not, however, coincide with the 

first distance. We would like to call the removal of material that is necessary to make the frame 

member fit into the deformed principal system a distortion by adapting an expression that V. 

VOLTERRA first applied to continuous bodies to frameworks. 

 If we have now represented the first term in the function (1.44) as a function of the external 

forces and the tensions in the superfluous rods that are calculated from the external forces: 

 
(1)  = (1) (X, − S3n−5, …, − Sr) 

 

then we can apply the derived corollary to the first Castigliano theorem to it and obtain the relation: 

 

  
(1)

( )kS



 −
 = kl   or 

(1)

( )kS




 = − kl  (k = 3n – 5, …, r), 

 

in which ( )kl−   is the change in the distance between those two nodes of the principal system 

that were originally connected by the superfluous rod k as a result of loading the principal system 

with the original external forces X and the tensions S3n−5, …, Sr . The derivation of the second 

term in (1.44) with respect to Sk will give k Sk, and will be equal to the change in length kl   that 

the superfluous rod will experience when it is stressed by the tension Sk . The derivation of the 

function   in (1.44) itself will then be: 

 
(1)

( )kS




 = k kl l  −   , 

 

so it will be equal to the change in length that one must give to the rod k in order to make it fit into 

the principal system (with the prescribed stress). We would like to denote that distortion by k and 

we will then have the relation: 

kS




 = k ,      (1.45) 

 

which we can express in the following theorem: 

 

 If we decompose a statically-indeterminate framework into a statically-determinate principal 

system and a number of superfluous rods and express the tensions in the rods of the statically-

determined principal system in terms of the given external forces by means of the equilibrium 

conditions in the function  = 2

h kS  and the arbitrarily-taken tensions in the superfluous rods 

then the derivatives of   with respect to tensions in the superfluous rods will be equal to 

distortions that must be performed on the superfluous rods in order for the original framework to 

exhibit a stress state such that the tensions in the superfluous rods would have the prescribed 

values. 
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 Now it is easy to ascertain the tensions in the superfluous rods that actually occur in the given 

framework with the help of that theorem. That is because, in reality, no distortions have been 

performed, so all of the k must be precisely zero. If we once more express the function   as a 

function of the given external forces and the temporarily-unknown tensions in the superfluous rods 

by means of the equilibrium conditions then those (r – 3n + 6) unknown tensions must satisfy the 

(r – 3n + 6) equations: 

kS




 = 0   (k = 3n – 5, …, r).    (1.46) 

 

If those equations were combined with the (3n – 6) then we would have r equations, in total, which 

would determine all r tensions Sh . 

 That process suggests itself when one is dealing with a so-called externally statically-

indeterminate framework, i.e., when only the precise number of (3n – 6) rods are in fact present, 

but also the previously-given rigidity conditions for the motion of the nodes, such that free elastic 

deformation of the framework would be prevented. 

 If  such conditions are present (in which three conditions fix a point and the demand that it 

must move along a curve will define two conditions, while the demand that it must move on a 

surface will require one) then we can proceed with the solution of the stress problem such that we 

can ignore those superfluous conventions and apply associated external forces to the nodes in 

question, namely, the statically-indeterminate reactions P1, …, P . If the deformation work   

were expressible as a function of the given external forces X and those statically-indeterminate 

reactions then from the first Castigliano theorem, the derivatives of   with respect to the Pk would 

imply the displacements k of the associated nodes in the direction of the reactions Pk : 

 

kP




 = k .     (1.45a) 

 

However, due to the rigidity conditions, all of the k must drop out, since they are zero, and 

therefore the desired statically-indeterminate reactions will be determined in such a way that the 

derivatives drop out: 

kP




 = 0 .     (1.46b) 

 

 One easily sees how the stress problem for an internally, as well as externally, statically-

indeterminate framework can be solved by combining both groups of formulas (1.46) and (1.46a). 

 Equations (1.46) and (1.46a) say that the functions  , as functions of the stresses in the 

superfluous rods (superfluous reactions, resp.) should be an extremum. We have therefore once 

more arrived at a principle that expresses an extremal property for the function   of the tensions 

in the state that actually occurs. Insofar as   seems to be a function of the tensions whose 

extremum is sought here, as it was in the formulation of Menabrea’s principle above, this new 
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principle is also referred to as Menabrea’s principle in engineering literature (38), although the 

earlier formulation and this new one are not kept strictly distinct. In fact, both of them are 

essentially equivalent for frameworks, since then, as now, due to the existence of equilibrium 

conditions as auxiliary conditions under the variation of the tensions in the rods, that would only 

be possible if we regarded the tensions in (r – 3n + 6) rods as variable, while the tensions in the 

remaining (3n – 6) rods are determined by the auxiliary conditions. The single difference is that 

there we did not demand that those (3n – 6) rods should define a statically-determinate framework 

by themselves (39). 

 However, if we adapt those two ways of expressing Menabrea’s principle to continuous elastic 

bodies, as we will do on the second chapter, then that will lead to two viewpoints that are 

intrinsically different. (The greater part of the ambiguity in what Castigliano did seems to come 

from the fact that he had not given enough consideration to that fact, at least in his representation 

of it.) 

 

 

 1.7. Proper stresses in statically-indeterminate frameworks. – The arguments up to now 

were based upon the assumption that an unloaded framework is free of stresses. However, in a 

statically-indeterminate framework the rods can be stressed even when it is not loaded. That is 

because in such a framework, as we said, the distances between any two nodes is determined by 

the lengths of the rods in the chosen statically-determinate principal system. Now, if the 

superfluous rods do not have precisely the lengths that are thus determined, i.e., distortions are 

present, with the terminology that was just used, then the entire framework will be shifted into a 

state of stress by the addition of the superfluous rods, even when it is not loaded by external forces. 

We would like to call those stresses proper stresses (40) and the corresponding tensions 
hS   that are 

present in the unloaded framework, proper tensions. They are easy to determine when the 

distortions 3n−5, …, r in the superfluous rods are known. That is because we can use the 

equilibrium conditions for the nodes, which take the form: 

 

1

r
h

h

h

f
S

x



=




  = 0  ( = 1, 2, …, 3n – 6)  (1.47) 

 
 (38) A handwritten insertion led to an unclear formulation that the editor corrected accordingly.  

 (39) We would also like to pursue the analogy with analytical mechanics for the argument in this paragraph. We 

find it in the theory of “hidden” coordinates. 

 When we know a number of integrals of the Euler-Lagrange equations that are produced by the variational problem 

for the action integral 
1 2 1 2

( , , , , , )L q q q q dt  , we can express a corresponding number of the functions q (t) in 

terms of the remaining ones. Considering the varied action will then give a means at hand for replacing the original 

variational problem with another one that includes fewer unknown functions in the form of the Routh-Helmholtz 

transformation, and there are as many fewer as the number of integrals of the Euler-Lagrange equations that one 

knows. 

 Analogously, we have the extremum problem for the function   as a function of the r tensions Sh . The equilibrium 

conditions between the tensions correspond to the integrals of the Lagrangian equations, and the tensions in the 

statically-determinate principal system play the role of hidden coordinates We eliminate them and then have an 

extremum problem that relates to only the tensions in the superfluous rods. 

 (40) The terms self stresses, initial stresses, and mounting stresses are also useful.  
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for the proper stresses, we can express the function: 

 

  = 
2

1

r

h h

h

S 

=

  

 

in terms of only the proper tensions in the superfluous rods 
3 5nS

−
, …, 

rS  . From (1.46a), one then 

has: 

kS








 = k      (k = 3n − 5, …, r).    (1.48) 

 

When the  are given, the proper stresses in the superfluous rods can be found from that, and the 

equilibrium conditions (1.47) will yield the remaining proper tensions directly. 

 We can interpret equations (1.48) by saying: 

 

 For the proper tensions that enter as a result of given distortions k, the function: 

 

F   = 
2

3 5

r

k k

k n

S 

= −

 −      (1.49) 

 

will be an extremum when it is regarded as a function of the proper stresses. 

 

In so doing, the proper tensions in the rods of the principal system are thought of as being expressed 

in F   in terms of the proper tensions in the superfluous rods by means of the equilibrium 

conditions (1.47). When we substitute the proper tensions that actually occur in the function F  , 

we will have: 

F   = 
21

2

1 3 5

r r

k h k k

k k n

S l S  

= = −

 −  . 

 

The elongations of the rods for the rods in the principal system are expressed in terms of the nodal 

displacements in the older way by: 

hl
  = 

1

r
h

h

f
x

x






=





   (h = 1, 2, …, 3n – 6). (1.50) 

By contrast, one now has: 

hl
 − r = 

1

r
hf x

x


 



=





  (h = 3n − 5, …, r) (1.50a) 

for the superfluous rods, so one will have: 

 

F   = 
3 6

1 1
2 2

1 1 3 5

n r r
h

h k k

h k n

f
x S S

x


 


−

  

= = = −

 
 − 

 
    . 
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However, since the equilibrium conditions (1.47) are valid for the proper stresses, the first term 

will drop out, and one will have: 

F   = 1
2

3 5

r

k k

k n

S 

= −

−  = 1
2

3 5

( )
r

k k

k n

S 

= −

− ,   (1.51) 

 

i.e., the work that is done by the proper tensions 
kS   in the superfluous rods that one calculates 

from the external forces ( )kS−  that would be required for the distortions k that are present in the 

framework to appear. Thus, the function F   that one defines with actual values of the proper 

tensions represents the deformation work that is actually performed on the framework in that way. 

 An entirely-similar argument will lead to that conclusion when the framework that carries 

proper stresses as a result of given distortions is loaded with external forces X . We must then 

express the stresses in the rods of the principal system in terms of the given external forces and the 

arbitrarily-chosen tensions in the superfluous rods in the function: 

 

  = 
2

1

r

h h

h

S
=

 . 

 

From the theorem (1.45) in the previous section, we will then have: 

 

  
kS




 = k  (k = 3n – 5, …, r), 

 

and since the k are given, we can calculate the tensions in the superfluous rods from those 

equations, and then the ones in the rods of the principal system from the equilibrium conditions. 

 We can again give the following version of that result: 

 

 If we have expressed the tensions in the rods of the principal system in the function: 

 

F = 
3 5

r

k k

k n

S
= −

 −       (1.52) 

 

in terms of the given external forces and the arbitrarily-chosen tensions in the superfluous rods, 

and then regard F as a function of the latter tensions then F will be an extremum for the values of 

those tensions that actually occur. 

 

 We employ equations (1.49) and (1.50) in order to see the meaning of the function F for the 

values of the stresses in the rods that actually occur, and when we recall the equilibrium conditions, 

we will get (41): 

 
 (41) The notation for the equations in what follows deviates from what was originally used, which was flawed. 
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F = 
3 6

1 1
2 2

1 3 5

n r

k k

k n

X x S 



−

= = −

 −  .          (1.53) 

 

 Therefore, the extremal value of F will be the total deformation work that is done under the 

transformation of the framework into its ultimate state (including the production of proper 

stresses). 

 

 

 1.8. Temperature stresses. Extensions to nonlinear laws of deformation. Engesser’s work 

done by extension. – There are no conditions on the lengths of the rods in a statically-determinate 

framework, so we can change the temperatures in the individual rods arbitrarily without creating 

a state of stress in the framework. Things are different for a statically-indeterminate framework, 

since in that case, there are conditions on the lengths of the superfluous rods. If the individual rods 

in such a thing are free of proper stresses at a certain temperature t0 then that will not generally be 

the case at a different temperature t (42). All of the rods will experience elongations: 

 

lh = lh  (th – t0) = h hl t   

 

under that change in temperature as a result of the coefficient of thermal expansion for the material. 

The superfluous rods in the principal system will not fit together with their new lengths when its 

rods have been lengthened in that way. Should they be introduced, then distortions will be 

produced, and proper stresses will be created by them. One can take up the determination of those 

proper stresses, which are also called temperature stresses, using the method in the previous 

section. That is because since we know all of the new lengths, we can calculate the distortions that 

would occur. Nonetheless, here we would once more like to pursue the same path as before to the 

specification of the extremal principle and likewise take the case in which the framework is still 

loaded with external forces. 

 The elongation lh in an individual rod is determined from its tension and its temperature 

change, and indeed in the follow way: 

 

lh = h Sh + h hl t   .     (1.54) 

 

We can regard the ht  in that as given constants when we direct our attention to their dependencies 

tension Sh , and that is why we can interpret (1.54) as a relation between rod elongations and 

tensions that does not have the simple form that was used up to now, which made the two 

proportional to each other. In order to encompass the most general possibility, we generalize the 

relation between the rod elongation and the tension by the Ansatz: 

 

lh = h (Sh) ,      (1.55) 

 

 
 (42) The temperatures in the individual rods do not need to coincide with each other. 
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in which h is a given single-valued function (i.e., a generalization of Hooke’s law). Let: 

 

Sh = h (lh)      (1.55a) 

be the solution of (1.55). 

 In order to repeat our argument above for these relations (1.55) and (1.55a), we return to the 

general Ansatz (1.15) of the principle of virtual displacements: 

 
3 6

1 1

n r

h h

h

X x S l 


−

= =

 −    = 0 .     (1.56) 

From (1.55a), one has: 

Sh  lh = h (lh)  lh 

 

in that, in which the right-hand side is the variation of the integral: 

 

0

( )
hl

h h hl d l



  , 

 

i.e., the deformation work done on the framework. Therefore, if we now generalize (1.21) and 

define the deformation work done on the framework by (43): 

 

 (lh) = 
1 0

( )
hlr

h h h

h

l d l



=

               (1.57) 

 

then we can regard the Ansatz (1.56) of the principle of virtual displacements as the vanishing of 

the variation of the function: 

E =  + ,           (1.58) 

 

in which  has the older meaning (1.22). That function E would once more be the total potential 

energy. Its extremum characterizes the equilibrium state. Therefore, as before, the lh in  (lh) 

are thought of as being replaced by the nodal displacements by means of: 

 

lh = 
3 6

1

n
hf x

x


 

−

=





 . 

 

 However, in the expression E, for the sake of further analysis, we have then considered the 

differences in the x, along with the latter themselves, to be independent variables, instead of the 

lh , which are composed from them directly. Here, we shall again perform the Legendre 

transformation, so the derivatives of E with respect to the lh will be set equal to new variables. 

Differentiation will show that the derivatives are also precisely the tensions here, as well: 

 
 (43) This is a reasonable extrapolation of an unclear handwritten insertion.  
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h

E

l



 
 = 

hl



 
 =  (lh) = Sh .           (1.59) 

 

As a result, one further has [cf., (1.28a)]: 

 

H (Sh, x) = 
3 6

1 1

( ( )) ( )
n r

h h h h h

h

X x S S S 


 
−

= =

 −  +  ,  (1.60) 

 

and that will then imply [cf., (1.29)] that: 

 

 = 
3 6 3 6

1 1 1 1

( ( )) ( )
r n n r

h
h h h h h h

h h

f
S x X x S S S

x
  

 

 
− −

= = = =

 
 −  +  − 

 
    .  (1.61) 

 

 The extremum of , which is regarded as a function of the nodal displacements x and the 

tensions Sh, will yield the equilibrium conditions, as well as the compatibility conditions. On has, 

in fact: 

 
x



 
 = 

1

r
h

h

h

f
S X

x


=


−


  = 0 , 

(1.62) 

 
hS




 = 

3 6

1

( ( )) ( ) ( ) ( )
n

h
h h h h h h h h h h

f
x S S S S S

x


 

    
−

=


  + − −


  = 0 . 

 

However, from (1.55) and (1.55a): 

h (h (Sh)) = Sh , 

 

so when we further consider (1.55), the second group of equations will become: 

 
3 6

1

n
hf x

x


 

−

=





  = lh . 

 

They actually represent the compatibility conditions then. 

 If we now imagine that the equilibrium conditions: 

 

1

r
h

h

h

f
S

x=




  = X 

 

have been fulfilled, in order to arrive at Menabrea’s principle from this general picture, as well, 

then the first two terms in (1.61) will drop out, and we will get the function to be extremized: 
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F (Sh) = h (h (Sh)) − 
1

( )
r

h h h

h

S S
=

  ,       (1.63) 

 

while the equilibrium conditions will appear as auxiliary conditions. From the foregoing, the 

conditions for the extremum are, in fact, the compatibility conditions. 

 The function F can be further converted. From (1.57), one has: 

 

 (h (Sh)) = 
1 0

( )
hSr

h h h h

h

S S dS
=

   . 

 

It follows from that upon partial integration that: 

 

 (h (Sh)) = 
1 0

( ) ( )
hSr

h h h h h h

h

S S S dS 
=

 
− 

  
   . 

 

If we further change the sign, which makes no difference for the extremal, then we will have: 

 

F (Sh) = 
1 0

( )
hSr

h h h

h

S dS
=

  . 

 

Engesser found that function along a different route, and he called it the work done by extension 

(44). When the law of proportionality is true for the relationship between tension and rod 

elongations, it will go to the function ( )hS  = 
21

2

1

r

h h

h

S
=

  that appears in Menabrea’s principle 

above (§ 5). 

 In order to actually exhibit the conditions for an extremum, as well, we consider the auxiliary 

conditions with the help of the Lagrangian factors. We will then have: 

 

3 6

1 1 10

( )
hSr n r

h
h h h h

h h

f
S dS S X

x
 

 

 
−

= = =

  
+ −  

  
    

 

as the function of Sh to be extremized, which will, in fact, imply the compatibility conditions: 

 
3 6

1

( )
n

h
h h

f
S

x


 

 
−

=

 
+  

 
  = 0 , 

 

 (44) From (1.63), F is the difference between the actual deformation work  (h (Sh)) = 
1

r

h kh
S d l

=
   and the 

virtual deformation work 
1

r

h kh
S l

=
 , and therefore it is referred to as the work done by extension. 
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and the Lagrangian factors  will again be seen to be the negative values of the nodal 

displacements. 

 As we can easily show, the first of the Castigliano theorems (§ 5) is also true for this function 

F. We will know the tensions in all rods as functions of the external forces by solving the stress 

problem. 

Sh = Sh (X1, …, X3n−6) .    (1.64) 

 

 If we replace the Sh in (1.63) with those functions then F will assume the extremal value, and 

we will have expressed it as a function of the external forces. 

 Along with that, we shall now exhibit a different expression for the extremal value of F (X1, 

…, X3n−6). Namely, we know from the compatibility conditions that the r rod elongations lh must 

be expressions in terms of the (3n – 6) nodal displacements x . If the deformation of the 

framework has been established then the nodal displacements will be known as functions of the 

external forces: 

x =  (X1, …, X3n−6) , 

 

and we will have the following expressions for the rod elongations as functions of the external 

forces: 

lh = 
3 6

1 3 6

1

( , , )
n

h
n

f
X X

x


 


−

−

=




  , 

and so, from (1.55): 

h (Sh) = 
3 6

1 3 6

1

( , , )
n

h
n

f
X X

x


 


−

−

=




 . 

Thus, the differential will be: 

h (Sh) dSh = 
3 6 3 6

1 1

n n
h hf S

dX
x X

 
   


− −

= =

   
  

    
   

 = 
3 6 3 6
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n n
h

h

f
dX S

X x
 

   


− −

= =

   
         

  , 

 

and therefore, the expression F itself will be: 

 

( )kF  = 
1 0

( )
hSr

h h h

h

S dS
=

   

 = 
3 6 3 6

1 1 10

n n r
h
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h

f
dX S

X x



 
   


− −

= = =

    
   

      
    , 

in which: 

hS  = 
1( , , )hS X X . 
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However, from the equilibrium condition, one has: 

 

1

r
h

h

h

f
S

x=




  = X , 

 

and since the X are independent variables, it will follow from this that: 

 

1

r
h

h

h

f
S

X x =

 
 

  
  = 
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That will finally give: 
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dX



 
=

  , 

and it will then follow from this that: 
( )kF

X 




 =  ,           (1.65) 

 

i.e., the derivative of the extremal value of the work done by extension ( )kF  with respect to one of 

the external forces will give the associated nodal displacement. 

 By contrast, the second Castigliano theorem (which has, however, less significance for 

practical purposes) does not refer to the work done by extension, but to the deformation work itself: 
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If we introduce the nodal displacements here then we will have: 

 

Sh = S (x1, …, x3n−6) = 
3 6

1

n
h

h

f
x

x


 


−

=

 
 

 
  , 

and 

Sh d lh = 
3 6

1

( )
n

h
h

f
S d x

x


 

−

=





  , 
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and as a result (45): 

 

 
 (45) These two theorems are in A. HERTWIG, Zeitschrift für Architekten und Ingenieurwesen 52 (1906), pp. 509.  
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x=




  = X .        (1.66) 

 

In just the same way as before, we will find the following corollary to the first Castigliano theorem: 

 

 The derivative of the work done by extension ( )kF  with respect to one of the tensions that 

appear as a result of the external forces is equal to the change in distance between the two points 

of application of the tension. 

 

 We will also find the second conception of Menabrea’s principle here again when we replace 

the deformation work with the extension work. In order to show that, we again imagine that we 

have chosen a statically-determinate principal system from the statically-indeterminate 

framework. Here, as well, the equilibrium conditions will imply the tensions in the rods of the 

principal system as linear functions of the external forces and the tensions in the superfluous rods. 

If we then decompose the function F into two summands: 

 

F (Sh) = 
3 6

1 3 60 0
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h kS Sn r

h h h k k k
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S dS S dS 
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= = −
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and replace the tensions in the rods of the principal system in the first term F1 with their expressions 

in terms of the external forces and the tensions S3n−5, …, Sr in the superfluous rods then F1 / Sk 

will be equal to the change in the distance between the two nodes of the principal system that were 

connected by the kth superfluous rod in the old framework. On the other hand, the derivative of the 

second term with respect to Sk will be equal to the change in length k (Sk) of the kth rod. Therefore, 

we also have the theorem here: 

 

 The derivative of F with respect to the tension in one of the superfluous rods (which enters into 

F in two ways) is equal to the distortion that must performed on that rod in order for it to fit into 

the deformed framework with the choice of tensions in the superfluous rods that was made. 

 

 Now, those distortions must be zero for the tensions that actually occur. Thus, the following 

equations will exist for them: 

k

F

S




 = 0  (k = 3n – 5, …, r),  (1.67) 

 

i.e., when the extension work is regarded as a function of the tensions in the superfluous rods, it 

must be an extremum. 

 Now, in order to return to the influence of temperature on the stress problem, we need only 

observe that from (1.54) and (1.55), we will have: 

 

h (Sh) = h h h h hl t S  +  
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in this case. Therefore, the function F will be: 
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1 0

( )
hSr
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here, or when we perform the integration: 
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h h h h h h
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That expression, which was first exhibited by MELAN (46), and which MÜLLER-BRESLAU (47) 

had called the ideal deformation work, will be the foundation for all investigations into 

deformation work as soon as the influence of temperature comes into question. 

 

 

 1.9. The historical development. – The statics of rigid bodies suffices for the treatment of the 

simplest problems that are posed in engineering practice. Nonetheless, problems can also appear 

directly (such as, perhaps, the determination of the effects of the supports on a beam when there 

are more than two of them or their effects on the vertical supports of a horizontal plate when there 

are more than three) in whose solution the statics of rigid bodies will break down. Even though 

engineering theory has long sought to preserve the picture of the rigid body for the materials that 

they employ, nowadays that sort of problem in statics is addressed in such a way that one replaces 

the picture of the rigid body with that of an elastic solid body. The fact that the introduction of that 

new concept has happened relatively slowly is probably based in the fact that, on the one hand, the 

most important building materials of the current era, such as wood and stone, require exceptionally 

delicate tools for the investigation of their elastic deformation. On the other hand, one can also 

master the elastic deformation theoretically only in simple cases, like the stretching of a wire, the 

bending of rod, and even then, only in such a way that one poses special Ansätze in the individual 

cases, while the general study of the elastic strain in a three-dimensional body, in particular the 

determination of the stress distribution, was first achieved by NAVIER (1821) and CAUCHY 

(1821/23). 

 Even though one then seeks to preserve the picture of the rigid body, naturally one immediately 

sees that ordinary statics cannot suffice for the treatment of such problems. That is because 

according to its laws, to once more appeal to the problem of the plate with more than three supports, 

infinitely-many distributions of pressures are equally possible where the plate acts upon the 

individual supports, while observation teaches that a well-defined pressure distribution will be 

produced. One then seeks to remedy that by adding special hypotheses in the individual “statically-

indeterminate” problem in each case that would remove the indeterminacy. For the treatment of 

 
 (46) J. MELAN. The original text did not include any further citation for this. The citations [76, 77] in the 

Bibliography were partially taken from Orovas [106] and partially a result of my own research. 

 (47) H. MÜLLER-BRESLAU, Die neueren Methoden der Festigkeitslehre, Leipzig, 1886, pp. 56. 
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the plate with more than three supports, EULER (48) introduced an assumption that has remained 

the accepted one in other cases for a long time now, even though it was also contradicted by various 

arguments (49). 

 That necessarily led to the attempt to combine those individual assumptions into a single 

unified principle. It was also approached from different angles. In engineering, the principle of 

least resistance of the English engineer MOSELEY has enjoyed a certain reputation for a long 

time that it could solve all of the problems that remained indeterminate in the statics of rigid bodies 

such as, e.g., the case in which the sliding of two rigid bodies over each other is impeded by friction 

(50). Of course, the analytical Ansätze and calculations that MOSELEY connected with his 

principle are completely senseless, as one of his rivals, EARNSHAW, immediately pointed out. 

The “principle” probably owes its reputation to the fact that for many practical purposes, it can be 

regarded, not as a “principle,” but probably as a construction rule. Thus, e.g., in the aforementioned 

case of contact with friction between two bodies, it will say that one can completely exploit the 

influence of friction for the determination of friction. One then clearly sees the guiding idea behind 

MOSELEY’s formulation of his principle: In his view of things, the statically-indeterminate 

pressures must have values such that the system will be in a state on the boundary between motion 

and rest. Since that made good sense in his study of the effects of friction, one has, for some time, 

preferred to orient the distribution of internal forces on the basis of the principle of least resistance, 

e.g., in the theory of arches. That situation gave rise to SCHEFFLER’s (51) attempt to breathe new 

life into that principle by giving a different foundation. 

 One can even adopt the viewpoint (if only with some difficulty) that all bodies should be 

regarded as elastically yielding. Thus, e.g., since 1853, FAGNOLI (52), who was unaware of the 

work of MOSELEY and SCHEFFLER, sought to exhibit a principle that would be similar to the 

principle of least resistance (even though he also restricted himself to the problem of the plate with 

more than three supports in its implementation) in such a way that the problem would belong to 

the theory of elasticity, despite the fact that the reference to POISSON was probably known to 

him. 

 Another attempt to combine the hypotheses that were made in the individual statically-

indeterminate problems into a general principle goes back to the considerations of VÉNE (53). His 

starting point was similar to that of MOSELEY, namely, the opinion that the statically-

indeterminate reactions that were applied to a rigid body, such as the support reactions on the plate, 

do not have the same character as the external forces that are applied with no further analysis. The 

ordinary statics of rigid bodies, with its equilibrium conditions, must be extended by some 

principle to a “dynamique latente” if one is to calculate those reactions, in a manner that is similar 

to how one connects dynamics with statics using d’Alembert’s principle. That suggests that such 

a new principle can be expressed by an extremum requirement but leaves the question of what sort 

of function would be extremized unanswered. 

 
 (48) L. EULER, Novi Comment., Acad. Petroplit. T.18 (17).  

 (49) One can find a summary of the relevant literature in G. FAGNOLI, Memorie della Accademia di Bologna 4 

(1853).  

 (50) MOSELEY, Philosophical Magazine. 

 (51) H. SCHEFFLER, Crelle’s Journal für die Baukunst. (1867), pp. 31. 

 (52) G. FAGNOLI, Memorie di Bologna 4 (1853). 

 (53) For this, one is directed to SERVOIS in the Bulletin de Férrussac 9 (1828).  
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 That was the conclusion of a paper by COURNOT (54), who wished to give such a function. 

Indeed, it did not solve the problem, since its conception and implementation were also flawed, 

but it was still of great importance due to the fact that MENABREA in particular referred to it, and 

it was also the source of the flaws in MENABREA’s arguments. 

 Cournot considered a rigid body that was loaded with a number of forces F, F  , F  , … and 

fixed at a number of points, and he then imagined that the reactions are replaced with external 

forces P, P  , P , … He applied the principle of virtual velocities to that freely-moving rigid body 

and obtained the relation: 

 

F f F f P p P p      + + − − −  = 0 ,    (1.68) 

 

in which  f, f  , f  , … ( p, p  , p  , …, respective) are the projections of the virtual 

displacements onto the points of application of the forces F, and the P mean then associated 

directions of those forces. 

 So far, everything is in order with his argument when one chooses the virtual displacements in 

such a way that they will perform a rigid motion. However, since a rigid body in motion possesses 

only six degrees of freedom, one can obtain nothing but the six equilibrium conditions for a rigid 

body from that relation. Cournot wished to fix the fixed points under the displacement, so he set 

p = p   = … = 0, and what remained was: 

 

F f F f  + +  = 0 .    (1.69) 

 

However, in so doing, he overlooked the fact that the  f in (1.69) can now be only the 

displacements that belong to a rigid body, and under which the fixed points are not displaced. 

However, as soon as more than six fixed points are present, the body will be immobile. i.e., all  f 

will be zero, and equation (1.69) will be trivial. If less than six fixed points are present then that 

will lead to only those of the six equilibrium conditions that are still required by the constraint that 

exists to impede the motion. 

 By contrast, Cournot was of the opinion that the displacements in equation (1.68) were of a 

general nature, and in particular, made the mistake of identifying the displacement in (1.69) with 

the one in (1.68) directly. He virtually asserted that equation (1.68) split in equations (1.69) and: 

 

P p P p  + +  = 0  ,        (1.70) 

 

while preserving the displacements in (1.68) (55). 

 Now in order to utilize (1.70), he made the assumption that the unknown reactions P, P  , … 

are proportional to the paths p, p , …, resp. that would be laid through the fixed points “at the first 

moment” when the links through the fixed points are broken. As one can see, that hypothesis is 

 
 (54) A. COURNOT, Bulletin de Férrussac 9 (1828), pp. 19.  

 (55) It would seem that this mistake was created by a misunderstanding in the interpretation of a correct argument 

of an entirely-different nature that was in POISSON’s Mécanique. Confer S. D. POISSON, Traité de mécanique, 2nd 

ed., t. I, pps. 669 and 671. 
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nothing but a neat way of introducing elasticity into the body, although admittedly it also seems to 

initially take the form of only an analogy with the corresponding displacements of an actual elastic 

body. On the basis of that assumption, upon assuming that the proportionality factor was the same 

for all points, he went from equation (1.70) to: 

 

p p p p  + +  = 0     (1.71a) 

or 

P P P P  + +  = 0 ,    (1.71b) 

 

resp., but for which the sum of the squares: 

 
2 2p p+ +         (1.72a) 

or 
2 2P P+ + ,        (1.72b) 

 

resp., will be an extremum, which made the equilibrium conditions take the form of auxiliary 

conditions. The fact that he had replaced the picture of a rigid body with that of an elastic solid 

body with his argument (if only unintentionally) is shown by the fact that he essentially based his 

argument upon the fact that it was also applicable to elastic bodies. If m, m , … are the elastic 

coefficients that belong to the individual bodies then equation (1.70) will go to: 

 

p p
p p

m m
 


+ +  = 0 .          (1.72) 

 

It must be true independently of the special magnitudes of the elastic coefficients, but also in the 

limit when the elastic coefficients vanish, i.e., the elastic body becomes a rigid body. Of course, 

in so doing, he ignored the fact that this passage to the limit lacked any precise meaning, as 

CASTIGLIANO had already pointed out. 

 Cournot’s investigations were taken up by DORNA again (56). However, he gave up the idea 

of the absolutely-rigid body and imagined that it was “elastic in the neighborhood of the points of 

application of the statically-indeterminate reactions.” The body might be, say, fixed at a point and 

connected to a short elastic rod at that point that articulates with the fixed point and the body. He 

intended that the lengths and cross-sections of those fictitious rods could be chosen to be the same 

for all of the fixed points, while their elastic coefficients would be equal to the elastic coefficients 

of the material in the body “in the neighborhood” of the fixed point. He also started from the 

principle of the virtual displacements: 

P p Q q +   = 0     (1.73) 

 

in which P were the given forces and Q were the undetermined reactions, and he wished to split 

that equation into the two equations: 

 
 (56) A. DORNA, Memorie della R. Accademia di Torino (2) 18 (1859), pp. 281.  
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P p  = 0 ,  Q q  = 0 ,    (1.74) 

 

but that served as the grounds for a consideration of orders of magnitude. He imagined that the q 

were second-order infinitesimals since the points of application of the reactions were virtually 

fixed, and that equation (1.69) would next be true, and therefore (1.70), as well, due to (1.68). 

 Upon appealing to Hooke’s law, that further made Q = E  q, and he thus found that one must 

have: 

Q Q

E


  = 0               (1.75) 

 

when the equilibrium conditions of the rigid body are auxiliary conditions, i.e., one must have 
2 /Q E  = extremum under just those auxiliary conditions. 

 That change of viewpoint was essentially a break from the picture of the rigid body, and in its 

place one found the picture of the elastic body. In the following development of the theory, bodies 

will always be regarded as elastic, even when static indeterminacy is present. One first finds that 

clearly expressed in MENABREA (57). He gave the problem statement the precise phrasing that 

one must determine the tensions in a statically-indeterminate framework under the assumption of 

elastic rods. 

 Like Dorna and Cournot, he likewise started from the principle of virtual displacements, whose 

Ansatz he wrote in the form: 
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for frameworks and made an attempt to show that the order of magnitude of the first term was of 

second order compared to the second one in the case of a statically-indeterminate system by an 

argument that was naturally completely unsuccessful. He then concluded that one must have: 
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That is equivalent to saying that one must have: 

 

 
 (57) L. P. MENABREA, Comptes rendus 46 (1858), pp. 1056. 

  Idem., Memorie della R. Accademia di Torino (2) 25 (1871), pp. 141. 

  Idem., Atti della R. Accademia dei Lincei (2) 2 (1873-75), pp. 201. 

  Idem., Comptes rendus 98 (1854). 
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h h

h

l
=

 = extremum, resp.,  (1.78) 

 

in which the equilibrium conditions for the nodes must be considered to be auxiliary conditions. 

 Indeed, he then asserted that this extremum requirement would lead to the supplementary 

equations (viz., compatibility conditions) that are required by the geometric conditions, but he 

proved that assertion only to the extent that he verified in some isolated examples that his process 

would produce the same solution as exhibiting those geometric conditions directly in those cases, 

which is easy. 

 His contemporaries raised objections to that process, and it seemed as if Menabrea himself had 

sensed that flaw in his argument, because he gave yet another proof of equation (1.10), namely, 

his elasticity principle, but it was also flawed. In it, he formed the variations of the (3n – 6) 

equilibrium conditions that existed at each isolated node: 
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He then replaced the variations of the tensions in it with those of the rod elongations: 

 

Sh = h  lh , 

 

but he neglected to notice that the rods could not be combined into the framework with their new 

lengths. He then multiplied the individual equations by the virtual nodal displacements x, and 

after adding all equations, he got: 
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or since one has: 
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he also got: 
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and finally, upon reintroducing the tensions: 

 

1

1r

h h

h h

S S
=

  = 0 .     (1.81) 

 



1.9. – The historical development. 47 

 

 One can thank CASTIGLIANO (58) for the first clear foundation of Menabrea’s principle. He 

first showed in his dissertation that the conditions for the extremum of the function 2

1

r

h hh
S

= , 

with the equilibrium conditions as the auxiliary conditions, would coincide with the compatibility 

conditions. He used the method of Lagrange factors in his proof and remarked that they would 

agree with the components of the displacements of the nodes, as we showed on pp. 20. From that, 

he soon found the first of his two theorems on the derivatives of the actual deformation work with 

respect to the external forces, and only later did he then pose his second theorem on the derivatives 

with respect to the components of the displacement, which is less important in practice. On the 

basis of that theorem, he then arrived at the conception of Menabrea’s principle that we referred 

to as the second one and presented in § 6. That conception was always referred to as “the” 

Menabrea principle by him and his followers. Moreover, he also brought proper stresses and 

distortions under consideration and also recognized that Maxwell’s reciprocity theorem could be 

obtained from his first theorem in the manner of § 5. 

 We mention in passing that in a polemic against Menabrea, V. CERUTTI (59) had the idea of 

arriving at Menabrea’s elasticity equation by reducing it to the general law of the principle of 

virtual displacements, as we introduced it in § 1: 
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In so doing, he wished to arrange the variations such that the external forces would do no work, 

so: 

1 0

hlr

h

d x
dx

dx




=


   = 0 . 

 

He overlooked the fact that under partial integration of that integral: 
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the boundary term will vanish, since indeed the endpoints of the rod can experience no 

displacements, such that the foregoing equation would imply only the result that: 

 

d x

dx

 
 = 0 

 
 (58) A. CASTIGLIANO, Dissertazione di Laurea, Turin, 1873. 

 Idem., Atti della R. Accademia di Torino 10 (1874/75), pp. 380 and 11 (1875/70), pp. 127. 

 Idem., Atti della R. Accademia di Torino 17 (1881/82), pp. 705. 

 Those treatises, with the exception of the last one, are collected in the book A. CASTIGLIANO, Théorie de 

l’équilibre des systèmes élastiques, Turin 1879, German translation (parts of which are flawed) by Hauff. 

 (59) V. CERUTTI, Atti della R. Accademia dei Lincei (2) 2 (1873/75), pp. 570. 
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for each rod. 

 In the face of such ever-recurring misunderstandings, DONATI (60) then gave a clarification 

of the foregoing relationships in three treatises that generally referred to essentially the same theory 

for continuous bodies, which we will then discuss in the second chapter. He strongly emphasized 

that with the Ansatz of the principle of virtual displacements, one could deal with only an 

extremum of the total potential energy and characterized the neighboring states to the extremum, 

in that case, as well as for Menabrea’s principle, along with pointing out its mechanical meaning. 

 For the calculation of statically-indeterminate frameworks (to the extent that its problems 

require such a thing to begin with), German engineering has been helped along by the fact that it 

has been able to appeal to the geometric conditions for frameworks, i.e., the relations that must 

exist between the lengths of the rods. MOHR simplified that problem greatly and nurtured it by 

his use of the principle of virtual displacements. Nonetheless, he was probably inclined to 

formulate calculations for the statically-indeterminate system as an extremum problem using 

Moseley’s principle of least resistance, which was well-known in Germany, despite it flaws. That 

was shown by an example in a treatise by WINKLER (61), in which he indeed treated the statically-

indeterminate problem by the method that Mohr gave but gave an extremum property for the 

corresponding problem involving full-wall beams. 

 Somewhat later, FRÄNKEL (62) discovered the principle of the extremum of the deformation 

work, and completely independently of the Italians. His derivation is correct because he started 

from the fact that variations Sh of the tensions define a system in equilibrium by themselves. He 

then employed the principle of virtual displacements while using the actual nodal displacements 

as the virtual displacements. He then obtained: 
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 MÜLLER-BRESLAU (63) then drew the attention of the German engineers to 

CASTIGLIANO’s book and treated a series of important engineering problems, on the one hand, 

by the method of the principle of virtual displacements that was founded by Mohr, and on the other 

hand, by appealing to Menabrea’s principle (in its second conception) and showed that one could 

arrive at the long-known solutions to those problems in many ways. 

 MOHR (64) responded to that article in the same volume by rejecting Menabrea’s principle, 

since the use of the principle of virtual displacements would lead to a complete resolution of all 

questions that might be posed for statically-indeterminate frameworks in a simpler and more direct 

 
 (60) L. DONATI, Memorie della R. Accademia e dell’Istituto di Bologna (4) 9 (1886), pp. 345; ibid. (4) 10 (1889), 

pp. 267 and ibid. (5) 4 (1894), pp. 449.  

 (61) H. WINKLER, Zeitschrift für Architekten und Ingenieurvereins zu Hannover, Neue Folge 25 (1879), pp. 199.  

 (62) C. FRÄNKEL, Zeitschrift für Architekten und Ingenieurvereins zu Hannover, Neue Folge 28 (1882), pp. 63. 

 (63) MÜLLER-BRESLAU, Wochenblatt für Architekten- und Ingenieur, 5, pp. 87. 

 (64) O. MOHR, Wochenblatt für Architekten- und Ingenieur, 5, pp. 171. 
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way (65). Moreover, there and in later works (66), he dealt with the essence of Menabrea’s principle, 

and in particular, the type of variation that would make things very precise. He emphatically 

stressed that a variation of the stress state can occur only if distortions are present in the rods, and 

that one must also include the proper stresses in the framework in one’s considerations. We wished 

that only the distortions should actually be varied under that variation. The fact that can regard the 

tensions that they produce to be independent variables in the question of the extremum, instead of 

those distortions, requires a special proof (67). MÜLLER-BRESLAU replied that the Menabrea-

Castigliano arguments could also provide the answers to all questions that might be posed in the 

calculations with a statically-indeterminate framework. In particular, Mohr’s objection that one 

can arrive at the necessary representation of the deformation work in terms of the external forces 

directly from the equilibrium conditions only in a statically-indeterminate framework is quite 

correct, but it does not seem conclusive since having a solution to the stress problem is a 

prerequisite for tackling the deformation problem. MÜLLER-BRESLAU further stressed that he, 

with Castigliano, used the second conception of Menabrea’s principle and regarded only the 

tensions in the superfluous rods as variable. Finally, as far as proper stresses (the influence of 

temperature, resp.) is concerned, to him it was possible to encompass all of that by introducing 

new expressions for the deformation work in place of the original one. Against the criticism of the 

“extensibility” of the concept of deformation work, it should be said that, as we have shown, those 

various expressions for it are implied naturally by a unifying idea, namely, the canonical 

transformation (68). 

 As we saw, the expression for the extension work that ENGESSER introduced follows from 

that. It is the natural generalization of the deformation work when one wishes to extend Menabrea’s 

principle to nonlinear deformation laws. The Ansätze of WEYRAUCH (69) and KRIEMLER (70) 

were next applied to it. By contrast, the extended deformation work (71) that ENGESSER 

introduced later really had more of a formal analogy to it.  

 However, WEINGARTEN (72) obtained that same expression by the following line of 

reasoning: 

 When temperature variations are present, the rod elongations will be caused by the tensions 

that are created by external forces Sh and the temperature variations ht  according to the formula 

(1.54): 

lh = h h h hS l t  +  . 

 

 
 (65) That question of preference is ignored in our presentation completely, since only an explanation of the 

theoretical aspects is intended here. 

 (66) O. MOHR, Civilingenieur 31 (1885), pp. 289.  

 (67) In MOHR’s presentation, that parallel to our previous considerations did not emerge clearly, since he did not 

introduce distortions as we did by removing (adding, resp.) material, but in a more concrete way by changing the 

temperature of the rods. He then spoke of temperature variations, instead of distortions. 

 (68) The entire bibliography of that controversy is summarized in the Encyklopädie der mathematischen 

Wissenschaften, Bd. IV, article 29a (M. GRÜNING). 

 (69) J. WEYRAUCH, Theorie elastischer Körper, Leipzig, 1884.  

 (70) Zeitschrift für Architekten und Ingenieurwesen, (1905), pp. 311 (also separately). 

 (71) ENGESSER, Zentralblatt der Bauverwaltung (1907), pp. 606.  

 (72) J. WEINGARTEN, Zeitschrift für Architekten und Ingenieurwesen, 53, Neue Folge 12 (1907), pp. 453. 
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 When no temperature variations are present, one can imagine that those rod elongations are 

caused by fictitious tensions: 

hS   = h
h h

h

l
S t




+  , 

 

which can be produced by external forces X 
  in their own right that can be calculated by means 

of the equilibrium conditions (73). 

 The study of frameworks that are loaded with external forces Xh and the study of the 

temperature variations ht  that the individual rods experience will then coincide with the study of 

frameworks that are loaded with fictitious external forces X 
 . All of the arguments that we made 

when elastic deformation at constant temperature were present will remain valid in the case where 

temperature variations appear as long as we just introduce fictitious external forces and the 

fictitious tensions that belong to them everywhere. The expression for the deformation work that 

belongs to those fictitious tensions will be: 
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 That expression for the fictitious deformation work differs from MÜLLER-BRESLAU’s ideal 

deformation work by the inclusion of the last term, which is constant since the temperature 

variations must be given when one treats the stress problem. It is then plausible that 

WEINGARTEN also found that expression for Menabrea’s principle since the additive constant 

certainly drops out under differentiation. 

 However, he encountered some contradictions from the engineering side of things (74) since he 

wanted to regard 
f  as the actual deformation work as soon as temperature variations came into 

play. That is because corresponding to the definition that we gave to begin with, engineers are 

accustomed to referring to only the excess work done beyond that of internal forces as the 

deformation work. By contrast, Weingarten counted one part of the heat supplied as the 

deformation work by adding the third term. 

 The actual added heat can, in fact, be split into two parts. One part serves to raise the 

temperature in the rod by the desired amount (75) when its thermal dilatation is prevented. From 

the mechanical theory of heat, the second part is equivalent to the work that would be required in 

order to produce the thermal dilatation that occurs in reality at constant temperature. However, 

WEINGARTEN counted that second part with the deformation work. 

__________

 
 (73) MELAN had already proposed that idea.  

 (74) J. WEYRAUCH, Zeitschrift für Architekten und Ingenieurwesen, 54, Neue Folge 12 (1907), pp. 91. 

 (75) For an ideal gas, the first process would be that of bringing the gas to the higher temperature by adding heat at 

constant volume. The second part consists of an isothermal return to the original pressure.  



 

CHAPTER TWO 

 

THE CONTINUOUS ELASTIC BODY 
 

 

 2.1. The elastic deformation of a continuum. The principle of virtual displacements and 

the equilibrium conditions. – In this chapter, we shall consider a continuous elastic body under 

the influence of given external forces. As is known, they are subdivided into the so-called body 

forces and the tractions on the surface of the elastic body. In the engineering theory of elasticity, 

one also ignores the body forces and considers only the surface stresses (76). We shall adhere to 

that conception of things in what follows. 

 We imagine that the surface tractions are distributed continuously over the surface of the body. 

Their components px, py, pz (
77) along the three axes of a rectangular coordinate system might then 

be given as continuous functions of position on the surface. The elastic body will deform under 

the action of those surface forces, under which the individual points might experience an infinitely-

small displacement with the components u (x, y, z), v (x, y, z), w (x, y, z), and might assume a 

certain equilibrium configuration. A stress state will then arise in its interior. 

 It was CAUCHY who first showed that an arbitrary stress state can be characterized 

analytically by being given six functions, namely, the so-called stress components x, y, z, x, 

x, x, the first three of which are the normal components perpendicular to the x, y, and z-axes, 

resp,, while the other three are shear stresses. 

 In order to investigate the equilibrium state, we shall appeal to the principle of virtual 

displacements. It says that the work done by external forces must be equal to the work done by 

internal forces if the body is to actually be found in equilibrium. If we denote a virtual displacement 

by u, v, w, in which those variations should be continuous functions of position, then the work 

done by surface tractions will be given by the surface integral: 

 

( )x x x
O

p u p u p u d   + + . 

 

The work done by internal forces is given by the volume integral: 
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             
 , 

 

in which the factors of the six stress components are the variations of the six quantities of 

deformation of the body: 

 
 (76) Thus, e.g., in the engineering theory of beams, one always imagines that the proper weight of the beam has 

been replaced by a fictitious load.  

 (77) The choice of notation is the usual one that is made in the statics of building construction. Cf., the seminar 

paper by M. GRÜNING, Enzyklopädie der mathematischen Wissenschaften, Bd. IV, Article 29.a. 
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That volume integral is referred to as the deformation work done by the virtual displacement. The 

principle of virtual displacements then finds its analytical expression in the equation: 

 

0 = ( )x x x
O

p u p u p u d   + +  

(2.2) 
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which must be fulfilled by the three arbitrary functions u, v, w for any system. 

 If we choose the variations u, v, w in the Ansatz (2.2) for the principle of virtual 

displacements such that variations of the quantities of deformation vanish then the spatial integral 

will drop out, and we will obtain the condition equations for the surface tractions alone. Such 

displacements are the ones that a rigid body can experience. One of them possesses six degrees of 

freedom of motion, so we can displace it parallel to the three coordinate axis, as well as rotate it 

around the three coordinate axes. If we introduce the corresponding expressions for u, v, w 

then we will see that the surface tractions must fulfill the six conditions: 

 

 x
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p d  = 0 , y
O
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(2.3) 

( )y z
O
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O

x p z p d−  = 0 , ( )x y
O

y p x p d−  = 0 , 

 

i.e., they must fulfill the six conditions for a system of forces that keeps a rigid body in equilibrium. 

 In order to now examine the equilibrium of an elastic body, we partially-integrate the spatial 

integral in equation (2.2) and get: 
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in which n is the direction of the outward-pointing normal to the surface. 

 We can choose the virtual displacements such that they will vanish individually on the surface 

O, so the spatial integral in that equation must also vanish by itself. From the known argument in 

the calculus of variations, one will then find that one must have the equilibrium conditions: 
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y x z

x y z

    
+ +
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= 0 

 

for every interior point. Equation (2.4) simplifies as a result of the fact that only the surface integral 

still remains, as we can then further deduce, by the same argument, that for any point of the surface, 

the equilibrium conditions: 

 

  px = x cos (x, n) + z cos (y, n) + y cos (z, n) , 

py = z cos (x, n) + y cos (y, n) + x cos (z, n) ,       (2.6) 

  pz = y cos (x, n) + x cos (y, n) + z cos (z, n) 

must be valid. 

 The six undetermined stress components are by no means determined by the three equilibrium 

conditions (2.5) for the interior, to which the three boundary conditions (2.6) must be added. 

Rather, three of them can be assumed to be arbitrary, and only then can the other three be 

determined (78). Upon appealing to the terminology that was introduced in our treatment of 

frameworks, we can call the stress problem three-fold functionally undetermined, which just says 

that it is only after we have established the three functions that the solution to the stress problem 

will even be possible by means of the equilibrium conditions (79). 

 
 (78) That somewhat-indeterminate way of expressing things can be formulated more precisely by introducing the 

Maxwell stress functions. On that topic, cf., A.E.H. LOVE, Lehrbuch der Elastizität, Ger. trans. by A. TIMPE, Leipzig  

and Berlin, 1907, pp. 103.  

 (79) Editor’s note: For the question of how many times undetermined the three-dimensional continuum is, the 

difference between the number of stresses and the number of equilibrium conditions is what is crucial, and not the 

number of compatibility conditions. Whereas there is no difference between the two numbers for frameworks and 

frame constructions, but also for the disc, plate, and torsion problem, things are different for the three-dimensional 

continuum. For the three-dimensional continuum, the number of unknown internal stresses is six, but the number of 

equilibrium conditions is three. The three-dimensional continuum is therefore three-fold functionally undetermined. 

The equilibrium conditions will be fulfilled identically by the introduction of three stress functions. If one eliminates 

the stresses with the help of elasticity laws and introduces the distortions, expressed in terms of the stress functions, 

into the six compatibility conditions in equation (2.9) then that will give six equations for the three stress functions. 

The six compatibility conditions cannot be mutually independent then, cf., e.g., [128]. 

 For the introduction of stress functions for the fulfillment of the equilibrium conditions, one should refer to the 

classical works of AIRY [1], MAXWELL [74, 75], and MORERA [91, 90], the textbook of LOVE [68], the survey of 

TRUESDELL and TOUPIN in Handbuch der Physik [141], pp. 582-594, as well as the works of SCHÄFER [128, 

129, 130, 131], KRÖNER [61], GÜNTHER [46], and MARGUERRE [73]. 
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 2.2. The intervention of elasticity. – In order to set aside that indeterminacy in the problem, 

we shall now assume that the elastic body, which might be geometrically a simply-connected body, 

moreover, obeys Hooke’s law and is free from initial stresses, i.e., that no stresses are present in 

the body in the absence of external loads (px, py, pz). 

 In this case, the stress components x, y, z, x, y, z are coupled with the quantities of 

deformation x, y, z, x, y, z by the linear relations: 

 

x =  e + 2  x ,  x =  x , 

y =  e + 2  y ,  y =  y ,     (2.7) 

z =  e + 2  z ,  z =  z , 

 

in which  and  are the two (Lamé) elasticity constants (80) of the solid body, and  is an 

abbreviation for the cubic dilatation: 

 = x + y + z .      (2.8) 

 

 If one were to introduce the six quantities of deformation in place of the stress components in 

the equilibrium conditions (2.5) and (2.6) then the problem would remain three-fold functionally 

undetermined, precisely as before. Meanwhile, the indeterminacy will vanish when we observe 

that the six quantities of deformation can be expressed in terms of the three components of the 

displacement u, v, w using equations (2.1). The quantities of deformation are not six arbitrary 

functions then, but they must satisfy the so-called compatibility conditions for the quantities of 

deformation, which possess the form (81): 
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…   … 

 

 If we replace the quantities of deformation in those compatibility conditions by solving 

equation (2.7) for the stress components then we will get six corresponding condition equations 

 
 (80) Those Lamé elastic constants are connected with the otherwise-often-used elastic constants in the following 

way: 

 The so-called Young modulus is: 

E = 
(3 2 )  

 

+

+
, 

 

and the so-called Poisson constant that is employed in German engineering literature is: 

 

m = 
2( ) 



+
, 

 

while often (e.g., LOVE) it is the reciprocal value  =  / 2 ( + ) that is referred to as the Poisson constant. m is the 

so-called shear modulus, for which the symbol G is most customary in the German engineering literature. 

 (81) A.E.H. LOVE, loc. cit., pp. 59.  
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for the stress components that will be referred to as the compatibility conditions for the stress 

components of the elastic body. Together with the equilibrium conditions (2.5) and (2.6), they 

determine the stresses that the body experiences as a result of the load uniquely. One most 

conveniently gives them the form of the six so-called stress equations of the theory of elasticity, 

which BELTRAMI first gave; they read (82): 
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…   … 

in which one sets: 
2 2 2

2 2 2x y z
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+ +
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 = 2 

and 

x + y + z =  ,     (2.11) 

to abbreviate. 

 In the final analysis, the foregoing argument is based upon the fact that the quantities of 

deformation, and therefore the stress components, in their own right, are determined by the three 

components of the displacement. It then seems much simpler, even in the expression (2.7) for 

Hooke’s law, to introduce the expressions (2.1) for the quantities of deformation into the 

derivatives of the displacement components u, v, w, so to express the stress components in terms 

of the three displacement components directly and introduce the expressions thus-obtained into 

the equilibrium conditions (2.5). In that way, we will get the second-order differential equations 

for u, v, w that are known as the fundamental equations of the theory of elasticity: 
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 The boundary conditions (2.6) now read (83): 
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 (82) A.E.H. LOVE, loc. cit., pp. 160.  

 (83) A.E.H. LOVE, loc. cit., pp. 157, 158. 
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 Equations (2.12), with the given boundary conditions (2.13), do not determine the 

displacement components u, v, w uniquely. However, two systems of solutions u1, v1, w1 and u2, 

v2, w2 can differ by only expressions that give the displacement of a rigid body, so one must have: 

 

  u1 = u2 + a + q z – r y , 

v1 = v2 + b + r x – p z ,        (2.14) 

  w1 = w2 + c + p y – q x , 

 

in which a, b, c, p, q, r are constants (84). By contrast, if we were not given the external forces px, 

py, pz on the surface of the body, which would seem most natural from our standpoint, but the 

values of the displacements themselves on that surface, then equations (2.12) would determine the 

displacements uniquely (85). The quantities of displacement, and therefore the stress components, 

will then be determined uniquely in both cases, because when we compute the quantities of 

deformation, i.e., the expressions (2.1), from the displacement components, the additional terms 

in (2.14) will once more drop out precisely. 

 We shall come back to the actual process of integrating (2.12) and (2.13) at the conclusion of 

this chapter. 

 

 

 2.3. The minimum of total energy. – If we introduce the quantities of deformation instead of 

the derivatives of the displacement components into the volume integral (2.1) using the Ansatz of 

the principle of virtual displacements then we will get: 
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We would like to replace the stress components in the integrand of the volume integral with the 

quantities of deformation using Hooke’s law (2.7). It will then become the variation of the 

following function, which is quadratic in the quantities of deformation: 

 

( , , , , , )x y z x y z        

 (2.16) 

= 2 2 2 21
2
[( 2 )( ) ( 4 4 4 )]x y z x y z y x z y x z              + + + + + + − − −  , 

 

 
 (84) Editor’s remark: The original version of these lectures indeed includes a reference to a footnote, but no actual 

text in the footnote.  

 (85) A.E.H. LOVE, loc. cit., pp. 201.  
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and when we replace the quantities of deformation in that with the derivatives of the displacement 

components, that will make: 

 

  = 

2

1
2

( 2 )
u v w

x y z
 

    
+ + +  

   

 

(2.16.a) 

+ 

2 22

4 4 4
v w w u u v v w w u u v

z y x z y x y z z x x y

                 
+ + + + + − − −     

                  

 . 

 

The volume integral is then the variation of the following volume integral: 

 

 = 
V

d  .     (2.17) 

 

Moreover, since the surface tractions px (), py (), pz () are given functions of position on the 

surface, the surface integral in (2.15) the negative of the variation of: 

 

 = − [ ( ) ( ) ( ) ]x y z
O

p u p v p w d    +  +   = 
O

d  .  (2.18) 

 

The integrands  and  both include the three functions u, v, w. The values of the integrals  and 

 can first be calculated when that system of functions is chosen, and naturally the values of those 

integrals will change with the choice of those functions. They are functionals (86) of the three 

functions u (x, y, z), v (x, y, z), w (x, y, z). 

 We can convince ourselves that  is the total deformation work of the elastic body that is done 

by the deformation that is determined by the displacements u, v, w. That is because we can 

characterize any current state of deformation that is created during the deformation by the 

associated values ( , , )u x y z , ( , , )v x y z , ( , , )w x y z  of the displacements, and therefore regard the 

values of those functions for any volume element of the body as independent variables. The 

deformation work that is done on the volume element when it goes from those values to the 

neighboring values u du+ , v dv+ , w dw+  is: 

 

( )x x y y z z x x y y z zd d d d d d d            + + + + +  . 

 
 (86) In mathematics, one understands a functional to mean an expression that depends upon the total course of one 

or more functions, such that a value for it can be calculated whenever one knows those functions. The functions upon 

which the functional depends then play the role of independent variables upon which the value of the function depends. 

For example, the arc-length of the curve y (x) that connects two points x1, y1 and x2, y2 in the plane: 

 

s = 
2

2

1

1

x

x

y dx+  

is a functional of the function y (x). 
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 We will get the deformation work done by the total deformation of the volume element from 

that when we integrate u , v , w  from 0 to their final values u, v, w. Now, since we have: 

 
, ,

0,0,0

{ }

u v w

x x y y z z x x y y z zd d d d d d d            + + + + +  = d  , 

 

 will be, in fact, the deformation work per unit volume at the point x, y, z, and the volume integral: 

 

 = 
V

d   

 

will be the deformation work done on the entire body. On the other hand: 

 

 = − (px u + py v + pz w)    (2.18a) 

 

is obviously the potential energy per unit area of surface tractions, so  is the potential energy of 

the surface tractions for the total body. The sum of both of them: 

 

E =  +  = 
O V

d d   +            (2.19) 

 

is then the total potential energy of the elastic body. 

 The Ansatz (2.15) of the principle of virtual displacements reads: 

 

O V
d d   +   = 0     (2.15a) 

 

with the new notation, so it can be summarized as: 

 

O V
d d     +

    = E = 0 ,            (2.20) 

 

i.e., the total potential energy E will be an extremum. 

 Conversely, the extremum of the expression E, which can be regarded as a functional of the 

displacements u, v, w, characterizes the equilibrium state. 

 In fact, when we look for the extremum of the sum of a volume integral and an integral over 

the bounding surface of that volume, as represented by: 

 

E = 
O V

d d   +  , 

 

using the rules of the calculus of variations, we will have the three Euler-Lagrange equations: 
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x y zx u y u z u

           
+ +              

 = 0 , 

x y zx v y v z v

           
+ +              

   = 0 ,     (2.21a) 

   
x y zx w y w z w

           
+ +              

  = 0 , 

 

as the conditions for the three unknown functions u, v, w, initially for the interior, with: 

 

ux = 
u

x




, uy = 

u

y




, uz = 

u

z




, …, 

 

and then the three equations for the surface: 

 

  cos( , ) cos( , ) cos( , )
x y z

x n y n z n
u u u u

      
+ + +

   
  = 0 , 

cos( , ) cos( , ) cos( , )
x y z

x n y n z n
v v v v

      
+ + +

   
   = 0 ,    (2.21b) 

  cos( , ) cos( , ) cos( , )
x y z

x n y n z n
w w w w

      
+ + +

   
  = 0 . 

 

If we introduce the expressions (2.16a) [(2.18a), resp.] for  and  into those equations then they 

will go directly to the equilibrium conditions (2.12) and the boundary conditions (2.13). 

 As was mentioned before, in the theoretical study of elasticity, one often cares to pose the 

problem in a form such that one does not prescribe the tractions on the surface, but the 

displacements u (), v (), w () themselves. Therefore, the three functions px (), py (), pz () 

in the surface integral  are not immediately known in the total energy E. However, since the 

volume integral  remains unchanged, the requirement that E should be an extremum once more 

leads directly to equations (2.21a) [the equations (2.12) that coincide with them, resp.]. Moreover, 

since those equation determine the three functions u (x, y, z), v (x, y, z), w (x, y, z) uniquely when 

their values are given on the surface, we will know the total deformation of the body. Equations 

(2.1) immediately imply the quantities of deformation (2.7), and then the stress components, and 

from them we will find the stresses on the surface, and therefore ultimately the external forces that 

would be in a position to justify the required deformation. 

 We see that in this way of looking at things, the term  in the sum of the integrals E plays no 

role. We would arrive at the same result if we had looked for only the extremum of the integral: 

 

 = 
V

d   
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for prescribed displacements on the surface, instead of an extremum of the potential energy E. If 

we introduce the solutions of the Euler-Lagrange equation for the functions u, v, w in  then  

will assume the desired extremal value that belongs to the equilibrium state and will be denoted 

by (e). It represents the actual deformation work done during the transition to the new deformation 

state. That extremal value of (e) will be completely determined for every choice of surface 

displacements u (), v (), w (), so it will be a functional of the surface displacements: 

 

(e) = (e) [u (), v (), w ()] .           (2.22) 

 

 

 2.4. Canonical transformation. Menabrea’s principle. – In the foregoing section, we used 

the principle of virtual displacements in order derive the theorem that for given surface tractions 

px, py, pz, an elastic body will be in equilibrium when the displacement components u (x, y, z), 

( , , )v x y z , w (x, y, w) extremize the total potential energy: 

 

E = 
O V

d d   +  ,     (2.19) 

 

which is regarded as a functional of those functions. We would now like to apply a canonical 

transformation to that variational problem, and in that way go over to a new formulation. 

 Since  does not include the derivatives of u, v, w at all, only the volume integral will come 

into question for the canonical transformation. We must set the partial differential coefficients of 

 with respect to the nine derivatives of u, v, w, namely, ux, uy, uz, …, wz, equal to new variables. 

Since, from (2.16a), the derivatives uy and vx enter into  only in the combination (uy + vx), we will 

have: 

yu




 = 

( )y xu v



 +
 = 

xv




, 

and analogously: 

zv




 = 

yw




, 

xw




 = 

zu




. 

 

Of the nine new unknown functions to be introduced, only six of them are distinct from each other 

then. Upon performing the differentiation, we will see that, from (2.1) and (2.7), they will give 

precisely the previously-considered six stress components: 

 

 
xu




 = x , 

xu




 = x , 

xu




 = x , 

(2.23) 

  
zv




 = 

yw




= x , 

xw




 = 

zu




= y , 

yu




 = 

xv




 = z . 
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We calculated the partial derivatives ux, …, wz as functions of x, y, …, z from those equations. 

Naturally, we cannot calculate nine unknowns from six equations, but we will once more make 

the problem determinate when we do not calculate vx and wy individually, but only in the 

combinations (vz + wy), and likewise (wx + uz), (uy + vx). 

 In the spirit of the theory of the canonical transformation, we must now replace the function  

with the function: 

 

 H (x, y, z, x, y, z) = 
x y z

x y z

u u u
u u u

    
+ +

  
 

(2.24) 

+ ( ) ( ) ( )
( ) ( ) ( )

z y x z y x

z y x z y x

v w w u u v
v w w u u v

    
+ + + + +

 +  +  +
−  , 

 

in which the derivatives ux, …, (uy + vx) are expressed in terms of the nine variables. Once one has 

done that (87), one will get: 

 

H = 2 2 2 21 1 1
( ) ( )

2 3 2
x y z y x z x x y x y z

 
           

   

 +
+ + − + + − − − 

+ 
. (2.24b) 

 

According to the laws of the canonical transformation, the variational problem (2.19) will be 

replaced with the new variational problem of extremizing the expression: 

 

  = 
O

d        (2.25) 

( , , , , , )x y z x y z x y z x y z
V

u v w v w w u u v
H d

x y z z y x z y x
            

             
+ + + + + + + + + −     

             
 , 

 

and indeed when it is regarded as a functional of the nine functions u, v, w ; x, y, z, x, y, z. 

 In order to determine the nine functions that actually extremize , we next vary only the x, …, 

z. As the extremal conditions for , the first group of Euler-Lagrange equations will give the 

relations: 

 
 (87) When one is doing that, it is convenient for one to observe that  is a quadratic function in ux, vy, …, (uy + vx), 

such that from Euler’s theorem, one will have: 

 

( ) 2
( )

x y z y x

x y z y x

u u u u v
u u u u v

   


   
+ + + + + =

    +
, 

so 

H =  ,      (2.24a) 

 

where one imagines that the stress components are introduced into . 
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u

x




 = 

x

H






 = 

1
( ) ( )

3 2
x y z y z

 
    

  

 +
+ + − + 

+ 
 , 

v w

z y

 
+

 
 = 

x

H






 = 

1
x


, 

u

x




 = 

y

H






 = 

1
( ) ( )

3 2
x y z z x

 
    

  

 +
+ + − + 

+ 
 ,      

w u

x z

 
+

 
 = 

y

H






 = 

1
y


, (2.26) 

 
w

z




 = 

z

H






 = 

1
( ) ( )

3 2
x y z z x

 
    

  

 +
+ + − + 

+ 
 , 

u v

y x

 
+

 
 = 

z

H






 = 

1
z


. 

 

The variation of u, v, w then leads to the following two groups of extremum conditions: For the 

interior of the body, the Euler-Lagrange equations must be valid: 

 

yx z

x y z

   
+ +

  
 = 0 , 

y xz

x y z

   
+ +

  
 = 0 ,     (2.27a) 

y x z

x y z

    
+ +

  
 = 0 , 

 

and for the surface, one has the conditions: 

 

px = x cos (x, n) + z cos (y, n) + y cos (x, n) , 

py = z cos (x, n) + y cos (y, n) + x cos (x, n) ,       (2.27b) 

pz = y cos (x, n) + x cos (y, n) + z cos (x, n) . 

 

The first group (2.26) of those equations says that the six stress components can be expressed in 

terms of the three functions u, v, w. We can then derive the compatibility conditions for the stress 

components from them, which are completely equivalent to the latter equations. The second group 

(2.27a) and (2.37b) consists of the equilibrium conditions for the interior and the surface. 

 In this variational problem, viz., of extremizing the functional , we have regarded all nine 

functions that go into  as variables. Mathematically, the facts are simple, but of course their 

physical meaning for elastic bodies in not entirely obvious. We have regarded the displacement 

and the stress state as mutually-independent and freely-varying. Finding the extremum of will 

then imply the compatibility equations, as well as the equilibrium conditions. 

 When we regard the first our first group of equations (2.26) as having been fulfilled, we will 

then return to the variational principle of extremizing E (which arose immediately from the 

principle of virtual displacements) that was treated in the previous section. At the time, we varied 

in such a way that compatibility was preserved, i.e., the body remained completely connected 

during the variation. The neighboring states that one compares to the extremum of E are no longer 

equilibrium states. The unique equilibrium state will just be characterized by the extremum of E 

precisely. 
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 On the other hand, we can specialize the variational problem of  in such a way that we do not 

assume that the compatibility conditions (2.26) are fulfilled, but only the equilibrium conditions 

(2.27a) and (2.27b). That would mean that we require of the stress components that they satisfy 

the equilibrium conditions for every volume element and every surface element, but no longer 

require that they satisfy the compatibility conditions. In order to actually produce that stress state, 

we can probably achieve the correct stress state for every volume element, but the deformed 

volume elements would no longer fit together, such that they could no longer constitute the original 

body either. We will get the condition for a construction to be possible that would make precisely 

that stress state exist, so the compatibility conditions would be satisfied, from the extremum 

requirement. 

 If we partially integrate the first term in the volume integral in the expression (2.25) for , and 

in so doing observe that the equilibrium conditions (2.27a) and (2.27b) are fulfilled now, then that 

will reduce the variational problem for  to that of extremizing: 

 

− ( , , , , , )x y z x y z
V

H d        , 

 

with the equilibrium conditions (2.27a) and (2.27b) as auxiliary conditions. From (2.24b), H = 

( , , , , , )x y z x y z        is identical to the deformation work per unit volume. Thus: 

 

− ( , , )x z
V

H d    = − ( , , )x z
V

d     

 

is, up to sign (which does not matter for the extremum requirement), the sum of the deformation 

works for the individual volume elements. The extremum requirement then demands that this sum 

of the deformation works over the individual volume elements of the body: 

 

  = ( , , , , , )x y z x y z
V

d             (2.28) 

 

must be extremized, while the equilibrium conditions (2.27a) and (2.27b) exist as auxiliary 

conditions. That is Menabrea’s principle (in its first conception) for the continuous elastic body. 

 In order to confirm that it will lead to the compatibility condition, we would like to vary (2.28), 

and in so doing, consider the auxiliary conditions for the interior and boundary using the method 

of Lagrange factors. Therefore, let  (x, y, z),  (x, y, z),  (x, y, z) be three Lagrange factors for 

the interior, and let ( )  , ( )  , ( )   be three such things for the surface. We will then have 

to extremize the expression: 

 

y y yx x xz z z

V
d

x y z x y z x y z

      
    

              
+ + + + + + + + +      

               
  

(2.29) 
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[ cos ( , ) cos ( , ) cos ( , ) ]
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O

z y x y

y x z z

x n y n z n p

x n y n z n p

x n y n z n p d

   

   
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+ + + −

 + + −

 + + −


 

 

with no auxiliary conditions. In the interior, that leads to the six conditions: 

 

  
x




 = + 

x








, 

y




 = + 

y








, 

z




 = + 

z








, 

(2.30) 

  
y z

  
+

 
 = 

x








, 

z x

  
+

 
 = 

y








, 

x y

  
+

 
 = 

z








. 

 

The variation of the integral (2.26) then reduces to the surface integral here: 

 

0 { ( )[ cos ( , ) cos ( , ) cos ( , )]

( )[ cos ( , ) cos ( , ) cos ( , )]

( )[ cos ( , ) cos ( , ) cos ( , )]} ,

x z y
O

z y x

y x z

x n y n z n

x n y n z n

x n y n z n d

    

    

     

= − + +

 − + +

 − + +


 

 

and due to the arbitrariness in the variations, we then conclude that: 

 

( )   =  () , ( )   =  () , ( )   =  () .  (2.30a) 

 

We will then see that the six stress components must be capable of being expressed in terms of 

three functions when the extremum exists, i.e., that the compatibility conditions must be fulfilled. 

The individual deformed volume elements will then fit together, and we can construct the body 

from them. We denote the extremal value of the integral (2.28) by ( )e , so it will then represent 

the deformation work of the elastic body. By the way, we should point out that the Lagrange factors 

prove to be precisely the displacement components (88). 

 

 

 2.5. The extremum of the deformation work as a functional of the surface displacements 

and the surface tractions. Castigliano’s theorems. The Betti reciprocity theorem. – The 

equilibrium state of an elastic body is characterized by the simultaneous existence of compatibility 

conditions and equilibrium conditions. Both of them together find their simplest analytical 

expression in basic equations of elasticity (2.12), i.e., the Euler-Lagrange equations for the 

integral: 

 

 
 (88) For this section, cf., the presentation by E. HELLINGER in Encyklopädie der mathematischen Wissenschaften, 

Bd. IV, Art. 31 (4 Teilband, pp. 654). 
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  = 

2

1
2

( 2 )
V

u v w

x y z
 

    
+ + +  

   
  

(2.31) 

+ 

2 22

4 4
v w w u u v w u u v

d
z y x z y z z x x y

 
               

+ + + + + − −     
                

 

 

that represents the deformation work d   of the body, in which  has been replaced with its 

expression in (2.16a) 

 If we introduce precisely the solutions of the Euler-Lagrange equations into that integral for 

the functions u, v, w, i.e., we introduce the “extremal,” in the terminology of the calculus of 

variations, then it will assume its extremal value that characterizes equilibrium. We shall call it the 

extremal integral: 

e = d  ,     (2.32) 

 

in which the symbol  should suggest that while performing the integration, the u, v, w are replaced 

with the values for the extremal, so e will be the actual value of the deformation with that is done 

by the elastic deformation. It is given by the variational problem for E, in which one seeks 

equilibrium under the assumption of compatibility in the form (g), and by Menabrea’s principle, 

in which one seeks compatibility under the assumption of equilibrium in the form (k). Now, as 

we already mentioned before, the extremal is determined uniquely when the boundary values 

( )u  , v (), w () are given, and when the surface tractions px (), py (), pz () are prescribed, 

it includes only the indeterminacy that nonetheless makes the integrand in (2.32) uniquely 

determined. The extremal integral then takes on a uniquely-determined value in both cases, so it 

is itself determined uniquely by surface displacements (tractions, resp.). However, its value 

depends upon all of the values that the functions ( )u  , v (), w () [px (), py (), pz (), resp.] 

assume on the surface, so it not a function, but a functional, of those quantities. In order to 

distinguish both of those pictures, we shall write: 

 

e = e [u (), v (), w ()] ,    (2.33a) 

or 

e = e [px (), py (), pz ()] ,    (2.33b) 

 

resp. We would like to denote the functional derivatives (89) with respect to the functions upon 

which e depends by e

u , 
x

e

p

 , resp. In any event, they are functionals of the functions, but they 

also depend upon the location  on the surface at which the functional derivatives are constructed: 

 
 (89) Editor’s remark: In a handwritten footnote, Prange wrote “funkt. Ableitungen.” Apparently, it should have 

read “on that, cf., my Dissertation, Göttingen, 1915.” 
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e

u  = e

u  [u (), v (), w ()]          (2.34a) 

or 

x

e

p

  = 
x

e

p

 [px (), py (), pz ()] ,          (2.34b) 

resp. 

 According to Volterra’s fundamental theorem, the changes in the functional under a variation 

of the functions upon which it depends is expressed by means of the functional derivatives in the 

form: 

 e = ( )e e e

u v w
O

u v w d    +  +     (2.35a) 

or 

 *e = ( )e e e

u v w
O

u v w d      +  +  ,   (2.35b) 

resp. 

 We would next like to regard the deformation work as a functional of the surface tractions. 

We would like to compare its variation (2.35a) with the variation of the extremal integral (2.32), 

as it is implied by the boundary formula from the calculus of variations (90): 

 

 e = 
O

n n n

u v w d
u v w

  
   

   
+ + 

   
  ,     (2.36) 

 

in which un, vn, wn are the derivatives of the extremal with respect to the outward-pointing normal 

to the surface of the body. 

 Since the variations u, v, w are completely arbitrary on the surface, it would follow from 

(2.35a) and (2.36) that their coefficients must coincide, and we will then find that the functional 

derivatives are: 

 e

u  = 
nu




 = cos( , ) cos( , ) cos( , )

x y z

x n y n z n
u u u

    
+ +

  
 , 

e

v  = 
nv




 = cos( , ) cos( , ) cos( , )

x y z

x n y n z n
v v v

    
+ +

  
 ,            (2.37) 

  e

w  = 
nw




 = cos( , ) cos( , ) cos( , )

x y z

x n y n z n
w w w

    
+ +

  
 . 

 

 However, from equations (2.21b), the right-hand sides of those equations, in which the 

extremal is introduced for u, v, w, are equal to exactly the surface tractions px, py, pz that must be 

applied to the surface in order to produce the deformation that belongs to the given surface 

displacements. We then have: 

 
e

u  = px ,      
e

v  = py ,      
e

w  = pz ,    (2.38) 

 

 
 (90)  On that, cf., my Dissertation, Göttingen, 1915. 



2.5. – Castigliano’s theorems. Betti’s reciprocity theorem.  67 

 

which we express in the form of a theorem: 

 

 If the extremal value of the deformation work is expressed as a functional of the surface 

displacements then the functional derivatives with respect to the functions ( )u  , v (), w () – 

viz., the components of the surface displacements – at every point of the surface will be equal to 

the associated components of the surface tractions that must be applied in order to produce the 

distorted state. 

 

This theorem is the analogue of the second of the two Castigliano theorems that were stated for 

frameworks. Here, we would also like to refer to it as the second theorem of Castigliano for 

continuous bodies. 

 We would like to construct the expression: 

 

( )e e e

u v w
O

u v w d    +  +   = ( )x y z
O

p u p v p w d+ +   (2.39) 

 

using the functional derivatives, which are indeed functions of position on the surface. In that 

expression, u, v, w are once more the given values of the displacements on the surface from which 

 [u, v, w] was constructed. That expression no longer depends upon the individual locations  

on the surface, but only on the totality of values of the three functions ( )u  , v (), w (). In order 

to calculate its value, we substitute the expression (2.37) for the functional derivatives and obtain 

the surface integral: 

cos ( , )

cos ( , )

cos ( , ) .

O
x x x

y y y

z z z

u v w x n
u v w

u v w y n
u v w

u v w z n d
u v w

  

  

  


   
+ + 

   

   
+ + +     

    
+ + +  

     



 

 

From Gauss’s integral theorem, that surface integral is equal to the following volume integral: 

 

,

V
x x x

y y y

z z z

u v w
x u v w

u v w
y u v w

u v w d
z u v w

  

  

  


     
+ +  

     

    
+ + +      

     
+ + +  

     


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in which the symbol  once more suggests that the functions u, v, w that belong to the extremal 

have been substituted. If we perform the differentiations in it and observe that the functions u, v, 

w satisfy the equations (2.21a) then that will give: 

 

x y z
V

x y z

u u u d
u u u

  


    
+ + 

    
 , 

 

or since (2.16a) implies that  is homogeneous of order two in the derivatives ux, …, wz , from 

(2.32), we will have: 

2
V

d   = 2 e. 

We then find the relation: 

e = 1
2

( )e e e

u v w
O

u v w d  +   +    

(2.40) 

  = 1
2

( )u v w
O

p u p v p w d+ + , 

 

which expresses Clapeyron’s theorem for continuous bodies: 

 

 This actual deformation work is one-half as great as the work done by the surface tractions 

that would maintain the deformation that would be achieved if they had those final values during 

the entire process. 

 

 Furthermore, equation (2.40) can be interpreted from the standpoint of the functional calculus. 

One can easily conclude from the definition [eq. (2.32)] of the extremal integral as the functional: 

 

e [ ( )u  , v (), w () ; ] 

 

that e is an “entire” functional of the arguments, with FRÉCHET’s terminology (91). If one 

multiplies all functions upon which an entire functional depends by a constant c and multiplies the 

value of the functional when has substituted those new functions by precisely 
nc  then the “entire” 

functional will be homogeneous of order n (92). If we were to now multiply the boundary values 

( )u  , v (), w () that establish the extremal in the present case by an arbitrary constant c then, 

due to the homogeneous and linear character of the Euler-Lagrange equations (2.12), the functions 

u (x, y, z), v (x, y, z), w (x, y, z) would also be multiplied by that constant c. The expression (2.32) 

(93) for the extremal integral shows that it is then multiplied by 
2c : 

 

 
 (91) M. FRÉCHET, Ann. sci. de l’E.N.S. (3) 27 (1910), pp. 193. 

 (92) M. FRÉCHET, loc. cit. 

 (93) Editor’s remark: In conjunction with (2.31).  
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e [c ( )u  , c v (), c w ()] = 2c  e [ ( )u  , v (), w ()] .  (2.41) 

 

 The deformation work e is therefore an “entire” homogeneous functional of order two of the 

three arguments. One can then regard Clapeyron’s equation (2.40) as an adaptation of Euler’s 

theorem to entire homogeneous functionals. 

 

 FRÉCHET gave a representation for all functionals that are continuous functions of their 

arguments (94). In our case, it would read: 

 

e [ ( )u  , v (), w ()] 

 

lim { ( , ) ( ) ( ) 2 ( , ) ( ) ( )

( , ) ( ) ( ) 2 ( , ) ( ) ( )

2 ( , ) ( ) ( ) ( , ) ( ) ( )} .

n n
n

n n

n n

K u u L u v

M v v N u w

O v w P w w d d

       

       

         

   

=

   

    

= +

+ +

+ +

 
  (2.42) 

 

 When the individual functions ( , )nK   , etc., converge uniformly with increasing n to the 

functions ( , )K  
, etc., that are defined on the entire surface, one can simplify the expression 

to: 

{ ( , ) ( ) ( ) 2 ( , ) ( ) ( )

( , ) ( ) ( ) 2 ( , ) ( ) ( )

2 ( , ) ( ) ( ) ( , ) ( ) ( )} .

e K u u L u v

M v v N u w

O v w P w w d d

       

       

         

   

   

    

 = +

+ +

+ +

 
  (2.43) 

 

Later, we will see that there is, in fact, an expression with that simple form by solving the boundary 

value problem for the fundamental equations of elasticity (2.12). We would then like to remark, 

however, that it also lets us work with the expression (2.42) unchanged, by the following directly-

relevant argument: 

 It emerges from this representation the first functional derivatives of e : 

 

  e

u  = 2 { ( , ) ( ) ( , ) ( ) ( , ) ( )}K u L v M w d               + + , 

e

v  = 2 { ( , ) ( ) ( , ) ( ) ( , ) ( )}L u M v O w d               + + ,     (2.44) 

  e

w  = 2 { ( , ) ( ) ( , ) ( ) ( , ) ( )}N u O v P w d               + +  

 

have the form of entire first-order functionals of the surface displacements, as indeed they should, 

from (2.40). 

 
 (94) M. FRÉCHET, loc. cit. 
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 If we take the functional derivatives of those expressions (2.44), i.e., the second functional 

derivatives of the deformation work e  with respect to the functions ( )u  , v (), w () at an 

arbitrary location   on the surface, then we will see that they will be: 

 
e

uu  = 2 ( , )K   , e

uv  = e

vu  = 2 ( , )L   , e

uw  = e

wu  = 2 ( , )N   , 

 e

vv  = 2 ( , )M   , e

vw  = e

wv  = 2 ( , )O   , e

ww  = 2 ( , )P   , 

 

so here they will no longer depend upon the special choice of the functions ( )u  , v (), w () at 

all. They are functions of only the two points , 
 on the surface and are determined by only the 

nature of e , i.e., by the form of the elastic body and its elastic properties. From the general laws 

of the functional calculus (95), they must be symmetric functions of their two arguments  and .  

 Those properties of the functional derivatives of the deformation work are the source of a 

reciprocity theorem that is analogous to Maxwell’s theorem for frameworks and was presented by 

BETTI. We consider two different systems of surface displacements: 

 

( )u  , ( )v  , ( )w    and ( )u  , ( )v  , ( )w   

 

and construct the actual deformation work done on the body by both of them: 

 
e

  = [ ( ), ( ), ( )]e u v w      and e
  = [ ( ), ( ), ( )]e u v w      . 

 

When we construct the expressions: 

 

{ ( ) ( ) ( ) ( ) ( ) ( )}e e e

u v wu v w d      
        

  
    +   +    

and 

{ ( ) ( ) ( ) ( ) ( ) ( )}e e e

u v wu v w d      
        

  
    +   +    

 

from the functional derivatives, and substitute the expressions (2.44) for the functional derivatives 
e

u



 , etc., then we will see that due to the symmetry of the second derivatives K, …, P, one must 

have: 

{ }e e e

u v wu v w d
   

  
    +   +    = { }e e e

u v wu v w d
   

  
    +   +        (2.45) 

 

identically. However, from Castigliano’s theorem (2.38), the functional derivatives of e are equal 

to the surface tractions that would maintain the deformation of the body. For two such systems of 

surface displacements and surface tractions u , v , w , xp , 
yp , zp  and u , v , w , xp , 

yp , ,zp

one will then have the reciprocity relation: 

 

 
 (95) Cf., e.g., V. VOLTERRA, Leçons sur les fonctions de lignes, Paris, 1913, pp. 26.  
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{ }x y zp u p v p w d     + +  = { }x y zp u p v p w d     + + .           (2.46) 

 

That is the form in which one usually expresses Betti’s theorem. 

 We now turn to the representation of the deformation work as a functional of the surface 

tractions *e [px (), py (), pz ()]. As we can next establish, that functional is also an “entire” 

functional. If we then apply the given criterion for homogeneity then we will see that it is likewise 

homogeneous of degree two. From Fréchet’s theorem, it can then be represented by a boundary 

value that is analogous to (2.42), and as our direct representation will later show, there also exist 

boundary values for the coefficients, such that we will directly have the representation: 

 

[ ( ), ( ), ( )] { ( , ) ( ) ( )

2 ( , ) ( ) ( )

( , ) ( ) ( )} .

e

x y z x x

y y

z z

p p p p p

p p

p p d d

      

   

     

  

 

  

 = 

+ 

+ 

 
  (2.47) 

 

An application of the adaptation of Euler’s theorem for homogeneous functionals leads to the 

following representation for *e with the help of its functional derivatives: 

 

*e =  { [ ( ), ( ), ( )] ( ) ( ) ( )}
x y z

e e e

p x y z x p y p zp p p p p p d         +  +   .  (2.48) 

 

Along with that representation of the deformation work *e, we can also represent it by using the 

Clapeyron equation (2.40): 

 

*e =  { ( ) ( ) ( ) ( ) ( ) ( )}x y zu p v p w p d      + +  ,  (2.49) 

 

in which u, v, w are the surface displacements that correspond to given surface tractions. Of course, 

they are not determined uniquely by the surface tractions, but their general values will emerge 

from any particular values of u , v , w  when one introduces six constants by the formulas (96): 

 

u = u  + a + d y – e z ,  v = v  + b + c z – f x,  w = w  + c + f x − d y . 

 

Nevertheless, the expression (2.49) is unique since the additional terms will drop out due to the 

equilibrium conditions (2.4) for the surface tractions. 

 However, due to those equilibrium conditions (2.4), the three functions px, py, pz in (2.49) are 

not completely arbitrary, as is also the case for equation (2.48), and we cannot therefore conclude 

that the coefficients of those two integrals are equal to each other. In order to be able to regard the 

px, py, pz as independently varying, we must also consider the auxiliary conditions (2.4) by the 

 
 (96) Ed. rem.: The formulas are incorrect. Their correct forms must read: 

 

u = f yu a ez+ + − , v = f x d zv b −+ + , w = w c d y ex+ + − . 
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method of Lagrange factors, as one learns in the calculus of variations in the treatment of 

isoperimetric problems. Those Lagrangian factors are constants that we denote by , , , , ,  

and then get from (2.48) and (2.49) that: 

 

{( ) ( ) ( ) }
x y z

e e e

p x p y p zu z y p v x z p w y x p d            − − − + +  − − − + +  − − − +  = 0, 

  

in which the functions px, py, pz can now be regarded as varying arbitrarily. It will then follow from 

this equation that all three expressions in parentheses must vanish individually (97), and that will 

then yield: 

x

e

p

  = (u +  +  z –  y) px , 

y

e

p

  = (v +  +  x –  z) py ,            (2.50) 

z

e

p

  = (w +  +  y –  x) pz . 

 

 Those equations express a theorem that we would like to refer to as the first Castigliano 

theorem. It is the analogue of the theorem for frameworks to which we gave that name and says 

that: 

 

 The functional derivatives of the extremal value of the deformation work, which are 

represented as functionals of the surface tractions, are equal to displacement components at the 

associated points of the surface, up to a displacement that displaces the body like a rigid body. 

 

 If the body is constrained, say, in such a way that a motion like a rigid body is impossible, 

while its elastic motion is not obstructed in any way, then we can calculate the values of the six 

constants in equations (2.50) from the constraining conditions and then have equations that would 

immediately yield the purely-elastic displacements of the points on the surface. By contrast, it is 

naturally not possible here to split off part of the surface tractions as forces of reaction, and in that 

way, to avoid introducing the equilibrium conditions (2.14) as auxiliary conditions. Namely, the 

constraining conditions would then necessitate reactions that are “isolated forces,” and therefore 

… singularities of the elastic deformations … (98). 

 

 

 2.6. A second conception of Menabrea’s principle that is valid for multiply-connected 

bodies. – Up to now, we have considered the deformations of simply-connected bodies when either 

the displacement components or the surface tractions were given on the surface. The solution to 

the problem was implied by the fundamental equations of elasticity (2.12), which are the Euler-

Lagrange equations for the variational problem defined by the deformation work. We could next 

vary the deformation while maintaining compatibility (for the varied state, as well). The 

equilibrium conditions can no longer be fulfilled in the varied state. Rather, they are given by the 

 
 (97) For the fundamental lemma in the calculus of variations for the isoperimetric problem. Cf., BOLZA, Lehrbuch 

der Variationsrechnung, Leipzig and Berlin (1909), pp. 460.  

 (98) Ed. rem.: The places that where … has been written are illegible. 
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condition that the deformation work is an extremum. On the other hand, with Menabrea’s principle, 

we have carried out a variation under which we have required that equilibrium should exist in each 

volume element. The compatibility conditions will no longer be fulfilled in the varied state. It is 

only in those deformation states that are characterized by the extremum of the deformation work 

that the compatibility conditions will be fulfilled, such that we can then construct the elastic body 

in the deformed state from the individual volume elements with no gaps. 

 A variation for which equilibrium should exist for every volume element in the varied state, as 

well as fulfilling the compatibility conditions, is not possible, since it is only for a simply-

connected body that there is only a single state in which the conditions are fulfilled. 

 Things are different when we deal with a multiply-connected body, and we would like to 

consider an annular body as the simplest example. We first point out the following important 

difference between the two types of connectedness. Whereas it is impossible for a stress state to 

appear in a simply-connected body when all of the surface tractions are zero, that might very well 

be possible in a multiply-connected one. If we imagine, say, the ring in question as an example, 

which might be originally stress-free, and make it a simply-connected by cutting through it with a 

cross-section and apply external surface tractions to the boundary surfaces that were newly created 

by the cross-section that are equal and opposite at the corresponding points (i.e., originally 

coincident) then we will have a simply-connected body that is loaded with surface tractions that 

fulfill the equilibrium conditions (2.4) and will therefore deform the body in a completely-

determined way under their influence. The two surfaces that arise from the cross-section will then 

be either separated from each other such that a gap will be created, or they will try to get back 

together again. Following Volterra, we call such an operation a distortion. The newly-created ring 

is found to be in a stressed state, although it is not loaded with any external forces on the surface. 

For bodies with a higher degree of connection, (e.g., a sphere with handles), we can proceed 

likewise, i.e., first make them simply-connected by sufficiently-many cross-sections and then 

perform a distortion on each cross-section like the one that was just performed on the ring. A stress 

state can then be created in such a body in many ways without having to load the surface of the 

body with tractions. 

 If we then have a multiply-connected body that is originally stress-free and produce a certain 

stress state by applying some sort of surface tractions then we can vary that state in such a way 

that the equilibrium conditions, as well as the compatibility conditions, will then be fulfilled. We 

will only need to do that on the cross-sections that make it simply connected then. 

 That argument now allows us to reduce the stress problem for an arbitrarily-loaded stress-free 

multiply-connected body to the stress problem for a simply-connected body, which we would now 

like to consider. In order to do that, we make the body simply-connected by means of the necessary 

number of cross-sections and apply equal and opposite surface tractions, which are chosen 

arbitrarily, moreover, to the two surfaces of the individual cross-sections. 

 Since the forces that are applied to the individual cuts preserve equilibrium, the system of 

surface tractions that is applied to the resulting simply-connected body will again be in equilibrium 

precisely. The stress problem for the simply-connected body then leads to a well-defined solution, 

and we will then obtain a well-defined value for the deformation work *e, which is a functional 

of the original surface tractions and the surface tractions that are applied to the two surfaces of 

each cut. 
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 We assume that we have determined that functional. On the one hand, it depends upon the 

given surface tractions px (), py (), pz () on the surface of the uncut body, as well as upon the 

surface tractions ( )xp  , ( )yp  , ( )zp   and ( )xp  , ( )yp  , ( )zp   that are introduced on 

the two surfaces of a cross-section. In that way, one has ( )xp   = − ( )xp  , etc., when   and 

  are two points of the two cut-surfaces that would coincide in the uncut body. We can represent 

the deformation work by way of equation (2.42) or (2.43) as a two-fold double integral that extends 

over the surface of the cut body, i.e., over the original surface and each of the individual surfaces 

that are created by each cut. In order to suggest that dependency of *e, we write: 

 

*e = [ ( ), ( ), ( ); ( ), ( ), ( ); ( ), ( ), ( )]e

x x x x y z x y zp p p p p p p p p                .      (2.51) 

 

 In it, we would like to leave the surface tractions that are applied to the surface of the uncut 

body unvaried but vary the forces that are applied to the two surfaces of each cut. That variation 

shall be performed in such a way that we always perform equal and opposite, but otherwise 

arbitrary, variations of the surface tractions at corresponding points of the surfaces of each cut. In 

that way, the equilibrium conditions that must exist for the surface tractions will remain true, such 

that we will not need to consider any auxiliary conditions. If we then construct the functional 

derivatives for an associated pair of points   and   and subtract them then we will get: 

 

[ ( ), ,| ] [ ( ), ,| ]
x x

e e

p x p xp p      −   = ( ) ( )u u  −  ,  etc.,  (2.52) 

 

from the first Castigliano theorem. The right-hand side of equation (2.52) represents the relative 

displacement of the two associated points of a cross-section that occurs as a result of elasticity, 

because the displacement of the elastic body as a rigid-body that is still included in u drops out of 

the difference, since it is the same for both points. 

 Under the actual deformation of the uncut multiply-connected body that it experiences due to 

the forces applied to its surface, the body will also remain connected after the deformation at the 

(imagined) cut-surfaces without having to remove or add material. Therefore, the relative 

displacement of the connected points of a cut must be equal to exactly zero, and we will then get 

the equation: 

 

[ ( ), ( ), ( ), ,| ] [ ( ), ( ), ( ), ,| ]
x x

e e

p x x x p x x xp p p p p p              −   = 0  (2.53) 

 

as the condition for the surface tractions at the corresponding points of each cross-section. 

 It is possible to calculate the forces ( )xp   = − ( )xp  , etc., that we must apply in order to 

keep the body connected under the surface tractions, despite the cuts that are made, from those 

three equations that exist for each point of each cross-section (from general theorems on implicit 

functionals). That says only that we know the stress that will arise in the body as a result of the 

given strain in the imagined cross-section. If we know that, then the stress problem for a multiply-

connected body will be reduced to one for a simply-connected body, and with that, the problem 

will be solved with our assumption. 
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 The surface tractions on the surfaces of the individual cross-sections are then to be determined 

in such a way that the variation of the functional (2.51) that represents the actual deformation 

work done on the simply-connected body that is created by the cuts will vanish. However, one can 

also express that vanishing of the variation by saying that the deformation work shall be an 

extremum. In that way, we have once more characterized the actual state that occurs as a result of 

an extremal requirement, and indeed it has a superficial similarity to Menabrea’s principle that was 

introduced above and is also referred to as Menabrea’s principle in the literature. However, one 

sees here that both principles are essentially quite different for continuous bodies. 

 Menabrea’s principle, in its first conception, relates to the interior of an elastic body. One 

considers the dependency of the deformation work on the values of the stress components in the 

interior when their values on the surface are prescribed by the boundary conditions. The principle 

demands that those functions should be determined in the interior in such a way that the 

deformation work is an extremum. If we would like to express that briefly in the language of the 

calculus of variations then we would seek the extremal for given boundary values. 

 Menabrea’s principle, in its second conception, compares only states of deformation that fulfill 

the equilibrium conditions, as well as the compatibility conditions, so they satisfy the extremum 

conditions for the interior, but the boundary values are not all prescribed now. Rather, we now 

consider the dependency of the deformation work on part of the boundary values and shall 

determine it in such a way that the extremum will again occur from the extremal values (extremum 

extremorum). (99) 

 
Figure 2. 

 

 The second conception of Menabrea’s principle finds an application in the problem of 

determining the deformation of a simply-connected elastic body that has part of its surface 

bounded by a rigid body, such that the displacement will be prevented there, while the free part of 

the surface is loaded with arbitrary surface tractions [that now no longer need to fulfill the 

equilibrium conditions (2.4) by themselves]. 

 The problem demands that one must determine a solution to the fundamental elastic equations 

(2.12) when the boundary conditions consist of specifying the tractions on part of the surface and 

the displacements on the other parts. That is because we know that the displacement will be zero 

at all points where the elastic body is bounded by the forced surfaces. Such a problem with “mixed 

boundary conditions” proves to be much more complicated than the boundary-value problems in 

the theory of boundary-value problems for partial differential equations that were considered up 

 
 (99) The difference between the two conceptions of the variation is precisely the same as the difference between the 

so-called Hamilton principle and the principle of varied action in analytical mechanics.  
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to now (100). It would be an important advance if we were to reduce the new problem to the old 

one in order to determine the state of deformation for given surface tractions. 

 In order to achieve that, we observe that the new boundary condition will also determine the 

state of deformation uniquely. After a deformation has occurred, the elastic body will exert well-

defined tractions on the rigid surfaces that will be canceled precisely by the reactions Rx (), 

( )yR  , Rz (). 

 Those reactions and the prescribed surface tractions must collectively fulfill the six equilibrium 

conditions (2.4). 

 When we apply those reactions to the elastic body as surface tractions after removing the rigid 

body, its deformation will not change at all. If we therefore know the reactions then the problem 

will have been reduced to the stress problem for prescribed surface tractions. It would then come 

down to determining the reactions. In order to achieve that, we first assume that they are arbitrary 

and determine the deformation work as a function of the surface tractions that are now present for 

the elastic body when it is loaded in that way. 

 The functional derivatives with respect to those surface forces give the displacement of the 

surface points at each location with the indeterminacy that was given above. However, we know 

that those displacements will be zero at all points that contact the rigid surfaces, so we will get 

three equations: 

x

e

R

  =  +  z –  y ,  
y

e

R

  =  +  z –  x ,  
z

e

R

  =  +  y –  x ,   (2.54) 

 

for each such point, from which we can ascertain the unknown reactions by solving them. The 

equilibrium conditions (2.4) that all of the surface forces (viz., given and reactions) must satisfy 

determine the six constants, which are still arbitrary here (101). 

 If one would like then one can interpret equations (2.54) as conditions for the extremum 

problem, so one determines the reactions in such a way that the deformation work will be an 

extremum, and indeed in the same sense that we just gave to it for the multiply-connected body. 

 

 

 2.7. Internal stresses. – A free, simply-connected, elastic body will be stress-free when no 

surface tractions act upon it. However, in the two cases that were treated in the previous section, 

the body would not need to be stress-free in the absence of surface tractions. We shall employ that 

 
 (100) Cf., e.g., J. HADAMARD, Leçons sur la propagation des ondes, Paris (1903), pp. 55.  

 (101) Editor’s remark: The statements in the last paragraph are imprecise. When, as was remarked in the preceding 

paragraph, the “displacements are zero” on the “rigid surfaces,” the right-hand sides of eqs. (2.54) must be set to 

zero. 

 However, the deformation of eqs. (2.54) says that a rigid-body displacement is purported for each of the “forced 

surfaces.” [Compare that to the footnote to eq. (45) in Chapter 1.] For the general possibility of prescribing arbitrary 

displacements on the forced parts of the surface, confer Prange at the end of Section 2.8. 

 Finally, the (theoretical) case is still conceivable in which the “forced surface” is itself a rigid surface that can 

displace only like a rigid body. The , , , , ,  will then be unknown for each “forced surface.” As a supplementary 

condition, it must then be demanded that the resulting forces and moments of the surface tractions px, py, pz that act 

between the body and the “forced surface” must be equal to the forces and moments that act upon the “forced 

surface,” i.e., that the equilibrium conditions must be fulfilled after cutting the “forced surface” free. 
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state in order to define the variations there, but assume that the body considered is, in reality, 

stress-free with no surface tractions acting on it. Meanwhile, our argument would not be modified 

essentially if internal stresses were present in the body. Naturally, the internal stresses must be 

known if we are to determine the deformation in the absence of surface tractions. We next ask how 

one might characterize them. 

 As Volterra showed, that is relatively simple for multiply-connected bodies. If we were to 

make it simply connected by means of cross-sections then the two faces of the cut would be moved 

relative to each other when the body returns to the stressless state. The theorem that the 

displacements are determined uniquely by the fundamental equations (102) tells us that the 

displacements u , v , w  and u , v , w  of the originally-connected points of the two cut-faces 

that occur … (103) are coupled by the following formulas: 

 

  u u −   = l + r y – q x , 

v v −   = m + p z – r x ,      (2.55) 

  w w −  = n + q x – p y , 

 

in which l, m, n, p, q, r are six constants for the … (104). The one face has performed a rigid-body 

motion with respect to the other one. Conversely, we can also produce the most-general internal 

stresses by moving the surfaces of the cross-sections that make the body simply connected in that 

way. The motion is known to consist of three translations and three rotations, each of which are 

characterized by six constants (105). 

 Knowing those distortions is also enough to determine the state of deformation of a multiply-

connected body from the surface displacements, as well as the surface tractions. 

 If we would like to address the stress problem for a multiply-connected body, which is replaced 

with internal stresses from known distortions, then we can proceed precisely as in the previous 

section, only we can no longer set the right-hand sides of equations (2.53) equal to zero, but to the 

right-hand sides of (2.55) that are determined by distortions. However, one can also determine the 

effects (viz., stress forces) that are produced at the points of the cut from the equations that will 

arise in that way, which will then reduce the stress problem to the one for a simply-connected 

body. 

 The extremal problem that this equation implies consists of extremizing the functional: 

 
e  = {( ) ( ) ( ) }x y zu u p v v p w w p d     − + − + − ,  (2.56) 

 

in which the integrals in the summation extend over the individual cross-sections on which the 

distortions are performed (the summation is over the number of cross-sections). If one introduces 

 
 (102) V. VOLTERRA, “Sur l’équilibre des corps élastiques multiplement connexe,” Ann. sci. de l’É.N.S (3) 24 

(1907), 410-517. 

 (103) Ed. rem: The (handwritten) word was illegible. 

 (104) Ed. rem: The (handwritten) word was illegible. 

 (105) Editor’s remark: Equation (2.55) means that each of the two cut-faces can only displace like a rigid surface 

(rigid body), which is similar to a beam cross-section, from the validity of the Bernoulli hypothesis. That is by no 

means the general case. 
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the expressions (2.55) into that then we will see that it is precisely the sum of the three components 

of the resultant of the cross-sectional stresses and their moments with respect to the coordinate 

axes that will appear in the integrals in the sum. However, in order to take functional derivatives, 

one must start from the expression (2.56). 

 If internal stresses are present that are due to forced rigid surfaces in the second case then they 

cannot be characterized so simply, because when the displacements are obstructed over entire 

regions of the surface, one cannot succeed in making the body free of internal stresses by means 

of a finite number of cuts (106). In this case, the entire stress state must be given. One can then 

calculate the displacements that the individual points of the forces regions of the surface had 

experienced when the internal stresses were produced from that stress state (107). 

 The stress problem will now reduce to the stress problem with given surface tractions, just as 

it did when no internal stresses were given, except that we have not replaced the functional 

derivatives of the deformation work with respect to the arbitrarily-given reactions of the forced 

surfaces in the form (2.54), but we have added the known displacements at the points in question 

on the right-hand side. 

 

 

 2.8. The influence of temperature on deformation. Engesser’s work done by expansion. – 

Up to now, we have assumed that the elastic body that we subject to deformation possesses equal 

temperatures everywhere. Such a body will be stress-free in an unloaded state when it is simply 

connected, no matter what degree its temperature might be. Things are different for a multiply-

connected body. If the body is stress-free at constant temperature then it will no longer remain 

stress-free at a different temperature, even if it is constant over the entire body, but it will exhibit 

internal stresses in that way. We can ascertain those internal stresses in such a way that we 

determine the distortions that would produce the same effect as a constant change in temperature. 

Therefore, the problems that one could address here would reduce to the ones in the previous 

section. Those phenomena present an analogy to the behavior of the statically-determinate and 

statically-indeterminate frameworks that we discussed in § 7 of the first chapter (108). 

 
 (106) Things are similar for the so-called “casting stresses.” For them, a body that is apparently simply connected 

consists of an (infinite) sequence of multiply-connected layers as a result of a process of successive solidification. 

 (107) Conversely, we can determine the values of those displacements from the internal stresses. In order to do that, 

we must solve the stress problem for the body when the displacements are zero on the forced parts of the surface and 

the surface tractions are zero on the free parts.  

 (108) Editor’s remark: The statements in this paragraph are not correct. 

 An elastic body that is stress-free in an unloaded state will also be stress-free after being heated when the following 

three conditions are fulfilled: 

• All of the material properties of the body must be homogeneous (including the linear, thermal coefficient of 

expansion), i.e., for isotropic materials, one must have E (x, y, z) = const. and  (x, y, z) = const. 

• The body cannot be supported (nicht gelagert sein) (or only statically-determinate). 

• The temperature can vary only linearly, i.e., t (x, y, z) = f0 + f1 x + f2 x + f3 x . 

In order to prove that, one ascertains the deformation quantities x, y, z, x, y, z for the given temperature 

distribution from (2.57, 2.57a) under the assumption that the deformed state is stress-free, and therefore the 

equilibrium conditions are fulfilled. If one puts those deformation quantities into eq. (2.9) then one will see that the 

compatibility conditions are also fulfilled. Nothing will change for multiply-connected bodies then. As a Gedanken 

experiment, one first converts the multiply-connected body into a simply-connected one. One then adds additional 

material and labels the separating surfaces between the original body and the added material. After the deformation, 
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 We begin the investigation anew and go back to the generally-valid Ansatz (2.2) of the 

principle of virtual displacements. 

 The first thing to do is to exhibit the relationship between the deformation quantities and the 

stress components. If  is the linear coefficient of thermal expansion of the material that comprises 

the body then the extensions of the length that result from a temperature change of t (x, y, z) degrees 

will be x = y = z =  t, while the changes in angle x , y , z will not occur. In place of the relations 

(2.7) between the deformation quantities and the stress components that are given by Hooke’s law, 

one will now have the relations: 

 

x = 
1

( )
2 2 (3 2 )

x x y z t


    
   

− + + +
+

, 

y = 
1

( )
2 2 (3 2 )

y x y z t


    
   

− + + +
+

,            (2.57) 

z = 
1

( )
2 2 (3 2 )

z x y z t


    
   

− + + +
+

, 

 

while the other three will remain: 

 

x = 
1

x


,      y = 
1

y


,      z  = 
1

z


 .   (2.57a) 

 

Those relations can be regarded as a special case of a more general way of looking at things in 

which the deformation quantities are any sort of given single-valued functions of the stress 

components, into which the coordinates x, y, z of the point in question of the body can also enter. 

Thus, they might have, say, the form: 

 

x = f1 (x, y, z, x, y, z) ,  etc.,       (2.58) 

 

in which the form of the f will also depend upon the location of the point considered in the body. 

We can, perhaps, represent it as a polynomial in the stress components whose coefficients are 

known functions of the location. 

 The solution of (2.58) for the stress components might read: 

 

 
one separates the deformed, simply-connected body along those labelled separating surfaces again and removes the 

added material. Since the deformed, simply-connected body is stress-free, the state of deformation will not change by 

the removal of the added material. A multiply-connected, unsupported body with homogeneous material properties 

will also remain stress-free under a linearly-varying change in temperature. 

 The following statements are true for a framework: A framework that is statically determinate when one includes 

the support conditions will remain stress-free under any change of form that is due to heating. A statically-determinate 

supported framework that is internally statically indeterminate will remain stress-free under constant heating when 

all of the rods in the framework possess the same E modulus, the same cross-sectional area F, and the same linear 

coefficient of thermal expansion . 
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x = 1 (x, y, z, x, y, z) ,  etc.,      (2.59) 

 

in which the  are the same type of functions as the f. If we were to develop our theory once more 

for this more general relationship then we would obtain it for the case of temperature stresses when 

we introduce the special expressions (2.57) for the f. The functions  must (from the foundations 

of the mechanical theory of heat, which we will return to in section 2.9) have the form that makes 

the integrand in the volume integral: 

 

x x + y y + z z + x x + y y + z z 

 

take the form of the total differential of a function  (x, y, z, x, y, z) : 

 

x x + y y + z z + x x + y y + z z =    (2.60) 

 

by means of (2.59). The principle of virtual work will then have the form: 

 

0  = − ( )x y z
O V

p u p v p w d d     + + +  ,   (2.61) 

 

or, when we denote the … (109) integrand by  (110) using (2.18a): 

 

0 = 
O V

d d     +
    = E ,   (2.62) 

 

i.e., E is an extremum. It is then regarded as dependent upon the displacement components u, v, w 

that are introduced into  according to the relations (2.1). 

 From the rules of the calculus of variations, that extremum of the sum of integrals E leads to 

the Euler-Lagrange equations, and for the conditions on the surface, which possess the forms 

(2.21a) and (2.21b) precisely, but naturally, they will no longer coincide with the equations (2.12) 

and (2.13) now but are more general in character. 

 We have converted that variational problem by applying the canonical transformation. The 

new variables that we introduced in that way are also stress components here, because from (2.60) 

and (2.59), one has: 

x




 = 1 (x, y, z, x, y, z) = x , 

……………………...……..…….,              (2.63) 

z




 = 6 (x, y, z, x, y, z) = z . 

 

 
 (109) Ed. rem.: A (handwritten) word could not be deciphered.  

 (110) One should not confuse this , which is the potential energy of the external forces, with the symbol in (2.59), 

so we shall preserve the old notation. 
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In the spirit of the Legendre transformation, the function: 

 

H (x, y, z, x, y, z) = 
x y z x y z

x y z x y z

     
     

     

     
+ + + + +

     
  (2.64) 

 

will enter in place of , in which the deformation quantities on the right-hand side are to be 

replaced with the stress components according to (2.63). The canonical variational problem that 

thus arises possesses the form: 

 

 = x y z x y z
O V

u v w v w w u u v
d

x y z z y x z y x
       

             
+ + + + + + + + +     

            
   

(2.65) 

− H (x, y, z, x, y, z)} d . 

 

As the extremal conditions, when we direct our attention to the displacements, we will have the 

equilibrium conditions for the interior and the surface in the forms (2.27a) and (2.27b) here. By 

contrast, the further conditions will be the compatibility conditions in the new form: 

 

u

x




 = 

x

H






, …, 

v w

y z

 
+

 
 = 

x

H






, …    (2.66) 

 

 In order to arrive at Menabrea’s principle, we impose the equilibrium conditions (2.27a) and 

(2.27b) as the auxiliary conditions in the canonical variational problem. If we partially-integrate 

the first six terms in the spatial integral then we will now get the variational problem: 

 

( , , , , , )x y z x y z
V

H d        = extremum,   (2.67) 

 

in which we have ignored the inessential sign. Upon considering the auxiliary conditions using the 

method of Lagrange factors, that will imply the compatibility conditions (2.66) as the conditions 

for an extremum, precisely as it did in § 5. 

 The function H is precisely the work done by expansion per unit volume that ENGESSER (111) 

introduced and for which he gave the representation: 

 
, ,

0

( )

x y

x x y y z z x x y y z z

 

           + + + + + .   (2.68) 

 

Namely, from (2.64), one has: 

 

 
 (111) H. ENGESSER, Zeitschrift des Architeken- und Ingenieurvereins zu Hannover 35 (1889), pp. 733. 
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H = 
1 2 3 4 5 6 1 2 6( , , ) ( , , , )x z x y z x y zf f f f f f f f f         + + + + + − , (2.69) 

 

in which  is expressed in terms of the stress components using (2.60), (2.59), and (2.58) as the 

integral: 
, ,

1 2 3 4 5 6

0

( )

x y

x y z x y zf f f f f f

 

           + + + + + . 

 

If we integrate that partially then we will have: 

 

 = x f1 + y f2 + … + z f6  − 

, ,

1 2 3 4 5 6

0

( )

x y

x y z x y zf f f f f f

 

     + + + + +  

 

here, and when we introduce that into (2.69), we will, in fact, get the expression (2.68) for H 

precisely. 

 In the special case in which we treat only the influence of temperature, we have to introduce 

the expressions (2.57) for the f, and when we perform the integration, we will then get: 

 

H = 2 2 2 21 1 1
( ) ( )

2 3 2
x y z y z z x x y x y z

 
           

   

 +
+ + − + + − − − 

+ 
 

(2.70) 

− ( )x y zt   + +  . 

 

That expression differs from the expression (2.24b), which represents the deformation work as a 

function of the stresses when Hooke’s law is valid, by the appearance of the second term. 

MÜLLER-BRESLAU (112) gave that form, which he called the ideal deformation work per unit 

volume. 

 The work done by expansion for the entire body, i.e., the extremal integral: 

 

B = ( , , , , , )x y z x y zH d       ,    (2.71) 

 

when regarded as a functional of the surface tractions, enters in place of the deformation work in 

the case of the first Castigliano theorem (113). We would like to show directly that its functional 

derivatives are connected with the surface displacements in the manner of equation (2.50). 

 If we vary the surface tractions then we will get, on the one hand: 

 

B = ( )
x y zp x p y p z

O
B p B p B p d   + +  ,   (2.72) 

 
 (112) Cf., H. MÜLLER-BRESLAU, Wochenblatt für Architekten und Ingenieure 6 (1864), pp. 373. 

 (113) By contrast, the deformation work stays the same for the second Castigliano theorem.  
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from the basic rules of the functional calculus. On the other hand, if those stress components 

assume new values in the extremal integral under that variation then the variation of the extremal 

integral will read: 

 

H = 
x y z x y z

x y z x y z

H H H H H H
d      

     

      
+ + + + +        

 , 

 

or when we introduce the expressions (2.66) for the coefficients: 

 

B = x y z x y z

u v w v w w u u v
d

x y z z y x z y x
      

             
+ + + + + + + +     

             
 . 

 

If we partially-integrate the individual terms in this then the volume integral will drop out, since 

the variations alone must also fulfill the equilibrium conditions for the interior, and we will get: 

 

B = { ( cos ( , ) cos ( , ) cos ( , ) ( ) ( )}x z y
O

u x n y n z n v w d   + + + +  . 

 

However, the expression in brackets is precisely px, from the equilibrium conditions for the surface 

tractions, and since analogous statements are true for the other terms, we will have a second 

expression for the variation of B : 

 

B = ( )x y z
O

u p v p w p d   + +  .   (2.73) 

 

By comparing (2.72) and (2.72), while considering the conditions (2.4) using the method of 

Lagrange factors, we will get relations of the form: 

 

xpB  = u +  +  z +  y, …, 

 

which are analogous to (2.50) precisely. However, the second conception of Menabrea’s principle 

and the extensions of it to which we arrived are based upon the relations (2.50). Therefore, the 

work done by extension will enter in place of the deformation work in all of those arguments. 

 

 

 2.9. Remark on the historical development. – At the time when the theory of elasticity was 

being first developed, one was accustomed to treating all questions of theoretical physics on the 

basis of the molecular theory of matter. It was therefore only natural then to look for a way of 

arriving at continuous elastic bodies upon starting from the theory of frameworks by regarding 

them as “molecular frameworks.” The molecules (which one, with Boscovich, regarded as material 

points) would be the nodes of the framework, and the mutual forces that they exert upon each other 
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would be created by stressed frame members. The fundamental Ansätze of Navier, Cauchy, and 

Poisson seemed to show the way by which one could move forward. 

 On the other hand, in England, under the influence of Green, the direct treatment of the 

continuum, while abandoning the molecular hypothesis, achieved validity relatively soon. The 

treatment of the elastic potential (viz., the deformation work) stood at the center of the theory of 

elastic bodies of that type, and it is that quantity that plays precisely the principal role in all of our 

questions. It probably explains the remarkable fact that some of the arguments of the Menabrea-

Castigliano school for continuous bodies were anticipated by the Englishman Cotterill in a series 

of papers that have admittedly attracted little attention (114). 

 Cotterill arrived at his considerations by his ambition to give a precise sense to the entirely-

vague “principle of least resistance” that was mentioned in the first chapter for the special case of 

continuous bodies. If one starts from the law of energy then it will say that the compatibility 

conditions will be implicit when one makes the work done by the internal stress components an 

extremum and adds the equilibrium conditions, which are considered to be valid only in the 

interior, as an auxiliary condition for the extremum (115). In that way, he had posed Menabrea’s 

principle in its first conception, and he also considered the auxiliary conditions using the method 

of Lagrange factors. He also wished to represent the dependency of the the extremal value of the 

deformation work on the external forces, and thus define the extremal integral in our sense. 

Meanwhile, he restricted himself in so doing to the special case in which the elastic body is loaded 

with isolated forces. In that way, with no further analysis, he then avoided the complication that is 

inherent to the integration of the fundamental equations (116) when the load consists of isolated 

forces, and he assumed that the stress components could be represented by linear functions of the 

isolated forces with constant coefficients. In that case, the deformation work will be a quadratic 

function of the function of the isolated forces whose derivatives he obtained from the first 

“Castigliano” theorem. He also expressed the deformation work as a function of the displacements 

and had also expressed the second “Castigliano” theorem already. He also wrote down the second 

conception of Menabrea’s principle in connection with the first Castigliano theorem. 

 Since, as we said, Cotterill’s work has remained completely unknown, Castigliano’s work has 

always been regarded as the starting point for the theory in the literature. In the subsequent 

developments in the molecular-theoretic Ansätze for the theory of elasticity, it would probably not 

be impossible to adapt the theory of frameworks, in the given sense, to continuous bodies. 

However, Castigliano did not invest such precision in his problem at all, but he only alluded to the 

concept of that adaptation, if only to leave it behind again (117). Rather, he straightaway assumed 

that the fundamental equations of elasticity were known and then imagined ascertaining the 

dependency of the quantities of deformation work to be determined on either the surface 

displacements or the surface tractions by integrating those equations. He had therefore not 

employed Menabrea’s principle in its first conception at all, but rather he confined himself to 

expressing the dependency of the deformation work on the surface values, and in that way arrived 

 
 (114) H. COTTERILL, Philosophical Magazine (4) 29 (1865), pp. 299-305, 380-389, 430-436.  

 (115) In that way, he himself rejected Moseley’s principle, since it lacked precision, and he proposed to make his 

principle the fundamental principle of the theory of elasticity.  

 (116) The same remark is true for all of engineering literature, moreover.  

 (117) Without stating that clearly.  
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at the two theorems that bear his name. Menabrea’s principle was then appealed to and applied 

only in its second conception, namely, to the determination of the unknown reactions on forced 

bodies and multiply-connected bodies. 

 In following through on those ideas, he probably always had beams and the work done on 

beams in mind. That would explain the peculiar assumptions that he introduced into his theory. 

Namely, he imagined that the elastic body was a polyhedron that was bounded by planar surfaces 

and also assumed that the bounding surfaces could still be regarded as planar after the deformation. 

Indeed, he then virtually assumed that the bounding surfaces were displaced like rigid surfaces 

under the entire deformation. 

 Under that assumption, the displacement of each planar bounding surface can be expressed by 

the displacement of one of its points – say, the center of mass – and the rotations around three axes 

that go through it, which we choose to be the normal to the planar piece and the two principal axes 

of inertia that lie in that plane. If we denote the components of the displacement of the center of 

mass by , ,  and the components of the rotation by x, y, z then the displacements of the 

points of the planar boundary face (relative to the axis-system that was introduced in order to 

define them) will be: 

 

u =  + z y – y z , v =  + x z – z x , w =  + y x – x y .  (2.74) 

 

 By solving the fundamental equations of elasticity, he then wished to express the displacements 

of the interior points as functions of the surface displacements and obtained them as linear 

functions of all of the , , , x, y, z for each polyhedral surface (with coefficients that are 

functions of position). The deformation work itself will then be a quadratic function of those 

quantities (with constant coefficients) (118). 

 On the other hand, if the surface tractions were given then he next imagined determining the 

three components X, Y, Z of the resultant and the three components of the resulting moments Mx, 

My, Mz for each boundary surface, and then imagined varying the distribution in such a way that 

he assumed: 

px = 
2

z

x

MX
y

J
−


, py = 

2

z

y

MY
x

J
−


, pz = 

2 2

yx

x y

MMZ
y x

J J
+ −


,  (2.75) 

in which: 

 = dx dy  

is its area, and: 

Jx = 
2y dx dy  and Jy = 

2x dx dy  

 

are the two principal moments of inertia of the polyhedral surface. He believed (probably by 

appealing to “St. Venant’s principle”) that this variation of the surface tractions would not imply 

any variation in the deformation of the body. By solving the fundamental equations of elasticity, 

he then imagined that the components of the displacement in the interior were linear functions and 

 
 (118) Cf., the two sections of the Appendix for this. (Editor’s remark: The Appendix consists of only one section.)  
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then determined the deformation work as a quadratic form in X, Y, Z, Mx, My, Mz that belongs to 

the individual surface of the boundary. 

 He further appealed to Clapeyron’s equation, and then expressed the deformation work by the 

integral: 

1
2

( )x y zp u p v p w d+ +  . 

 

If one substitutes the expressions (2.74) and (2.75) in that then it will go to: 

 
1
2

( )x x y y z zX Y Z M M M  + + +  +  +  .   (2.76) 

 

He then deduced the theorems about the derivatives of the deformation work from that in the same 

way as for frameworks: 
e

X




 =  , …, 

e

zM




 = x ,          (2.77a) 

or 
e






 = X , …, 

e

z




 = Mx ,          (2.77b) 

 

resp. Using his assumption, he had then succeeded in shifting the entire problem from the realm 

of functional calculus to that of the usual infinitesimal calculus. 

 Actually, Castigliano only applied that argument to the case of beams, and in that way, operated 

essentially with isolated forces as the given loads, which is an assumption that is still customary 

in engineering to this day (119). The variation then goes to a differentiation by itself. However, at 

one point in his book (120), one sees that Castigliano himself came rather close to that conception 

of differentiation as a specialized variation. In order to calculate the displacement of the surface of 

an elastic body to which no isolated loads are applied, he made an arbitrary choice of isolated load 

at this point, differentiated with respect to it, and then set it equal to zero again. That imitation of 

the variation made it obvious that he clearly recognized that he had to master the “boundary-value 

problem” in order to be able to apply his theory. 

 Since engineers employ only the applications that Castigliano gave of his theory, the 

foundation and precise formulation of the entire sphere of thought have long remained in darkness. 

Some degree of clarity was first achieved in the work of DONATI (121). In particular, he had clearly 

distinguished between the principle of total potential energy and Menabrea’s principle and also 

kept the two conceptions of Menabrea’s principle apart from each other. Under the influence of 

Volterra’s first work on functional calculus, he also drew attention to the fact that one was dealing 

with functional derivatives in the two conceptions of Castigliano’s theorems. 

__________

 
 (119) Cf., e.g., H. MÜLLER-BRESLAU, Die neueren Methoden der Festigkeitslehre, 4th ed., Leipzig, (1913), pp. 

271.  

 (120) A. CASTIGLIANO, Théorie de l’équilibre des système élastiques, pp. 152. 

 (121) I. DONATI, Memoria Bologna (4) 9 (1888), pp. 64; ibid. (4) 10 (1889), pp. 85, and ibid. (5) 4 (1894), pp. 91. 



 

APPENDIX 

 

REPRESENTING THE EXTREMAL VALUE OF THE 

DEFORMATION WORK AS A FUNCTIONAL OF  

THE GIVEN SURFACE VALUES 
 

 

 In order to represent the solution to the fundamental equations of elasticity (2.12) for prescribed 

surface displacements u (), v (), w (), we would like to perform the integration with the help 

of a system of Green functions. Following Somigliana, the “fundamental solution” that exhibits 

the characteristic singularity that one employs is the following system of functions: 

 

 u1 (x, y, z ; , , ) = 

 

 u1 = 
2

2

1 1

4 2

r

r



  

 
− 

 
, v1 = −

21

4 2

r

   



 
, w1 = −

21

4 2

r

   



 
, 

u2 = −
21

4 2

r

   



 
,            v2 = 

2
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1 1

4 2

r

r



  

 
− 

 
,      w2 = −

21

4 2

r

   



 
,       (2.78) 

 u3 = −
21

4 2

r

   



 
, v3 = −

21

4 2

r

   



 
, w3 =

2

2

1 1

4 2

r

r



  

 
− 

 
, 

 

in which: 

 = 
2

 

 

+

+
, r = 

2 2 2( ) ( ) ( )x y z  − + − + − .   (2.78a) 

 

The functions u, v, w in each of those three systems are finite and continuous and satisfy the 

fundamental equations of elasticity (2.12) for all , , , with the exception of  = x,  = y,  = z. 

If we define the expressions (2.13) on the surface of the body with those functions then we will 

get the three associated systems of surface expressions (122). 

 
(1)

xp , (1)

yp , (1)

zp , 

(2)

xp , (2)

yp , (2)

zp ,      (2.79) 

(3)

xp , (3)

yp , (3)

zp . 

 

 
 (122) They do not fulfill equations (2.4), because they do not define an equilibrium system in their own right but 

possess a resultant 1 / 4 , which goes through the point , ,  and lies along the directions of the x, y, and z-axes, 

resp., for the three systems. That corresponds to the fact that the displacements of the system (2.78) can be generated 

by any isolated forces of magnitude 1 / 4  that point in the directions of each of the three coordinate axes. 
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 Let u (, , ), v (, , ), w (, , ) be the system of displacements that one seeks, and let px, 

py, pz be the system of surface tractions that belongs to it according to (2.13). We take them, along 

with each of the three Somigliana systems, and apply the Betti reciprocity theorem (2.46). Due to 

the singularity in that system, we must then replace the point x, y, z with a small ball along the 

boundary surface of the body and then pass to the limit in the known way. In that way, we will get 

the three equations: 

 

  u (, , ) = (1) (1) (1)

1 1 1( ) ( )x y z x y z
O O

p u p v p w d p u p v p w d + + − + +  , 

v (, , ) = (2) (2) (2)

2 2 2( ) ( )x y z x y z
O O

p u p v p w d p u p v p w d + + − + +  ,  (2.80) 

 w (, , ) = (3) (3) (3)

3 3 3( ) ( )x y z x y z
O O

p u p v p w d p u p v p w d + + − + +  , 

 

which express the desired displacement of the point x, y, z in terms of the associated surface 

displacements and surface tractions. In order to eliminate the surface tractions from that, we shall 

pass from the fundamental solution (2.80) to the system of Green functions. In order to do that, we 

must determine three systems of solutions to (2.12) that are finite and continuous in the entire body 

(viz., the so-called compensators), and take the values: 

 

  u1 (, ,  ; ) , v1 (, ,  ; ) , w1 (, ,  ; ) , 

u2 (, ,  ; ), v2 (, ,  ; ) , w2 (, ,  ; ) ,   (2.81) 

  u3 (, ,  ; ) , v3 (, ,  ; ) , w3 (, ,  ; ) 

 

on the surface (123). Let the associated surface tractions be (1)( )xp  , etc., which naturally define an 

equilibrium system. If we apply Betti’s theorem to those three systems of compensators and our 

desired system of displacements then we will obtain the three equations: 

 

0 = (1) (1) (1)

1 1 1( ) ( )x y z x y z
O O

p u p v p w d p u p v p w d + + − + +  , 

0 = (2) (2) (2)

2 2 2( ) ( )x y z x y z
O O

p u p v p w d p u p v p w d + + − + +  ,  (2.82) 

 0 = (3) (3) (3)

3 3 3( ) ( )x y z x y z
O O

p u p v p w d p u p v p w d + + − + +  . 

 

If we subtract them from the corresponding equations (2.80) then the first integrals on the right-

hand side will cancel precisely, so the px, py, pz, and the displacements in the interior of the elastic 

body will be expressed in terms of only the surface displacements by means of the equations: 

 

u (x, y, z) = (1) (1) (1) (1) (1) (1){( ) ( ) ( ) ( ) ( ) ( )}x x y y z z
O

p p u p p v p p w d   − + − + − , (2.83) 

 

 
 (123)  To see how to perform that determination with the help of the theory of linear integral equations, cf., perhaps 

H. Weyl, Rendiconti del circolo matematico di Palermo 39 (1915), pp. 1. 
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and two analogous equations. If we set (124): 

 
(1) (1)( , , ; ) ( , , ; )x xp x y z p x y z −  = (1) ( , , ; )xP x y z   ,   (2.84) 

 

to abbreviate, then they will take the form: 

 

u (x, y, z) = (1) (1) (1)[ ( , , ; ) ( ) ( , , ; ) ( ) ( , , ; ) ( )]x y z
O

P x y z u P x y z v P x y z w d      + + , (2.85) 

 

and two analogous equations for v and w. 

 We would now like to calculate the value of the deformation work (per unit volume) at the 

point x, y, z from those values (2.85) of the displacement components. In order to do that, we shall 

refer to their expressions in (2.16). For the derivatives of u, v, w, (2.85) will yield expressions of 

the form: 

u

x




 = 

(1)(1) (1)
yx z

O

PP P
u v w d

x y z


  
+ +     

 ,    (2.86) 

 

or as we would like to write, for brevity: 

 

u

x




 = 

(1)

x

O

P
u d

x


 
 

 
 ,     (2.87) 

 

in which the summation sign means that we sum over three terms that emerge from the one that is 

written out by replacing the index x with y, and then z, while simultaneously replacing u with v, 

and then w. 

 With that abbreviation, we will then write: 

 

v w

z y

 
+

 
 = 

(2) (3)(2) (3) (2) (3)
y yx x z z

O

P PP P P P
u v w d

z y z y z y


         
+ + + + +                

  

as: 

v w

z y

 
+

 
 = 

(1) (3)

x x

O

P P
u d

x y


   
+  

   
 .    (2.87a) 

 

 

 (124) Those functions 
(1)

( , , ; )
x

P x y z  , etc., are the negative values of the surface tractions that belong to the system 

of Green functions. They are functions of their arguments that are determined by only the form and elastic properties 

of the given bodies. The functions of the three columns in the matrix of the nine functions satisfy the fundamental 

system of elastic equations. 
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 Squares and products of derivatives like (2.87) appear in the expression (2.16). We can 

combine the product of two of the double integrals that will result into a four-fold integral. If we 

denote the integration element in the one factor by  , instead of , then that will give, e.g.: 

 
2

u

x

 
 

 
 = 

(1) (1)( , , ; ) ( , , ; )
( ) ( )x xP x y z P x y z

u u d d
x x

 
   


 

     
   

     
   , 

 

or when we write the second factor as: 
(1)

xP
u

x





 , 

to abbreviate, we will finally have: 

 
2

u

x

 
 

 
 = 

(1) (1)

x xP P
u u d d

x x
 


    

  
   

   . 

 

With that notation, a unit of deformation work (2.16) is expressed in terms of the displacement 

components in the following way: 

 

,
u

x


 
 

 
 = 1

2    

 
(1) (2) (3) (1) (2) (3)

( 2 ) x x x x x xP P P P P P
u u

x y z x y z
 

  


            
+ + + + +       

            
   

 + 
(2) (2) (1) (2)

x x x xP P P P
u u

z y z y


 


         
+ +      

          
   

 + 
(3) (1) (3) (1)

x x x xP P P P
u u

x z x z

 


         
+ +      

         
   

 + 
(1) (2) (1) (2)

x x x xP P P P
u u

y x y x

 


         
+ +      

         
   

 − 
(2) (3)

4 x xP P
u u

y z


    

   
    

   

 − 
(2) (3) (2) (3)

4 4x x x xP P P P
u u u u d d

y z y z
 

 
  

           
−        

           
    ,    (2.88) 

 

in which we can obviously split the term in the penultimate row into the following two terms: 
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− 
(2) (3) (2) (3)

2 2x x x xP P P P
u u u u

y z y z

 
           

−       
          

     , 

 

and we will have corresponding expressions for the next two terms. The factor of ( ) ( )u u   

under the integral sign is then equal to: 

 

(1) (2) (3) (1) (2) (3)

1
2

( 2 ) x x x x x xP P P P P P

x y z x y z
 

           
+ + + + +    

         
 

 + 
(2) (2) (1) (2)

x x x xP P P P

z y z y


       
+ +   

      
 

 + 
(3) (1) (3) (1)

x x x xP P P P

x z x z

       
+ +   

      
 

 + 
(1) (2) (1) (2)

x x x xP P P P

y x y x

       
+ +   

      
 

 − 
(2) (3) (2) (3)

2 x x x xP P P P

y z y z

     
+ 

    
 

 − 
(3) (1) (3) (1)

2 x x x xP P P P

z x z x

     
+ 

    
 

 − 
(1) (2) (1) (3)

2 x x x xP P P P

x y x y

       
+  

     

 . 

 

 If we associate the expression (2.16), which is a quadratic form in the derivatives u / x, etc., 

with the bilinear form: 

 

;
u u

x x


   
 

  
 = 1

2
( 2 )

u v w u v w

x y z x y z
 

              
+ + + + +    

        
 

+ 
v w v w w u w u u v u v

z y z y x z z y y x y x


                                
+ + + + + + + +         

                    
 

− 2 2 2
v w v w w u w u w u w u

y z y z z x z x z x z x

                           
+ − + − +                      

    (2.89) 

 

then we will see that the expression (2.89) is equal to precisely: 

 
(1) (1)

;x xP P

x x


  
 

  
 , 
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i.e., (2.89) when one makes the following replacements in it: 

 
(1) (2) (3)

(1) (2) (3)

, , ,

, , .

x x x

x x x

u P v P w P

u P v P w P  

  = = =

  = = =
            (2.90) 

 

The coefficients of the other products of surface displacements are expressed analogously, such 

that we will get the following expression for a unit of deformation work at the point x, y, z: 

 

 ,
u

x


 
 

 
 =    

  

(1)(1) (1) (1)

; ;
yx x x

PP P P
u u u v

x x x x
 


 

     
+            

 

  + 

(1) (1) (1)(1)

; ;
y y yx

P P PP
u v vv

x x x x
 

 

 
     

+            

 

  + 
(1) (1)(1) (1)

; ;x xz z
P PP P

u w u w
x x x x

 
 

      
+   

      
 

  + 

(1) (1)(1) (1)

; ;
y yx z

P PP P
v w v w

x x x x
 

 
 

     
+            

 

+ 
(1) (1)

;x z
P P

ww d d
x x

  


 
   
 

    
.         (2.91) 

 

Since the factor ( ) ( )u v    will go to ( ) ( )u v   upon switching  and 
, we can combine 

those two terms into one. The same thing is true for the products u  v and v  w, such that the 

integrand will reduce to six terms. 

 We will get the total deformation work from the unit of deformation work when we integrate 

over the volume of the elastic body. Since the coordinates x, y, z of the individual points of the 

body appear only in the factors  in the integrand of (2.91), that will give an expression for e 

that has the same form as (2.91), except that now the coefficients have been replaced with: 

 
(1) (1)

;x x

V

P P
d

x x
 

  
 

  
 .     (2.92) 

 

That integral exists and yields well-defined functions of  and 
, such that we will, in fact, get 

the representation for e that we deduced from the Fréchet theorem. By partially integrating the 

integral of the form (2.92) and recalling the property of the system of functions P, we can represent 

the values of those coefficients in such a way that the second Castigliano theorem will follow by 

direct calculation. Namely, if we perform that conversion and then, on the one hand, take the 
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functional derivatives of e with respect to the surface displacements, and on the other, the 

functional derivatives of the surface tractions, as in formula (2,13), with respect to the 

displacement components (2.85), then that will immediately give identities. 

 We shall now move on to represent the dependency of the displacement components u, v, w 

(and by determining them, the deformation work) on the surface tractions. As we have mentioned 

several times, the displacements are not determined uniquely by that dependency, but a 

displacement of the type that is performed on a rigid body will remain arbitrary. In order to 

eliminate that arbitrariness, we can prescribe six conditions (of a linear character) for the 

displacement components, e.g., we can demand that the conditions: 

 

( )i i i
V

u u v v w w dx+ +  = 0   (i = 1, 2, …, 6) (2.93) 

 

are satisfied (125) when we give the values of six arbitrary constants iu , iv , iw : 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

, 0 , 0,

0, , 0 ,

0, 0, ,

0, , ,

, 0 , ,

, , 0.

u C v w

u v C w

u v w C

u v C z w C y

u C z v w C x

u C y v C x w

= = =

= = =

= = =

= = = −

= − = =

= = − =

   (2.94) 

 

One cares to call equations of the form (2.93) “orthogonality conditions,” so (2.93) says that the 

desired system of displacements must be orthogonal to the six systems of functions (2.94). We 

remark that the six equilibrium conditions (2.4) for the surface tractions can be reduced to the one 

condition that the system of functions: 

 

px () , py () , pz () 

 

should be orthogonal to the surface values of (2.94): 

 

 [ ( ) ( ) ( )]i x i z i z
O

u p v p w p d   + +  = 0      (i = 1, 2, …, 6).     (2.95) 

 

 In order to obtain the desired solution for the fundamental equations of elasticity, we can now 

attempt to go down the same path that we did before. If we employ Somigliana’s fundamental 

solution then we will also arrive at equations (2.80). However, if we now try to drop the second 

term on the right-hand side by passing to a system of Green functions then we will find that no 

regular solution to the fundamental equations (2.12) belongs to surface tractions ( )h

xp , ( )h

yp , ( )h

zp   

since those tractions do not satisfy the equilibrium conditions, i.e.: 

 
 (125) H. WEYL, Rendiconti del circolo matematico di Palermo 39 (1915), pp. 1. 
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[ ]h h h

x i y i z
O

p u p v p w+ +   0 . 

 

 We can also get around that difficulty in two ways: One of them is to look for a solution of the 

fundamental equations of elasticity, while preserving the Somigliana fundamental solutions, not 

for the actual surface tractions ( )h

xp , ( )h

yp , ( )h

zp , but only for the altered values: 

 
( ) ( ) ( ) ( )h h h h

xp a d y e z+ + − ,      ( ) ( ) ( ) ( )h h h h

xp b e z f x+ + − ,      ( ) ( ) ( ) ( )h h h h

xp c e x d y+ + −  . 

 

If the constants are determined in such a way that these new surface tractions fulfill the condition 

(2.95) then such a solution will exist, and with its help, we can also succeed in eliminating the 

second integral on the right-hand side of (2.80) (126). 

 The other path was the one that WEYL took (127). He likewise altered Somigliana’s 

fundamental solution somewhat, such that it would be orthogonal to the system (2.94), but preserve 

their symmetry properties. The fundamental solutions hu , hv , hw  will no longer satisfy the 

fundamental equations of elasticity (2.12), but equations of the form (128): 

 

2 ( )hu u
x


 


 + +


 = ( )( , , ), ( , , )i iB u x y z u    .   (2.96) 

 

 The surface tractions ( )h

xp

, ( )h

yp

, ( )h

zp

 that belong to them fulfill the equilibrium conditions, 

so one will have: 
( ) ( ) ( )( )h h h

x i y i z i
O

p u p v p w
  

+ +  = 0 

 

for them. Thus, they belong to a regular solution hu , hv , hw  of the fundamental equations of 

elasticity. If we take the desired solution u, v, w together with that system of solutions then the 

Betti reciprocity theorem will imply the relations: 

 
( ) ( ) ( )( )h h h

x y z
O

p u p v p w d
  

+ +  = ( )x h y h z h
O

p u p v p w d+ + .  (2.97) 

 

Of course, since the new fundamental solution no longer satisfies the fundamental equations of 

elasticity (2.12), but the equations (2.96), the relation (2.80) will no longer be valid for it with no 

further conditions, so in its place, one will have a relation whose right-hand side also includes a 

volume integral: 

u, y, x) = ( )x x y x z xp u p v p w d  + +  

− 
(1) (1) (1)( )x y zp u p v p w d

  
+ +       (2.98) 

 
 (126) J. FREDHOLM, Acta mathematica 23 (1900), pp. 41.  

 (127) H. WEYL, loc. cit.  

 (128) in which B represent a bilinear function of its arguments.  
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 − ( )( , , ), ( , , )i iu B u x y z u d    
  . 

 

However, since the desired solution u, v, w must be orthogonal to the system (2.94), that volume 

integral will drop out, and relations of the older form will once more be true: 

 

u (x, y, z) = 
(1) (1) (1)( ) ( )x x y x z x x y zp u p v p w d p u p v p w d 

    + + − + +   . 

 

Upon adding that to (2.97), we will then get the Ansatz: 

 

u (x, y, z) = 1 1 1 1 1 1{( ) ( ) ( ) }x y zu u p v v p w w p d     + + + + +  , 

or when we set: 

1 1u u +  = U1 , etc., 

we will get: 

u (x, y, z) = 1 1 1( )x y zU p V p W p d+ +  , 

v (x, y, z) = 2 2 2( )x y zU p V p W p d+ +  ,         (2.99) 

w (x, y, z) = 3 3 3( )x y zU p V p W p d+ +  . 

 

 One can arrange for this system of Green functions Uh, Vh, Wh to be orthogonal to (2.94), so it 

will also possess the same symmetry as Somigliana’s fundamental solution (2.78), and the columns 

of the matrix that it defines will satisfy equations (2.96). 

 In the same way as before when we started with the Ansatz (2.85), if we start from (2.99) then 

we will get the following expression for the unit of deformation energy at the point x, y, z : 

 

 = 1 1 1 1U U U U
u u u v

x x x x
 

 
 

       
 +     

       
   

 + 1 1 1 1U V U V
u v u v

x x x x
 

 
       
 +    

      
 

 + 1 1 1 1V V U W
v v u w

x x x x
 

 
       

 +    
      

 

 + 1 1 1 1U W V W
u w v w

x x x x
 

 
       
 +    

      
 

+ 1 1 1 1V W W W
v w w w d d

x x x x
   

 
  

       
 +     

        
,     (2.109) 

in which we have: 

 

U1 = U1 (x, y, z ; ) ,  
1U   = 

1 ( , , ; )U x y z  ,  etc. 
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 If we integrate that expression over the entire elastic body then we will get the total deformation 

work as an expression of the same form, in which the coefficients: 

 

1

V

U
d

x
 

 
 

 
  = ( , )K   , etc.       (2.101) 

 

are just well-defined functions of , 
. Here, as well, we can use partial integration and recall 

the properties of the system of Green functions in order to bring the coefficients (2.101) into a 

form such that the first Castigliano theorem will become a simple identity when we take the 

functional derivatives with respect to px, py, pz and compare them with the expressions (2.99) for 

the displacement components. 

 

_________ 

 



 

 

 Remarks concerning the bibliography 

 

 In the original version by Prange, the references were included only as footnotes, and mostly 

in a very abbreviated form. Therefore, all of Prange’s cited references were compiled into a 

Bibliography, in which the citations for the majority of Prange’s cited references were taken from 

the survey article by Oravas [105, 106], and were subsequently verified as much as was possible. 

The Bibliography is therefore almost complete, at least in regard to the German-language works. 

Furthermore, all additional works that were cited in the Introduction were also included, so works 

on the history of engineering and natural science. 

 

__________ 

 

 

 Translator’s remarks 

 

 The formatting of the references was changed be more consistent with his other translations. 

A number of references were completed, since the modern Internet makes access to those 

publications more immediate than when Knothe edited the book. 

 

__________ 
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