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 Introduction. – The Dirac theory of “holes” is actually the only one that permits one 
a glimpse into the behavior of positons.  The experimental discovery of the latter has 
confirmed the fundamental hypothesis and has shown that the proposed equation 
accounts for the positive electrons, as well as the negative ones.  Nevertheless, the 
difficulties that one encounters remain considerable.  Without speaking of infinite proper 
energies, the structure itself of the theory, in fact, raises other problems, the least 
inconvenient of which is to render the analysis of the simplest cases quite pathological. 
 One knows what these difficulties consist of: viz., to describe a positon.  One needs to 
postulate the existence of a uniform, but infinite density, of negative electrons with no 
mutual interactions.  Only the distances from that uniform distribution must be 
considered to be observables; any unoccupied place on a negative energy level – or 
“hole” – constitutes a positon. 
 One often emphasizes that from a physical point of view it is difficult to accept the 
hypothesis of an infinite distribution of electrons.  From the mathematical viewpoint, one 
is constantly obliged to evaluate the differences between the quantities that we know in 
advance to be infinite.  Meanwhile, the results that have been obtained up to the present 
seem to show quite well that the theory correctly represents reality. 
 Indubitably, the preceding difficulties are due to the solutions of the Dirac equation 
that are characterized by a negative kinetic energy.  These solutions have no physical 
sense.  In order to relate them to anything that has physical sense, one must make 
suppositions of a necessarily artificial character, such as, for example, the hypothesis of 
an infinite density of electrons.  It is very probable that if the equation for the electron 
automatically excludes this type of solution then any difficulty of this type will vanish.  
We have begun to prove this.  Pauli and Weisskopf, in a fundamental memoir (1), have 
remarked that if the wave function of the electron is given by the relativistic Gordon 
equation then none of the preceding difficulties will arise. 
 Indeed, from the Gordon theory of energy of the elementary particle is always 
positive, whereas its charge might also be positive or negative.  The same equation 
represents the negatons and positons at the same time, without any need for recourse to 
the hypothesis of any infinite density of electrons.  Moreover, Pauli and Weisskopf have 
shown that the results that one obtains in the problem of the production of pairs for large 
                                                
 (1) Helvetica Physica Acta, 1934, vol. 7, fasc. 7, pp. 709.  Also see a lecture of W. Pauli, Annales de 
l’Institut Henri Poincaré (in press).  
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energies or in that of the polarization of the vacuum are the same, whether one starts with 
the Gordon equation or the “hole” hypothesis. 
 On the face of the problem of the positon, two attitudes are therefore possible: That of 
Dirac, Heisenberg, etc., which takes the Dirac equation as its point of departure (energy 
with two signs, charge always positive), or that of Pauli and Weisskopf, which advocates 
the use of another equation that leads to a positive energy and a charge with two signs. 
 It is clear that the experimental facts will be in favor of the second way of looking at 
things if one knows a convenient equation to start with that is equivalent to that of Dirac 
in its consequences. 
 The Gordon equation that was employed by Pauli and Weisskopf is not convenient.  
It does not account for the spin of the electron, and this is probably its gravest 
shortcoming.  It has the consequence that the treatment that was described by these 
authors will apply only when the particles in question admit Bose-Einstein statistics, 
which is obviously incorrect.  It is impossible (Pauli, loc. cit.) to employ Fermi-Dirac 
statistics with the Gordon equation, as one would like to do. 
 If one would then like to proceed like these authors then the first thing to do would 
consist in finding another equation than that of Gordon that enjoys the same properties as 
the latter and is more adapted to the description of the electron.  There is good reason to 
recall the argument that led Dirac to establish his equation and to modify it in such a 
fashion that one obtains another, more satisfactory, one. 
 
 
 2.  Conditions that a fundamental equation must satisfy. – In the light of recent 
experimental discoveries, it seems, a priori, impossible to obtain an equation of this type.  
We then examine the principal conditions that one will have to satisfy. 
 We first remark that the argument of Dirac that led him to establish his equation in an 
era when he did not know of the existence and properties of the positon is more 
convincing today, now that one knows of the phenomena of the production and 
annihilation of pairs.  The corresponding discussion was made by Pauli and Weisskopf, 
who remarked that: 
 
 1.  Due to the production of pairs, it is no longer possible to limit quantum mechanics 
to the one-electron problem.  The known experimental results can coincide with the 
theoretical predictions that are deduced from the solution of a many-body problem. 
 
 2. There is no longer any sense in speaking of a density of particles.  By contrast, 
the charge density, as well as the charge itself, preserve a precise physical sense and are 
observable quantities.  The charge that is contained in a given volume, when considered 
as an operator, has proper values that are proportional to the positive and negative integer 
numbers. 
 
 It results from these remarks that there is no longer any valid reason to postulate the 
particular form: 

r rψ ψ∗∑      (1) 
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for the charge density, as Dirac did in order to establish his equation.  An immediate 
consequence of this is that the fundamental equation must not necessarily be linear in ∂ψr 
/ ∂t; the Gordon equation certainly falls into this category.  In the following paragraph, 
we will show the manner in which one may utilize the Dirac argument in order to 
establish the new equation. 
 Be that as it may, the new equation must satisfy these conditions: 
 
 1. – It must present relativistic and electromagnetic (i.e., gauge) invariance. 
 
 2. – The wave function must have four components. 
 
 Indeed, in the Dirac theory, four components suffice to account for the known 
phenomena, and there is no reason to exceed that number.  In addition, it seems easy to 
establish a theory with a large number of components, but it is clear that a similar attempt 
will have no interest in the context of experiments, so we will not impose that 
requirement. 
 
 3. – The passage to the case in which an external field is present must be done, as 

always, by adding the operator Φ – viz., the potential of the field – to the operator 
r

h

i x

∂
∂

. 

 
 There is no reason to renounce that condition, which will be imposed for reasons of 
correspondence. 
 
 4. – One must be able to form a world vector that represents the current and charge 
density. 
 
 5. – This current must satisfy a conservation law by virtue of the fundamental 
equation, as well as in the presence of an external field. 
 
 6. – The temporal component of this vector – viz., the charge density – must be 
capable of being positive or negative. 
 
 This condition is essential. 
 
 7. – One must be able to form a symmetric tensor of second rank that represents the 
tensor density of energy-quantity of motion. 
 
 8. – This tensor must satisfy a conservation law by virtue of the fundamental equation 

that has the form rk

r r

T

x

∂
∂∑  = 0 in vacuo or rk

r r

T

x

∂
∂∑  = − r rk

r

j F⋅∑ , where jr is the current 

and Frk is the external field. 
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 9. – The energy density must be capable of being positive or zero, so its expression 
must be a positive definite form, which must be true in the presence or absence of an 
external field. 
 
 This condition is essential. 
 
 10. – One must be able to exhibit the existence of a spin and a magnetic moment. 
 
 
 3.  Indications regarding the choice of a fundamental equation. − The argument 
by which one arrives at the fundamental equation might not have an absolute character; in 
fact, it serves only to guide our choice.  Once this choice has been made, one postulates 
the equation thus found and then justifies this postulate by the results obtained.  This is 
the case in the Dirac theory, moreover, and some of the reasoning that was employed on 
that occasion, when conveniently modified, may serve again. 
 Our point of departure is condition 9, according to which the energy density must be 
represented by a positive-definite form: 
 

r r
r

∗Φ Φ∑ , 

 
where the Φr may be either the components of a function that call the “wave function” or, 
more generally, functions of it.  The conservation of energy will be expressed by: 
 

r r

d

dt
∗Φ Φ∑∫  = tr

r rt t

∗
∗ ∂Φ∂Φ Φ + Φ ∂ ∂ 

∑∫  dv = 0, 

 
the integral being taken over a convenient volume or even all of space.  One may deduce 
from this, as in the Dirac theory (1), that at a well-defined instant one may simultaneously 
assign arbitrary values to: 
 

/r t∗∂Φ ∂ , ∂Φr / ∂t, and r
∗Φ , Φr . 

 
 Therefore, the Φ satisfy equations that linear equations in ∂ / ∂t, and, by symmetry, 
also linear in ∂ / ∂xr . 
 On the other hand, the fundamental relation: 
 

2
W

c
 
 
 

= 2 2 2 2 2
1 2 3p p p m c+ + +  

 
leads to the second-order equation: 
 

                                                
 (1) PAULI, Handbuch der Physik, vol. 19, pp. 217.  
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2 2

2r r

m c

h
Φ − Φ□ = 0,     (2) 

 
and it is natural to postulate, as in the Dirac theory, that this is satisfied in the case where 
a field is absent. 
 We must then linearize (2) – i.e., we must find a system of equations that have (2) as 
their consequence.  Now, only the Dirac solution leads to a true linearization, and that is 
not convenient in our problem.  One deduces from this that the Φr are not “wave 
functions,” or rather that the expression for energy does not uniquely contain terms that 
depend directly upon the wave functions ψs .  There will also be terms that are 
necessarily combinations of ψs and ∂ / ∂xr , and they collectively permit a sort of 
“linearization;” for example, it will make it easier to understand what it consists of.  We 
take the linearized equation to be: 
 

□Φr – k2 Φr = 0 (r = 0, 1, 2, 3).    (2) 
 The system: 

Φ1 = 
x

ψ∂
∂

, Φ2 = 
y

ψ∂
∂

, Φ3 = 
z

ψ∂
∂

, Φ0 = 
1

c t

ψ∂
∂

,  (3) 

 

3 01 2 1

x y z c t

∂Φ ∂Φ∂Φ ∂Φ+ + −
∂ ∂ ∂ ∂

 = k2ψ,    (4) 

 
where ψ is a scalar, has the relation (2) as a consequence; it suffices to substitute (3) in 
(4) and differentiate.  Meanwhile, it is clear that the fundamental equation remains the 
second-order one that defines ψ: 

□ψ = k2ψ ;      (5) 
 
the Φr are deduced from it by means of first-order equations. 
 Be that as it may, if one is given the complex scalar ψ which satisfies (5) then one 
may deduce the Φ from it by means of (3), and consequently, write a second-rank tensor 
whose temporal component: 
 

3
2

0 0
1

r r
r

k ψ ψ∗ ∗ ∗

=
Φ Φ + Φ Φ +∑      (6) 

 
will be a positive-definite form.  This shows that one may establish a theory of a particle 
with positive energy in that fashion. 
 The fundamental equation (5) is the Gordon equation and the corresponding theory 
was developed by Pauli and Weisskopf.  It indeed satisfies the conditions of the 
preceding paragraph, except 2 and 10.  Upon generalizing the preceding process, we find 
another system that also satisfies the last two conditions. 
 In the preceding example, the wave function ψ is a scalar.  Now, we have need for a 
magnitude with four complex components; one may take two spinors ψr, χs .  One may 
take a vector complex vector that was formed by combining the four components of the 
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two vectors ars , brs .  One may also take the 2×2 = 4 complex components of a spinor of 
second rank grs and stop with the simplest possibilities (1). 
 The solution by two spinors is the Dirac solution, which is not convenient.  As a 
result, being given such a grs amounts to being given an anti-symmetric tensor of second 
rank with real components (2) and two invariants.  Finally, the latter solution, which takes 
the form of a wave vector, is the simplest; this is why we shall adopt it. 
 The preceding example is completely characterized when one is given the 
corresponding Lagrange function, which is, following Gordon: 
 

L = 
4

2 2 2 4

1

h c m c
x xµ µ µ

ψ ψ ψ ψ
∗

∗

=

∂ ∂ +
∂ ∂∑   (µ = 1, …, 4). 

 
 The energy density tensor: 
 

Tµν  = 2 2h c L
x x x x µ

µ ν ν µ

ψ ψ ψ ψ δ
∗ ∗ ∂ ∂ ∂ ∂+ + ⋅  ∂ ∂ ∂ ∂ 

, 

 
the field equations, etc., are deduced from L immediately.  We look for the possible L in 
the case of a wave function that is the world vector ψr .  L is an invariant; it appears 
additively in the expression T44 , and consequently will be comprised, like energy, of a 
sum of terms of the form A*A.  Among them, one will have: 
 
 1. Terms that contain the components of the function ψ explicitly. 
 
 The simplest invariant combination that one may form from it is: 
 

r rψ ψ∗∑  

and: 
 2. Terms that are formed by combining ∂ / ∂x and ψr . 
 
 The simplest combination will be the divergence A = ∂ψr / ∂xr ; one confirms that it 
does not work.  The second degree of complexity will be A = a second-rank tensor of type 
∂ψr / ∂xs , and more particularly, the one that has the minimum number of components, 
namely, the rotation of the vector ψr : 
 

Ars = s r

r sx x

ψ ψ∂ ∂−
∂ ∂

. 

 
 The simplest Lagrangian will then be of the form: 
 

                                                
 (1) One may nonetheless take magnitudes with several indices by imposing certain symmetry conditions 
on them; for example, grst , when it is anti-symmetric in s and t, has only four non-zero components. 
 (2) Cf., LAPORTE and UHLENBECK, Physical Review (1931), pp.  1552. 



Proca – On the undulatory theory of positive and negative electrons                       7 

L = 2
rs rs r r

rs r

A A k ψ ψ∗ ∗+∑ ∑ , 

 
where k is a constant that we take to be proportional to the proper mass, for reasons that 
will become apparent in the sequel.  By hypothesis, for the case of no external field we 
explicitly write: 

L = 
2 2

2 4

2
s sr r

r r
r s r s

h c
m c

x x x x

ψ ψψ ψ ψ ψ
∗ ∗

∗  ∂ ∂∂ ∂− − +  ∂ ∂ ∂ ∂  
, 

 
with the usual summation convention.  The Lagrangian for the case of an external field 
will be deduced from the preceding one by the known rule (condition 3). 
 

* 
*  * 

 
 4.  Notations. Lagrange functions. – For reasons that will become obvious shortly, 
we do not adopt notations that are analogous to the ones that were employed in the Dirac 
theory; this should not introduce any difficulty, but will offer no immediate advantage, 
either. 
 Therefore, consider a vector ψr = ar + ibr and its complex conjugate ψ* = ar − ibr .  
We may develop the theory in a universe that is defined by x1 = x, x2 = y, x3 = z, x0 = ct.  
For the symmetry of the formulas, it is meanwhile advantageous to allow a fourth 
imaginary coordinate.  Nevertheless, in that case, one must take certain precautions in 
order to obtain the correct reality conditions. 
 For that, it will suffice to write the coordinates in the form: 
 

x1 = x,   x2 = y,  x3 = z,  x4 = ε ct,  (7) 
 

ε being a complex unit such that ε2 = − 1, it commutes with the other imaginary unit i that 
appears in the expression for the ψr .  It will then be incorrect to write ε i = −1, but one 
will have ε i = i ε.  The asterisk that indicates the complex conjugate will change the sign 
of i, but not that of ε.  The spatial components of ψr will be ar + ibr , ar, br real (r = 1, 2, 
3), and the temporal component will be ψ4 = 4 4a i bε ε′ ′+ , with 4a′ , 4b′  real.  The 

complication that is introduced by the use of two complex units is compensated by the 
advantage of symmetry.  Moreover, ε always disappears when one passes to the variable 
t.  In addition, for greater clarity, we avoid the use of the asterisk for functions of ψ*; we 
use different letters to indicate that function and its complex conjugate. 
  Finally, set: 

∂r = 
rx

∂
∂

  (r = 1, 2, 3, 4). 

 
 Having done this, consider the case of no external field. 
 We set: 

rsF ′  = r s s rψ ψ∗ ∗∂ − ∂ ,  rsG′  = ∂r ψs − ∂s ψr .    (9) 
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rsF ′  and rsG′  are complex conjugate; they contain an ε as a factor whenever one of the 

indices r or s is equal to 4. 
 By hypothesis, the Lagrangian of the problem will be: 
 

L = 
2 2

2 4

2 rs rs r r

h c
F G m cψ ψ∗′ ′ + ,     (10) 

 
in this case, h being Planck’s constant divided by 2π. 
 One then passes to the case where a field exists that is defined by a potential: 
 

Φ1, Φ2, Φ3, Φ4 = ε Φ0  (Φ0, …, Φ3 real)   (11) 
 
by the substitutions (1): 
 

r

sx

ψ∂
∂

 → r
s r

s

ie

x hc

ψ ψ∂ − Φ
∂

, r

sx

ψ ∗∂
∂

 → r
s r

s

ie

x hc

ψ ψ
∗

∗∂ + Φ
∂

.  (12) 

 
To simplify the notation, we set: 

As = s

e

hc
Φ ,      (13) 

k = 
mc

h
.      (14) 

We further set: 

( ) ( ) ,

( ) ( ) ;
rs r r s s s r

rs r r s s s r

F iA iA

G iA iA

ψ ψ
ψ ψ

∗ ∗ = ∂ + − ∂ +
= ∂ − − ∂ − 

    (15) 

 
Frs, Grs are anti-symmetric tensors of second order.  The Lagrange function in the case of 
an external field is the written, with the usual summation convention: 
 

2 2
2 4 .

2 rs rs r r

h c
L F G m cψ ψ∗= +     (16) 

 
 

 5.  Fundamental equations. – The momenta are: 
 

( )r s

L

ψ
∂

∂ ∂
= h2 c2 Frs ,  

( )r s

L

ψ ∗

∂
∂ ∂

= h2 c2 Grs . 

One has, in turn: 

                                                
 (1) We adopt the convention of Pauli and Weisskopf for the sign of e; cf., loc. cit., pp. 722.  
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s

L

ψ
∂

∂
= 2 4 2 2

s r rsm c ih c A Fψ ∗ − ,  
s

L

ψ ∗

∂
∂

= 2 4 2 2
s r rsm c ih c A Gψ + , 

s

L

A

∂
∂

= 2 2( )r rs s rsih c F Gψ ψ ∗− . 

The fundamental equations: 
 

( )
r

r s

L

ψ
 ∂∂  ∂ ∂ 

 = 
s

L

ψ
∂

∂
,   

( )
r

r s

L

ψ ∗

 ∂∂  ∂ ∂ 
 = 

s

L

ψ ∗

∂
∂

  (20) 

take the form: 

2 2( ) , ( )r r rs s r r rs siA F k iA G kψ ψ∗∂ + = ∂ − =   (21) 

 
to which, one agrees to add equations (14), which define the intermediary magnitudes Frs 
and Grs . 
 These have the form of Maxwell’s equations (for an imaginary “potential”), 
completed by elements that represent the influence of an external field.  One may then 
deduce a certain number of consequences from this fact that we will pass over, for the 
moment. 
 They indeed present relativistic and electromagnetic invariance; the first three 
conditions of paragraph 2 are thus satisfied: 
 Eliminate Frs and Grs ; one has, in general: 
 

( )( ) ( )( ) ( ),

( )( ) ( )( ) ( ).

r r s s s s r r r s s r

r r s s s s r r r s s r

iA iA iA iA i A A

iA iA iA iA i A A

∂ − ∂ − − ∂ − ∂ − = − ∂ − ∂


∂ + ∂ + − ∂ + ∂ + = + ∂ − ∂ 
 (22) 

 Set: 
4 4

2 2

1 1

4 4

1 1

( ) , ( ) ,

( ) , ( ) ,

iA iA

J iA I iA

µ µ µ µ
µ µ

µ µ µ µ µ µ
µ µ

ψ ψ

+ −
= =

∗

= =

= ∂ + = ∂ − 


= ∂ + = ∂ −


∑ ∑

∑ ∑

□ □

   (23) 

 

Hrs = 
hc

e
(∂r As − ∂s Ar).     (24) 

 
The fundamental equations become: 
 

2

2

( ) ,

( ) .

s s s rs rs r

s s s rs rs r

ie
iA J k H

hc

ie
iA I k H

hc

ψ δ ψ

ψ δ ψ

∗ ∗
+

−

 − ∂ + = +  
  


  − ∂ − = +    

□

□

   (25) 
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In the case of no field, and provided that k − and therefore, the mass of the particle − is 
non-zero, which is an essential condition, one deduces that: 
 

I = J = 0.     (26) 
Indeed, in this case (25) becomes: 
 

s sJψ ∗ − ∂□ = 2
sk ψ ∗ , s sIψ − ∂□ = 2

sk ψ , 

 
and upon applying the operator s

s

∂∑ , one deduces the stated result (26). 

 Therefore, in the absence of a field the equations become equations of the Gordon 
type: 

2

2

,

,
s s

s s

k

k

ψ ψ
ψ ψ

∗ ∗=
=

□

□

  with 
0,

.

s s s s

mc
k

h

ψ ψ∗∂ = ∂ =



=


  (27) 

 
 In the general case, we apply the operator s

s

∂∑  to (21); one will have: 

 

−
2

ie

hc
Frs ⋅⋅⋅⋅ Hrs = k2 J,  −

2

ie

hc
Grs ⋅⋅⋅⋅ Hrs = k2 I. 

 
Therefore, if k = 0, and only in this case then: 
 

J = −
2

1

2

ieh

hc mc
⋅⋅⋅⋅ Frs ⋅⋅⋅⋅ Hrs , I = 

2

1

2

ieh

hc mc
⋅⋅⋅⋅ Grs ⋅⋅⋅⋅ Hrs .  (28) 

 
 We immediately point out some other interesting relations. 

 By virtue of (17), the 
( )r s

L

ψ
∂

∂ ∂
 are anti-symmetric tensors; one thus has: 

 

( )
r s

r s

L

ψ
 ∂∂ ∂  ∂ ∂ 

 = 
( )

r s

r s

L

ψ ∗

 ∂∂ ∂  ∂ ∂ 
 = 0. 

 
The fundamental equations permit one to deduce: 
 

s

s

L

ψ
 ∂∂  ∂ 

 = s

s

L

ψ ∗

 ∂∂  ∂ 
 = 0.    (29) 

 
 
 6.  Existence and conservation of current. – We define the current, as Gordon did, 
following Mie, by means of the derivative of the Lagrange function with respect to the 
potential, and with the sign changed: 
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js = −
s

L∂
∂Φ

= −
s

e L

hc A

∂
∂

,     (30) 

so, by virtue of (19): 
js = i ehc ( rψ ∗ Grs – ψr Frs).    (31) 

 
It is clear that (30) is a world-vector. 
 It always satisfies a conservation law ∂s js = 0.  Indeed, one has: 
 

∂s js = i ehc ( s rψ ∗∂ ⋅⋅⋅⋅ Grs + rψ ∗ ⋅⋅⋅⋅ ∂sGrs – ∂sψr Frs – ψr ∂s Frs). 

 
By virtue of the fundamental equations, this is: 
 

= i ehc [Grs (∂s + iAs) rψ ∗  − Frs (∂s − iAs)ψr], 

 
and by virtue of the anti-symmetric character of Frs , Grs , this is: 
 

= i ehc 
2 2

rs rs rs rsG F F G⋅ ⋅ − 
 

 ≡ 0. 

 
There thus exists a vector js that satisfies a conservation law.  In order for us to be able to 
confirm that it indeed represents a current, it is further necessary that when it is combined 
with the electromagnetic field it indeed furnishes the expression for the force that results 
from the divergence of the energy tensor; we show that this is indeed the case. 
 In any case, the temporal component is: 
 

j4 = i ehc ( rψ ∗ Gr4 − ψr Fr4);    (32) 

 
it can take on values that are either positive or negative. 
 
 
 7.  Energy-quantity of motion tensor and conservation law. – In order to establish 
both the expression for this tensor and its conservation law, we proceed as Schrödinger 
did.  Differentiate the Lagrange function with respect to xρ , ρ arbitrary; one will have: 
 

∂ρL = 2 2

( ) ( )r s r s s s s
r s r s s s s

L L L L L
A

Aρ ρ ρ ρ ρψ ψ ψ ψ
ψ ψ ψ ψ

∗ ∗
∗ ∗

∂ ∂ ∂ ∂ ∂⋅∂ + ⋅∂ + ⋅∂ + ⋅∂ + ⋅∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
so, by virtue of the fundamental equations: 
 

∂ρL = ∂r(L δrρ) = 
( ) ( )r s s s

r s r s s

L L L
A

Aρ ρ ρψ ψ
ψ ψ

∗
∗

 ∂ ∂ ∂∂ ⋅∂ + ⋅∂ + ⋅∂ ∂ ∂ ∂ ∂ ∂ 
. 

 
Let Hrs be the external electromagnetic field and let js be the current: 
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js = − 
s

e L

hc A

∂
∂

.      (30) 

 
 We have proved that ∂s js = 0; therefore: 
 

Hρs js = − s s
s s

L L
A A

A Aρ ρ
 ∂ ∂⋅∂ + ∂  ∂ ∂ 

.     (33) 

 
Add (32) and (33); upon taking into account the fundamental equations: 
 

Hρs js = 
( ) ( )r s s s r

r s r s s

L L L
A L

Aρ ρ ρψ ψ δ
ψ ψ

∗
∗

 ∂ ∂ ∂∂ ⋅∂ + ⋅∂ + ⋅ − ∂ ∂ ∂ ∂ ∂ 
,  (34) 

 
one finds that: 
 

Hρs js = ∂r{ h2c2 Frs(∂ρ – iAρ)ψs + h2c2 Grs(∂ρ + iAρ) sψ ∗  − δrρ L}.    (35) 

 
Now, one easily sees that one has the identity: 
 

0 ≡ 
( ) ( )r s s

r s r s r r

L L L L
ρ ρ ρ ρψ ψ ψ ψ

ψ ψ ψ ψ
∗ ∗

∗ ∗

 ∂ ∂ ∂ ∂∂ ⋅∂ + ⋅∂ − ⋅ − ⋅ ∂ ∂ ∂ ∂ ∂ ∂ 
;   (36) 

 

it suffices to take (29) into account, along with the fact that the 
( )r s

L

ψ
∂

∂ ∂
are anti-

symmetric. 
 Upon making (36) explicit, with the aid of the fundamental formulas (17) and (18), 
one has: 

0 ≡ ∂r{ h2c2 Frs(∂s – iAs)ψρ + h2c2 Grs(∂s + iA s) ρψ ∗  − m2c4 ( )r rρψ ψ ψ ψ∗ ∗+ }.    (37) 

 
Subtract (37) from (35); by virtue of (15), one has: 
 

Hρs js = ∂r{ h2c2 (Frs ⋅⋅⋅⋅ Gρs + Grs ⋅⋅⋅⋅ Fρs) + m2c4 ( )r rρψ ψ ψ ψ∗ ∗+ − δrρ L}.   (38) 

namely: 

,r
r s sT H jρ ρ∂ = ⋅      (39) 

where: 

2 2 2 4( ) ( ) .r rs s s rs r r rT h c F G F G m c Lρ ρ ρ ρ ρ ρψ ψ ψ ψ δ∗ ∗= + + + −   (40) 
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This Trρ is a symmetric tensor; (39) shows that its divergence is equal to the Lorentz 
force.  It may thus be chosen to be the energy-quantity of motion tensor. 
 The energy is constantly positive.  The energy density is defined by E = − T44, and 
one has, upon writing out L explicitly: 
 

E = 2 2 2 2
4 4 4 4( )

2
r s r s

s s r r

F G
h c F G m c ψ ψ ψ ψ∗ ∗′ ′ ′ ′

′ ′
⋅ − ⋅ + − 

 
,  (41) 

 
where s varies from 1 to 4 and r′, s′ vary from 1 to 3; this is, again by writing it out 
explicitly: 
   E = h2c2(F23G23 + F31G31 + F12G12 – F14G14 – F24G24 – F34G34) 

    + m2c4
1 1 2 2 3 3 4 4( )ψ ψ ψ ψ ψ ψ ψ ψ∗ ∗ ∗ ∗+ + − ,    (42) 

 
a quantity that is essentially positive, since Grs is the complex conjugate of Frs . 
 
 
 8.  Electromagnetic moment of the electron. – Let the current be: 
 

js = i ehc ( rψ ∗ Grs – ψr Frs).    (31) 

 
One may regard it as a sum of two terms of a particular form.  Indeed, upon writing it out 
explicitly, one has the expression: 
 

js = i ehc[ψr (∂s + i As) rψ ∗  − rψ ∗ (∂s − i As)ψr + sψ ∗ I – ψs J] + ∂r ( )r s s rψ ψ ψ ψ∗ ∗− .    (43) 

 
In the case of a zero external field, I = J = 0, and the current reduces to: 
 

0
sj = i ehc [ψr ⋅⋅⋅⋅ r

rψ ∗∂  − rψ ∗ ⋅ ∂s ψr + ∂r ( )r s s rψ ψ ψ ψ∗ ∗− ].  (44) 

 
One may thus separate the current density into two parts js = s sj j′ ′′+ , just as in the Dirac 

theory.  The second one: 

sj ′′  = i ehc ⋅ ∂r ( )r s s rψ ψ ψ ψ∗ ∗−  = ∂rmrs  

 
presents itself as the current density that is due to an electric or magnetic moment tensor 
mrs (which does not depend upon the external field explicitly).  We may thus assume that 
the electron possesses an electromagnetic moment that is given by: 
 

mrs = i ehc( )r s s rψ ψ ψ ψ∗ ∗− .    (45) 

The remaining one: 
 

sj ′  = i ehc[ψr (∂s + i As) rψ ∗  − rψ ∗ (∂s − i As)ψr + sψ ∗ I – ψs J]  (46) 
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will be the conduction current.  As in the Dirac theory, each of these partial currents 
satisfies an equation of continuity: 
 

s
sj ′∂  = 0 and s

sj ′′∂ = 0. 

 
 

 9.  Spin. – Starting with the energy-quantity of motion tensor Trs , one obtains, in 
general, the value of the kinetic moment by forming the integral: 
 

Prρ = 4 4

1
( )r rx T x T dV

c ρ ρε
⋅ − ⋅∫   (r, ρ = 1, 2, 3),  (47) 

in which: 
2 2 2 4

4 4 4 4 4
2 2 2 4

4 4 4 4 4

( ) ( ),

( ) ( ).
s s s s

r s rs rs s r r

T h c F G F G m c

T h c F G F G m c
ρ ρ ρ ρ ρψ ψ ψ ψ

ψ ψ ψ ψ

∗ ∗

∗ ∗

= + + +
= + + + 

  (48) 

 
Consider an electron in the absence of a field; one will have in this case: 
 

 Prρ = 2 2 2 4
4 4

1
{ ( ) ( ) conjugate}s r s rs r rh c F x G x G m c x x dV

c ρ ρ ρ ρψ ψ ψ
ε

∗− + − +∫  

 = 2 2
4 4 4 4

1
{ [ ]s r s s r s s r s s s rh c F x F x F x F x

c ρ ρ ρ ρψ ψ ψ ψ
ε

⋅ ⋅∂ − ⋅ ⋅∂ − ⋅ ⋅∂ + ⋅ ⋅∂∫  

 + m2 c4 ⋅ 4ψ ∗ (xr ψρ – xρ ψr) + conjugate} dV. 

 
For r = ρ, the components Prs are zero; for r ≠ ρ, one has: 
 

xr ⋅⋅⋅⋅ ∂ρ ψs = ∂ρ(xr ψs),  xρ ⋅⋅⋅⋅ ∂r ψs = ∂r(xρ ψs),    (49) 
and: 

4 4 4

4 4 4

( ) ,

( ) .
s r s s s r r

s s r s s r r

F x F x F

F x F x F
ρ ρ ρ

ρ ρ ρ

ψ ψ ψ
ψ ψ ψ

⋅ ⋅∂ = ⋅∂ − ⋅ 
⋅ ⋅∂ = ⋅∂ − ⋅ 

   (50) 

One may thus write: 
 

 P4s  = 2 2
4 4 4 4

1
{ [ ( ) ( ) ( ) ( )]s r s s s r s r s s s rh c F x F x F x F x

c ρ ρ ρ ρψ ψ ψ ψ
ε

⋅∂ − ⋅∂ − ⋅∂ + ⋅∂∫  

  + h2c2 (ψρ F4r – ψr F4ρ) + m2c4 (xrψρ – xρ ψr) + conjugate} dV. 
 

Upon integrating by parts and assuming, as one usually does, that the ψr are annulled on 
the boundary, one will have: 
 

 P4s  = 2 2
4 4 4 4

1
{ ( ) ( )}s r s s r s r s s s sh c x F G x F G dV

c ρ ρ ρψ ψ ψ ψ
ε

∗ ∗∂ + ∂ − ∂ + ∂∫  

+ 2 2
4 4 4 4

1
( )r r r rh c F F G G dV

c ρ ρ ρ ρψ ψ ψ ψ
ε

∗ ∗− + −∫ .    (51) 
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One may regard the first integral, which has the form ∫ (xρ Ar − xr Aρ) dV, as equivalent to 
an “orbital momentum,” and the second one, where the xr , xρ no longer appear explicitly, 
as the proper momentum of the particle. 
 The “spin” density of the latter will thus be: 
 

M = h2c2{ψρ F4r + ψr Fρ4 + ρψ ∗ G4r + rψ ∗ Gr4).  (52) 

 
It is obvious that this decomposition is arbitrary, which corresponds to the nature of 
things, moreover. 
 We remark that the relativistic variance of the spin is that of the total momentum (47) 
that we started with; it cannot be otherwise.  This spin differs from the one that one 
encounters in the Dirac theory.  Indeed, it is certainly comprised of the three temporal 
components of a tensor of the form Prsl , but it is not completely anti-symmetric, as in the 
case of the Dirac equation.  It is meanwhile easy to modify the decomposition (51) so as 
to separate the total momentum into an “orbital momentum” and a spin that is a 
completely anti-symmetric tensor of rank three.  Indeed, one has, for s = 1, 2, 3, 4: 
 
 m2c4 xr ψ4 ρψ ∗  = h2c2 ⋅ ψ4 ⋅⋅⋅⋅ ∂s(xr Fsρ) − h2c2 ⋅ ψ4 ⋅⋅⋅⋅ Frρ , 

 m2c4 xρ ψ4 rψ ∗  = h2c2 ⋅ ψ4 ⋅⋅⋅⋅ ∂s(xρ Fsr) − h2c2 ⋅ ψ4 ⋅⋅⋅⋅ Fρr , 

so: 
2 4 2 2 2 2

4 4 4
2 4 2 2 2 2

4 4 4

( ) ( ) 2 ,

( ) ( ) 2 .
r r s r s sr r

r r s r s sr r

m c x x h c x F x F h c F

m c x x h c x G x G h c G
ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ

∗ ∗

∗ ∗

− − ⋅ ⋅∂ − = ⋅ ⋅ 
− − ⋅ ⋅∂ − = ⋅ ⋅ 

 (53) 

 
One then deduces a separation of the total momentum Prρ into an “orbital moment” and a 
“spin”: 

2 2
4 4 4

1
( conjugate)r r rh c F F F dV

c ρ ρ ρψ ψ ψ
ε

+ + +∫ .  (54) 

 
In this form, the spin density will be composed of the temporal components of a 
completely anti-symmetric tensor of third rank, exactly as it is in the Dirac theory. 
 
 Manuscript received on 28 May 1936. 
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