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Introduction. — The Dirac theory of “holes” is actually the onlyeathat permits one
a glimpse into the behavior of positons. The experinh@hsaovery of the latter has
confirmed the fundamental hypothesis and has shown teatptoposed equation
accounts for the positive electrons, as well as thgative ones. Nevertheless, the
difficulties that one encounters remain considerabléthout speaking of infinite proper
energies, the structure itself of the theory, int,faaises other problems, the least
inconvenient of which is to render the analysis of thgkest cases quite pathological.

One knows what these difficulties consist of: Mia.describe a positon. One needs to
postulate the existence of a uniform, but infinite densifynegative electrons with no
mutual interactions. Only the distances from that umifodistribution must be
considered to be observables; any unoccupied place regativeenergy level — or
“hole” — constitutes a positon.

One often emphasizes that from a physical pointi@#\t is difficult to accept the
hypothesis of an infinite distribution of electronsio the mathematical viewpoint, one
is constantly obliged to evaluate the differences betweemuaantities that we know in
advance to be infinite. Meanwhile, the results thaeHaaen obtained up to the present
seem to show quite well that the theory correctly regmes reality.

Indubitably, the preceding difficulties are due to theisohs of the Dirac equation
that are characterized by a negative kinetic energyesdlsolutions have no physical
sense. In order to relate them to anything that has qd#tysense, one must make
suppositions of a necessarily artificial characterhsag; for example, the hypothesis of
an infinite density of electrons. It is very probabiattif the equation for the electron
automatically excludes this type of solution then anyidliffy of this type will vanish.
We have begun to prove this. Pauli and Weisskopf, in dafuental memoir'), have
remarked that if the wave function of the electromiigen by the relativistidcGordon
equation then none of the preceding difficulties wilta

Indeed, from the Gordon theory of energy of the etdgarg particle is always
positive, whereas its charge might also be positive egative. The same equation
represents the negatons and positons at the samewttineyt any need for recourse to
the hypothesis of any infinite density of electrons. &bwaer, Pauli and Weisskopf have
shown that the results that one obtains in the probletine production of pairs for large

() Helvetica Physica Actal934, vol. 7, fasc. 7, pp. 709. Also see a lecture oPuli, Annales de
I'Institut Henri Poincaré(in press).
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energies or in that of the polarization of the vacuuetlee samewhether one starts with
the Gordon equation or the “hole” hypothesis.

On the face of the problem of the positon, two attitiadtesherefore possible: That of
Dirac, Heisenberg, etc., which takes the Dirac equaoitsgpoint of departure (energy
with two signs, charge always positive), or that of Pantl Weisskopf, which advocates
the use of another equation that leads to a positeggmand a charge with two signs.

It is clear that the experimental facts will befavor of the second way of looking at
things ifone knows a convenient equation to start it is equivalent to that of Dirac
in its consequences.

The Gordon equation that was employed by Pauli and Wégag$s not convenient.
It does not account for the spin of the electrond &nis is probably its gravest
shortcoming. It has the consequence that the treatthahtwas described by these
authors will apply only when the particles in questiomadBose-Einstein statistics,
which is obviously incorrect. It is impossible (Paldic. cit) to employ Fermi-Dirac
statistics with the Gordon equation, as one would likgoto

If one would then like to proceed like these authors therfirst thing to do would
consist in finding another equation than that of Gordah ¢hjoys the same properties as
the latter and is more adapted to the description oéldwtron. There is good reason to
recall the argument that led Dirac to establish his equatia to modify it in such a
fashion that one obtains another, more satisfacoony,

2. Conditions that a fundamental equation must satisfy. — In the light of recent
experimental discoveries, it seeragriori, impossible to obtain an equation of this type.
We then examine the principal conditions that one halte to satisfy.

We first remark that the argument of Dirac that led to establish his equation in an
era when he did not know of the existence and properfietheo positon is more
convincing today, now that one knows of the phenomenahef production and
annihilation of pairs. The corresponding discussion made by Pauli and Weisskopf,
who remarked that:

1. Due to the production of pairs, it is no longer poedibllimit quantum mechanics
to the one-electron problem. The known experimergalilts can coincide with the
theoretical predictions that are deduced from the solafi@many-body problem.

2. There is no longer any sense in speaking of a desfsggrticles By contrast,
the charge density, as well as the charge itself, preseprecise physical sense and are
observable quantities. The charge that is contain@dginen volume, when considered
as an operator, has proper values that are proportiortad pogitiveandnegativeinteger
numbers.

It results from these remarks that there is no loiagy valid reason to postulate the

particular form:
WY, (1)
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for the charge density, as Dirac did in order to estaliis equation. An immediate
consequence of this is that the fundamental equationmatisiecessarily benear in d ¢
/ ot; the Gordon equation certainly falls into this categohy the following paragraph,
we will show the manner in which one may utilize theab argument in order to
establish the new equation.

Be that as it may, the new equation must satisfy tbesditions:

1. —It must present relativistic and electromagnetic (i.e., gauge) ianee.
2. —The wave function must have four components.

Indeed, in the Dirac theory, four components sufficeatoount for the known
phenomena, and there is no reason to exceed that nudmbaddition, it seems easy to
establish a theory with a large number of componentst sutlear that a similar attempt
will have no interest in the context of experimergs, we will not impose that
requirement.

3. —The passage to the case in which an external field is present mdehégas

always, by adding the operatdr —viz., the potential of the fieldto the operatorfhai :
i OX

T

There is no reason to renounce that condition, wiwitihbe imposed for reasons of
correspondence.

4. —One must be able to form a world vector that repnes the current and charge
density.

5. — This current must satisfy a conservation law bytueérof the fundamental
equation as well as in the presence of an external field.

6. — The temporal component of this vector — viz., tharge density — must be
capable of being positive or negative.

This condition is essential.

7. —One must be able to form a symmetric tensor ofrgkcank that represents the
tensor density of energy-quantity of motion.

8. —This tensor must satisfy a conservation law byeiaf the fundamental equation

M _
9

that has the form 0 in vacuo or 9Ty =- > |, [F,, wherej, is the current
6Xr r rk

andF is the external field.
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9. —The energy density must be capable of being positive or zero, splies®on
must be a positive definite foyrwhich must be true in the presence or absence of an
external field.

This condition is essential.

10. —One must be able to exhibit the existence of a spin and a magnetiatmome

3. Indications regarding the choice of a fundamental equation. — The argument
by which one arrives at the fundamental equation mighhave an absolute character; in
fact, it serves only to guide our choice. Once thisahbas been made, one postulates
the equation thus found and then justifies this postulatédoyesults obtained. This is
the case in the Dirac theory, moreover, and somheofdasoning that was employed on
that occasion, when conveniently modified, may servanaga

Our point of departure is condition 9, according to whighenergy density must be
represented by a positive-definite form:

> oo,

where thed, may be either the components of a function thattlsal“wave function” or,
more generallyfunctions of it The conservation of energy will be expressed by:

d _ ok 0 0D, _
EIZ‘D?“% —IZ( 5 D, + P! 5 j dv=0,

the integral being taken over a convenient volume or allerf space. One may deduce
from this, as in the Dirac theor})( that at a well-defined instant one may simultangous|
assign arbitrary values to:

ad/ot, oD, /o, and @7, O, .

Therefore, thed satisfy equations that linear equation® ihot, and, by symmetry,
also linear iro / 0x; .
On the other hand, the fundamental relation:

2
()= e pgeme

leads to the second-order equation:

() PAULI, Handbuch der Physjkol. 19, pp. 217.
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2
0o, - th°2 ® =0, )

and it is natural to postulate, as in the Dirac thethat this is satisfied in the case where
a field is absent.

We must then linearize (2) — i.e., we must find a sysieaguations that have (2) as
their consequence. Now, only the Dirac solution leads truelinearization and that is
not convenient in our problem. One deduces from this tmatdbt are not “wave
functions,” or rather that the expression for enedggs notuniquelycontain terms that
depend directly upon the wave functiogg . There will also be terms that are
necessarily combinations afs and d / dx. , and they collectively permit a sort of
“linearization;” for example, it will make it easiev understand what it consists of. We
take the linearized equation to be:

O®, —kKKd, =0 t=0,1,2 3). (2)
The system:
oy oy oy 10y
D=, dy=—L, d3=—, dy=——F, 3
' ax Y °T oz °7 ¢ ot 3
0, , 00, 00, 100, Ky %)

oOx o0y 0z <coOt

where ¢ is a scalar, has the relation (2) as a consequémsagfices to substitute (3) in
(4) and differentiate. Meanwhile, it is clear thhhé fundamental equation remains the
second-order one that defings

Oy=Ky; (5)

the ®, are deduced from it by means of first-order equgtio

Be that as it may, if one is given the compsealar ¢ which satisfies (5) then one
may deduce thé from it by means of (3), and consequently, writeeaond-rank tensor
whose temporal component:

3
DD, + ) PP, +kY Y (6)
r=1

will be a positive-definite form. This shows tltate may establish a theory of a particle
with positive energy in that fashion.

The fundamental equation (5) is tB®rdonequationand the corresponding theory
was developed by Pauli and Weisskopf. It indeetsfsss the conditions of the
preceding paragrapbxcept 2 and 10Upon generalizing the preceding process, we find
another system that also satisfies the last twditons.

In the preceding example, the wave functgrs a scalar. Now, we have need for a
magnitude with four complex components; one mawg tako spinors, xs. One may
take a vector complex vector that was formed bylinmg the four components of the
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two vectorsas , bs . One may also take the2= 4 complex components of a spinor of
second rankys and stop with the simplest possibilitié} (

The solution by two spinors is the Dirac solution, whismot convenient. As a
result, being given suchgg amounts to being given an anti-symmetric tensor ajragc
rank with real component$)(and two invariants. Finally, the latter solution, ethtakes
the form of a wave vector, is the simplest; this lig/we shall adopt it.

The preceding example is completely characterized wbee is given the
corresponding Lagrange function, which is, following Gordon

L= w&zawaw+nhw% w=1, ..., 4)
U
The energy density tensor:

| |
T/IV - h2C2 al// aw+a¢/ al/’ + Lm ,
ox, 0x, 0% 0X, #

the field equations, etc., are deduced floimmediately. We look for the possillein

the case of a wave function that is the world vegor L is an invariant; it appears
additively in the expressiofus, and consequently will be comprised, like energy, of a
sum of terms of the forA’A. Among them, one will have:

1. Terms that contain the components of the funati@xplicitly.

The simplest invariant combination that one may foiom it is:

D,

and:
2. Terms that are formed by combinihgox and ¢ .

The simplest combination will be the divergece d¢ / 9% ; one confirms that it
does not work. The second degree of complexity wihlea second-rank tensor of type
oYk 1 0%s, and more particularly, the one that has the mininmumber of components,
namely,the rotation of the vectay :

_0¢, oy,
T oax ox

The simplest Lagrangian will then be of the form:

() One may nonetheless take magnitudes with severakmbicimposing certain symmetry conditions
on them; for examplea,; , when it is anti-symmetric imandt, has only four non-zero components.
(® Cf., LAPORTE and UHLENBECKPhysical Reviey1931), pp. 1552.
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L= Y AA YUY,

wherek is a constant that we take to be proportional tgotioger mass, for reasons that
will become apparent in the sequel. By hypothesis,Hercase of no external field we

explicitly write:
22 O O
L - h C aws _al/lr aws_awr +mZC4l//F¢/r,
2 (ox o0x Jlox 0x

with the usual summation convention. The LagrangiartHe case of an external field
will be deduced from the preceding one by the known adadition 3).

*

* *

4. Notations. Lagrange functions. — For reasons that will become obvious shortly,
we do not adopt notations that are analogous to thetbaewere employed in the Dirac
theory; this should not introduce any difficulty, but valifer no immediate advantage,
either.

Therefore, consider a vectg = a, + ib; and its complex conjugatg’ = a, — ib; .
We may develop the theory in a universe that is defined byx, X =y, X3 =z Xy = ct.

For the symmetry of the formulas, it is meanwhile atg®ous to allow a fourth
imaginary coordinate. Nevertheless, in that case,nwungt take certain precautions in
order to obtain the correct reality conditions.

For that, it will suffice to write the coordinatestire form:

X1 =X, X2 =Y, X3 =2 X4 = ECL, (7)

£ being a complex unit such theit= — 1, it commutes with the other imaginary urihat
appears in the expression for ti#e. It will then be incorrect to write i = -1, but one
will have €1 =i £ The asterisk that indicates the complex conjugdtechhange the sign
of i, but not that ok. The spatial components ¢f will be a; + ib,, a, b, real ¢ = 1, 2,
3), and the temporal component will b = ca, +igb;, with a,, b, real. The

complication that is introduced by the use of two compieits is compensated by the
advantage of symmetry. Moreoveralways disappears when one passes to the variable
t. In addition, for greater clarity, we avoid the u$ehe asterisk fofunctions ofy/ ; we
use different letters to indicate that function asccomplex conjugate.

Finally, set:

o= — (r=1,2,3,4).

Having done this, consider the caseofexternal field.
We set:

Fr; = arwsm_agl/lr’ Gr’s =0 ws_ aslﬂr : (9)
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F. and G, are complex conjugate; they contain &as a factor whenever one of the

indicesr orsis equal to 4.
By hypothesis, the Lagrangian of the problem will be:

hZCZ
L= T Fr'sG:'s +nt C4¢/rD¢Ir J (10)
in this caseh being Planck’s constant divided byz2
One then passes tioe case where a field existeat is defined by a potential:
CDJ_, ch, CD3, CD4 = £CDQ (CDO, ceey CD3 real) (11)
by the substitutions'):
. D D .
% 5 %_Ecpswr , % 5 %*‘ECD#’F- (12)
0X, ox;, hc 0X, ox; hc
To simplify the notation, we set:
A= o, (13)
hc
mc
k=—. 14
- (14)
We further set:
— ; o_ ; |
Frs - (ar +|Ar )ws (as +|As)¢/r} (15)

Grs = (ar - IA)‘/IS _(as - IAs)l/lr,

Fis, Gis are anti-symmetric tensors of second order. Tdgrdange function in the case of
an external field is the written, with the usuatsoation convention:

(16)

h?c?
L= T FrsGrs + mz C4¢Irm¢lr'

5. Fundamental equations. — The momenta are:
oL -pwer,, oL —=h ¢’ Grs.
0(0.¢,) 0(9,¢;)

One has, in turn:

() We adopt the convention of Pauli and Weisskopf for theaig; cf., loc. cit, pp. 722.
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oL
oy

= m2C4l//SD— IhZCZA ES, aLD

S S

oL _ .
—=ih*c’(W.F, -¢.G,).
6& (wr rs ws rs)

= mcy, + IPEAG,

The fundamental equations:

a[ aL }: oL a[ aLD} aLD (20)
00.¢,) | 0y 00.¢;) | 9y
take the form:

@, +iA)F, =Ky, (0, -iA)G, = Ky, (21)

to which, one agrees to add equations (14), whifimel the intermediary magnitudEg
andGys .

These have the form of Maxwell's equations (for mmaginary “potential”),
completed by elements that represent the influefiGn external field. One may then
deduce a certain number of consequences fromdbtstthat we will pass over, for the
moment.

They indeed present relativistic and electromagnetvariance; the first three
conditions of paragraph 2 are thus satisfied:

EliminateF,s andGs ; one has, in general:

(0" —iA")(0° —iA%) = (0°—iA®%)(0 "—IA") ==i(0'A°-0 A", (22)
(0" +iA")(0° +iA®%) = (0°+iA%(d "+IA) =+i(0'A°-0°A).
Set:
4 4
O,.= Z(aﬂ +iAﬂ)2, 0= Z(aﬂ —iAﬂ)z,
/14:1 /1:1 (23)
J= Z(all + iAﬂ)l//E, I= Z(all —IAW,
u=1 u=1
hc
Hrs = Z (ar As - asAr) (24)
The fundamental equations become:
0,42 - (@, +iA)J :(k25r3+;]—e H rsjwﬂr,
: (25)

D—l/ls - (aS_iAS)I = (k25r3+;,]_e H I’Sjw r
c
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In the case of no field, and provided that and therefore, thmass of the patrticle is
non-zerg which is an essential condition, one deduces that:

I=J=0. (26)
Indeed, in this case (25) becomes:

D4[ISD_65J = kwaD’ Dws _aSI = kzws’

and upon applying the operat§r:6S , one deduces the stated result (26).

Therefore, inthe absence of a field the equations become equations of the Gordon
type:

DwD:kaD aswsD:a#/s: O’
s . s’ with mc (27)
oy, =k, k=25

In the general case, we apply the operé“o@S to (21); one will have:

ie ie
-—Frs His =K J, -—Gis His =K.
2hC s s 2hC s s
Therefore, itk = 0, and only in this case then:

ien 1 ien 1
J=———F—"— [ [Hs, | = — —— [0G,s [Hys. 28
2hemé  © © 2hemé  ©~ © (28)

We immediately point out some other interestingtiens.

By virtue of (17), thea—l‘ areanti-symmetridensors; one thus has:

rrs

afa{ o } :afa{ oL } =0
0(0,¢) 0(0,¢;)

The fundamental equations permit one to deduce:
ool 2| =[O )2, (29)
oY, 1V

6. Existence and conservation of current. — We define the current, as Gordon did,
following Mie, by means of the derivative of thedrange function with respect to the
potential, and with the sign changed:




Proca — On the undulatory theory of positive and negataerons 11

: oL e oL
== =m—, 30
T80, Theoa (30)
so, by virtue of (19):
js=iehc(¢’Gis— th Frs). (31)

It is clear that (30) is a world-vector.
It always satisfies a conservation laWs = 0. Indeed, one has:

asjs = | ehC(aSerEGrs + erEBsGrs —as¢lr Frs— ¢/r 65 FI’S)-
By virtue of the fundamental equations, this is:
= | ehC[GrS (65 + |As)¢/rD - Frs (as - |As)¢/r],

and by virtue of the anti-symmetric characteFgf G, this is:

- I ehC[GI‘S |:|:I’S —_ I:I'S |EI‘S} = O

2

There thus exists a vectgithat satisfies a conservation law. In order ®taibe able to
confirm that it indeed represents a current, ftiigher necessary that when it is combined
with the electromagnetic field it indeed furnisiiee expression for the force that results
from the divergence of the energy tensor; we sh@awthis is indeed the case.

In any case, the temporal component is:

j4 =] ehC(l//rDGm =/ Fr4); (32)
it can take on values that are either positive egative.
7. Energy-quantity of motion tensor and conservation law. — In order to establish
both the expression for this tensor and its core@n law, we proceed as Schrodinger

did. Differentiate the Lagrange function with resptox,, o arbitrary; one will have:

oL
0(0,5)

oL
07 W, +———=10;
e 0(0.445) s

[} al— al— O aL
+Z oy + S0yl A,
ou, Tyt P gn, 0

oL =

so, by virtue of the fundamental equations:

oL oL
[0 +
00,00 " o@D

0L =0i(L gy = ar{ Dﬂpt/lf}+i®pAs.

OA

Let Hs be the external electromagnetic field anddJée the current:
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eodL
hcoA

Js=—

We have proved thaf js = 0; therefore:

. oL oL
H 5:__ a
ST [GAS Aﬂj

Add (32) and (33); upon taking into account the fundamental eggatio

) oL oL oL
Hxjs= - S Sy [A- ,
o) ar{a(arlﬂs) w”w5+6(6rw5) Ed)pz//s+a [A, JWL}

one finds that:
Hpsjs = 0'{N°C? Frs(0,—iA) s + °C? Gis(0, + iAW — &, L}

Now, one easily sees that one has the identity:

_ oL aL
O‘af{a(arws)wsw” 3009 ¥ w T awﬂ%}

it suffices to take (29) into account, along with thet feghat the

r

symmetric.

12

(30)

(33)

(34)

(35)

(36)

are anti-

Upon making (36) explicit, with the aid of the @lamental formulas (17) and (18),

one has:

0= 9'{hC* Frs(0s —IA) Y+ IPC° Grs(0s +iA @/ — e (Wi, +w'y,)}.

Subtract (37) from (35); by virtue of (15), one has

Hesjs = 0'{h°C* (Frs (5 + Grs (F) + MTC’ (0, +¢',) — o L).

namely:

0'T,, = H, O,

where:

Trp = hZCZ( Frs Gps + psG"s) + ni é(w%ﬂp +¢/E¢/r) -

(37)

(38)

(39)

(40)
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This T;, is a symmetrictensor; (39) shows that its divergence is equal to theritnr
force. It may thus be chosen to be the energy-quanftityotion tensor.

The energy is constantly positive. The energy dernsitlefined byE = — T4, and
one has, upon writing ot explicitly:

I:r 's' |:qsr’s’

E= hzcz( —Fy DS4SJ+ M CW W, ~Wap.), (41)

wheres varies from 1 to 4 and’, s’ vary from 1 to 3; this is, again by writing it out
explicitly:
E = h°C?(F23Gos + F31Ga1 + F1G12 — F14G14 — F24G24 — F24G34)
S WY A YW A VY YY), (42)

a quantity that is essentially positive, siigeis the complex conjugate bfs .

8. Electromagnetic moment of the electron. — Let the current be:
js=iehc(y’Gis— th Frs). (31)

One may regard it as a sum of two terms of a pdatidorm. Indeed, upon writing it out
explicitly, one has the expression:

js=iendy Os+iAJY, = ¢ Os =i AJUh + Y| = s ] + 0" W W~ ). (43)

In the case of a zero external fields J = 0, and the current reduces to:
jo=iehclyr 0w —yw, [0s ¢ +0" (Wi, — ). (44)

One may thus separate the current density intopavtsjs = j.+j", just as in the Dirac
theory. The second one:

ju =iehcld (W, -y, =0'ms
presents itself as the current density that istdwsn electric or magnetic moment tensor

ms (which does not depend upon the external fieldigikdy). We may thus assume that
the electrorpossesses an electromagnetic moment that is gizen b

Ms =i ehcy, y, ~yy,) . (45)

The remaining one:

jii =iehdy Os+iAJY” — Y (@s—i At + Yol — i J] (46)



Proca — On the undulatory theory of positive and negataerons 14

will be the conduction current. As in the Dirac thecggch of these partial currents
satisfies an equation of continuity:

0°j. =0 and 0°j.=0.

9. Spin. — Starting with the energy-quantity of motion ten3@r, one obtains, in
general, the value of the kinetic moment by formingitiegral:

Po= L[ T, ) av p=1.23. (@)

in which:

T, = IPC(F. G+ F.G )+ i Wi, +w5w4>} (a8)

T4I’ = thz( F4SG’S+ Frscils)-i_ rﬁ é(wi[/r+¢/il/4)

Consider an electron in the absence of a field; aldnawe in this case:

P = = [(MCF 4G, = % G) + i QU W, ) +coniugate)

= [{hel X B~ X By, - R D¢+ ELYB Y]
+mf ¢t Yl (% wo—X, k) + conjugateldV.

Forr = p, the componentB;s are zero; for # p, one has:

X [Bp s = 0% ), %o [Dr (s = Or(Xo i), (49)
and:

F4s D(r wswp = F4sw s(Xr,'//p) —l/’p D:M} (50)

F4s D(p |:(33‘1[1r = F4sw S(Xpl// r) _er:4p-
One may thus write:

Pis = if{hzczt Fas B %) ~ R0 xp) ~ RO (xp) + RO xp)l
+h°c% (4, Far — ¢ Fap) + 0" (X 4o — X, (k) + conjugateldV.

Upon integrating by parts and assuming, as one usually dhag¢sheys are annulled on
the boundary, one will have:

1 2 2 O S
Pas = — [°C{X(40, R +¢/0,G) ~ X9, R+¢D,G) dv

1
+ [N, R, ~¢. R, +¢,6, —¢G,) dV. (51)
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One may regard the first integral, which has the fb(m;;Ar =X Ap) dV, as equivalent to
an “orbital momentum,” and the second one, wheresthe, no longer appear explicitly,
as the proper momentum of the particle.

The “spin” density of the latter will thus be:

M =W Yy Far + th Fu + Y, Gar +;Gra). (52)

It is obvious that this decomposition is arbitrary, whiciresponds to the nature of
things, moreover.

We remark that the relativistic variance of the gpithat of the total momentum (47)
that we started with; it cannot be otherwise. This sjififers from the one that one
encounters in the Dirac theory. Indeed, it is ceryaadmprised of the three temporal
components of a tensor of the foRy, , butit is not completely anti-symmetrias in the
case of the Dirac equation. It is meanwhile easyddiiythe decomposition (51) so as
to separate the total momentum into an “orbital momahtand a spin that is a
completely anti-symmetric tensor of rank three. lddeme has, fos=1, 2, 3, 4:

mec’ X, ¢ ) = h°c? Oy DB Fsp) = h°c® Oy OFrp,
et X, 07 = h°c? Oy [Ds(x, Fsr) — b6 Oy [F 5
SO:
m ey, (xy, - %) - REw,B,( xE- x =2 hey,0F, (53)
ey, (xy, - x¢,) - e, B,(xG - x ¢ =2 hdy,0G.

One then deduces a separation of the total momeRtyimto an “orbital moment” and a
“spin”:

i [PCW, R, +¢, F, +@,F, +conjugateV. (54)
In this form, the spin density will be composed tbé temporal components of a
completely anti-symmetric tensor of third rank, @kaas it is in the Dirac theory.
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