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Affine geometry

In affine geometry the basic objects are points in

a spaceA” on which translations (i.eR") act
transitively and effectively.

 Hence, there is a unique vector[ that takes
any given point of the space to any other point.

Lines are defined by the orbit of a point under
translation by all scalar multiples of a vector in

R".

Choosing a frame iR" and a point irA" defines
a coordinate system féx".

The key concept in affine geometry is the
possibility of there beingarallel lines.

 Viz., non-intersecting lines that lie in a common
plane.

e Such lines can be made to coincide by a
translation.

« Similarly, parallelism is preserved by
translations.



Projective geometry

In projective geometry, points in a projective
space are lines in an affine space of one higher
dimension.

« Hence, lines in a projective space are planes in an
affine space, etc.

« More generally, curves correspond to ruled
surfaces

« This has the consequence that the equations
of geodesics in projective differential
geometry are PDE'’s for a family of surfaces,
not ODE'’s for a family of curves.



It is better to think of ann-dimensional
projective space as being obtained by
compactifying am-dimensional affine space by
the addition of ahyperplane at infinity not by
projection from an n+l-dimensional vector
space.

« Consequently, projective geometry amounts to
affine geometry plus the asymptotic behavior of
geometry at infinity.

« There are no longer any parallel lines, since all
lines intersect in projective space, if only at
infinity.

« The key concept is not the parallelism of
subspaces, but thaircidence i.e., the geometric
character of their intersection.



Projective coordinates and transformations

One can define either homogeneous or
inhomogeneous coordinates BR".

. One use® +1 homogeneous coordinated, &, ..., X"
to specify a line ifR" — {0}.

. Since this is one coordinate too many, one uses
inhomogeneous coordinate¥'( ..., X") for the points
of RP", where, ifx’ # 0
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The fundamental transformations of a
projective space must preserve the incidence
of subspaces.

. Hence, they must take points to points, linesiries,
etc., and preserve intersections.

Such transformations — callegbrojectivities or
homographies- can be represented either by linear
transformations of the homogeneous coordinates or
linear fractional transformations of the
inhomogeneous coordinates.

. Either way, the basic group is isomorphicStn+1;
R).



Plicker-Klein correspondence

A k-plane M, in R" can be represented non-
uniguely by a decomposaliterector onR".

One simply chooses a frame,{ ..., g} for Iy
and forms thé&-vectore; ... e

Any other k-frame {f,, ..., fi} for I, will be
uniquely related tod,, ..., &} by an invertible

matrix f; =A'e;, which makes:

f, M A A f=det@) e M. Mg

Hence, one can associdig with a uniqueline
through the origin iM\(R"); i.e., a point in R,.

This defines an embedding G{k, n) in PA.

e It iIs not onto since not evenk-form is
decomposable.

In the particular case of bivectors, the image of
the embedding is a quadric hypersurface — called

the Klein hypersurface- that is defined by the
algebraic equation:

FAF=0.



Real projective geometry
and special relativity

One first encounters the projection of
homogeneous coordinates onto inhomogeneous
ones when one wishes to look at the projection
of a velocity four-vecton that is expressed in
arbitrary space-time coordinated, (X, y, z2) onto
three-dimensional proper-time coordinates:

VoV
(Vo Wy Vo) =272 VP

In a rest space.

« The homogeneous®’ component that one
must divide by is:

dt [,V
_dt_ v
Vo_dr_ c?

which also relates to changing the
parameterization of the worldline that has

for its velocity vector frontto t:

dx _ar dx
dt dt dr




« This leads one to observe some fundamental
aspects of the role of projective geometry at this
level:

* It relates to the projection of four-dimensional
objects into the three-dimensional rest spaces of
measuring devices.

e It relates to the fact that there is a subtle
difference between a line as a set of points and a
line as gparameterizedet of points.



Complex projective geometry in SR

One must notice that the fundamental transformations
of special relativity come from the gro@h(2; C).

This group can also be described as the group of
projective transformations of CP, which is
diffeomorphic toS” as a real manifold.

«  One way of describin§ geometrically is by the
one-point compactification of the complex plane
by the addition of a point at infinity (i.e., the
Riemann spheje

The 2-sphere in spacetime that one identifie5 with
Is the light spherein a chosen rest space; it has a
radius of 1 light sec.

The projection of homogeneous coordinat@sz) in

C? — {0} to the inhomogeneous coordinatdZ’ on
CP*' associates a 2-spinor with each point on the light
sphere (minus some point).

The action ofSL(2; C) on CP' is then defined by
either its linear action on 2-spinors (homogeneous
coordinates) or its nonlinear action on the light sphere
(inhomogeneous coordinates) by Mobius
transformations.



Projective geometry and
electromagnetism

Key to making the connection between
projective geometry and electromagnetism is the
application of the Plucker-Klein embedding to 2-

forms onR*.

A decomposable 2-form d&* represents either a

2-plane inR* or anelementaryelectromagnetic
field.

« “Elementary” means that its source is connected.

« Examples are static electric and magnetic fields
and electromagnetic waves that are due to single
sources.

. Such 2-forms can look like:
F = thE, %é‘ijkBide N d)% ’ kNE

« More general (i.e., rank four) 2-forms represent
linear superpositions of elementary fields.

« Although they do not define unique 2-planes
in R, they do define (non-unique) 4-frames.



Pre-metric electromagnetism

The Lorentzian metric ofR* is not necessary for
making the Maxwell equations well-defined, only the
Hodge * star isomorphis@s it acts on 2-forms

« However, * is equivalent to a conformal class of
Lorentzian metrics.

One can replace the * isomorphism with an

isomorphismK of 2-forms with 2-forms that comes
from the composition of two other isomorphisms:

 Alinear electromagnetic constitutive law:
K. N(RY - AR, Fo k(F)=)h

that takes electromagnetic field strengtks B)
to electromagnetic excitationB(H).

Poincaré duality:
#ARY > N°RY,  ho#h=iV

in whichV = d¥X ~ dxt ~ d¥ ~ d is the volume
element oriR*.

The pre-metric form of the Maxwell equations is then:

dF=0, d#h=4#), 0§ =«(F)



Reduction from transformations of 2-
forms to Lorentz transformations

So far, the only frames oW(R*) that we can speak of
are general 6-frames.

e These are parameterized by the elements of
GL(6; R).

Not all of these frames can be constructed from 4-
frames orR*, which are parameterized BL(4; R).

e E.g:b=dthdX, b=1gdéndX,i=1,2,3

The key to making the reduction from linear 6-frames
to Lorentzian 4-frames is the isomorphisns@l(3; C)
with SQy(3, 1).

If one can introduce a complex structure AT{R?)
then this is straightforward.

GL(6; R) - GL(3;C) - SL(3;C) - SA3;C)

Since the Hodge * would define such a complex
structure, one must assume that the isomorphism

K behaves analogous = — A% | for some function
A.

. Caveat: not all physically meaningful constitutiesvs
have this property, but electromagnetic waves still
propagate in those media.



