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Affine geometry 
 

•••• In affine geometry the basic objects are points in 
a space An on which translations (i.e., R

n) act 
transitively and effectively. 

 
• Hence, there is a unique vector in R

n that takes 
any given point of the space to any other point. 

 
• Lines are defined by the orbit of a point under 

translation by all scalar multiples of a vector in 
R

n. 
 
• Choosing a frame in R

n and a point in An defines 
a coordinate system for An. 

 
• The key concept in affine geometry is the 

possibility of there being parallel lines. 
 

• Viz., non-intersecting lines that lie in a common 
plane. 

 
• Such lines can be made to coincide by a 

translation. 
 
• Similarly, parallelism is preserved by 

translations. 
 



Projective geometry 
 
• In projective geometry, points in a projective 

space are lines in an affine space of one higher 
dimension. 

 
• Hence, lines in a projective space are planes in an 

affine space, etc. 
 

• More generally, curves correspond to ruled 
surfaces 

 
• This has the consequence that the equations 

of geodesics in projective differential 
geometry are PDE’s for a family of surfaces, 
not ODE’s for a family of curves. 

 



• It is better to think of an n-dimensional 
projective space as being obtained by 
compactifying an n-dimensional affine space by 
the addition of a hyperplane at infinity, not by 
projection from an n+1-dimensional vector 
space. 

 
• Consequently, projective geometry amounts to 

affine geometry plus the asymptotic behavior of 
geometry at infinity. 

 
• There are no longer any parallel lines, since all 

lines intersect in projective space, if only at 
infinity. 

 
• The key concept is not the parallelism of 

subspaces, but their incidence, i.e., the geometric 
character of their intersection. 



Projective coordinates and transformations 
 

• One can define either homogeneous or 
inhomogeneous coordinates on RPn. 

 
• One uses n +1 homogeneous coordinates (x0, x1, …, xn) 

to specify a line in Rn – {0}. 
 
• Since this is one coordinate too many, one uses n 

inhomogeneous coordinates (X1, …, Xn) for the points 
of RPn, where, if x0 ≠ 0: 

 

Xi =
1 1

0 0
, ,

x x

x x

� �
� �
� �
� , i = 1, …, n 

 

• The fundamental transformations of a 
projective space must preserve the incidence 
of subspaces. 

 
• Hence, they must take points to points, lines to lines, 

etc., and preserve intersections. 
 

• Such transformations – called projectivities or 
homographies – can be represented either by linear 
transformations of the homogeneous coordinates or 
linear fractional transformations of the 
inhomogeneous coordinates. 
 
• Either way, the basic group is isomorphic to SL(n+1; 

R). 



Plücker-Klein correspondence 
 

• A k-plane Πk in R
n can be represented non-

uniquely by a decomposable k-vector on Rn. 
 

• One simply chooses a frame {e1, …, ek} for  Πk 
and forms the k-vector e1 ^ …^ ek. 

 

• Any other k-frame {f1, …, fk} for  Πk will be 
uniquely related to {e1, …, ek}  by an invertible 
matrix f i =

j
i jA e , which makes: 

 

f1 ^ …^ fk = det (A) e1 ^ …^ ek 
 

• Hence, one can associate Πk with a unique line 
through the origin in Λk(R

n); i.e., a point in PΛk. 
 

• This defines an embedding of G(k, n) in PΛk . 
 

• It is not onto since not every k-form is 
decomposable. 

 

• In the particular case of bivectors, the image of 
the embedding is a quadric hypersurface – called 
the Klein hypersurface − that is defined by the 
algebraic equation: 

 
F ^ F = 0 . 



Real projective geometry  
and special relativity 

 
• One first encounters the projection of 

homogeneous coordinates onto inhomogeneous 
ones when one wishes to look at the projection 
of a velocity four-vector vµ that is expressed in 
arbitrary space-time coordinates (ct, x, y, z) onto 
three-dimensional proper-time coordinates: 
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 in a rest space. 
 

• The homogeneous v0 component that one 
must divide by is: 

 

v0 =
dt

dτ =
2

2
1

v

c
−  

 

 which also relates to changing the 
parameterization of the worldline that has v 
for its velocity vector from τ to t: 

 
i idx d dx

dt dt d

τ
τ

=  



 • This leads one to observe some fundamental 
aspects of the role of projective geometry at this 
level: 

 
• It relates to the projection of four-dimensional 

objects into the three-dimensional rest spaces of 
measuring devices. 

 
• It relates to the fact that there is a subtle 

difference between a line as a set of points and a 
line as a parameterized set of points. 

 
 



Complex projective geometry in SR 
 
• One must notice that the fundamental transformations 

of special relativity come from the group SL(2; C). 
 
• This group can also be described as the group of 

projective transformations of CP1, which is 
diffeomorphic to S2 as a real manifold. 

 
• One way of describing S2 geometrically is by the 

one-point compactification of the complex plane 
by the addition of a point at infinity (i.e., the 
Riemann sphere). 

 
• The 2-sphere in spacetime that one identifies CP1 with 

is the light sphere in a chosen rest space; it has a 
radius of 1 light sec. 

 
• The projection of homogeneous coordinates (z0, z1) in 

C
2 – {0} to the inhomogeneous coordinate z1/z0 on 

CP1 associates a 2-spinor with each point on the light 
sphere (minus some point). 

 
• The action of SL(2; C) on CP1 is then defined by 

either its linear action on 2-spinors (homogeneous 
coordinates) or its nonlinear action on the light sphere 
(inhomogeneous coordinates) by Möbius 
transformations. 

 
 



Projective geometry and 
electromagnetism 

 
• Key to making the connection between 

projective geometry and electromagnetism is the 
application of the Plücker-Klein embedding to 2-
forms on R4. 

 
• A decomposable 2-form on R

4 represents either a 
2-plane in R4 or an elementary electromagnetic 
field. 

 
• “Elementary” means that its source is connected. 
 
• Examples are static electric and magnetic fields 

and electromagnetic waves that are due to single 
sources. 

 
• Such 2-forms can look like: 
 

F = dt ^ E, 
1
2 ^i j k

ijk B dx dxε , k ^ E 
 

• More general (i.e., rank four) 2-forms represent 
linear superpositions of elementary fields. 

 
• Although they do not define unique 2-planes 

in R4, they do define (non-unique) 4-frames. 



Pre-metric electromagnetism 
 

• The Lorentzian metric on R4 is not necessary for 
making the Maxwell equations well-defined, only the 
Hodge * star isomorphism as it acts on 2-forms. 

 

• However, * is equivalent to a conformal class of 
Lorentzian metrics. 

 

 • One can replace the * isomorphism with an 
isomorphism κ�  of 2-forms with 2-forms that comes 
from the composition of two other isomorphisms: 

 

• A linear electromagnetic constitutive law: 
 

κ: Λ2(R4) → Λ2(R
4), F �  κ(F) = h 
 

 that takes electromagnetic field strengths (E, B) 
to electromagnetic excitations (D, H). 

 

• Poincaré duality: 
 

#: Λ2(R
4) → Λ2(R4), h �  #h = i

h
V 

 

 in which V = dx0 ^ dx1 ^ dx2 ^ dx3 is the volume 
element on R4. 

 

• The pre-metric form of the Maxwell equations is then: 
 

dF = 0, d#h = #J,  h = κ(F) 



Reduction from transformations of 2-
forms to Lorentz transformations 

 
• So far, the only frames on Λ2(R4) that we can speak of 

are general 6-frames. 
 

• These are parameterized by the elements of 
GL(6; R). 

 

• Not all of these frames can be constructed from 4-
frames on R4, which are parameterized by GL(4; R). 

 

• E.g.: bi = dt ̂  dxi, bi+3 = 1
2 εijk dxj ^ dxk, i = 1, 2, 3 

 

• The key to making the reduction from linear 6-frames 
to Lorentzian 4-frames is the isomorphism of SO(3; C) 
with SO0(3, 1). 

 

• If one can introduce a complex structure on Λ2(R4) 
then this is straightforward. 

 

GL(6; R) → GL(3; C) → SL(3; C) → SO(3; C) 
 

• Since the Hodge * would define such a complex 
structure, one must assume that the isomorphism 
κ� behaves analogously: κ� = − λ2 I for some function 
λ. 

 
• Caveat: not all physically meaningful constitutive laws 

have this property, but electromagnetic waves still 
propagate in those media. 


