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On the differential geometry of ruled surfaces
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Translated by D. H. Delphenich

Summary. —(Given in the introduction)

The normal curvature and the geodesic torsion of tieedf striction of a skew ruled
surface in three-dimensional Euclidian space are matrariants of the surface.
Furthermore, these two quantities are functions ofvér@ble whose values correspond
to the points of the line of striction. They arecat®upled by a relation, in general, and
the skew ruled surfaces on which those quantities are enbingyl relations of the same
form will have some common properties, the study of Witian lead to some results in
regard to the metric differential geometry of ruled ascek, which is not devoid of
interest.

In the present article, which is dedicated to the sindguestion, | shall establish
certain theorems in regard to the skew ruled surfacesash of which the normal
curvature and the geodesic torsion of its line of sbncterify a first or second-degree
algebraic relation with constant coefficients. bidi#ion, after showing that when the
geodesic curvature and the geodesic torsiamebrthogonal trajectory to the generators
of a skew ruled surface verify an algebraic relationhwionstant coefficients, the
geodesic curvature and geodesic torsion of any other ortAbdmjectory to the
generators of the surface will necessarily be coupledaiyalgebraic relation with
constant coefficients, with the aid of the theordmss-established, | will arrive at the
determination of certain classes of ruled surfaces loichathe geodesic curvature and
geodesic torsion of each orthogonal trajectory tor tgenerators verifies an algebraic
relation of degree at most two with coefficientstthee constant on it, but which will
generally vary from one of those curves to anothewilllthen show that the geodesic
curvature and geodesic torsion of each orthogonal tomedo the surface that is
generated by the principal normals to a BERTRAND curva B'ANNHEIM curve or a
cylindrical helix, as well as a skew surface with comstistribution parameter or the
surface that is generated by the binormals to a skew ,camleverify an algebraic
relation of degree at most two with coefficients twa constant on it. These coefficients
will vary from of those curves to another, if one ages the case of surfaces with
constant distribution parameter.

() Submitted on 14 June 1970.
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1. — Consider a portiofR of a real skew ruled surfacgs in three-dimensional
Euclidian space on which the distribution parameteorszero on all of the generators.
Let:

(1.1) p=p(U)

be the vectorial equation with respect to the coordisgseem that is chosen in space for
the line of strictionC of R, which is the locus of central points of the generapbrhat
surface when the parameteis the arc length of.

If e(u), n(u), Z(u) = €edn are the unit vectors that determine the positive sense on
the generatoe of R that issues from a running pokt(u) of C of thecentral normal rto
R atK and thecentral tangent to R at that same point (i.e., of the tangenRtatK that
is perpendicular to the generag)ithen — as one knows4{[ pp. 145) — one will have the
following formulas for the derivatives &, i, Z with respect to the variable(*):

1.2) € = kN, N=-k€+0Z, Z=-o0n,

(

in which:

(1.3) K= c¢c|€|, a:w,
lef

ande =+ 1 or — 1 according to whether the mixed prod@gd]e)x €, which is, from the
hypothesis that was made for the distribution patamofR, non-zero for all values af
that correspond to the points®©fis greater than or less than zero, resp.

The linese, n, z issue from the poir (u) of the curveC along the directions whose
positive senses are determined by the unit ve@&ora, z, respectively, which are the
axes of an oriented tri-rectangular trinedrn €,n,Z]; that trihedron will be called the
central trihedron that is associated with the sgd@ what follows.

Moreover, the derivatived at the poinK (u) of the curveC is a unit vector, since

is the arc length of. Since that vector is parallel to the tanger€ @t K, it is parallel to
the tangent pland&<| €,Z] to R at that point. One can then put it into the form:

(1.4) O=1=¢€cosg+7zZsing,

in which ¢ is the oriented anglég,t) on the planeK; €,Z].

The three quantities, g, ¢ are functions of the arc lengthof the line of strictiorC
of R that are defined, thanks to the hypothesis thas wade for the distribution
parameter oR, in the interval of values af that correspond to the points of the cu@re
or, what amounts to the same thing, they are georsrafR. Those three functions(u),

o (u), ¢ (u), whose values on each generatoRdadre called theurvature, torsion, and
striction of the surfaceon that generator by E. KRUPPA3|[ pp. 63), are metric

() Dots denote derivatives with respect to the vageiabl One supposes that the derivation operations
that are performed in what follows are legitimate withia intervals considered.



Pylarinos — On the differential geometry of ruled stefa 3

invariants ofR, along with the arc length of C, and they are precisely the metric
invariants of the surface that was chosen to be fundamenthe metric differential
geometry of ruled surfaces that was founded by G. SANN]Arnd E. KRUPPA4].

Two other metric invariants of the surface are themabrcurvaturex, and the
geodesic torsiomy of its line of striction. Those two quantities as@dtions of the three
fundamental invariants of the surface.

Indeed, from known formulas3], pp. 73), one will have:

(1.5 Kn = KCOS¢ — Tsin g, Oy = KsSing + gcosg.

REMARK. — As one will see immediately, the surfd&Reuts the surfac®, that is
generated by the central normalsR@ll along its line of strictiorC, which is obviously
an orthogonal trajectory to the generatorRof

It results from this that the normal curvatueand the geodesic torsiagy of the
curve C, which is considered to be a curve that is traced osuhacer, are equal in
absolute value at each point@fo the geodesic curvaturg in the former case and the

geodesic torsioro;, of C in the latter case, when it is considered to be a clivakis

traced on the surfad®, .
One will then have:
Ky=&'Kn, Oy =0y

at each point o€, in whichg’=+ 1 or — 1, and one chooses the positive sense dieng t
direction of the normal t&, in such a manner that one will have:

(1.6) Ky = Kn, 0,= Gy.

9

2. — Thanks to (1.4), equation (1.1) of the cuBrean be written:
(2.1) D= j(écos¢+—z sing )dL,

and the (vectorial) equation of the surfé&;ef one chooses its line of stricti@to be the
director curvein it, can be put into the form:

(2.2) T = j(écos¢ +7Z sing )du+ ve(U.

Having said that, leR’ be a skew ruled surface that cRst a right angle along an
orthogonal trajectorZ’ of the generators d@t.
If:

p=pU)=pu+vuey

is the equation of the curv@’ then the normal t& at the running poinK’ (u) of that
curve will be parallel to the vector:
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(2.3) A= L 0s=t0s,

which is a unit vector, since the unit vectgog |p |= T, € are orthogonal, from the

hypothesis that was made on the cutve

The generatoe’ of the surfacdR’that issues from the poiit’ (u) of C’is situated on
the plane K’; t', n'] that is perpendicular &’ to the generator dR that issues from
that point, and consequently, it is necessarilplberto a unit vector of the form:

(2.4) €=t cosfd+n siné.

In order for the curv€’to be the line of striction of the surfa€g in addition, it is
necessary and sufficient, as one knows, that omeldihave:

(2.5) Tx€=0
at each point oC".
However, from (2.4), one has:

€=7cosf+n sid+0 (T sird+n cob ,

and if one takes into account the fact that onetas 1, Txt = 0, then thanks to the
hypotheses that were madéxn’ = 0, sind# 0, the condition (2.5) will become:

(2.6) 9-txt=0.

For each functiorf (u) that satisfies the differential equation (2.6 tector€(u)

(2.4) will determineo® lines that issue from the points of the cuf/eand determine a
skew ruled surfacB’that cutsR alongC"at a right angle and admits that curve as its line
of striction.

However, the curv€ is an orthogonal trajectory of the generatorR tiiat is chosen
at random. Furthermore, the preceding considerati@mand only that the ruled surface
R should be skew.

One can then state the:

THEOREM 1.

Each orthogonal trajectory of the generator of dedisurface is the line of striction
of thew skew ruled surfaces that admit the generatorfi@fsurface as central normals.

Moreover, the vectorial equation of a skew ruladaceR; that is represented on the
skew surfaceR that is defined by the equation (2.2) in such anmea that the
homologous points of the two surfaces admit theesamnvilinear coordinateas, v will —
as one knows g, pp. 45) — necessarily have the form:
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(2.7) T = j(écos¢+‘z sing )du+ S v (V)(ecoso+~ zsim |
in which:
(2.8) [ =const., w=const. € < w< 7,

where the functiow; (v) is arbitrary, when the generators of the twoae$, as well as
their lines of striction, in that representationrrespond, and the two surfaces have
normals that coincide at each pair of homologousitpof their lines of striction, in
addition.

For each system of values of the paramefersthat enter intg, equation (2.7) will
determine a skew ruled surface. WH&A 0 if w= 0 or 7z that surface will not coincide
with the surfaceR, and when the two surfaces are represented on agheln in the
indicated manner, they will admit central normdiattcoincide at the homologous of
their lines of striction.

In regard to the fact th& is a skew ruled surface that is chosen at randowil
result thatto each skew ruled surface, one can associdtekew ruled surfaces whose
central normals coincide with the central normafghat surface.

The set of surfaces that are represented on a skle@ surface in the indicated
manner will be called thget(N) that is associated with that surfacewhat follows.

The set ) that is associated with the surface considétas defined by equation
(2.7). The surfaces of that set, including thdfasi@R, correspond to the systems of
values of the parametef wthat enter into that equation and belong to thenapterval
(= o0, + o) and the upper-closed interval {z + 73, respectively.

3. — The generator of a surfaBg of the set ) that is associated with the surfdge
which is the homologue of the generatoRathat issues from the running pokt(u) of
its line of strictionC, is necessarily parallel to the tangent plan®tandK, and from
(2.8) it is invariably coupled with the centrahidron that is associated wigh

That being the case, one can choose the poséiveesalong the direction of that line
in such a manner that it will coincide with the pes sense on the common direction of
the coincident normals to the surfaégdr; at each pair of homologous points their lines
of striction.

Upon lettingg, N, Z denote the unit vectors that determine the p@sgense along

the directions of the axes of the central trinediat is associated wifR, at the poinK;
of its line of strictionC; that is homologous to the running polat(u) of the line of
strictionC of R, one will then have the relations:

(3.1) §=ecosw+ Zsinw n=n, z=¢eUn =-esinw+Zcosw.
Moreover, from (2.7), the line of strictid®y of Ry is defined by the equation:
(3.2) p=p,(u)= [ (€cosp +7Z sing )du+ B (u)

in whichb is a constant, from (2.8).
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Upon differentiating (3.2) with respect ticand making use of (1.2), one will get:

(3.3) % = e(cosw- PK) + Z (sin w+ [o).

Upon lettingdw, denote the elementary arc length of the c@vat its pointK; that
is the homologue of the running pokt(u) of the curveC,, one will then have:

AT R
du du

With the aid of (1.5), that relation will affect tham:

1

(3.4) (d—“lj =1-2BKk+B% (K2 +07) = i

du

which shows that the ratio of the elementary argtlesdu,, du of the curve<;, C, resp.,
at their homologous points;, K, resp., is an algebraic function of the normal cumet
k» and the geodesic torsiang of the curveC, where the coefficieng that figures in it is,
from (2.8), a constant whose absolute value is equdidaconstant distance between
homologous points of the two curves.

Similarly, upon differentiating the first and third ren in (3.1) with respect ta and
making use of (1.2), one will get:

(3.5) € = (kcosw-osind N, Z=-(ksinw+ ocosy N.

If one now letsxi, ai, @1 denote the curvature, curvature, and striction, respgheof
surfaceR; along its generator that is homologous to the runningrgéor ofR, and one
takes into account that, from some known formuldl (p. 145), one will have:

then from these formulas, with the aid of (3.4) and (26¢ will arrive at the relations:

Ez K., = (kcosw—osin a))ﬂﬁ = A(kcosw—-osinw n,
duy, duy,
E: -o,n =-(ksinw+ acosa))ﬂﬁ =—A(ksinw+ ocosa) n.
duy, duy,

However, from the second relation (3.1), one willdhav= n,; one will then have:
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(3.6) Ki=A(kcosw—-osina), o =A(ksinw+ gcosda) .

In addition, one will have:

_dp,__ _dudp,__ _.dp__

cos¢@y = xg =—— P xg = )“Fixg,
P du 2 dy du 2T e
_dp,__ _dudp,__ _ ,dp, __

Sin = Mxz =— A x7z = 1] "2x7Z,
T T I T

since the tangent to the cur@e at its pointkK; is obviously situated on the tangent plane

[K1; &, Z ] to Ry at that same point.
If one replaces, 7, % in these relations with their values in (3.1) and (3.8hth
u

they will take the form:

cosp, =A{ cosw (co®—-LBk ¥ siw (sig+L[o )

(3.7) { . . .
sing, = A{-sinw(cosp — Bk 1 cosv (sigh+ [Bo )}

Finally, if one takes into account the fact that ttegmal curvaturexi, and the
geodesic torsiowiy of the line of strictionC, of R, are coupled with the fundamental
invariantski, i, ¢ of the surface by the relations:

Kin = K1 COS¢1— gL SINP1, Oig = K1 SiN @y + 01 COS¢P1,

from some known formulas3], pp. 73), then upon replacing, ci, and cosp: , sin ¢
with their values (3.6) and (3.7) and making use of (1.5)valharrive at the relations:

=X {K-Blki+o3)},  ag=X g
and finally, thanks to (3.4), at the formulas:

K, = B(k; +07) o,

= , g = .
1- 28k, + B2 (k2 +02)’ 0 120k, + B (kE+07)

(38) Kin

However, from the final remark of paragraph 1, the mdreourvature and the
geodesic torsion of the line striction of the surf&eas well as any other surfaBe of
the set ) that is associated witR, are coupled by the relations (1.6) with the geodesic
curvature and geodesic torsion of that curve, when ibnsidered to be a curve that is
traced on the surfad®, that is generated by the central normalR.to

That being the case, if one let§, «,,; 0, g;, denote the geodesic curvatures and

geodesic torsions of the lines of stricti@ C; of the surfaceRR, Ry, resp., when
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considered to be curves that are traced on the suRgcene will get the following
relations from the two formulas (3.8):

KBy +ay) . o,
(39) Klg_ _ ' 2 [ 12 2y! 197 4 _ ' 2 (12 2y’
1-2Pk, + Bk, +0y) 1-2Pk, + B kg +0°)

where, from (2.8), the coefficief that appears in them is equal in absolute value to the
constant distance between the two points of thees®, C; that are situated on the same
generator of the surfaée

The line of strictionC; of the surfacdz; is obviously an orthogonal trajectory of the
generators of the surfaéq that is chosen at random, and the preceding considesation
regard to the geodesic curvature and geodesic torsiontoéuhzse that is traced on the
surfaceR,, when combined with Theorem I, will permit one to estat

THEOREM II. —If one chooses an orthogonal trajectory to the generators of a skew
ruled surface to be a director curve then one can express the gecdesiture and
geodesic torsion of any other orthogonal trajectory of the generators dfutffi@ce as
rational functions of the forr(8.9) of the geodesic curvature and geodesic torsion of the
director curve, and the single coefficiefitthat enters into those functions will be a
constant whose absolute value is equal to the constant distance betweenntsapoi
that trajectory and the director curve that is situated on the samerageneof the
surface.

A remarkable consequence of that is the following proijposit

If the geodesic curvature and geodesic torsion of an orthogonal trajectotyeof t
generators of a skew ruled surface verify an algebraic relation witistent coefficients
then the geodesic curvature and geodesic torsion of any other orthogonal trajettor
the generators of the surface likewise verify an algebraic oeatiith constant
coefficients.

4. — First suppose that the surface consid&eda BERTRAND surface.

In that case, the points of the line of strict@mf R will correspond to the points of
the line of strictionC; of another skew ruled surfad® , in such a manner that the
normals to the surfaces at each pair of homologous poirtteeir lines of striction will
coincide, and in addition, the two surfaces will hawgad strictions along their
generators that issue from each pair of homologousgoirthose curves], pp. 45).

The surfacdr; , which is obviously also a BERTRAND surface, necelgshelongs
to the setl) that is associated witR, because two skew ruled surfaces whose central
normals coincide will each belong to the 9} that is associated with the other one, as
one will see immediately.

Now, if B, a are the values of the paramet@sw resp., that figure in equation
(2.7) of the setN) that is associated witR, which corresponds to the surfaReof that
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set, which constitutes a pair of BERTRAND surfacesnglwith R, then g1 will
necessarily be non-zero, and from formulas (5.7),inkariants x, g, ¢ of R will be
functions of the arc length of its line of stricti@ithat necessarily verify the relation:

(4.1) COS@—c )~ B  COS) —K simy, _ COSp
' Sin@ - )+ /3, (k Sinw, + & cosy, ) sing

for all values ofu that correspond to points Gf
The condition (4.1), which is, in addition, suf@iot for the surfaceR to be a
BERTRAND surface — as would result from formulas§3- will take on the form:

sinw
B

(4.2) Kn SIN @ + gy COSA) =

with the aid of (1.5).

The relation (4.2) will be verified in the caseewvé the line of strictiol€ of R is a
line of curvature if one setay = 0 or 77 where 5, is an arbitrary non-zero constant,
because in that case, one will hage= 0.

The surfaceR, that is generated by the central normalsFRofwill then be a
developable surface, and all of the surfaces o&étd\) that is associated witR whose
generators that are homologous to each generai®maod parallel to that generator will
then admit the same striction Bsalong those generators. Henaeskew ruled surface
whose line of striction is a line of curvature can be considered ta BERTRAND
surface.

If the invariantsk, o, ¢ of the surfaceR whose line of striction is not a line of
curvature verify a relation of the form (4.1), itieh £, Sin ), cosa are constants, and
the first two are non-zero, then the 9} {hat is associated witR will contain only one
surface that constitutes a pair of BERTRAND suréaegth R: namely, the surfack; in
that set that corresponds to the valgks ca of the parameter®, «w resp., that are
included in equation (2.7).

The surfaceR; is likewise a BERTRAND surface. Consequently, th@mal
curvaturexi, and the geodesic torsiany of its line of strictionC, must verify a relation
of the form (4.2):

sinaJ

" H

Kin SIN W' + 0ig COSW' =

in which £’, «' are the values of the parametgrsy resp. that figure in the equation of
the form (2.7) for the selNj that is associated with the surfd@ethat corresponds to the
surfaceR, when it is regarded as a surface that belongisatioset. However, as one will
see immediately, one will hay®’ = - B, ' = - a . Henceki,, gig must verify the
relation:

. in
(4.3) Kin SIN @) — Oig COSW =3 ai.

B




Pylarinos — On the differential geometry of ruled stefa 10

From (4.2), in order for the surface consideRetb be a BERTRAND surface, it is
necessary that normal curvatusgand the geodesic torsiag of its line of strictionC
must verify a relation of the form:

(4.4) AKy+Bgy=C

whose coefficient#\, B, C are constants, and the first and third one are ditbiér non-
zero or both zero, and in that case, the second ohkeanlon-zero.

That condition is, in addition, sufficient f&to be a BERTRAND surface.

Indeed, ifA = C = 0, B # 0 then the line of striction d® will be a line of curvature.
ConsequentlyR can be considered to be a BERTRAND surface.

If A#0,C# 0 then upon setting:

L—sincq L—coscul é—ﬁl
J A+ ’ JA+B? ’ c
one can give the relation (4.4) the form (4.2), andesthat is equivalent to the relation
(4.1), it will be sufficient folRto be a BERTRAND surface.
One can then state:

THEOREM 111

In order for a skew ruled surface to be a BERTRAND surfacs, necessary and
sufficient that the normal curvature and geodesic torsion of its lirsriztion verify a
linear relation with constant coefficients, the first and third ofcWrare either both non-
zero or both zero, and in that case, the second one will non-zero.

It should be noted that in the case where the linstriadtion C of a BERTRAND
surfaceR is a not a line of curvature, one can deduce from ¢laion (4.2) that the
normal curvatures, and the geodesic torsiag of the curveC must satisfy, which can be
written:

sina (1 -B k) =pLcosa gy,

in which B, # 0, sinay # 0, that one has:

B o,
(1_:81Kn )2 +:812 ng

(4.5) sina =

Moreover, from the second formula (3.8), the geodesgian of the line of striction
C; of the surfacdr; that constitutes a BERTRAND pair, along wighwill be coupled
with &, gy by the relation:

o,
(4.6) Oig = g :
1-Bk,) +pBl o,
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One immediately deduces from the two relations (4.5) (drg) thatthe geodesic
torsions gy, 0ig of the lines of striction of the surfaces R, iRsp, at the points that are
situated on the same generator of the surface that is generated bgntimeon central
normal to the two surfaces will verify the relation:

2
(4.7) gy oig = 24
B

REMARK. — From a known theoremg{| pp. 143), the lines of striction of two skew
ruled surface®, R; that constitute a BERTRAND pair are geodesics ofdlssfaces in
the particular case where those curves are alsonsbgy@jectories of the generators of
the two surfaces, or (what amounts to the same thintdpeicase where the two surfaces
are surfaces of constant striction. The common dentranal to two surfaces at each
pair of homologous points of their lines of strictionllwiecessarily be the common
principal normal to those curves at the same points théence, in that casthe lines of
striction of two surfaces will constitute a pair of BERTRA®8IDves, and the relation
(4.7)will reduce to the relation that (as is kno\si, pp. 35)is verified by the torsion of
the curves of such a pair at their points that are situated along the saremtg® of the
surface that is generated by the common principal normals of those curves.

5. — If the lines of strictiorC, C; of a pair of BERTRAND surfaceR, Ry, resp., are
not lines of curvature of those surfaces then, as wersélve preceding paragraph, their
normal curvatures, , A, resp., and geodesic torsiogg, oig, resp., must satisfy two
relations of the form (4.2) and (4.3), in which the can&/f;, a that enter into them

will be the values of the parametg®sa resp., that are included in equation (2.7) for the
set (\N) associated t&, which corresponds to the surfeke.
Moreover, ifR is a surface of that set that corresponds to the ygluew of the

parameter@, w resp., then, from (3.8), the normal curvatufeand the geodesic torsion
o of the line of strictionC" of R will be coupled with the normal curvaturg and
geodesic torsiowy of the line of strictiorC of R by the relations:

— B2 + o2
(5.1) ko=t~ P Uaroy) T S—
A-Fr Y+ 520 A-Fr )+ 20

The elimination ok, , gy from the relations (5.1) and (4.2) leads to the relation:
(5.2) sina {(87 - B°B) (k2 +02)+ (28" - Bk, + 1} - Bicos 0, =0,
which must be satisfied by the normal curvature and the gedesion of the line of

striction of R" in the case envisioned. That relation will reduce &oredation (4.2) or
(4.3) when one sef8” = 0 or3" = f3, respectively.
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On the other hand, if the normal curvature and the geottsion of the line of
strictionC’ of a skew ruled surfad® verify a relation of the form (5.2) and one s
0, sina # 0, then it will result from that relation, which cha written:

K+ B (kE+0?) o, _ sinw

sin w + Cosw 9
(1—,3DKnD)2+,3DZU§2 (1—,3DKnD)2+,3DZU§2 B

when one recalls (3.6), that the 9§} (hat is associated with the surfa&€ewill contain a
BERTRAND surface, since the normal curvature anddgsic torsion of the line of
striction verify a relation of the form (4.2), owlfat amounts to the same thing) the
central normals t& are the common central normals to a pair of BERNRAurfaces.

On the hand, if the normal curvature and geodession of the line of striction of a
skew ruled surface verify a relation of the forn3(5 where the second and fourth of the
constant coefficients, B, C, D that enter into it are non-zero, and if one comsdhe
relations:

2_pgp=A g =B cosy __C
(5.4) B -Bh=g 2 -bB=7g ’Blsincq 5

then upon eliminating from the first two, one will arrive at the relatio
DB?-BB +A=0.

Now, if 4AD — B? < 0 then one can associate two real value8, oot ca with each
(real) root of the polynomidDB™? — BB~ + A with the aid of the last two relations in
(5.4), such that if one replacgh, cot i in it with those values ang” with the root
considered then the relation (5.2) will reduce he telation (5.3). As we have seen
already, that will prove that the central normal&t are the common central normals of
a pair of BERTRAND surfaces.

One can then formulate:

THEOREM 1V

In order for the central normals to a real skew ruled surface whosef striction is
not a line of curvature to be the common central normals to a pair ofBERTRAND
surfaces, it is necessary and sufficient that the normal curvanaegeodesic torsion of
its line of striction should verify a second-degree algebraic m@adif the forn(5.3) such
that the coefficients A, B, C, D that enter into it are constimtahich one hadAD — B
< 0, while B and D are non-zero.

One should note that it would result from the poBog considerations thahe
common central normals to a pair of BERTRAND surfaces are, at the tsam®, the
common central normals to a second pair of surfaces of that type thabwcoincide
with the first one, in general

Furthermore, if one takes into account the faet the line of strictiorC" of the
surface considereR’ of the set () that is associated witR is an orthogonal trajectory
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that is chosen at random from the generators of dhflace R, that is generated by the
central normals tdR, one will deduce from the relation (5.2) and the finahaek in
paragraph 1 that whelRis a BERTRAND surface whose line of stricti@ns not a line
of curvature and the fact that one chodSés be a director curve on the surfdg that

the geodesic curvature and the geodesic torgjpno, of that orthogonal trajectory of
the generators d®, will verify a relation of the form:

(5.5) AlB* =B B (k] +0)+ (2B-B)Kky+ 1} + BfLO, =0,

and the coefficientd, B, £, Sthat figure in it are constants, the first three bfcki are
the same for all of those curves, where the first hind bnes are non-zero and the fourth
one varies from one of those curves to another.

One will then have:

THEOREM V

The geodesic curvature and geodesic torsion of each orthogonal trajeotahe t
generators of the surface, Bhat is generated by the common central normals to a pair of
Bertrand surfaces whose lines of striction are not lines of curgaiili verify a second-
degree algebraic relation of the form:

(5.6) Ak:+o?)+Bk,+Co,+ D=0

with coefficients that are constant on it, but vary from one of theesuovanother. That
relation must be linear along the line of striction of each of the susfat®se common
central normals are the generators of the surface.

One deduces from that theorem, combined with the fadt ¢cbmmon principal
normals of a pair of BERTRAND curves are (as one galily see) the common central
normals toeo! pairs of BERTRAND surfaces, théte geodesic curvature and geodesic
torsion of each orthogonal trajectory to the generators of the surfacestiggnierated by
the common principal normals of a pair of BERTRAND surfaces willyvarsecond-
degree algebraic relation of the for(B.6) with coefficients that are constants on them,
but which will vary from one of those curves to another. That eglain each curve of
the pair reduces to the linear relation that is verified by the cureaénd torsion of that
curve.

6. — Now suppose that the line of stricti@h of the surface considerel is an
asymptotic line of that surface, and consequently, thatvdhkave:

(6.1) k=0
at each point of.
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In that case, the curv@ will be a geodesic of the surfaBg that is generated by the
central normals tdR, since the surfaceR?, R, will cut at a right angle along that curve.
The central normals t8 will also be the binormals to the cur@e

In addition, in that case, formulas (3.8), which expthesnormal curvatureé;, and
the geodesic torsiomy of the line of strictionC, of a surfaceR, of the set ) that is
associated witlR as functions of the normal curvatusgand the geodesic torsian of
the line of strictiorC of R will become:

2
6.2) ko= 22% =%y
1+ B o, 1+ B o,
by virtue of (6.1).

Upon eliminating gy from these two relations, one will deduce that themadr
curvatureki, and the geodesic torsiang of the line of strictiorC, of a surfacer; of the
surface N) that is associated with the surfa@evhen the central normals &f are the
binormals of its line of strictio@ must verify a relation of the form:

(6.3) B(K%+02) + Kin =0,

and, from (2.8), the coefficiem; that enters into it will be equal to the absolute vaitie
the constant distance between two points of the s\ @y€; that are situated on the same
central normal tdR.

On the other hand, the central normals to a skexdrsuirfacdr; are the binormals to
a skew curve when the normal curvature and the geodesiont®f its line of striction
C, verify a relation of the form (6.3).

Indeed, it will result from this relation, with thédeof the first formula in (3.8), that
the set N) that is associated with the surfe&Rewill contain a surfac&k whose line of
striction is an asymptotic line. Consequently, the como®mral normals to the surface
R, R; are the binormals to that curve.

One then has:

THEOREM VI

In order for the central normals of a skew ruled surface to be ti@bials of a skew
curve, it is necessary and sufficient that the normal curvature and geddeson of its
line of striction will verify a second-degree algebraic relatiorthed form(6.3), and the
single coefficient that enters into it will be a constant.

If one replacesin, gig with the values as functions of the fundamental invisiaf a
skew ruled surfaceq; , i, ¢1 in the condition (6.3), which is, from Theorem VI,
necessary and sufficient for that surface to enjoy itidicated property, then that
condition will assume the form:

Bi(kZ + %)+ K1 cosg — di sin gy = 0,
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and it was given in that form by E. KRUPPAl([pp. 165).

Furthermore, from what was presented in the final remaplaragraph 1, the normal
curvaturexi, and the geodesic torsiang of the line of strictiorC; of the surfacdR; are
equal to the geodesic curvature and geodesic tokgiano,  , respectively, of that curve,

when it is considered to be a curve that is traced oautfaceR, that is generated by the
common central normals of the surfaé&sR; . From (6.3),«;,, g,, must then verify

the relation:
(6.4) BKE+02)+K,= 0.

However,R; is a surface of the seN) that is associated witR that is chosen at
random. Consequently, its line of stricti@ will be an orthogonal trajectory to the
generators of the surfaéy that is chosen at random. In addition, from Theokegach
orthogonal trajectory of the generators of the surthatis generated by the binormals to
a skew curve will be a line of striction of the' skew ruled surfaces that admit the
binormals to that curve as their central normalse €an then state:

THEOREM VII

The geodesic curvature and geodesic torsion of each orthogonal trajectding of
generators of the surface that is generated by the binormals of a skesvCwerify a
second-degree algebraic relation of the fai®m), and the single coefficient that enters
into it is a constant whose absolute value is equal to the constant distaiveeen the
two points of that trajectory and the curve C that is situated alongahe generator of
the surface.

If one takes into account the characteristic propettylANNHEIM curves that the
principal normals of a curve of that tyfe are binormals of another skew cu@eén that
theorem and the fact that the cur@ is an asymptotic line of the surface that is
generated by its principal normals then one will deducethigageodesic curvature and
geodesic torsion of each orthogonal trajectory to the generators of the suifaices
generated by the principal normals of a MANNHEIM curvevérify a second-degree
algebraic relation of the forn(6.4), and the single coefficient that figures in it will be
equal in absolute value to the constant distance between the two points todjdtdory
and the curve whose binormals are the principal normals of the curtleaCis situated
on the same generator of the surface. That relation will reduce oocutive G to the
relation that is verified by the curvature and the torsion of thateurv

7. — Now consider the developable surfégehat is tangent to the surface considered
R all along its line of strictioIC.

The generators of the surfaRg are the tangents to the surfd&at the points of the
curveC that are conjugate to the tangentftat those same points, and as is knowij ([
pp. 189), the generator of that surface that issues frormmutiveng pointK (u) of C is
parallel to the vector:

(7.1) d=oe+kz,
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in which «, ogare the curvature and torsionRbn its generator that issues from the point
K.

If one letsy denote the angldt,d), in which T is the unit vector (1.4) that is
parallel to the tangent © atK then, by virtue of (1.4) and (7.1), one will have:

KSing + o cosp
\ KP+o?

One will quickly deduce from that formula, which walkie on the form:

cosy =

o,
(7.2) cogy= ——2—
JKetOo!

with the aid of (1.5), that in order for the line oficion of a skew ruled surfade to be
an isogonal trajectory of the generators of the develoairfaceR, that is tangent t&
all along the curveC, it is necessary and sufficient that the normal aume and the
geodesic torsion of that curve must verify a relatibthe form:

(7.3) AKka+Bagy=0,

and the coefficients, B that enter into it will be constants, at least ohghich is non-
zero. One can then distinguish three cases accaaliwtether one ha&s = 0,B # 0, or
A#0,B=0,0rAZ0,B%0.

If A=0,B # 0 then the line of strictio® of R will be a line of curvature, since one
hasgy = 0 at each point . In this case, the surfaé® that is generated by the central
normals toR is developable, and the orthogonal trajectories togtreerators oR, are
lines of curvature of that surface. Consequently, tlyggiodesic torsion will be
everywhere zero.

If A#0,B = 0 then the line of strictio& of R will be an asymptotic line of that
surface, and this case was discussed in the precedinggmragr

Finally, if A# 0, B # 0 then upon eliminating, , gy from the relation (7.3) and the
two relations (3.8) that are verified by the normal ctuses «, , k1, and the geodesic
torsionsay, gig of the line of strictiorC of R and the line of strictiol©; of a surfaceR;
of the set ) that is associated witR, resp., then one will deduce that the normal
curvatureki, and the geodesic torsiang of the curveC; must verify the relation:

(7.4 BAGKE, +02)+ A kin+ B 015 = 0,

in which £, is a constant that is, from (2.8), equal in absolutéeh¢éocbnstant distance
between the two points on the curv@sC; that are situated along the same common
central normal to the surfaée Ry, resp.

The central normals to the surfaBeare, at the same time, the normals to the
developable surfacBy that is tangent td&R along its line of strictiorC. Furthermore,
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from Theorem I, an isogonal trajectory of the generatbis developable surface is the
line of striction ofeo’ skew ruled surfaces that admit the normals to theaserét the
points of that curve as central normals.

That being the case, one will deduce from the reldficf) that the normal curvature
k» and the geodesic torsian of the line of striction of a skew ruled surface muestfy
a relations of the form:

(7.5) A (k:+0])+Bikn+ Cigy =0,

and the coefficientdy , B, , C; that enter into it are constants such that at knestast
two are non-zero when the central normals to thiasairare the normals to a developable
surface at the points of an isogonal (but not orthogdreéctory to its generators.

On the other hand, the condition (7.5) that is veditoy the normal curvature and the
geodesic torsion of the line of striction of a skew ruedfaceR is sufficient for the
central normals to the surface to be the normaés developable surface at the points of
an isogonal trajectory of its generators, because, twithaid of formulas (3.8), one will
deduce from that relation, which will take on the form:

NB(K:+0) + K} +Boy=0

when one set8; = A, A1 = B; 4, C. = B By, that the normal curvature and geodesic
torsion of the line of striction of a surface of tbet (\) that is associated witR will
verify a relation of the form (7.3). That surfacelwdincide withR if A; = 0.

One can then state:

THEOREM VI11

In order for the central normals to a skew ruled surface to be thenasrto a
developable surface at the points of an isogonal (but not orthogonal) trajectaty t
generators, it is necessary and sufficient that the normal curvandethe geodesic
torsion of its line of striction should verify a second-degree algeledation of the form
(7.5),and that the coefficients that enter into it must be constants, sittlealast two of
which are non-zero.

In addition, from the final remark in paragraph 1, thedgsic curvature and the
geodesic torsiork,,, oy, of the line of strictiorC, of a surfaceRr; of the set ) that is

associated witfr, when it is considered to be a curve that is tracethe surfac, that
is generated by the central normal&iaonust verify the relation:

(7.6) AB(K? +077)+ Ak, + B, = 0

in the case envisioned, to which one will arrive upona@py i, dig with «;,

Oy s
respectively, in the relation (7.4). The coefficieAtB that enter into the relation (7.6)
are the coefficients of the relation (7.3), whileis a constant whose absolute value is,
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from (2.8), equal to the constant distance between badgof the curveC; and the line
of strictionC of R that is situated along the same generator of the stRfac

That fact, when combined with the fact that, from Tkeo I, each orthogonal
trajectory of the generators of the surfdgethat is generated by the normals to a
developable surface at the points of an isogonal trajectioits generators is the line of
striction ofeo® skew ruled surfaces that admit the generatoRs a6 central normals, will
permit us to formulate:

THEOREM 1X

The geodesic curvature and geodesic torsion of each orthogonal trajeotahe t
generators of the surface that is generated by the normals to a develspdhlee at the
points of an isogonal (but not orthogonal) trajectory C to its generators \esigcond-
degree algebraic relation of the for(¥.6) with coefficients that are constant on it. The
first two of the coefficients,MB, £ that enter into that relation, both of which are non-
zero, are the same on all of those curves, while the third onevavyl from one to
another. That relation reduces along the curve C to the linear and homogenkedios re
that is verified by the geodesic curvature and geodesic torsion afttha.

If one takes into account the fact that the princimaimals to a cylindrical helix are
the normals along that curve to the cylindrical surfabese helix is a geodesic then one
can deduce from the theorem thla¢ geodesic curvature and geodesic torsion of each
orthogonal trajectory to the generators of the surface that is genebgtede principal
normals to a cylindrical helix are coupled by a second-degree algebraicorelat the
form (7.6), and the coefficients ,AB, S that enter into its are constant on it. The
coefficients varies from one of those curves to another, while the first befficients
are invariable; the latter are the coefficients that enter intolitear and homogeneous
relation that is verified by the curvature and torsion of the helix.

8. — LetR; be a surface of the séfl)(that is associated with the surface consid&ed
that corresponds to the valuBs w of the parameter8, « resp., that enter into equation
(2.7) of that set.

The normal curvaturgs, and the geodesic torsiang of the line of strictiorC; of Ry
are the functions (3.8) of the normal curvatugeand the geodesic torsiam of the line
of strictionC of R.

Upon eliminatings; from the two relations (3.8), one will easily arrivela relation:

8.1 s _ = s |
81) Kp+0Op K. +O,
K> +0°
which shows that the ratie™—2 is the same for all surfaces of the g4} that is
o

g
associated witlR.
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The value of that ratio at the running pdfnfu) of the line of strictiorC of R is equal
to the distribution parameter, of the surfacdR, , along its generator that issues from the
pointK (u) of the curveC, which is:

pOn)xn
O = (o ;2) _

If one replaceso, i with their values from (1.4) and (1.2) in thatrfarda then it will

take on the form:
_KsSing + 0 cosp

n

K*+0°
or finally, with the aid of (1.5)
o,
(8.2) Pn = pE +902 :

One immediately deduces from that formula thaornder for the surfac®, that is
generated by the central normals of a ruled surtacke a surface with a constant
distribution parameter, it is necessary and s@fficthat one must have:

(8.3) a(ki+02)-05=0,
in whicha is a constant.
One will then have:

THEOREM X

In order for the surface that is generated by tleatal normals of a skew ruled
surface R to be a surface with a constant distrdsutparameter, it is necessary and
sufficient that the normal curvature and the geadésrsion of the line of striction of R
should verify a second-degree algebraic relationtloé form (8.3), and the single
coefficient that enters into it should be equaltte constant distribution parameter of
that surface.

Furthermore, if one takes into account the firahark in paragraph 1 then one will
deduce immediately from the two relations (8.1) é58) that the geodesic curvature and
geodesic torsiork,,, oy, of the line of strictiorC, of a surfaceRr; of the set ) that is

associated witlR, when considered to be a curve that is tracecherstirfaceR, that is
generated by the central normaldRpfwill verify the relation:

(8.4 Ak +0) =Tl =0,

in whicha is a constant wheR, is a surface with a constant distribution paramitat is
equal toa.
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That realization, combined with the fact that, from dieen |, the generators of a
ruled surface with a constant distribution parametertia®@ common central normals to
o? skew ruled surfaces, will permit one to formulate:

THEOREM XI

The geodesics curvature and the geodesic torsion of each orthogonal trajedtwey of
generators of a ruled surface with a constant distribution parameter varggcond-
degree algebraic relation of the for{8.4), and the single coefficient that enters into it is
equal to the constant distribution parameter of the surface.

9. — Finally, suppose that the line of strictiGnof the surfacer is a curve on that
surface whose normal curvature and geodesic torsiorotitebnstants:

(9.1) ko =cC1, gy = Co,

in whichcy, c; are constants, and at least the second one is non-zer

In that case, from what was said in paragraph 7, theectirwill be an isogonal
trajectory of the generators of the developable sufadbat is tangent t&® along that
curve.

In addition, from what was said in paragraph 6, théraenormals tR are binormals
of a skew curveC; : viz., the line of striction of the surfad® of the set ) that is

associated witlr, which corresponds to the valugs= Ziz 5, a of the parameterg,
G

a resp., that figure in equation (2.7) of that ensemble.
Moreover, in that case, thanks to (9.1), the surRdbat is generated by the central
normals toR will be a surface with a constant distribution paramete

(9.2) P = —2

= Z0.
a0

That being the case, from Theorem XI, the geodesicatume and geodesic torsion
Ky, 0y, Of the curveC; whose binormals are the central normal&tavhen considered

to be a curve on the surfaBg, must verify the relation:
93) P (K2 +012) =07, = 0.

However, the curv€; is necessarily a geodesic on the surfacthat is generated by
its binormals. One will then have, = 0, g,,= i, in which ¢; is the torsion of that

curve, and one will deduce from the relation (9.3) th& wast have eitheo,; = g1 = 0
oro,=0=1p,#0.
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If o1 = 0 then the curv€; will be a plane curve, and the surfd&ethat is generated
by its binormals will be a cylindrical surface, which ickided by the hypothesis that
was made for the distribution parameteRof

Hence, in the case envisioned, the central normdlsetsurfacer are the binormals
of a skew curve with constant torsion:

2
(9.4) =1-6%¢

On the other hand, the surfaRgthat is generated by the binormals of a skew cGrve
with constant torsiort is (as one knows1], pp. 104) a skew surface with a constant
distribution parametgs, = 1 /c.

Now, if one chooses the cur@on the surfacd, to be the director curve and one
takes into account the fact that the geodesic turgaand geodesic torsion 6f when
considered to be a curve that is tracedRgnare:

(9.5) K, =0, 0,,= 01 =C,

sinceC is a geodesic dR, , with the aid of (3.9) and (9.5), one will get tfmlowing
expressions for the geodesic curvature and geodession ., o, resp., of an

g )
orthogonal trajectory of the generators of theameR, :

,__ Bo’ __C
(9-6) Kg_ 1+,3'202 ! g_1+ﬁ:202 ’

which shows thak , o, are constants on each orthogonal trajectory ofjémerators of

the surfacdR,, and the coefficienB’that enters into formulas (9.6) is constant orhexc
those curves.
The preceding considerations permit one to state:

THEOREM XIl1

The geodesic curvature and geodesic torsion ofotigogonal trajectories of the
generators of a skew ruled surface are not constan¢ach of the curves, as in the case
where the generators of the surface are binorn@abs $kew curve with constant torsion.

One should note that, from a theorem of X. ANTOMA{¢4], pp. 168),if an
orthogonal trajectory of the generators of the aad that is generated by the binormals
to a skew curve ds a curve on the surface with constant geodesicature then all of
the orthogonal trajectories of the generators o# gurface will necessarily be curves
with constant geodesic curvature.

In that case, the curv& will necessarily be a curve with constant torsion.
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Indeed,C; is an orthogonal trajectory of the generators @&f srfaceR, that is
generated by its binormals, and at the same time, a gieaféhat surface. Upon letting

!

Ky, 0,, denote the geodesic curvature and geodesic torsion, @ne will havex;, = 0,
0,,= a1, in which g; is the torsion of that curve.

Now, if another orthogonal trajecto®’ of the generators dR, is a curve with
constant geodesic curvature: viz,= c’ # 0, and one chooses the cu@e on the

surfaceR, to be the director curve then, from the first folanin (3.9), one will have the
following expression for the geodesic curvatuteof the curveC’:

: 'o;
Kg == ﬁ: COﬂSt,
1+570;

which proves tha€; must be a curve with constant torsion in the case enedjcsince
F’is a constant on the cur@

It results from that fact, when combined with Theorem XII, thaniforthogonal
trajectory of the generators of the surface that is generated by theraimof a skew
curve is a curve on the surface that has constant geodesic cur&wethen the
geodesic torsion and geodesic curvature of the orthogonal trajectoriée gfeherators
of the surface will both be constant along each of those curves.
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