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Summary. – (Given in the introduction) 
 
 
 The normal curvature and the geodesic torsion of the line of striction of a skew ruled 
surface in three-dimensional Euclidian space are metric invariants of the surface.  
Furthermore, these two quantities are functions of the variable whose values correspond 
to the points of the line of striction.  They are also coupled by a relation, in general, and 
the skew ruled surfaces on which those quantities are coupled by relations of the same 
form will have some common properties, the study of which can lead to some results in 
regard to the metric differential geometry of ruled surfaces, which is not devoid of 
interest. 
 In the present article, which is dedicated to the study in question, I shall establish 
certain theorems in regard to the skew ruled surfaces on each of which the normal 
curvature and the geodesic torsion of its line of striction verify a first or second-degree 
algebraic relation with constant coefficients.  In addition, after showing that when the 
geodesic curvature and the geodesic torsion of one orthogonal trajectory to the generators 
of a skew ruled surface verify an algebraic relation with constant coefficients, the 
geodesic curvature and geodesic torsion of any other orthogonal trajectory to the 
generators of the surface will necessarily be coupled by an algebraic relation with 
constant coefficients, with the aid of the theorems thus-established, I will arrive at the 
determination of certain classes of ruled surfaces on which the geodesic curvature and 
geodesic torsion of each orthogonal trajectory to their generators verifies an algebraic 
relation of degree at most two with coefficients that are constant on it, but which will 
generally vary from one of those curves to another.  I will then show that the geodesic 
curvature and geodesic torsion of each orthogonal trajectory to the surface that is 
generated by the principal normals to a BERTRAND curve or a MANNHEIM curve or a 
cylindrical helix, as well as a skew surface with constant distribution parameter or the 
surface that is generated by the binormals to a skew curve, will verify an algebraic 
relation of degree at most two with coefficients that are constant on it.  These coefficients 
will vary from of those curves to another, if one ignores the case of surfaces with 
constant distribution parameter. 
 
 

                                                
 (*) Submitted on 14 June 1970.  
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I. 
 

 1. – Consider a portion R of a real skew ruled surface ds in three-dimensional 
Euclidian space on which the distribution parameter is non-zero on all of the generators. 
 Let: 
(1.1)     ρ = ρ (u) 
 
be the vectorial equation with respect to the coordinate system that is chosen in space for 
the line of striction C of R, which is the locus of central points of the generators of that 
surface when the parameter u is the arc length of C. 
 If ( )e u , ( )n u , ( )z u  = e n∧  are the unit vectors that determine the positive sense on 
the generator e of R that issues from a running point K (u) of C of the central normal n to 
R at K and the central tangent z to R at that same point (i.e., of the tangent to R at K that 
is perpendicular to the generator e) then – as one knows ([4], pp. 145) – one will have the 
following formulas for the derivatives of e , n , z  with respect to the variable u (1): 
 
(1.2)   eɺ  = nκ , nɺ = − e zκ σ+ , zɺ = − nσ , 
in which: 

(1.3)    κ = | |eε ɺ ,  σ = 2

( )

| |

e e e

e

∧ ×ɺ ɺɺ

ɺ
, 

 
and ε = + 1 or – 1 according to whether the mixed product ( )e eρ ∧ ×ɺ ɺ , which is, from the 
hypothesis that was made for the distribution parameter of R, non-zero for all values of u 
that correspond to the points of C, is greater than or less than zero, resp. 
 The lines e, n, z issue from the point K (u) of the curve C along the directions whose 
positive senses are determined by the unit vectors e , n , z , respectively, which are the 
axes of an oriented tri-rectangular trihedron [K; e ,n , z ]; that trihedron will be called the 
central trihedron that is associated with the surface in what follows. 
 Moreover, the derivative ρɺ  at the point K (u) of the curve C is a unit vector, since u 
is the arc length of C.  Since that vector is parallel to the tangent to C at K, it is parallel to 
the tangent plane [K; e , z ] to R at that point.  One can then put it into the form: 
 
(1.4)     ρɺ ≡ t = cos sine zϕ ϕ+ , 
 
in which ϕ is the oriented angle ( , )tε  on the plane [K; e , z ]. 

 The three quantities κ, σ, ϕ are functions of the arc length u of the line of striction C 
of R that are defined, thanks to the hypothesis that was made for the distribution 
parameter of R, in the interval of values of u that correspond to the points of the curve C 
or, what amounts to the same thing, they are generators of R.  Those three functions κ (u), 
σ (u), ϕ (u), whose values on each generator of R are called the curvature, torsion, and 
striction of the surface on that generator by E. KRUPPA ([3], pp. 63), are metric 

                                                
 (1) Dots denote derivatives with respect to the variable u.  One supposes that the derivation operations 
that are performed in what follows are legitimate within the intervals considered.  
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invariants of R, along with the arc length u of C, and they are precisely the metric 
invariants of the surface that was chosen to be fundamental to the metric differential 
geometry of ruled surfaces that was founded by G. SANNIA [5] and E. KRUPPA [4]. 
 Two other metric invariants of the surface are the normal curvature κn and the 
geodesic torsion σg of its line of striction.  Those two quantities are functions of the three 
fundamental invariants of the surface. 
 Indeed, from known formulas ([3], pp. 73), one will have: 
 
(1.5)   κn = κ cos ϕ – σ sin ϕ,  σg = κ sin ϕ + σ cos ϕ. 
 
 REMARK. – As one will see immediately, the surface R cuts the surface Rn that is 
generated by the central normals to R all along its line of striction C, which is obviously 
an orthogonal trajectory to the generators of Rn . 
 It results from this that the normal curvature κn and the geodesic torsion σg of the 
curve C, which is considered to be a curve that is traced on the surface R, are equal in 
absolute value at each point of C to the geodesic curvature gκ ′  in the former case and the 

geodesic torsion gσ ′  of C in the latter case, when it is considered to be a curve that is 

traced on the surface Rn . 
 One will then have: 

gκ ′ = ε′ κn , gσ ′  = σg  

 
at each point of C, in which ε′ = + 1 or – 1, and one chooses the positive sense along the 
direction of the normal to Rn in such a manner that one will have: 
 
(1.6)    gκ ′  = κn , gσ ′ = σg . 

 
 
 2. – Thanks to (1.4), equation (1.1) of the curve C can be written: 
 

(2.1)    ρ  = ( cos sin )e z duϕ ϕ+∫ , 

 
and the (vectorial) equation of the surface R, if one chooses its line of striction C to be the 
director curve in it, can be put into the form: 
 

(2.2)    r  = ( cos sin ) ( )e z du ve uϕ ϕ+ +∫ . 

 
 Having said that, let R′ be a skew ruled surface that cuts R at a right angle along an 
orthogonal trajectory C′ of the generators of R. 
 If: 

ρ′= ρ′ (u) = ( ) ( ) ( )u v u e uρ ′+   
 
is the equation of the curve C′ then the normal to R at the running point K′ (u) of that 
curve will be parallel to the vector: 
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(2.3)    ( )n u′ = 
| |

e
ρ
ρ

∧
ɺ

ɺ
≡ t e′ ∧ , 

 
which is a unit vector, since the unit vectors / | |ρ ρɺ ɺ = t′ , e  are orthogonal, from the 

hypothesis that was made on the curve C′. 
 The generator e′ of the surface R′ that issues from the point K′ (u) of C′ is situated on 
the plane [K′ ; t′ , n′ ] that is perpendicular at K′ to the generator of R that issues from 
that point, and consequently, it is necessarily parallel to a unit vector of the form: 
 
(2.4)     e′ = t′ cos θ + n′  sin θ. 
 
 In order for the curve C′ to be the line of striction of the surface C′, in addition, it is 
necessary and sufficient, as one knows, that one should have: 
 
(2.5)      t e′ ′× ɺ = 0 
at each point of C′. 
 However, from (2.4), one has: 
 

e′ɺ = cos sin ( sin cos )n t nι θ θ θ θ θ′ ′ ′ ′+ + − +ɺɺ ɺ , 
 

and if one takes into account the fact that one has 2t′  ≡ 1, t t′ ′× ɺ  ≡ 0, then thanks to the 
hypotheses that were made, t n′ ′×  = 0, sin θ ≠ 0, the condition (2.5) will become: 
 

(2.6)     t tθ ′ ′− × ɺɺ = 0. 
 
 For each function θ (u) that satisfies the differential equation (2.6), the vector ( )e u′  

(2.4) will determine ∞1 lines that issue from the points of the curve C′ and determine a 
skew ruled surface R′ that cuts R along C′ at a right angle and admits that curve as its line 
of striction. 
 However, the curve C is an orthogonal trajectory of the generators of R that is chosen 
at random.  Furthermore, the preceding considerations demand only that the ruled surface 
R should be skew. 
 One can then state the: 
 
 THEOREM I. 
 
 Each orthogonal trajectory of the generator of a ruled surface is the line of striction 
of the ∞1 skew ruled surfaces that admit the generators of the surface as central normals. 
 
 Moreover, the vectorial equation of a skew ruled surface R1 that is represented on the 
skew surface R that is defined by the equation (2.2) in such a manner that the 
homologous points of the two surfaces admit the same curvilinear coordinates u, v will – 
as one knows ([5], pp. 45) – necessarily have the form: 
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(2.7)  1r = 1( cos sin ) ( )( cos sin )e z du n v v e zϕ ϕ β ω ω+ + + +∫ , 

in which: 
(2.8)   β = const., ω = const.  (− π < ω ≤ π), 
 
where the function v1 (v) is arbitrary, when the generators of the two surfaces, as well as 
their lines of striction, in that representation correspond, and the two surfaces have 
normals that coincide at each pair of homologous point of their lines of striction, in 
addition. 
 For each system of values of the parameters β, ω that enter into y, equation (2.7) will 
determine a skew ruled surface.  When β ≠ 0 if ω = 0 or π, that surface will not coincide 
with the surface R, and when the two surfaces are represented on each other in the 
indicated manner, they will admit central normals that coincide at the homologous of 
their lines of striction. 
 In regard to the fact that R is a skew ruled surface that is chosen at random, it will 
result that to each skew ruled surface, one can associate ∞2 skew ruled surfaces whose 
central normals coincide with the central normals of that surface. 
 The set of surfaces that are represented on a skew ruled surface in the indicated 
manner will be called the set (N) that is associated with that surface in what follows. 
 The set (N) that is associated with the surface considered R is defined by equation 
(2.7).  The surfaces of that set, including the surface R, correspond to the systems of 
values of the parameters β, ω that enter into that equation and belong to the open interval 
(− ∞, + ∞) and the upper-closed interval (− π, + π), respectively. 
 
 
 3. – The generator of a surface R1 of the set (N) that is associated with the surface R, 
which is the homologue of the generator of R that issues from the running point K (u) of 
its line of striction C, is necessarily parallel to the tangent plane to R and K, and from 
(2.8) it is invariably coupled with the central trihedron that is associated with R. 
 That being the case, one can choose the positive sense along the direction of that line 
in such a manner that it will coincide with the positive sense on the common direction of 
the coincident normals to the surfaces R, R1 at each pair of homologous points their lines 
of striction. 
 Upon letting 1e , 1n , 1z  denote the unit vectors that determine the positive sense along 

the directions of the axes of the central trihedron that is associated with R1 at the point K1 
of its line of striction C1 that is homologous to the running point K (u) of the line of 
striction C of R, one will then have the relations: 
 
(3.1) 1e = e cos ω + z sin ω, 1n =n ,  1z = 1 1e n∧  = − e sin ω + z cosω . 

 
 Moreover, from (2.7), the line of striction C1 of R1 is defined by the equation: 
 

(3.2)   1ρ = 1( )uρ = ( cos sin ) ( )e z du n uϕ ϕ β+ +∫ , 

 
in which b is a constant, from (2.8). 
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 Upon differentiating (3.2) with respect to u and making use of (1.2), one will get: 
 

(3.3)    1d

du

ρ
= e (cos ω − βκ) + z (sin ω + βσ). 

 
 Upon letting du1 denote the elementary arc length of the curve C1 at its point K1 that 
is the homologue of the running point K (u) of the curve C1, one will then have: 
 

2

1du

du
 
 
 

= 
2

1d

du

ρ 
 
 

 = (cos ω − βκ)2 + (sin ω +βσ)2. 

 
 With the aid of (1.5), that relation will affect the form: 
 

(3.4)    
2

1du

du
 
 
 

= 1 – 2 β κn + β 2 2 2( )n gκ σ+  = 
2

1

λ
, 

 
which shows that the ratio of the elementary arc lengths du1, du of the curves C1, C, resp., 
at their homologous points K1, K, resp., is an algebraic function of the normal curvature 
κn and the geodesic torsion σg of the curve C, where the coefficient β that figures in it is, 
from (2.8), a constant whose absolute value is equal to the constant distance between 
homologous points of the two curves. 
 Similarly, upon differentiating the first and third relation in (3.1) with respect to u and 
making use of (1.2), one will get: 
 
(3.5)  1eɺ  = (κ cos ω – σ sin ω) n ,  1zɺ = − (κ sin ω + σ cos ω) n . 

 
 If one now lets κ1, σ1, ϕ1 denote the curvature, curvature, and striction, resp., of the 
surface R1 along its generator that is homologous to the running generator of R, and one 
takes into account that, from some known formulas ([4], pp. 145), one will have: 
 

1

1

de

du
= 1 1nκ ,  1

1

dz

du
= − 1 1nσ , 

 
then from these formulas, with the aid of (3.4) and (3.5), one will arrive at the relations: 
 

 1

1

de

du
=    1 1nκ  =    (κ cos ω – σ sin ω)

1

du
n

du
 =    λ (κ cos ω – σ sin ω) n , 

 

 1

1

dz

du
= − 1 1nσ  = − (κ sin ω + σ cos ω)

1

du
n

du
 = − λ (κ sin ω + σ cos ω) n . 

 
 However, from the second relation (3.1), one will have n  = 1n ; one will then have: 
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(3.6)   κ1 = λ (κ cos ω – σ sin ω), σ1 = λ (κ sin ω + σ cos ω) . 
 
 In addition, one will have: 
 

 cos ϕ1 = 1
1

1

d
e

du

ρ ×  = 1
1

1

ddu
e

du du

ρ ×  = 1
1

d
e

du

ρλ × , 

 

 sin ϕ1 = 1
1

1

d
z

du

ρ ×  = 1
1

1

ddu
z

du du

ρ ×  = 1
1

d
z

du

ρλ × , 

 
since the tangent to the curve C1 at its point K1 is obviously situated on the tangent plane 
[K1; 1e , 1z ] to R1 at that same point. 

 If one replaces 1e , 1z , 1d

du

ρ
 in these relations with their values in (3.1) and (3.3) then 

they will take the form: 
 

(3.7)   1

1

cos { cos (cos ) sin (sin )},

sin { sin (cos ) cos (sin )}.

ϕ λ ω ϕ βκ ω ϕ βσ
ϕ λ ω ϕ βκ ω ϕ βσ

= − + +
 = − − + +

 

 
 Finally, if one takes into account the fact that the normal curvature κ1n and the 
geodesic torsion σ1g of the line of striction C1 of R1 are coupled with the fundamental 
invariants κ1, σ1, ϕ1 of the surface by the relations: 
 

κ1n = κ1 cos ϕ1 − σ1 sin ϕ1 , σ1g = κ1 sin ϕ1 + σ1 cos ϕ1 , 
 
from some known formulas ([3], pp. 73), then upon replacing κ1, σ1, and cos ϕ1 , sin ϕ1 
with their values (3.6) and (3.7) and making use of (1.5), one will arrive at the relations: 
 
  κ1n = λ2 {κn − 2 2( )n gβ κ σ+ }, σ1g = λ2 σg. 

 
and finally, thanks to (3.4), at the formulas: 
 

(3.8) κ1n = 
2 2

2 2 2

( )

1 2 ( )
n n g

n n g

κ β κ σ
βκ β κ σ

− +
− + +

, σ1g = 
2 2 21 2 ( )

g

n n g

σ
βκ β κ σ− + +

. 

 
 However, from the final remark of paragraph 1, the normal curvature and the 
geodesic torsion of the line striction of the surface R, as well as any other surface R1 of 
the set (N) that is associated with R, are coupled by the relations (1.6) with the geodesic 
curvature and geodesic torsion of that curve, when it is considered to be a curve that is 
traced on the surface Rn that is generated by the central normals to R. 
 That being the case, if one lets gκ ′ , 1gκ ′ ; gσ ′ , 1gσ ′  denote the geodesic curvatures and 

geodesic torsions of the lines of striction C, C1 of the surfaces R, R1, resp., when 
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considered to be curves that are traced on the surface Rn, one will get the following 
relations from the two formulas (3.8): 
 

(3.9) 1gκ ′ = 
2 2

2 2 2

( )

1 2 ( )
g g g

g g g

κ β κ σ
βκ β κ σ
′ ′ ′− +

′ ′− + +
, 1gσ ′ = 

2 2 21 2 ( )
g

g g g

σ
βκ β κ σ

′
′ ′ ′− + +

, 

 
where, from (2.8), the coefficient β that appears in them is equal in absolute value to the 
constant distance between the two points of the curves C, C1 that are situated on the same 
generator of the surface R. 
 The line of striction C1 of the surface R1 is obviously an orthogonal trajectory of the 
generators of the surface Rn that is chosen at random, and the preceding considerations in 
regard to the geodesic curvature and geodesic torsion of that curve that is traced on the 
surface Rn , when combined with Theorem I, will permit one to state: 
 
 THEOREM II. – If one chooses an orthogonal trajectory to the generators of a skew 
ruled surface to be a director curve then one can express the geodesic curvature and 
geodesic torsion of any other orthogonal trajectory of the generators of the surface as 
rational functions of the form (3.9) of the geodesic curvature and geodesic torsion of the 
director curve, and the single coefficient β that enters into those functions will be a 
constant whose absolute value is equal to the constant distance between two points of 
that trajectory and the director curve that is situated on the same generator of the 
surface. 
 
 A remarkable consequence of that is the following proposition: 
 
 If the geodesic curvature and geodesic torsion of an orthogonal trajectory of the 
generators of a skew ruled surface verify an algebraic relation with constant coefficients 
then the geodesic curvature and geodesic torsion of any other orthogonal trajectory of 
the generators of the surface likewise verify an algebraic relation with constant 
coefficients. 
 
 

II. 
 

 4. – First suppose that the surface considered R is a BERTRAND surface. 
 In that case, the points of the line of striction C of R will correspond to the points of 
the line of striction C1 of another skew ruled surface R1 , in such a manner that the 
normals to the surfaces at each pair of homologous points of their lines of striction will 
coincide, and in addition, the two surfaces will have equal strictions along their 
generators that issue from each pair of homologous points of those curves ([5], pp. 45). 
 The surface R1 , which is obviously also a BERTRAND surface, necessarily belongs 
to the set (N) that is associated with R, because two skew ruled surfaces whose central 
normals coincide will each belong to the set (N) that is associated with the other one, as 
one will see immediately. 
 Now, if β1, ω1 are the values of the parameters β, ω, resp., that figure in equation 
(2.7) of the set (N) that is associated with R, which corresponds to the surface R1 of that 



Pylarinos – On the differential geometry of ruled surfaces. 9 

set, which constitutes a pair of BERTRAND surfaces, along with R, then β1 will 
necessarily be non-zero, and from formulas (5.7), the invariants κ, σ, ϕ of R will be 
functions of the arc length of its line of striction C′ that necessarily verify the relation: 
 

(4.1)   1 1 1 1

1 1 1 1

cos( ) ( cos sin )

sin ( ) ( sin cos )

ϕ ω β κ ω κ ω
ϕ ω β κ ω κ ω

− − −
− + +

= 
cos

sin

ϕ
ϕ

 

 
for all values of u that correspond to points of C. 
 The condition (4.1), which is, in addition, sufficient for the surface R to be a 
BERTRAND surface – as would result from formulas (3.7) – will take on the form: 
 

(4.2)    κn sin ω1 + σg cos ω1 = 1

1

sinω
β

 

with the aid of (1.5). 
 The relation (4.2) will be verified in the case where the line of striction C of R is a 
line of curvature if one sets ω1 = 0 or π, where β1 is an arbitrary non-zero constant, 
because in that case, one will have σg = 0. 
 The surface Rn that is generated by the central normals of R will then be a 
developable surface, and all of the surfaces of the set (N) that is associated with R whose 
generators that are homologous to each generator of R are parallel to that generator will 
then admit the same striction as R along those generators.  Hence, a skew ruled surface 
whose line of striction is a line of curvature can be considered to be a BERTRAND 
surface. 
 If the invariants κ, σ, ϕ of the surface R whose line of striction is not a line of 
curvature verify a relation of the form (4.1), in which β1, sin ω1, cos ω1 are constants, and 
the first two are non-zero, then the set (N) that is associated with R will contain only one 
surface that constitutes a pair of BERTRAND surfaces with R: namely, the surface R1 in 
that set that corresponds to the values β1, ω1 of the parameters β, ω, resp., that are 
included in equation (2.7). 
 The surface R1 is likewise a BERTRAND surface.  Consequently, the normal 
curvature κ1n and the geodesic torsion σ1g of its line of striction C1 must verify a relation 
of the form (4.2): 

 κ1n sin ω′ + σ1g cos ω′  = 
sinω

β
′

′
, 

 
in which β′, ω′ are the values of the parameters β, ω, resp. that figure in the equation of 
the form (2.7) for the set (N) that is associated with the surface R1 that corresponds to the 
surface R, when it is regarded as a surface that belongs to that set.  However, as one will 
see immediately, one will have β′ = − β1, ω′ = − ω1 .  Hence κ1n , σ1g must verify the 
relation: 

(4.3)    κ1n sin ω1 − σ1g cos ω1  = − 1

1

sinω
β

. 
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 From (4.2), in order for the surface considered R to be a BERTRAND surface, it is 
necessary that normal curvature κn and the geodesic torsion σg of its line of striction C 
must verify a relation of the form: 
(4.4)     A κn + B σg = C 
 
whose coefficients A, B, C are constants, and the first and third one are either both non-
zero or both zero, and in that case, the second one will be non-zero. 
 That condition is, in addition, sufficient for R to be a BERTRAND surface. 
 Indeed, if A = C = 0, B ≠ 0 then the line of striction of R will be a line of curvature.  
Consequently, R can be considered to be a BERTRAND surface. 
 If A ≠ 0, C ≠ 0 then upon setting: 
 

2 2

A

A B+
= sin ω1 ,  

2 2

B

A B+
= cos ω1 ,  

A

C
= β1 , 

 
one can give the relation (4.4) the form (4.2), and since that is equivalent to the relation 
(4.1), it will be sufficient for R to be a BERTRAND surface. 
 One can then state: 
 
 THEOREM III 
 
 In order for a skew ruled surface to be a BERTRAND surface, it is necessary and 
sufficient that the normal curvature and geodesic torsion of its line of striction verify a 
linear relation with constant coefficients, the first and third of which are either both non-
zero or both zero, and in that case, the second one will non-zero. 
 
 It should be noted that in the case where the line of striction C of a BERTRAND 
surface R is a not a line of curvature, one can deduce from the relation (4.2) that the 
normal curvature κn and the geodesic torsion σg of the curve C must satisfy, which can be 
written: 
  sin ω1 (1 – β κn) = β1 cos ω1 σg , 
 
in which β1 ≠ 0, sin ω1 ≠ 0, that one has: 
 

(4.5)    sin ω1 = 
2 2

1

2 2 2
1 1(1 )

g

n g

β σ
β κ β σ− +

. 

 
 Moreover, from the second formula (3.8), the geodesic torsion of the line of striction 
C1 of the surface R1 that constitutes a BERTRAND pair, along with R, will be coupled 
with κn , σg by the relation: 

(4.6)    σ1g = 
2 2 2

1 1(1 )
g

n g

σ
β κ β σ− +

. 
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 One immediately deduces from the two relations (4.5) and (4.6) that the geodesic 
torsions σg , σ1g of the lines of striction of the surfaces R, R1, resp., at the points that are 
situated on the same generator of the surface that is generated by the common central 
normal to the two surfaces will verify the relation: 
 

(4.7)     σg σ1g = 
2

1
2

1

sin ω
β

. 

 
 REMARK. – From a known theorem ([6], pp. 143), the lines of striction of two skew 
ruled surfaces R, R1 that constitute a BERTRAND pair are geodesics of those surfaces in 
the particular case where those curves are also isogonal trajectories of the generators of 
the two surfaces, or (what amounts to the same thing) in the case where the two surfaces 
are surfaces of constant striction.  The common central normal to two surfaces at each 
pair of homologous points of their lines of striction will necessarily be the common 
principal normal to those curves at the same points then.  Hence, in that case, the lines of 
striction of two surfaces will constitute a pair of BERTRAND curves, and the relation 
(4.7) will reduce to the relation that (as is known [6], pp. 35) is verified by the torsion of 
the curves of such a pair at their points that are situated along the same generator of the 
surface that is generated by the common principal normals of those curves. 
 
 
 5. – If the lines of striction C, C1 of a pair of BERTRAND surfaces R, R1, resp., are 
not lines of curvature of those surfaces then, as we saw in the preceding paragraph, their 
normal curvatures κn , κ1n, resp., and geodesic torsions σg , σ1g, resp., must satisfy two 
relations of the form (4.2) and (4.3), in which the constants β1, ω1 that enter into them 
will be the values of the parameters β, ω, resp., that are included in equation (2.7) for the 
set (N) associated to R, which corresponds to the surface R1 . 
 Moreover, if R* is a surface of that set that corresponds to the values β *, ω* of the 
parameters β, ω, resp., then, from (3.8), the normal curvature nκ ∗  and the geodesic torsion 

nσ ∗  of the line of striction C* of R* will be coupled with the normal curvature κn and 

geodesic torsion σg of the line of striction C of R by the relations: 
 

(5.1)  nκ ∗  = 
2 2

2 2 2

( )

(1 )
n n g

n g

κ β κ σ
β κ β σ

∗

∗ ∗

− +
− +

,  gσ ∗ = 
2 2 2(1 )
g

n g

σ
β κ β σ∗ ∗− +

. 

 
 The elimination of κn , σg from the relations (5.1) and (4.2) leads to the relation: 
 
(5.2)  sin ω1 {(β *2 – β *β1)

2 2( )n gκ σ+ + (2β * − β1) nκ ∗  + 1} – β1 cos gσ ∗ = 0, 

 
which must be satisfied by the normal curvature and the geodesic torsion of the line of 
striction of R* in the case envisioned.  That relation will reduce to the relation (4.2) or 
(4.3) when one sets β * = 0 or β * = β1 , respectively. 
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 On the other hand, if the normal curvature and the geodesic torsion of the line of 
striction C* of a skew ruled surface R* verify a relation of the form (5.2) and one has β1 ≠ 
0, sin ω1 ≠ 0, then it will result from that relation, which can be written: 
 

sin ω1 
2 2

2 2 2

( )

(1 )
n n g

n g

κ β κ σ
β κ β σ

∗ ∗

∗ ∗ ∗ ∗

+ +
− +

 + cos ω1 2 2 2(1 )
g

n g

σ
β κ β σ

∗

∗ ∗ ∗ ∗− +
= 1

1

sinω
β

, 

 
when one recalls (3.6), that the set (N) that is associated with the surface R* will contain a 
BERTRAND surface, since the normal curvature and geodesic torsion of the line of 
striction verify a relation of the form (4.2), or (what amounts to the same thing) the 
central normals to R* are the common central normals to a pair of BERTRAND surfaces. 
 On the hand, if the normal curvature and geodesic torsion of the line of striction of a 
skew ruled surface verify a relation of the form (5.3), where the second and fourth of the 
constant coefficients A, B¸ C, D that enter into it are non-zero, and if one considers the 
relations: 

(5.4)  β *2 – β *β1 = 
A

D
, 2β * − β1 =

B

D
,  1

1
1

cos

sin

ωβ
ω

= − C

D
, 

 
then upon eliminating β1 from the first two, one will arrive at the relation: 
 

Dβ *2 – Bβ * + A = 0. 
 
 Now, if 4AD – B2 ≤ 0 then one can associate two real values of β1 , cot ω1 with each 
(real) root of the polynomial Dβ *2 – Bβ * + A with the aid of the last two relations in 
(5.4), such that if one replaces β1, cot ω1 in it with those values and β * with the root 
considered then the relation (5.2) will reduce to the relation (5.3).  As we have seen 
already, that will prove that the central normals to R* are the common central normals of 
a pair of BERTRAND surfaces. 
 One can then formulate: 
 
 THEOREM IV 
 
 In order for the central normals to a real skew ruled surface whose line of striction is 
not a line of curvature to be the common central normals to a pair of real BERTRAND 
surfaces, it is necessary and sufficient that the normal curvature and geodesic torsion of 
its line of striction should verify a second-degree algebraic relation of the form (5.3) such 
that the coefficients A, B, C, D that enter into it are constants for which one has 4AD – B2 
≤ 0, while B and D are non-zero. 
 
 One should note that it would result from the preceding considerations that the 
common central normals to a pair of BERTRAND surfaces are, at the same time, the 
common central normals to a second pair of surfaces of that type that will not coincide 
with the first one, in general. 
 Furthermore, if one takes into account the fact that the line of striction C* of the 
surface considered R* of the set (N) that is associated with R is an orthogonal trajectory 
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that is chosen at random from the generators of the surface Rn that is generated by the 
central normals to R, one will deduce from the relation (5.2) and the final remark in 
paragraph 1 that when R is a BERTRAND surface whose line of striction C is not a line 
of curvature and the fact that one chooses C to be a director curve on the surface Rn , that 
the geodesic curvature and the geodesic torsion gκ ′ , gσ ′  of that orthogonal trajectory of 

the generators of Rn will verify a relation of the form: 
 
(5.5)   A {(β 2 – β1 β) 2 2( )g gκ σ′ ′+ + (2β – β1) gκ ′ + 1} + Bβ1 gσ ′ = 0, 

 
and the coefficients A, B, β1, β that figure in it are constants, the first three of which are 
the same for all of those curves, where the first and third ones are non-zero and the fourth 
one varies from one of those curves to another. 
 One will then have: 
 
 THEOREM V 
 
 The geodesic curvature and geodesic torsion of each orthogonal trajectory to the 
generators of the surface Rn that is generated by the common central normals to a pair of 
Bertrand surfaces whose lines of striction are not lines of curvature will verify a second-
degree algebraic relation of the form: 
 
(5.6)    2 2( )g g g gA B C Dκ σ κ σ′ ′ ′ ′ ′ ′ ′+ + + + = 0 

 
with coefficients that are constant on it, but vary from one of the curves to another.  That 
relation must be linear along the line of striction of each of the surfaces whose common 
central normals are the generators of the surface. 
 
 One deduces from that theorem, combined with the fact that common principal 
normals of a pair of BERTRAND curves are (as one will easily see) the common central 
normals to ∞1 pairs of BERTRAND surfaces, that the geodesic curvature and geodesic 
torsion of each orthogonal trajectory to the generators of the surface that is generated by 
the common principal normals of a pair of BERTRAND surfaces will verify a second-
degree algebraic relation of the form (5.6) with coefficients that are constants on them, 
but which will vary from one of those curves to another.  That relation on each curve of 
the pair reduces to the linear relation that is verified by the curvature and torsion of that 
curve. 
 
 
 6. – Now suppose that the line of striction C of the surface considered R is an 
asymptotic line of that surface, and consequently, that one will have: 
 
(6.1)     κn = 0 
at each point of C. 
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 In that case, the curve C will be a geodesic of the surface Rn that is generated by the 
central normals to R, since the surfaces R¸ Rn will cut at a right angle along that curve.  
The central normals to R will also be the binormals to the curve C. 
 In addition, in that case, formulas (3.8), which express the normal curvature κ1n and 
the geodesic torsion σ1g of the line of striction C1 of a surface R1 of the set (N) that is 
associated with R as functions of the normal curvature κn and the geodesic torsion σg of 
the line of striction C of R will become: 
 

(6.2)    κ1n = − 
2

1

2 2
11

g

g

β σ
β σ+

, σ1g = 
2 2

11
g

g

σ
β σ+

, 

by virtue of (6.1). 
 Upon eliminating σg from these two relations, one will deduce that the normal 
curvature κ1n and the geodesic torsion σ1g of the line of striction C1 of a surface R1 of the 
surface (N) that is associated with the surface R when the central normals of R are the 
binormals of its line of striction C must verify a relation of the form: 
 
(6.3)     2 2

1 1 1( )n gβ κ σ+ + κ1n = 0, 

 
and, from (2.8), the coefficient β1 that enters into it will be equal to the absolute value of 
the constant distance between two points of the curves C, C1 that are situated on the same 
central normal to R. 
 On the other hand, the central normals to a skew ruled surface R1 are the binormals to 
a skew curve when the normal curvature and the geodesic torsion of its line of striction 
C1 verify a relation of the form (6.3). 
 Indeed, it will result from this relation, with the aid of the first formula in (3.8), that 
the set (N) that is associated with the surface R1 will contain a surface R whose line of 
striction is an asymptotic line.  Consequently, the common central normals to the surface 
R, R1 are the binormals to that curve. 
 One then has: 
 
 THEOREM VI 
 
 In order for the central normals of a skew ruled surface to be the binormals of a skew 
curve, it is necessary and sufficient that the normal curvature and geodesic torsion of its 
line of striction will verify a second-degree algebraic relation of the form (6.3), and the 
single coefficient that enters into it will be a constant. 
 
 If one replaces κ1n , σ1g with the values as functions of the fundamental invariants of a 
skew ruled surface κ1 , σ1, ϕ1 in the condition (6.3), which is, from Theorem VI, 
necessary and sufficient for that surface to enjoy the indicated property, then that 
condition will assume the form: 
 

2 2
1 1 1( )n gβ κ σ+ + κ1 cos ϕ1 − σ1 sin ϕ1 = 0, 
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and it was given in that form by E. KRUPPA ([4], pp. 165). 
 Furthermore, from what was presented in the final remark in paragraph 1, the normal 
curvature κ1n and the geodesic torsion σ1g of the line of striction C1 of the surface R1 are 
equal to the geodesic curvature and geodesic torsion 1gκ ′ , 1gσ ′ , respectively, of that curve, 

when it is considered to be a curve that is traced on the surface Rn that is generated by the 
common central normals of the surfaces R, R1 .  From (6.3), 1gκ ′ , 1gσ ′  must then verify 

the relation: 
(6.4)    2 2

1 1 1 1( )n g gβ κ σ κ′ ′ ′+ + = 0.  

 
 However, R1 is a surface of the set (N) that is associated with R that is chosen at 
random.  Consequently, its line of striction C1 will be an orthogonal trajectory to the 
generators of the surface Rn that is chosen at random.  In addition, from Theorem I, each 
orthogonal trajectory of the generators of the surface that is generated by the binormals to 
a skew curve will be a line of striction of the ∞1 skew ruled surfaces that admit the 
binormals to that curve as their central normals.  One can then state: 
 
 THEOREM VII 
 
 The geodesic curvature and geodesic torsion of each orthogonal trajectory of the 
generators of the surface that is generated by the binormals of a skew curve C verify a 
second-degree algebraic relation of the form (6.4), and the single coefficient that enters 
into it is a constant whose absolute value is equal to the constant distance between the 
two points of that trajectory and the curve C that is situated along the same generator of 
the surface. 
 
 If one takes into account the characteristic property of MANNHEIM curves that the 
principal normals of a curve of that type C1 are binormals of another skew curve C in that 
theorem and the fact that the curve C1 is an asymptotic line of the surface that is 
generated by its principal normals then one will deduce that the geodesic curvature and 
geodesic torsion of each orthogonal trajectory to the generators of the surface that is 
generated by the principal normals of a MANNHEIM curve C1 verify a second-degree 
algebraic relation of the form (6.4), and the single coefficient that figures in it will be 
equal in absolute value to the constant distance between the two points of that trajectory 
and the curve whose binormals are the principal normals of the curve C1 that is situated 
on the same generator of the surface.  That relation will reduce on the curve C1 to the 
relation that is verified by the curvature and the torsion of that curve. 
 
 
 7. – Now consider the developable surface Rd that is tangent to the surface considered 
R all along its line of striction C. 
 The generators of the surface Rd are the tangents to the surface R at the points of the 
curve C that are conjugate to the tangents to R at those same points, and as is known ([2], 
pp. 189), the generator of that surface that issues from the running point K (u) of C is 
parallel to the vector: 
(7.1)     d = e zσ κ+ , 
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in which κ, σ are the curvature and torsion of R on its generator that issues from the point 
K. 
 If one lets ψ denote the angle ( , )t d , in which t  is the unit vector (1.4) that is 
parallel to the tangent to C at K then, by virtue of (1.4) and (7.1), one will have: 
 

  cos ψ = 
2 2

sin cosκ ϕ σ ϕ
κ σ

+
+

. 

 
 One will quickly deduce from that formula, which will take on the form: 
 

(7.2)    cos ψ = 
2 2

g

n g

σ

κ σ+
 

 
with the aid of (1.5), that in order for the line of striction of a skew ruled surface R to be 
an isogonal trajectory of the generators of the developable surface Rd that is tangent to R 
all along the curve C, it is necessary and sufficient that the normal curvature and the 
geodesic torsion of that curve must verify a relation of the form: 
 
(7.3)    A κn + B σg = 0, 
 
and the coefficients A, B that enter into it will be constants, at least one of which is non-
zero.  One can then distinguish three cases according to whether one has A = 0, B ≠ 0, or 
A ≠ 0, B = 0, or A ≠ 0, B ≠ 0. 
 If A = 0, B ≠ 0 then the line of striction C of R will be a line of curvature, since one 
has σg = 0 at each point of C.  In this case, the surface Rn that is generated by the central 
normals to R is developable, and the orthogonal trajectories to the generators of Rn are 
lines of curvature of that surface.  Consequently, their geodesic torsion will be 
everywhere zero. 
 If A ≠ 0, B = 0 then the line of striction C of R will be an asymptotic line of that 
surface, and this case was discussed in the preceding paragraph. 
 Finally, if A ≠ 0, B ≠ 0 then upon eliminating κn , σg from the relation (7.3) and the 
two relations (3.8) that are verified by the normal curvatures κn , κ1n and the geodesic 
torsions σg , σ1g  of the line of striction C of R and the line of striction C1 of a surface R1 
of the set (N) that is associated with R, resp., then one will deduce that the normal 
curvature κ1n and the geodesic torsion σ1g of the curve C1 must verify the relation: 
 
(7.4)    2 2

1 1 1( )n gAβ κ σ+ + A κ1n + B σ1g = 0, 

 
in which β1 is a constant that is, from (2.8), equal in absolute to the constant distance 
between the two points on the curves C, C1 that are situated along the same common 
central normal to the surface R, R1, resp. 
 The central normals to the surface R are, at the same time, the normals to the 
developable surface Rd that is tangent to R along its line of striction C.  Furthermore, 
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from Theorem I, an isogonal trajectory of the generators of a developable surface is the 
line of striction of ∞1 skew ruled surfaces that admit the normals to the surface at the 
points of that curve as central normals. 
 That being the case, one will deduce from the relation (7.4) that the normal curvature 
κn  and the geodesic torsion σg of the line of striction of a skew ruled surface must verify 
a relations of the form: 
(7.5)    2 2

1 ( )n gA κ σ+ + B1κn + C1 σg = 0, 

 
and the coefficients A1 , B1 , C1 that enter into it are constants such that at least the last 
two are non-zero when the central normals to the surface are the normals to a developable 
surface at the points of an isogonal (but not orthogonal) trajectory to its generators. 
 On the other hand, the condition (7.5) that is verified by the normal curvature and the 
geodesic torsion of the line of striction of a skew ruled surface R is sufficient for the 
central normals to the surface to be the normals to a developable surface at the points of 
an isogonal trajectory of its generators, because, with the aid of formulas (3.8), one will 
deduce from that relation, which will take on the form: 
 

2 2
1{ ( )n gA β κ σ+ + κn} + B σg = 0 

 
when one sets B1 = A, A1 = B1 β1, C1 = B B1, that the normal curvature and geodesic 
torsion of the line of striction of a surface of the set (N) that is associated with R will 
verify a relation of the form (7.3).  That surface will coincide with R if A1 = 0. 
 One can then state: 
 
 THEOREM VIII 
 
 In order for the central normals to a skew ruled surface to be the normals to a 
developable surface at the points of an isogonal (but not orthogonal) trajectory to its 
generators, it is necessary and sufficient that the normal curvature and the geodesic 
torsion of its line of striction should verify a second-degree algebraic relation of the form 
(7.5), and that the coefficients that enter into it must be constants, at least the last two of 
which are non-zero. 
 
 In addition, from the final remark in paragraph 1, the geodesic curvature and the 
geodesic torsion 1gκ ′ , 1gσ ′  of the line of striction C1 of a surface R1 of the set (N) that is 

associated with R, when it is considered to be a curve that is traced on the surface Rn that 
is generated by the central normals to R, must verify the relation: 
 
(7.6)    2 2

1 1 1( )n g g gA A Bβ κ σ κ σ′ ′ ′ ′+ + +  = 0 

 
in the case envisioned, to which one will arrive upon replacing κ1n, σ1g with 1gκ ′ , 1gσ ′ , 

respectively, in the relation (7.4).  The coefficients A, B that enter into the relation (7.6) 
are the coefficients of the relation (7.3), while β1 is a constant whose absolute value is, 
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from (2.8), equal to the constant distance between two points of the curve C1 and the line 
of striction C of R that is situated along the same generator of the surface Rn . 
 That fact, when combined with the fact that, from Theorem I, each orthogonal 
trajectory of the generators of the surface Rn that is generated by the normals to a 
developable surface at the points of an isogonal trajectory of its generators is the line of 
striction of ∞1 skew ruled surfaces that admit the generators of Rn as central normals, will 
permit us to formulate: 
 
 THEOREM IX 
 
 The geodesic curvature and geodesic torsion of each orthogonal trajectory to the 
generators of the surface that is generated by the normals to a developable surface at the 
points of an isogonal (but not orthogonal) trajectory C to its generators verify a second-
degree algebraic relation of the form (7.6) with coefficients that are constant on it.  The 
first two of the coefficients A, B, β1 that enter into that relation, both of which are non-
zero, are the same on all of those curves, while the third one will vary from one to 
another.  That relation reduces along the curve C to the linear and homogeneous relation 
that is verified by the geodesic curvature and geodesic torsion of that curve. 
 
 If one takes into account the fact that the principal normals to a cylindrical helix are 
the normals along that curve to the cylindrical surface whose helix is a geodesic then one 
can deduce from the theorem that the geodesic curvature and geodesic torsion of each 
orthogonal trajectory to the generators of the surface that is generated by the principal 
normals to a cylindrical helix are coupled by a second-degree algebraic relation of the 
form (7.6), and the coefficients A, B, β that enter into its are constant on it.  The 
coefficient β varies from one of those curves to another, while the first two coefficients 
are invariable; the latter are the coefficients that enter into the linear and homogeneous 
relation that is verified by the curvature and torsion of the helix. 
 
 
 8. – Let R1 be a surface of the set (N) that is associated with the surface considered R 
that corresponds to the values β1, ω1 of the parameters β, ω, resp., that enter into equation 
(2.7) of that set. 
 The normal curvature κ1n and the geodesic torsion σ1g of the line of striction C1 of R1 
are the functions (3.8) of the normal curvature κn and the geodesic torsion σg of the line 
of striction C of R. 
 Upon eliminating β1 from the two relations (3.8), one will easily arrive at the relation: 
 

(8.1)    1

2 2
1 1

g

n g

σ
κ σ+

= 
2 2

g

n g

σ
κ σ+

, 

 

which shows that the ratio 
2 2
n g

g

κ σ
σ
+

 is the same for all surfaces of the set (N) that is 

associated with R. 
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 The value of that ratio at the running point K (u) of the line of striction C of R is equal 
to the distribution parameter pn of the surface Rn , along its generator that issues from the 
point K (u) of the curve C, which is: 
 

pn = 
2

( )n n

n

ρ ∧ ×ɺ ɺ

ɺ
. 

 
 If one replaces ρɺ , nɺ  with their values from (1.4) and (1.2) in that formula then it will 
take on the form: 

pn = 2 2

sin cosκ ϕ σ ϕ
κ σ

+
+

, 

or finally, with the aid of (1.5) 

(8.2)     pn = 
2 2

g

n g

σ
κ σ+

. 

 
 One immediately deduces from that formula that in order for the surface Rn that is 
generated by the central normals of a ruled surface to be a surface with a constant 
distribution parameter, it is necessary and sufficient that one must have: 
 
(8.3)     2 2( )n ga κ σ+ − σg = 0, 

in which a is a constant. 
 One will then have: 
 
 THEOREM X 
 
 In order for the surface that is generated by the central normals of a skew ruled 
surface R to be a surface with a constant distribution parameter, it is necessary and 
sufficient that the normal curvature and the geodesic torsion of the line of striction of R 
should verify a second-degree algebraic relation of the form (8.3), and the single 
coefficient that enters into it should be equal to the constant distribution parameter of 
that surface. 
 
 Furthermore, if one takes into account the final remark in paragraph 1 then one will 
deduce immediately from the two relations (8.1) and (8.3) that the geodesic curvature and 
geodesic torsion 1gκ ′ , 1gσ ′  of the line of striction C1 of a surface R1 of the set (N) that is 

associated with R, when considered to be a curve that is traced on the surface Rn that is 
generated by the central normals of R, will verify the relation: 
 
(8.4)     2 2

1 1 1( )n g ga κ σ σ′ ′ ′+ −  = 0, 

 
in which a is a constant when Rn is a surface with a constant distribution parameter that is 
equal to a. 



Pylarinos – On the differential geometry of ruled surfaces. 20 

 That realization, combined with the fact that, from Theorem I, the generators of a 
ruled surface with a constant distribution parameter are the common central normals to 
∞2 skew ruled surfaces, will permit one to formulate: 
 
 
 THEOREM XI 
 
 The geodesics curvature and the geodesic torsion of each orthogonal trajectory of the 
generators of a ruled surface with a constant distribution parameter verify a second-
degree algebraic relation of the form (8.4), and the single coefficient that enters into it is 
equal to the constant distribution parameter of the surface. 
 
 
 9. – Finally, suppose that the line of striction C of the surface R is a curve on that 
surface whose normal curvature and geodesic torsion are both constants: 
 
(9.1)     kn = c1 , σg = c2 , 
 
in which c1 , c2 are constants, and at least the second one is non-zero. 
 In that case, from what was said in paragraph 7, the curve C will be an isogonal 
trajectory of the generators of the developable surface Rd that is tangent to R along that 
curve. 
 In addition, from what was said in paragraph 6, the central normals to R are binormals 
of a skew curve C1 : viz., the line of striction of the surface R1 of the set (N) that is 

associated with R, which corresponds to the values β1 = 2
2 2
1 2

c

c c+
, ω1 of the parameters β, 

ω, resp., that figure in equation (2.7) of that ensemble. 
 Moreover, in that case, thanks to (9.1), the surface Rn that is generated by the central 
normals to R will be a surface with a constant distribution parameter: 
 

(9.2)     pn = 2
2 2
1 2

c

c c+
 ≠ 0.  

 
 That being the case, from Theorem XI, the geodesic curvature and geodesic torsion 

1gκ ′ , 1gσ ′  of the curve C1 whose binormals are the central normals to R, when considered 

to be a curve on the surface Rn , must verify the relation: 
 
(9.3)     2 2

1 1 1( )n g g gp κ σ σ′ ′ ′+ − = 0. 

 
 However, the curve C1 is necessarily a geodesic on the surface Rn that is generated by 
its binormals.  One will then have 1gκ ′ = 0, 1gσ ′ = σ1, in which σ1 is the torsion of that 

curve, and one will deduce from the relation (9.3) that one must have either 1gσ ′ = σ1 = 0 

or 1gσ ′ = σ1 = 1 np ≠ 0. 
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 If σ1 = 0 then the curve C1 will be a plane curve, and the surface Rn that is generated 
by its binormals will be a cylindrical surface, which is excluded by the hypothesis that 
was made for the distribution parameter of R. 
 Hence, in the case envisioned, the central normals to the surface R are the binormals 
of a skew curve with constant torsion: 
 

(9.4)    σ1 =
1

np
= 

2 2
1 2

2

c c

c

+
. 

 
 On the other hand, the surface Rb that is generated by the binormals of a skew curve C 
with constant torsion c is (as one knows, [1], pp. 104) a skew surface with a constant 
distribution parameter pn = 1 / c. 
 Now, if one chooses the curve C on the surface Rb to be the director curve and one 
takes into account the fact that the geodesic curvature and geodesic torsion of C, when 
considered to be a curve that is traced on Rb , are: 
 
(9.5)    1gκ ′  = 0, 1gσ ′ = σ1 = c, 

 
since C is a geodesic of Rb , with the aid of (3.9) and (9.5), one will get the following 
expressions for the geodesic curvature and geodesic torsion gκ ′ , gσ ′ , resp., of an 

orthogonal trajectory of the generators of the surface Rb : 
 

(9.6)    gκ ′ = − 
2

2 21 c

β σ
β
′

′+
, gσ ′ = 2 21

c

cβ ′+
, 

 
which shows that gκ ′ , gσ ′  are constants on each orthogonal trajectory of the generators of 

the surface Rb , and the coefficient β′ that enters into formulas (9.6) is constant on each of 
those curves. 
 The preceding considerations permit one to state: 
 
 THEOREM XII 
 
 The geodesic curvature and geodesic torsion of the orthogonal trajectories of the 
generators of a skew ruled surface are not constant on each of the curves, as in the case 
where the generators of the surface are binormals to a skew curve with constant torsion. 
 
 One should note that, from a theorem of X. ANTOMANI ([4], pp. 168), if an 
orthogonal trajectory of the generators of the surface that is generated by the binormals 
to a skew curve C1 is a curve on the surface with constant geodesic curvature then all of 
the orthogonal trajectories of the generators of the surface will necessarily be curves 
with constant geodesic curvature. 
 
 In that case, the curve C1 will necessarily be a curve with constant torsion. 
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 Indeed, C1 is an orthogonal trajectory of the generators of the surface Rb that is 
generated by its binormals, and at the same time, a geodesic of that surface.  Upon letting 

1gκ ′ , 1gσ ′  denote the geodesic curvature and geodesic torsion of C1 , one will have 1gκ ′ = 0, 

1gσ ′ = σ1, in which σ1 is the torsion of that curve. 

 Now, if another orthogonal trajectory C′ of the generators of Rb is a curve with 
constant geodesic curvature: viz., gκ ′ = c′ ≠  0, and one chooses the curve C1 on the 

surface Rb to be the director curve then, from the first formula in (3.9), one will have the 
following expression for the geodesic curvature gκ ′  of the curve C′ : 
 

gκ ′ = − 
2
1
2 2

11

β σ
β σ
′
′+

= const., 

 
which proves that C1 must be a curve with constant torsion in the case envisioned, since 
β′ is a constant on the curve C′. 
 
 It results from that fact, when combined with Theorem XII, that if an orthogonal 
trajectory of the generators of the surface that is generated by the binormals of a skew 
curve is a curve on the surface that has constant geodesic curvature (≠ 0) then the 
geodesic torsion and geodesic curvature of the orthogonal trajectories of the generators 
of the surface will both be constant along each of those curves. 
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