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CHAPTER I 
 

FLUID SCHEMAS IN RELATIVISTIC HYDRODYNAMICS  
 

_____________ 
 
 

§ 1. GENERALITIES ON THE RELATIVISTIC DYNAMICS OF FLU IDS 
 

 1. The geometric context. – The geometric context of relativistic fluid mechanics is 
a differentiable manifold V of dimension 4, class C ∞, on which one is given a pseudo-
Riemannian structure g of signature + − − − .  The geometry of the space-time (V, g) is 
that of the Riemannian connection that is canonically associated with g. 
 The metric that is defined by g is said to have normal hyperbolic type.  It introduces 
the structure of a flat Minkowski space-time on each tangent vector space Tx (V).  In local 
coordinates (xα), one has: 
 
(1.1)     g = gαβ dxα ⊗ dxβ  (α, β = 0, 1, 2, 3). 
 
The tensor gαβ , which is called the fundamental tensor of gravitation, is required to 
verify a system of second-order partial differential equations that generalizes the Laplace-
Poisson equations and gives rise to the conservation conditions.  Those equations are the 
ten Einstein equations: 
 
(1.2)     Sαβ = χ Tαβ , 
 
in which Sαβ depends upon only the Riemannian structure g of space-time, Tαβ  has a 
purely-mechanical significance, and χ is a constant factor. 
 The tensor Tαβ , which is called the impulse-energy tensor of the fluid, must describe, 
at best, the energy distribution in space-time.  The tensor Sαβ is restricted by the 
following two conditions: 
 
 1. The Sαβ depend upon only the gαβ and their derivatives of the first two orders, and 
they are linear in the second-order derivatives. 
 
 2. Sαβ is conservative; i.e.: 
 
(1.3)     Sα

α β∇  = 0. 

 
 One can show (1) that one necessarily has: 
 

Sαβ = h [Rαβ − 1
2 (R + k) gαβ], 

                                                
 (1) E. CARTAN, J. Math. pures et appliquées 1 (1922), 141-203.  
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in which Rαβ is the Ricci curvature, R is the scalar curvature of (V, g), and h and k are two 
arbitrary constants.  k is the cosmological constant, which plays no role in the description 
of fluids; one can then suppose that k = 0.  On the other hand, upon suppressing the 
extraneous factor h, one can take the left-hand side of the Einstein equations to be: 
 
(1.4)    Sαβ = Rαβ − 1

2 R gαβ , 

 
and S will be called the Einstein tensor. 
 Since the Einstein tensor Sαβ is conservative, the same thing will be true for the 
impulse-energy tensor Tαβ .  The equations: 
 
(1.5)     Tαβ

α∇ = 0 

 
then express the conservation of impulse energy and define the evolution of the fluid. 
 
 
 2. The impulse-energy tensor. – In any relativistic theory of fluids, the first step 
consists of choosing an expression for the impulse-energy tensor Tαβ .  Each expression 
for Tαβ defines a fluid schema.  If one wishes to satisfy the Einstein equations then Tαβ 
must be symmetric.  However, in order for Tαβ to be able to describe a physical fluid, it is 
necessary that there must exist a unit vector field uα that is time-like: 
 
(2.1)     gαβ u

α uβ = + 1, 
 
and for which the scalar Tαβ u

α uβ is positive.  uα is called the unit velocity vector of the 
fluid, and its trajectories define streamlines. 
 Indeed, real fluids are endowed with various properties.  The forces of internal 
constraint that play a fundamental role in the dynamical study translate into the proper 
stress tensor.  Caloric phenomena introduce a scalar θ that is called the proper 
temperature field.  The electromagnetic properties can be represented by two 
antisymmetric tensor fields Hαβ , Gαβ , as one knows.  On the other hand, it is appropriate 
to study the thermodynamic evolution of the fluid.  These various properties can be 
envisioned in a geometric decomposition of the impulse-energy tensor. 
 One is then led to put Tαβ into the form: 
 
(2.2)    Tαβ = ρ uα uβ – παβ – Qαβ + ταβ , 
 
in which ρ is a positive scalar that represents the proper density of ponderable matter-
energy, παβ , the proper pressures, Qαβ , the thermal exchanges due to conduction, and ταβ 
is the electromagnetic energy tensor.  If one neglects some of the properties then the 
corresponding terms will not appear in the decomposition.  Similarly, one can introduce 
some new terms in order to study new properties. 
 Each expression for Tαβ will then correspond to a fluid schema.  In each case, the 
evolution of the fluid will be defined by the conservation equations (1.5), and when one 
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takes the unit vector character of uα into account, they will lead to the following 
equations: 
(2.3)     uβ ∇α T αβ = 0 , 
 
(2.4)    (gβ

ρ  − uβ uρ) ∇α T αρ = 0 . 

 
(2.3) is called the continuity equation, and (2.4) constitutes the differential system for the 
streamlines. 
 One might possibly add some other equations to those ones, such as the equations of 
thermodynamics and the equations of the electromagnetic field.  In that way, one will 
obtain the fundamental system of equations for the schema considered.  Therefore, the 
pure fluid schema has been the subject of numerous studies that have become classical, 
and in particular, the ones by L. P. Eisenhart and A. Lichnerowicz.  The thermodynamic 
fluid schema was studied by C. Eckart and the author in his thesis in 1954.  The 
electromagnetic field schema was the subject of the work by A. Lichnerowicz, and those 
of the author dating back to 1955, which have since provoked numerous papers, and 
notably those of G. Pichon.  He was led, in a special case, to relativistic 
magnetohydrodynamics, which was the subject under study in the very beautiful work of 
Y. Choquet-Bruhat and A. Lichnerowicz. 
 The mathematical study of some of those schemas constitutes the topic of this 
conference. 
 
 
 3. Proper frame. – One calls an orthonormal frame (Vλ′) at a point x in space-time 
(V4 , g) a proper frame when the first vector V0′ coincides with the unit velocity vector u 
and the other three vectors Vi′ define the space that is associated with the time direction u. 
 One can refer the space-time in the neighborhood of any point to a proper frame field 
that one supposes to be differentiable (but not necessarily integrable).  The world-metric 
will then take the canonical form: 
 
(3.1)  g = ηλ′µ′ ωλ′ ⊗ ωµ′ = ω0′ ⊗ ω0′ − ω1′ ⊗ ω1′ − ω2′ ⊗ ω2′ − ω3′ ⊗ ω3′, 
 
in which ωλ′ are the dual 1-forms to the vector fields Vλ′ . Hence, <ωλ′, Vµ′ > = λ

µδ ′
′ , where 

λ
µδ ′

′  is the Kronecker symbol, which is equal to 1 when λ′ = µ′ and 0 when λ′ ≠ µ′.  The 

ωλ′ thus constitute four linearly-independent Pfaff forms. 
 The consideration of the proper frame can be quite useful.  Indeed, since the tangent 
vector space Tx (V) has the structure of Minkowski space-time, the proper frame Vλ′  must 
be identified with a local Galilean frame in which the fluid has zero velocity.  If one 
knows the components of a tensor t relative to the proper frame then its components in an 
arbitrary frame (eα) can be deduced from the latter by known transformation formulas. 
 Indeed, if ( )Aλ

α
′  is the matrix of the passage from the frame (eα) to the frame (Vλ′) and 

( )Aα
λ ′  is the inverse matrix then one will have: 
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(3.2)    0Aα
′  = uα,  iAα

′  = ( )iV α
′ , 

 
(3.2′)    0Aα

′  = uα
 ,  iA α

′  = − ( )iV α
′ . 

 
If t is a tensor of order 2 then its components tαβ in the frame (eα) can be deduced from its 
components tλ′µ′ in the proper frame by the formulas: 
 
(3.3)     tαβ = A A tλ µ

α β λ µ
′ ′

′ ′  . 

 
In particular, one has: 
 
(3.4)   gαβ = uα uβ – V(1′)α V(1′)β − V(2′)α V(2′)β − V(3′)α V(3′)β . 
 
 Hence, in order to determine the expression for the impulse-energy tensor of a pure 
fluid, one must first refer it to the proper frame.  In it, the fluid is characterized by its 
proper matter-energy density ρ and its partial pressure tensor π i′ j′ .  Its impulse-energy 
tensor has components: 

T0′0′ = ρ,  Ti′ j′ = − π i′ j′ 
 
in the proper frame.  Now refer space-time to local coordinates xα, so one will have ωλ′ = 
A dxλ α

α
′ , and an application of formulas (3.3) will give: 

 
(3.5)     Tαβ = ρ uα uβ – παβ , 
 
in which παβ = 

,

i j
i j

i j

A Aα βπ ′ ′
′ ′

′ ′
∑  satisfy the identities: 

 
(3.6)     παβ u

α = 0. 
 
One sees that in the case of a pure fluid, the impulse-energy tensor decomposes relative 
to uα into a temporal component ρ uα uβ and a spatial component παβ  . 
 
 Definition.  – One says that the fluid is perfect if the pressure quadric in the proper 
frame is a sphere ; i.e., if π i′ j′ = p δ i′ j′ , where p is called the scalar pressure of the fluid. 
 
 For a perfect fluid, one has παβ =

i j

i

p A Aα β
′ ′

′
∑ , so upon taking (3.2) and (3.4) into 

account, παβ = p (gαβ – uα uβ) .  Therefore, the impulse-energy tensor of a perfect will be 
given by: 
 
(3.7)    Tαβ = (ρ + p) uα uβ − p gαβ . 
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 Call the orthonormal frame (Wλ) at x such that each of its vectors Wλ is a proper 
vector of the matrix (Rαβ) with respect to the matrix (gαβ) the principal frame.  The 
directions that are defined by Wλ are nothing but the principal Ricci directions.  Now, by 
virtue of the Einstein equations, the Wλ are also proper vectors of the matrix (Tαβ) relative 
to the matrix (gαβ) . 
 One can express the components of Tαβ by starting from the proper values and proper 
vectors in the form: 

(3.8)    Tαβ = 
3

0 (0) (0) ( ) ( )
1

i i i
i

s W W s W Wα β α β
=

−∑ . 

 
One sees that, in general, the proper frame of a charged thermodynamic fluid is different 
from the principal frame, except in the case of a pure fluid, where: 
 

Tαβ = ( ) ( )
,

i j i i
i j

u u V Vα β α βρ π ′ ′ ′ ′
′ ′

−∑ , 

 
for which ρ = s0 , and one can perform a rotation of the spatial 3-plane in such a manner 
that Vi′ goes to Wi′ .  si will then be the proper values of the matrix (π i′ j′) . 
 
 

§ 2. THE THERMODYNAMIC FLUID  
 

 4. The perfect fluid and thermodynamic variables. – The impulse-energy tensor 
of a perfect fluid that is not a heat conductor is: 
 
(4.1)    Tαβ = (ρ + p) uα uβ – p gαβ , 
 
It is clear that uα is a time-like proper vector, and ρ is the corresponding proper value of 
(Tαβ) .  Any proper frame of that fluid will coincide with a principal frame that is 
indeterminate, due to the multiplicity of the triple proper value – p . 
 With an eye towards the energetic study, one decomposes the proper density ρ into 
the sum of a matter density r and a kinetic energy density (densité d’énergie vitesse) rε, 
in which ε is the specific internal energy: 
 
(4.2)     ρ = r (1 + ε) . 
 
One is then led to introduce the index f of a fluid, which is defined by: 
 

(4.3)     f = 1 + ε + 
p

r
. 

 
In these formulas, and in what follows, the physical units have been chosen in such a 
manner that the limiting velocity c is equal to 1.  Otherwise, one must replace ε, p with 
ε c−2, p c−2. 
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 The impulse-energy tensor for a perfect fluid that is not a heat conductor then takes 
the form: 
 
(4.4)     Tαβ = r f uα uβ – p gαβ . 
 
 From the thermodynamic viewpoint, the proper temperature θ and the proper specific 
entropy S can be defined as in classical hydrodynamics by the relation: 
 
(4.5)     θ dS = dε + p dτ , 
 
in which τ ≠ 1 / r is the specific volume.  Upon taking (4.3) into account, and taking f, s, 
p to be (not independent) thermodynamic variables, one can write (4.5) in the equivalent 
form: 
 
(4.6)     r θ dS = r df – dp . 
 
These relations express the idea that among the variables r, θ, f, S, p, there exist only two 
independent variables, which one often chooses to be f and S or S and p. 
 If one takes f and S to be the independent variables and if one is given p as a function 
of f and S then the relation (4.6) will imply that: 
 

r = 
p

f

∂
∂

, r θ = − 
p

S

∂
∂

. 

 
The first relation defines the equation of state of the fluid in the form: 
 

r = r (f, S), 
 
and the second relation defines the temperature. 
 When one applies the conservation conditions to the impulse-energy tensor (4.4), one 
can infer the continuity equation and the differential system for the streamlines: 
 
(4.7) ∇α (r f uα) – uα ∂α p = 0 , 
 
(4.8) r f uα ∇α uβ – (gαβ − uα uβ) ∂α p = 0. 
 
If one takes (4.6) into account then one can write the continuity equation in the form: 
 
(4.7′) f ∇α (r uα) + r θ uα ∂α S = 0, 
 
from which, one can deduce that: 
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 Theorem: 
 
 For a perfect fluid, saying that matter is conserved is equivalent to saying that the 
entropy is constant along the streamlines; i.e.: 
 

∇α (r uα) = 0  ⇔ uα ∂α S = 0 . 
 
 A fluid such that uα ∂α S = 0 is called adiabatic. 
 Similarly, if one takes the thermodynamic equation into account then the differential 
system for the streamlines can be written: 
 
(4.8′)   f uα ∇α uβ – (gαβ − uα uβ) ∂α f + θ gαβ ∂α S = 0  
 
in terms of the variables f, S. 
 One then deduces that: 
 
 Theorem: 
 
 If the motion of the fluid is isentropic (viz., S = const.) then the differential system for 
the streamlines will reduce to: 

(4.9)    uα ∇α uβ – (gαβ − uα uβ) 
f

f
α∂

 = 0 

 
 We shall show that there exists a principal extremal for the streamlines of such an 
isentropic fluid.  
 
 
 5. Viscous fluids. – In order to characterize the local deformation of the fluid, we 
shall introduce the Lie derivative of the metric tensor g with respect to the unit velocity 
vector u : 

(Lu g)αβ = ∇α uβ + ∇β uα  
and set: 
 
(5.1)    εαβ = 1

2
ρ µ
α βγ γ⋅  (∇ρ uµ + ∇µ uρ) , 

 
in which γαβ is the spatial projector. 
 The laws of stress-deformation are assumed to be linear, so if the medium is isotropic 
then the phenomena that pertain to viscosity will be described by the tensor: 
 
(5.2)     σαβ = Cαβ 

ρµ ερµ , 
 
in which: 
 
(5.3)    Cαβρµ = λ γαβ γρµ + µ (γαρ γβµ + γαµ γβρ) 
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or, if one takes into account that gαβ u
α uβ = 1 then: 

 
(5.3′)    Cαβρµ = λ γαβ gρµ + µ (gαρ gβµ + gαµ gβρ) . 
 
 The impulse-energy tensor of the viscous homogeneous fluid is then given by: 
 
(5.4)   Tαβ = (ρ + p) uα uβ − p gαβ + λ (∇σ uσ ) γαβ + 2µ εαβ  . 
 
That expression was utilized by C. Eckart and G. Pichon.  A. Lichnerowicz proposed 
another expression for εαβ in which the vector Cα = f uα entered into the definition of 
viscosity.  The impulse-energy tensor would then be given by: 
 
(5.5)  Tαβ = (ρ + p − λ ∇ρ C

ρ ) uα uβ − (p − λ ∇ρ C
ρ) gαβ + µ αβε , 

 
with 

2 αβε  = ( )C C C C C C Cλ
α β β α λ α β λ β α∇ + ∇ − ∇ + ∇ . 

 
∇  denotes the covariant derivative for the metric g  = f 2 g. 
 
 
 6. Heat-conducting fluids. – One now takes the exchange of heat by conduction 
into account.  It is defined by a vector qα that is orthogonal to the vector uα.  It is the 
expression for qα and its presence in the impulse-energy tensor that characterizes that 
viewpoint. 
 Eckart chose the tensor: 
 
(9.1)   Tαβ = (ρ + p) uα uβ − p gαβ  + θαβ − (uα qβ

  + uβ qα) . 
 
The equations that govern the evolution of the fluid are given by the conservation 
conditions on the impulse-energy tensor, the conservation of the matter current, and the 
defining equation for qα : 
 ∇α T αβ = 0, 
 
 ∇α (r uα) = 0, 
 
(9.2)   qα = − κ ( g β

α − uα uβ) (∂β θ − θ uρ ∇ρ uβ) , 

 
and a thermodynamic equation. 
 In 1954, the author proposed the impulse-energy tensor: 
 
(9.3)   Tαβ = (ρ + p) uα uβ − p gαβ − (uα qβ

  + uβ qα) , 
 
in which one neglects the viscosity.  qα is defined by: 
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(9.4)    qα = − κ ( g β
α − uα uβ) ∂β θ .  

 
The equations of motion consist of conservation conditions T αβ

α∇ = 0, and the 

thermodynamic equation is replaced by the conduction equation, which generalizes the 
Fourier equation: 
 

(9.5)    ∇α q
α = C uα ∂α θ − 

l

ρ
uα ∂α ρ , 

 
in which C is the specific heat at constant volume, and l is the heat of dilatation of the 
fluid.  Pichon reprised that model and added the viscosity term θαβ . 
 For Landau and Lifschitz, the impulse-energy tensor of a heat-conducting fluid is 
identical to that of a perfect fluid, and the heat current vector qα makes its contribution by 
way of the conservation equation for a certain vector Pα .  They set: 
 
(9.6)     Tαβ = r f uα uβ – p gαβ , 
 
(9.7)     Pα = r uα – qα . 
 
The equations of motion are given by: 

∇α T αβ = 0, 
 

∇α Pα = 0, 
 
to which one adds the defining equation of qα : 
 

(9.8)    qα = − κ θ 2 ( g β
α − uα uβ)

1 G
β θ

+ ∂  
 

, 

 
in which G is the Gibbs function that is defined by: 
 

(9.10)     G = ε + 
p

r
− θ S. 

 
 Those models are justified by physical and kinetic considerations and have the 
advantage that they reduce to the classical, non-relativistic description in the limit.  The 
study of the Cauchy problem shows that the systems of equations that give rise to them 
are mixed and contain a parabolic part that is provided by either the viscosity or the 
definition of the heat current vector qα .  It leads to an infinite speed of propagation. 
 In order to eliminate the difficulty that qα introduces, Cattaneo and Vernotte 
suggested that one should modify Fourier’s hypothesis with a relaxation term.  Kranys 
translated that hypothesis into the language of relativity: 
 
(9.11)    qα + ν uβ ∇β q

α = − κ (gαβ – uα uβ) ∂β θ , 
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The vector qα will no longer be orthogonal to uα then.  Mahjoreb proposed a new theory 
in that same year while adopting the viewpoint of Landau-Lifschitz and that of Cattaneo-
Vernotte-Kranys. 
 
 

§ 3. THE ELECTROMAGNETIC FIELD  
 

 7. Representation of the electromagnetic field. – If an electromagnetic field is 
present then the fluid will be subject to electromagnetic inductions that one can describe 
with the aid of two 2-forms: The electric field-magnetic induction 2-form H and the 
electric induction-magnetic field 2-form G.  One lets *H, *G denote their dual forms in 
the sense of the Riemannian volume element η of space-time.  In components, one has: 
 
(7.1)     (*H)αβ = 1

2 ηαβλµ H λµ, 

 
(7.2)     (*G)αβ = 1

2 ηαβλµ G λµ. 

 
 One calls the vectors that are defined by the 1-forms: 
 
(7.3)   e = iu H, d = iu G, h = iu (*G), b = iu (*H), 
 
in which iu is the interior product by the unit velocity vector u, the electric and magnetic 
fields and inductions, resp.  In components, one has: 
 
(7.4)  eα = uρ Hρα ,      dα = uρ Gρα ,      hα = uρ (*G)ρα ,      bα = uρ (*H)ρα . 
 
Those vectors are orthogonal to uα. 
 Conversely, H, G, *H, *G are expressed as functions of e, d, h, b by the formulas: 
 
(7.5)    H = u ∧ e − *(u ∧ b),   G = u ∧ d − *(u ∧ h), 
 
(7.6)   *H = u ∧ b + *(u ∧ e),  *G = u ∧ h + *(u ∧ d) . 
 
In the last two relations, the + sign comes from the fact that the * will satisfy the relation 
* 2 = εg (− 1)p (n−p) on a Riemannian manifold, in which n = dim V, p = degree of the form, 
and εg is the sign of det g.  One then deduces the following relations, which are given by: 
 
 Hαβ = uα eβ – uβ eα – ηαβλµ uλ bµ, 
 
 Gαβ = uα dβ – uβ dα – ηαβλµ uλ hµ 
in component form. 
 In Maxwell’s theory of electromagnetism, the inductions depend upon the field 
linearly.  In the isotropic case, where the fluid has a dielectric permittivity λ and a 
magnetic permeability µ, one will have: 
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(7.7)     d = λ e, b = µ h .  
 
The two relations (7.5) then give: 
 

(7.8)    G = 
1 1

uH u i H
λµ

µ µ
−+ ∧ ; 

namely, in components: 
 

(7.8′)   Gαβ = 
1 1

Hαβ
λµ

µ µ
−+  (uα uρ Hρβ – uβ u

ρ Hρα) , 

 
which one can put into the form: 

(7.9)     Gαβ = 
1

µ
εαβ 

ρσ Hρσ , 

in which: 
εαβ 

ρσ = g g g gρ σ σ ρ
α β α β− , with g λ

µ = g λ
µ − (1 – λµ) uλ uµ . 

 
 The electromagnetic induction H, G satisfies the Maxwell equations: 
 
(7.10)     dH = 0 
 
(7.11)     δG = J, 
 
in which δ is the codifferential, and J is a 1-form whose associated vector defines the 
electric current.  The equation (7.10) signifies that the 2-form H is locally exact; i.e., that 
there locally exists a 1-form φ such that H = dφ .  φ is called the electromagnetic potential 
vector, so upon remarking that δ 2 = 0, (7.11) will give: 
 
(7.12)     δ J = 0, 
 
which is an equation that expresses the conservation of electric current. 
 In components, equations (7.10), (7.11), (7.12) are written: 
 

1
2 ηαβγδ ∇α Hβγ = 0, 

 
∇α Gαβ = J β, 

 
∇α J α = 0 . 

 
 One decomposes the electric current J into a convection current that is collinear to u 
and a conduction current Γ that is orthogonal to u.  Γ can be defined by Ohm’s law Γ = 

eσ , where σ is the electric conduction of the fluid.  One will then have: 
 
(7.13)     J α = γ uα + σ eα, 
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in which γ is called the charge density. 
 
 
 8. The electromagnetic energy tensor. – Starting from Hαβ , Gαβ , one can construct 
the electromagnetic impulse-energy tensor ταβ whose divergence will give the 
electromagnetic force density that acts upon the fluid.  Upon generalizing a known result 
from the non-inductive case (namely, λ = µ = 1), one will obtain the tensor that 
Minkowski gave: 
 
(8.1)    ταβ = gαβ (Gρσ Hρσ) – Gρα H ρβ . 
 
 In order to interpret that tensor, one must express it with the aid of the vectors e, d, h, 
b .  One gets: 
 
(8.2)  ταβ = (eρ d ρ + hρ b ρ) (uα uβ – 1

2 gαβ) – (eα dβ + hα bβ) + (Pα uβ − uα Qβ) , 

 
in which: 
 
(8.3)   Pα = ηαλµν eλ hµ uν ,  Qα = ηαλµν dλ bµ uν . 
 
Pα is the Poynting vector, and Qα = λµ Pα .  One can see the significance of each group 
of terms in (8.2). 
 ταβ is not symmetric.  One can take the expression for it that Abraham proposed: 
 
(8.4)     ταβ = − (eρ d ρ + hρ b ρ) (uα uβ – 1

2 gαβ) – (eα dβ + hα bβ) + (Pα uβ − uα Qβ) . 

 
One might think of symmetrizing it, but the physical reasons for doing that are somewhat 
obscure. 
 We preserve the expression (8.1).  Upon taking the divergence of that tensor, we will 
have: 
 
(8.5)  ∇α τ αβ  = ∇α Gαρ Hρβ + Gαρ ∇α Hρβ + 1

4 (Gρσ ∇β Hρσ + Hρσ∇β G
ρσ) . 

 
Now, the first group of Maxwell equations can be written: 
 

∇α Hρβ + ∇ρ Hβα + ∇β Hαρ = 0 . 
 
After contracted multiplication with G αρ, one will get: 
 

2 Gαρ ∇α Hρβ = − Gαρ ∇β Hαρ . 
 
Upon substituting that in (8.4) and taking the definition of J into account, one will then 
have: 
 
(8.5′)   ∇α τ αβ  = J ρ Hρβ + 1

4 (Gρσ ∇β Hρσ − Hρσ∇β G
ρσ). 
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One can transform the parenthesis by using the constraint equations, which will finally 
give: 
 
(8.6)  ∇α τ αβ  = J ρ Hρβ + (λµ – 1) ∇β u

 ρ Pρ + 1
2 (eρ e

ρ ∂β λ + hρ h ρ ∂β µ) , 

 
in which: 

J ρ Hρβ = γ eβ − σ (eρ e
ρ

 ) uβ + σµ Pβ . 
 

The significance of the group J ρ Hρβ is clear. The supplementary tensor (λµ – 1)∇β u
 ρ Pρ 

will be zero if λµ = 1 or Pα = 0; i.e., if ταβ is symmetric.  It will also be zero if uα is a 
field with a vanishing covariant derivative.  The supplementary term 12 (eρ e

ρ ∂β λ + hρ h ρ 

∂β µ) corresponds to the phenomena of magnetostriction and electrostriction.  Indeed, λ, 
µ depend upon the state variables. 
 
 
 9. Case in which the ταβ defined by (8.1) is symmetric. – The tensor ταβ is not 
symmetric, in general.  Its antisymmetric part is (λµ − 1)(uα Pβ − uβ Pα) .  Since uα and 
Pα are orthogonal, the antisymmetric part will be zero (i.e., ταβ will be symmetric) if: 
 
 1. λµ = 1, which is the non-inductive case. 
 
 2. Pα = 0, which will be true when either eα = 0 or hα = 0.  
 
 In the non-inductive case, one takes λ = µ = 1, so Hαβ = Gαβ = Fαβ .  The 
electromagnetic energy tensor is then written: 
 
(9.1)    ταβ = 1

4 gαβ (Fρσ F ρσ) – Fρα Fρ
β , 

 
and 
 
(9.2)     ∇α τ αβ  = J ρ Hρβ . 
 
 The case eα = 0 corresponds to that of magnetohydrodynamics or fluids whose 
conductivity is σ = ∞.  Since the electric current must be bounded (σ e < ∞), one will 
necessarily have e = 0.  The impulse-energy tensor will then be written: 
 
(9.3)    ταβ = µ { | h |2 (uα uβ – 1

2 gαβ) – hα hβ} . 

 
 The case hα = 0 will lead to: 
 
(9.4)    ταβ = λ { | e |2 (uα uβ – 1

2 gαβ) – eα eβ} . 

 
One agrees to describe the electron in question as a continuous ball. 
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 In each of the cases above, the impulse-energy tensor of the fluid was obtained by 
adding a known expression to ταβ .  One will get an impulse-energy tensor that is 
symmetric, and as a result one can write down the Einstein equations. 
 
 
 10. The charged perfect fluid with no inductions. – In this case, one will have the 
total impulse-energy tensor: 
 
(10.3)    Tαβ = (ρ + p) uα uβ – p gαβ + ταβ , 
 
in which: 

ταβ = 1
4 gαβ (Fρσ Fρσ) – Fρα F ρβ . 

 
 The equations of motion are given by the conservation conditions: 
 
(10.2)     ∇α T αβ = 0, 
 
the thermodynamic equation: 
 
(10.3)     r θ dS = r df – dp , 
 
and the Maxwell equations: 
 
(10.4)     1

2 ηαβγδ ∇α Fβγ = 0 , 

 
(10.5)     ∇α F αβ = J β . 
 
One supposes that the conductivity σ = 0, in such a way that J β = γ uβ, and: 
 
(10.6)     ∇α (γ uα) = 0 . 
 
 Upon taking f, S to be thermodynamic variables, the conservation conditions (10.2) 
will give the continuity equation and the differential system for the streamlines: 
 
(10.7)   r f uα ∇α uβ – (gαβ – uα uβ) ∂α p – γ uα Fα 

β = 0 , 
 
(10.8)    f ∇α (r uα) + r θ uα ∂α S = 0 . 
 
One deduces from this that if the motion is adiabatic (uα ∂α S = 0) then there will be 
conservation of matter: 
 
(10.9)     ∇α (r uα) = 0 . 
 
One infers from (10.6) and (10.9) that: 
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uα αγ
γ

∂
+ ∇α uα = 0,  uα 

r

r
α∂

+ ∇α uα = 0, 

 
so taking the difference of these will yield uα ∂α log (γ / r) = 0 .  The ratio γ / r is then 
constant along the streamlines, so one sets: 
 

(10.10)     K = 
r

γ
. 

 
 The differential system for the streamlines can then be put into the form: 
 
(10.11)   f uα ∇α uβ – (gαβ – uα uβ) ∂α f + θ gαβ ∂α S = K uα Fα β . 
 
 

______________ 



 

CHAPTER II 
 

THE CAUCHY PROBLEM  
 

 For each fluid model, one obtains a fundamental system of partial differential 
equations that allow one to study the evolution of the fluid.  An essential problem is to 
see the extent to which those equations determine the functions that represent the 
physical quantities that are being envisioned.  Since that is a problem of evolution, the 
mathematical problem that is posed in that way is the Cauchy problem.  The initial data 
that are carried by a hypersurface Σ in space-time determine those quantities in the 
neighborhood of Σ. 
 The only classically-known general theorem that answers that question in the analytic 
case is the Cauchy-Kowalewski existence and uniqueness theorem for a system of N 
partial differential equations in N unknown functions whose characteristic polynomial is 
not identically zero. 
 The analyticity hypothesis restricts the scope of that theorem in physics considerably.  
Now, one can do without the analyticity hypothesis for strictly-hyperbolic quasi-linear 
systems.  Leray proved an existence and uniqueness theorem for the non-analytic Cauchy 
problem for such systems.  Any solution of that problem possesses a domain of influence; 
i.e., the value at a point depends upon only part of the initial data, namely, the data that 
are found inside of a certain conoid with its summit at that point.  It is that notion of strict 
hyperbolicity and its criterion that we shall present, with an eye towards applying it to the 
various systems of equations that were found in Chapter I. 
 
  

§ 1. EXISTENCE AND UNIQUENESS THEOREM FOR  
STRICTLY-HYPERBOLIC SYSTEMS  

 
 

 1. Strictly-hyperbolic systems. – Let Vn be a differentiable manifold of class Ck (k 
sufficiently large) and dimension n. 
 Let a (x, D) be a differential operator of order m that acts on functions.  Locally, it 
will depend upon local coordinates xα and their partial derivatives ∂α .  For ξ ∈ ( )x nT V∗ , 

( , )a x ξ  is a real polynomial in ξ of degree m.  One lets h (x, ξ) denote the principal part 
of a (x, ξ) ; i.e., the homogeneous part of degree m of a (x, ξ).  Let Vx (h) be the projective 
cone that is defined in ( )x nT V∗  by the equation h (x, ξ) = 0. 
 
 Definition 1. – The differential operator a (x, D) is called strictly hyperbolic at the 
point x ∈ Vn if the following hypothesis is verified: 
 
 (H): There exist points ξ in ( )x nT V∗  such that any line that issues from ξ and does 
not pass through the summit of the cone Vx (h) will cut it at m distinct real points. 
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 It that were true then the set of points ξ would form the interior of two opposing non-
vacuous  convex semi-cones ( )x a+Γ  and ( )x a−Γ  whose boundaries belong to Vx (h). 

 Now consider a diagonal matrix differential operator A (x, D) that is sufficiently 
differentiable at x : 

A (x, D) = 

1

1

( , ) 0 0

0 ( , ) 0

0 0 ( , )N

a x D

a x D

a x D

 
 
 
 
 
 

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, 

 
in which the ai (x, D) are differential operators of order m (i) . 
 
 Definition 2. – One says that the diagonal differential operator A (x, D) is strictly 
hyperbolic at a point x if: 
 
 1) The ai (x, D) are strictly hyperbolic at x . 
 
 2) The two opposing convex semi-cones: 
 

( )x A+Γ  = ( )x i
i

a+Γ∩ ,  ( )x A−Γ  = ( )x i
i

a−Γ∩  

have a non-vacuous interior. 
 
 In order to define strict hyperbolicity in a (connected open) domain Ω of Vn , 
introduce the cone ( )xC A+  that is dual to the cone ( )x A+Γ  .  ( )xC A+  is the closure of the 

set of vectors X ∈ Tx (Vn) such that <ξ, X > ≥ 0 for any ξ ∈ ( )x A+Γ .  The cone ( )xC A−  that 

is dual to the cone ( )x A−Γ  is defined in an analogous manner.  Let: 
 
(1.3)    Cx (A) = ( )xC A+  ∪ ( )xC A−  . 

 
 A differentiable path γ : [0, 1] → Vn is called time-like relative to A if the positive 
semi-tangent at each point of γ is in ( )xC A+ .  A differentiable hypersurface Σ is called 

space-like relative to A if the tangent vector space Tx (Σ) at each point x of Σ is exterior to 
C (A). 
 
 Definition 3. – One says that the operator A (x, D) is strictly hyperbolic in a domain 
Ω ⊂ Vn if the following two conditions are satisfied: 
 
 1) A (x, D) is strictly hyperbolic at any point x ∈ Ω. 
 

2) The set of temporal paths that join two arbitrary points x0 , x1 of Ω is compact or 
vacuous for the topology of uniform convergence on the set {γ : [0, 1] → Vn , 

(0)γ  = x0 , γ (1) = x1}. 
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 If A (x, D) is differentiable at x and A (x, D) is strictly hyperbolic at a point x0 then 
one can show that there exists a connected open neighborhood Ω of x0 that is 
homeomorphic to a ball in Rn in which A (x, D) is strictly hyperbolic.  Such an open set 
will be called simple. 
 
 
 2. Leray systems. – Consider a system of partial differential equations with N 
equations in N unknowns (u i) and n variables (xα) that one writes symbolically: 
 
(2.1)    A (x, u, D) u + B (x, u) = 0 , 
 
in which A (x, u, D) is a diagonal matrix with elements ai (x, u, D), i = 1, …, N, and 

( , )B x u  is a column matrix with elements bi (x, u) .  The ai (x, u, D) are differential 
operators of order m (i). 
 Associate each unknown u i with an integer s (i) ≥ 1 and each equation of rank j with 
an integer t (j) ≥ 1 such that: 
 
(2.2)    m (i) = s (i) – t (i) + 1, 
 
in which the integers s (i), t (j) are defined only up to an additive constant. 
 
 Definition.  – One says that the diagonal system (2.1) is quasi-linear in the Leray 
sense if for any i, the differential operator ai (x, u, D) is linear with respect to the 
derivatives of order m (i), the relations (2.2) are verified, and the ai , bi are sufficiently 
regular functions of xα, u j, and the derivatives of order ≤ s (i) – t (j), and if s (i) – t (j) < 0 
then ai and bi are independent of uj . 
 
 That being the case, the Cauchy problem for the system (2.1) is posed in the 
following manner: Let Ω be a simple domain of Vn .  The Cauchy data on a hypersurface 
Σ that is embedded in Ω consist of the values of the functions u i and their derivatives of 
order < m (i) .  There (always) exist functions w i that admit derivatives of order ≤ s (i) + 
1 that are locally square-integrable, and their traces on Σ are the Cauchy data that one has 
in mind. 
 A solution of the Cauchy problem that was posed is then a solution (ui) of (2.1) whose 
derivatives of order ≤ s (i) are locally square-integrable and coincide with those of wi on 
Σ.  Leray proved an existence and uniqueness proof for that problem that we shall state 
without proof. 
 
 Theorem: 
 
 If the Cauchy data on Σ are defined by functions w i that verify the hypotheses: 
 
 1) The differential operator A (x, w, D) is strictly hyperbolic in Ω and the 
hypersurface Σ is space-like relative to A (x, u, D) . 
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 2) The ai (x, w, D) w + bi (x, w) are annulled on Σ, along with their derivatives up to 
order t (i) – 1. 
 
 For any x ∈ Σ, the Cauchy problem for (2.1) admits at least one solution in a 
neighborhood of x .  If ( )iu  and (u i) are two solutions, and if iu  and u i have derivatives 

of order ≤ s (i) + 1 that are locally square-integrable then they will coincide. 
 
 Definition.  – A quasi-linear system that verifies the preceding hypotheses will be 
called a strictly-hyperbolic quasi-linear system or a Leray system. 
 
 The quasi-linear systems that one encounters in physics are not always diagonal 
systems.  In order to apply Leray’s theorem, one must convert them to diagonal form.  
One knows that one can always do that.  However, the strictly-hyperbolic character must 
be proved.  We shall present the method in one case. 
 
 

§ 2. APPLICATION TO THE EQUATIONS OF THE HYDRODYNAMIC S 
OF PERFECT FLUIDS 

 
 3. Harmonic coordinates. – Harmonic coordinates have been an invaluable tool in 
the study of the Cauchy problem that relates to the Einstein equations. 
 
 Definition.  – A local coordinate system ( )xρ  is called harmonic if each coordinate 

function x ρ is a solution of the Laplace equation: 
 
(3.1)    ∆f = − gαβ (∂αβ f − fγ

αβ γΓ ∂ ) = 0, 

 
in which γ

αβΓ  are the coefficients of the Riemannian connection. 

 
 One remarks that the characteristic manifolds of (3.1) are tangent to the elementary 
space-time cone Cx at each point. 
 If (xρ) is a local coordinate system then one sets: 
 
(3.2)     Fρ = ∆xρ = gαβ ρ

αβΓ , 

 
in which the Fρ depend upon gαβ and their first derivatives.  If Fρ = 0 then the local 
coordinate system will be harmonic. 
 One associates the Fρ with the quantities Lαβ that are defined by: 
 
(3.3)    Lαβ = 1

2 (gαρ  ∂β F
ρ + gβρ  ∂α Fρ) . 

 
 
 
 



20 Mathematical Problems in Relativistic Hydrodynamics 

 Lemma: 
 
 In an arbitrary local coordinate system, the components of the Ricci tensor can be put 
into the form: 
 
(3.4)     Rαβ = Rαβ 

(h) + Lαβ , 
 
in which: 
 
(3.5)   Rαβ 

(h) = − 1
2 gλµ ∂λµ gαβ + Fβρ (gλµ , ∂0′ gλµ) , 

 
where the Fαβ are regular functions. 
 
 In order to prove the lemma, it will suffice to exhibit the second-order derivatives of 
gλµ in Lαβ and Rαβ .  One has (modulo terms in gλµ and ∂0′ gλµ): 
 

 Lαβ  ≈ { }1
2 ( ) ( )g g g gλµ ρ λµ ρ

β αρ λµ α βρ λµ∂ Γ + ∂ Γ  

 
  ≈ 1

2 ( [ , ] [ , ])gλµ
β αλµ α λµ β∂ + ∂ , 

namely: 
  Lαβ  ≈ 1

2 ( )g g g gλµ
αλ βµ βλ αµ αβ λµ∂ + ∂ − ∂ . 

On the other hand: 
   
  Rαβ  ≈ λ λ

λ αβ α λβ∂ Γ − ∂ Γ  

 
   ≈ ( [ , ] [ , ])gλµ

λ ααβ µ λβ µ∂ − ∂ , 

namely: 
Rαβ ≈ 1

2 ( )g g g g gλµ
αλ βµ βλ αµ αβ λµ λµ αβ∂ + ∂ − ∂ − ∂  . 

 
One then deduces that: 

Rαβ ≈ − 1
2 g g Lλµ

αβ λµ αβ∂ + , 

 
and one therefore has the lemma. 
 
 Corollary: 
 
 In arbitrary local coordinates, one will have:  
 
(3.6)     Sαβ = ( )hSαβ + Kαβ ,  

 
in which: 
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(3.7)     ( )hSαβ  = ( ) ( )1
2

h hR R gαβ αβ− , 

 
(3.8)     Kαβ = Lαβ − 1

2 L gαβ , 

 
with R(h) = ( )hg Rλµ

λµ  and L = gλµ Lλµ .  If the coordinates are harmonic then Kαβ = 0. 

 
 
 4. Application to the study of the solutions of the Einstein equations. –  
 
 Theorem: 
 
 Any solution of the system of Einstein equations: 
 
(4.1)     Sαβ = χ Tαβ  
 
in harmonic coordinates is a solution of the system: 
 
(4.2)     ( )hSαβ  = χ Tαβ , 

 
(4.3)     ∇α T αβ = 0 . 
 
Conversely, any solution of the system (4.2), (4.3) that satisfies the following conditions 
on a space-like hypersurface Σ : 
 
(4.4)     F ρ = 0, 
 
(4.5)     0Sα  = 0Tαχ  

 
will be a solution to the corresponding Cauchy problem for the system (4.1) of Einstein 
equations. 
 Indeed, any solution of (4.2) will verify (4.2) when it is written in harmonic 
coordinates, because Lαβ = 0, and as a solution of (4.1), it must verify the conservation 
conditions ∇α S αβ  = 0 ; i.e., (4.3). 
 Conversely, consider a solution of (4.2), (4.3) that corresponds to Cauchy data on Σ 
that satisfy the conditions (4.4) and (4.5) on Σ.  One will have 0Sα = ( )0 0hS Kα α+  on Σ, and 

by virtue of (4.2) and (4.5), one will have: 
 

0K α  = 0 on Σ . 

 
Upon specifying the expression for 0K α , one will have: 

 
0K α = 0 0 01 1 1

2 2 2g g F F g Fβ ρ ρ
αρ β β α ρ∂ + ∂ − ∂ , 



22 Mathematical Problems in Relativistic Hydrodynamics 

namely, upon taking the condition (4.4) into account, which implies that ∂i F ρ = 0 on Σ : 
 

0K α = 001
02 g g Fρ

αρ ∂ = 0. 

 
Since Σ is space-like, g00 ≠ 0, and one will necessarily have ∂0 F ρ = 0. 
 Hence, the solution of (4.2), (4.3) that one considers will satisfy: 
 
(4.6)     ∂0 F ρ = 0 
 
on Σ.  For that solution, one will further have: 
 
  ∇λ K

λµ = ∇λ S
λµ − ∇λ S (h)λµ  

 
  = − χ∇λ T λµ . 
One deduces by virtue of (4.3) that: 
 
(4.7)     ∇λ K

λµ = 0 . 
 
Now, differentiation of: 
 

Kλµ  = Lλµ − 1
2 L gλµ = 1

2 (gλρ ∂ρ F µ + gµρ ∂ρ F λ) − 1
2 gλµ ∂ρ F ρ 

gives: 
∂λ K

λµ = 1
2 (gλρ ∂λρ F µ + gµρ ∂λρ F λ − gλµ ∂λρ F ρ) + terms linear in ∂ρ F λ . 

 
It will then result that equation (4.7) can be written: 
 
(4.8)    gλρ ∂λρ F µ + Aλµ

ρ ∂λ F ρ = 0, 
 
in which Aλµ

ρ are regular functions. 
 Hence, F ρ satisfies a hyperbolic linear system that admits an existence and 
uniqueness theorem.  If Σ is space-like then the only solution of (4.8) that satisfies F ρ = 0 
and ∂0 Fρ = 0 on Σ will be the zero solution.  It will then result that the solution 
considered is a solution of the Einstein equations (4.1) when they are written in harmonic 
coordinates. 
 
 
 5. Formal analysis of the fundamental system of hydrodynamics. – The 
fundamental system of equations for the hydrodynamics of perfect, adiabatic fluids is 
composed of the equations: 
 
(5.1) Sαβ = χ (r f uα uβ – p gαβ), 
 
(5.2)     uα ∂α S = 0, 
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(5.3)     gαβ u
α uβ = + 1, 

 
(5.4)     dp = r df – r θ dS . 
 
 One takes f and S to be the thermodynamic variables, so r = r (f, S) and p = p (f, S) 
will then be known functions of f and S. 
 One has a system of 16 partial differential equations in 16 unknown functions gαβ , f, 
S, uα.  One must first make a formal analysis of the Cauchy problem.  In order to do that, 
one gives the values of gαβ , ∂0 gαβ , S on a hypersurface Σ with local equation x0 = 0 and 
seeks to determine the solution in the neighborhood of Σ .  Suppose that Σ is not tangent 
to the elementary cones; i.e.: 
 
(5.5)     g00 ≠ 0, 
 
and that one has: 
 
(5.6)     Fρ = 0 
 
on Σ. 
 A classical study shows that if g00 ≠ 0 then the quantities S 0α will be known as 
functions of the Cauchy data gαβ , ∂0 gαβ  .  The Cauchy data (gαβ , ∂0 gαβ , S) must then 
verify the compatibility conditions: 
 

S 0α = χ (r f u0 uα – 0p gα ) . 

 
 Suppose, for the moment, that the values of f on Σ are known.  The preceding equations 
can be written: 
 
(5.7)    χ r f u0 uα = 0 0S p gα αχ+ . 

 
Upon taking into account the fact (5.3) that uα is a unit vector, one will infer that: 
 

(χ r f u0)2 = [Ω0(p)]2 = gαβ 0 0 0 0( )( )S p g S p gα α β βχ χ+ + . 

 
(5.7) will then give the value of u0 : 
 

(5.8)     u0 = 
00 00

0( )

S pg

p

χ+
Ω

 

and then that of: 
 

(5.9)     χ r f = 
0 2

00 00

[ ( )]p

S pgχ
Ω

+
. 
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 Equation (5.9) implicitly defines the possible value(s) of f.  One can then write: 
 
(5.9′)  F (f ) ≡ χ r f (S00 + χ p g00) – gαβ 0 0 0 0( )( )S p g S p gα α β βχ χ+ + . 

 
Upon differentiating with respect to f and taking (5.4) into account, one will get: 
 

fF ′  = 00 00 2 2 00 0 0 0( )( ) 2 ( )fr r f S p g r f g g r S p gα
β βχ χ χ χ′+ + + − + , 

 
namely, from (5.7): 

fF ′  = χ2 r2 f 00 0 01 ff r
g u u

r

′  
− −  
  

. 

 
One sees that f will be known on Σ if fF ′  ≠ 0 ; i.e.: 

 

00 0 01 ff r
g u u

r

′ 
− − 
 

≠ 0 . 

 
Once f is known on Σ, one can deduce uα with the aid of (5.7): 
 

uα = 
0

0( )

S p g

p

αχ+
Ω

 

if 
u0 ≠ 0 . 

 
 Since that is true, by virtue of the arguments that were made in the preceding 
paragraph 4, one can replace the system (5.1), (5.2), (5.3), (5.4) with the system: 
 
(5.10)    ( )hRαβ = χ [r f uα uβ – (r f – 2p) gαβ], 

 
(5.11)     uα ∂α S = 0, 
 
(5.12)     ∇α (r uα) = 0, 
 
(5.13)   f r uα ∇α uβ – (gαβ – uα uβ) (∂α f – θ ∂α S) = 0 , 
 
in which (5.12), (5.13) come from the conservation conditions ∇α T αβ = 0 and (5.3).  One 
remarks that (5.13) implies that: 

uα ∇α uβ uβ = 0, 
 

which shows that if uα is a unit vector on Σ then it will remain in the neighborhood of Σ. 
 Suppose that the Cauchy data are given in terms of formal series in the local 
coordinates and look for formal solutions of the system (5.10), (5.11), (5.12), (5.13). 
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 Upon exhibiting the derivatives ∂00 gαβ , ∂0 S , ∂0 f , ∂0 u
α in these equations, one will 

get: 
 
(5.14)    − 1

2  g00 ∂00 gαβ = (C. d.) 

 
(5.15)     u0 ∂0 S = (C. d.), 
 
(5.16)    r ∂0 u

0 + 0 0
0 0f sr u f r u f′ ′∂ + ∂ = (C. d.), 

 
(5.17)   f u0 ∂0 u

β − (g0β – u0 uβ) ∂0 f + g0β ∂0 S = (C. d.), 
 
in which the right-hand sides are known functions of the Cauchy data.  (5.14) then gives 
∂00 gαβ if g00 ≠ 0 .  If u0 ≠ 0 then (5.15) will give ∂0 S, and (5.16) and (5.17) will then 

determine ∂0 u
0, ∂0 f for β = 0 if the determinant g00 − 1 ff r

r

′ 
− 

 
 u0 u0 ≠ 0 .  Finally, 

(5.17) will give ∂0 u
0 for β = 1 if u0 ≠ 0. 

 Hence, under the condition that: 
 

g00 ≠ 0,  u0 ≠ 0,  g00 − 1 ff r

r

′ 
− 

 
 u0 u0 ≠ 0, 

 
one can calculate ∂00 gαβ , ∂0 S, ∂0 f, and ∂0 u

α .  The same conclusions extend to the 
higher-order derivatives that one obtains by differentiating the various equations with 
respect to x0, in such a way that the desired formal series will be defined uniquely. 
 If the Cauchy problem is analytic then the Cauchy-Kowalewski theorem will imply 
the following result: 
 
 Theorem: 
 
 In the analytic case, if the Cauchy data gαβ , ∂0 gαβ , S satisfy the conditions: 
 
 1) The form gαβ X

α Xβ is normal hyperbolic, 
 
 2) The hypersurface Σ that carries the Cauchy data is defined locally by x0 = 0 and 
is space-like, 
 
 3) One has Fρ = 0 and 0Sα  = 0Tαχ  on Σ, 

 
then the Cauchy problem for the system of hydrodynamical equations will admit one and 
only one solution in a neighborhood of any point x ∈ Σ. 
 
 Characteristic manifolds. – The preceding study shows that the characteristic 
manifolds of the Cauchy problem are defined by the following equations: 
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gαβ ∂α φ ∂β φ = 0, 
 

uα ∂α φ = 0, 
 

1 ff r
g u u

r
αβ α β′  

− −  
  

 ∂α φ ∂β φ = 0 . 

 
The first one defines gravitational waves, the second one defines matter or entropy 
waves, and the third one defines hydrodynamic waves.  A classical calculation will show 
that these three types of waves propagate with the velocities 1, 0, v, respectively, with: 
 

v = 
f

r

f r ′
. 

 
Relativity demands that one must have ( ) /ff r r′  ≥ 1 in order to have v ≤ 1, which 

demands that the characteristic manifolds that define the hydrodynamical waves must be 
time-like. 
 
 
 6. Existence and uniqueness theorem. – Recall the system that was studied in the 
preceding paragraph: 
 

(6.1)   ( )hRλµ = 1
2 ( 2 )r f u u r f p u uλ µ λ µχ  − −  , 

 
(6.2)    uα ∂α S = 0, 
 
(6.3)     ∇α (r uα) = 0, 
 
(6.4)   f uα ∇α uβ − (gαβ – uα uα) ∂α f − θ gαβ ∂α S = 0 . 
 
It does not present itself in a diagonal form, except for (6.1) and (6.2).  We shall 
transform it in such a way that we obtain a diagonal system. 
 For the moment, keep (6.1) and (6.2) as they are. 
 In order to get an equation in f, take the contracted derivative ∇β of (6.4) and get: 
 

(gαβ – uα uβ ) ∇α∇β f − θ gαβ ∇α∇β S − f uα ∇β ∇α uβ 
 

= h (1 in gαβ , 1 in S, 1 in f, 1 in uα), 
 
in which the notation on the right-hand side signifies that the terms that are not specified 
contain derivatives whose maximum order is indicated for each unknown.  In order to get 
uα ∇β ∇α uβ, consider equation (6.3), which develops into: 
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∇α uβ + fr

r

′
uα ∇β f = 0 . 

 
Upon differentiating it along the streamlines and using the Ricci identity: 
 

(∇α ∇β  − ∇β ∇α) uβ = − Rαβ u
β, 

one will have: 
 

uα ∇β ∇α uβ + fr

r

′
 uα uβ ∇α ∇β f  = k (2 in gαβ , 1 in S, 1 in f, 1 in uα) . 

 
Upon substituting that into the equation for f, one will get: 
 

(6.5)   1 ff r
g u u

r
αβ α β′  

− −  
  

 ∇α∇β f – θ gαβ ∇α∇β S 

 
= l (2 in gαβ , 1 in S, 1 in f, 1 in uα) . 

 
Apply the operator uγ ∇γ to that equation: 
 

1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∇γ ∇α ∇β f – θ gαβ uγ ∇γ ∇α ∇β S 

 
= m (3 in gαβ , 2 in S, 2 in f, 2 in uα) . 

 
Now, the Ricci identity gives: 
 
(6.6)   gαβ uγ ∇γ ∇α ∇β S = gαβ uγ ∇α ∇β ∇γ S − uγ Rγ 

ρ ∇ρ S ,  
 
so if one takes into account the fact that uα ∂α S = 0 then one will have: 
 
(6.6′)   gαβ uγ ∇γ ∇α ∇β S = n (2 in gαβ , 2 in S, 0 in f, 2 in uα) , 
 
and the equation in f will ultimately be written as: 
 

(6.7)  1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∂αβγ f = F (3 in gαβ , 2 in S, 2 in f, 2 in uα) . 

 
 As for the unknowns uβ, consider the system (6.4), to which we apply the operator 

1 ff r
g u u

r
αβ α β′  

− −  
  

∇α ∇β : 
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1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∇α ∇β ∇γ u
γ − 1 ff r

g u u
r

αβ α β′  
− −  
  

 (gγλ – uγ uλ) ∇α ∇β ∇γ f 

 
+ θ gαβ gγλ ∇α ∇β ∇γ S = p (3 in gαβ , 2 in S, 2 in f, 2 in uα) . 

 
Apply the operator (gγλ – uγ uλ) ∇γ to (6.5): 
 

1 ff r
g u u

r
αβ α β′  

− −  
  

 (gγλ – uγ uλ) ∇α ∇β∇γ f – θ gαβ (gγλ – uγ uλ) ∇α ∇β∇γ S 

 
= q (3 in gαβ , 2 in S, 2 in f, 2 in uα) . 

 
Upon taking that relation into account, the equation in uλ will become: 
 

1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∇α∇β∇γ u
λ – θ gαβ (gγλ – uγ uλ) ∇α∇β∇γ S + θ gαβ gγλ∇α∇β∇γ S 

 
= r (3 in gαβ , 2 in S, 2 in f, 2 in uα) . 

 
Now, the fact that uγ ∂γ S = 0 implies (6.6), in such a way that one will finally obtain: 
 

(6.8)  1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∂αβγ u
λ = Uλ (3 in gαβ , 2 in S, 2 in f, 2 in uα) . 

 
 We have thus transformed the system (6.1), (6.2), (6.3), (6.4) into the following 
diagonal system: 
 
(6.9)  − 1

2 gαβ ∂αβ gλµ = Gλµ (1 in gαβ , 0 in S, 0 in f, 0 in uα) , 

 
(6.10)  uα ∂α S = 0, 
 

(6.11)  1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∂αβγ f = F (3 in gαβ , 2 in S, 2 in f, 2 in uα), 

 

(6.12)  1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∂αβγ u
λ = Uλ (3 in gαβ , 2 in S, 2 in f, 2 in uα) , 

 
in which (6.9) is obtained by starting from (6.1), thanks to the expression for ( )hRλµ . 

 Arrange the set {gαβ , S, f, uα} by enumerating it from 1 to 16.  With some obvious 
notations, we will have: 
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 a (αβ) = gαβ uγ ∂αβγ , m (αβ) = 2, α, β = 0, 1, 2, 3, 
 
 a (11) = uα ∂α , m (11) = 1, 
 

 a (12) = 1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∂αβγ , m (12) = 3 . 

 
Associate the following indices with the unknowns and the equations: 
 

 a (N) = 1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ∂αβγ , m (N) = 3, N = 13, 14, 15, 16. 

 
Associate the following indices with the unknowns and the equations: 
 
 s (αβ) = 4, s (11) = 3, s (12) = 3, s (N) = 3, 
 
 t (αβ) = 3, t (11) = 3, t (12) = 1, t (N) = 1, 
 
and draw a table for the maximum order of differentiation, along with one for the 
differences s (i) – t (j) : 
 

1 0 0 0

0 0

3 2 2 2

3 2 2 2

 

1 0 0 0

1 0 0 0

3 2 2 2

3 2 2 2

 

 
  Maximum order of differentiation Matrix [s (i) – t (j)] 

 
We see that the maximum order of differentiation, as well as the orders of the differential 
operators a (i), is compatible with the choice of indices. 
 We have shown that the system (6.9), (6.10), (6.11), (6.12) is a quasi-linear system in 
the Leray sense. 
 Let us show that it is a strictly-hyperbolic system. 
 The Cauchy data on Σ are, for example, the formal series that were calculated in § 5. 
(It suffices to take the sum of the first n terms for a suitable n.) Their derivatives of order 
≤ s (i) + 1 are obviously locally square-integrable.  We shall suppose, moreover, that the 
Cauchy data (gαβ , ∂0 gαβ , S) on Σ satisfies the conditions: 
 
 1) The quadratic form gαβ X

α Xβ is normal hyperbolic. 
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2) One has Fρ = 0, S 0α = χ T 0α on Σ ; the second relation defines an admissible 
value for f such that ( ) /ff r r′  ≥ 1. 

 
 With those givens, one can look for the semi-cones ( )x ia+Γ . 

 The operator a (αβ) corresponds to the cone gαβ uγ ξα ξβ ξγ  ≠ 0, and the semi-cone 
( )x αβ+Γ  will be defined by: 

gαβ ξα ξβ  ≥ 0 . 
 
The operator a (11) corresponds to the cone uα ξα = 0, and the semi-cone (11)x

+Γ  will be 

defined by: 
uα ξα ≥ 0 . 

 
The operators a (12) and a (N) correspond to the cone: 
 

  1 ff r
g u u

r
αβ α β′  

− −  
  

 uγ ξα ξβ ξγ = 0, 

 
and the semi-cone (12)x

+Γ  = ( )x N+Γ  will be defined by: 

 

(6.12)   1 ff r
g u u

r
αβ α β′  

− −  
  

 ξα ξβ  ≥ 0 . 

 
Under the hypothesis that ( ) /ff r r′  ≥ 1, we see that the intersections of those three semi-

cones ( )x αβ+Γ , (11)x
+Γ , (12)x

+Γ  = ( )x N+Γ  is nothing but the semi-cone (6.12), which has 

a non-vacuous interior. 
 We have thus proved that the differential operator A = (ai) is strictly hyperbolic at 
each point x.  Since it is differentiable at x, it will be strictly hyperbolic in a connected 
open neighborhood U of x.  The initial hypersurface Σ was chosen to be space-like 
relative to A, so it remains to specify the values on Σ of the derivatives with indices 0 of 
gαβ , S, f, uα of order ≤ s (i) – 1, namely: 
 

gαβ ,      ∂0 gαβ ,       ∂00 gαβ ,      ∂000 gαβ , 
 

S,  ∂0 S, ∂00 S, 
 

f,  ∂0 f, ∂00 f, 
 

uα,  ∂0 u
α, ∂00 u

α . 
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gαβ , ∂0 gαβ , S were given in the formal Cauchy problem in § 5, and ∂00 gαβ , S, ∂0 S, f, ∂0 f, 
uα, ∂0 u

α are obtained by solving that problem.  In order to get ∂000 gαβ , ∂00 S, ∂00 f, ∂00 u
α, 

it suffices to differentiate equations (6.1), (6.2), (6.3), and (6.4). 
 The hypotheses of Leray’s theorem are then satisfied.  One can then deduce that the 
Cauchy problem that was posed for the non-analytic system (6.9), (6.10), (6.11), (6.12) 
admits a unique solution (gαβ , S, f, uα) in the neighborhood of the point x ∈ Σ. 
 It remains for us to show that this solution is a solution of the initial system (6.1), 
(6.2), (6.3), (6.4).  Now, if the data are analytic then the solution (gαβ , S, f, uα) will be 
analytic, and it will necessarily be the analytic solution to the first problem. 
 If the data are not analytic then one can approximate the system by analytic systems, 
and in each case, the solution to the second Cauchy problem will be the solution to the 
first Cauchy problem.  Upon passing to the limit, Leray’s solution to the Cauchy problem 
will again be a solution to the initial system, and we will have proved the existence and 
uniqueness theorem for the non-analytic Cauchy problem that relates to the fundamental 
system of equations of the relativistic hydrodynamics of perfect fluids. 
 

____________ 
 



 

CHAPTER III 
 

THE RELATIVISTIC HYDRODYNAMICS OF 
ISENTROPIC PERFECT FLUIDS  

 
 

§ 4. THE INVARIANT DIFFERENTIAL FORM 
 
 

 1. Differential system for the streamlines. – A perfect fluid is called isentropic if 
its entropy S is constant.  In that case (cf., Chap. I, § 4), the differential system for the 
streamlines is written: 

(1.1)     
dx

ds

α

= uα, 

 

(1.2)    uα ∇α uβ – (gα
β  − uα uβ) 

f

f
α∂

= 0, 

 
in which s is the curvilinear abscissa along the streamlines and f is the index of the fluid.  
One has seen that: 

f = 1 + ε +
p

r
. 

 
 We propose to exhibit the geometric properties of the motion of the fluid. 
 
 
 2. Variation of an integral. – Let Vn be an n-dimensional differentiable manifold, 
let π : T (Vn) → Vn be the fiber bundle of tangent vectors at all points of Vn , and let D (Vn) 
→ Vn be the bundle of tangent directions.  T (Vn) is 2n-dimensional and D (Vn) is (2n−1)-
dimensional.  T (Vn) and D (Vn) are locally trivial and one can choose local charts that are 
induced by the ones on Vn , so that a point of T (Vn) will be defined in local coordinates 
by the set (xα, X α), in which (xα) is a point of the open subset U of local coordinates of Vn 
and (Xα) are the components of a tangent vector at (xα) ∈ U relative to those coordinates 
(xα).  A point of D (Vn) is defined by the set (xα, uα), in which uα are the direction 
parameters of the direction. 
 Let C : [t0 , t1] → Vn be a differentiable curve in Vn with its origin at x0 = x (t0) and its 
extremity at x1 = x (t1) .  In local coordinates, it is defined by the parametric 
representation: 
 
(2.1)     xα = xα (t) . 
 
One sets: 
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(2.2)     xαɺ  = 
dx

dt

α

. 

 
That curve lifts to a curve L : t → (xα (t), ( )x tαɺ ) in T (Vn) , and if xαɺ  is non-zero for 

every t then it will lift to the curve Γ in D (Vn) . 
 Let F : ω (Vn) → R be a function on T (Vn) with given scalar values that is positively 
homogeneous of degree 1 with respect to χ ; i.e., for any fixed x, F (x, λX) = λ F (x, X) .  
For any curve C : [t0 , t1] → Vn′ , F (xα, xαɺ ) is a function of t, and one calculates the 
integral: 
 

(2.3)    I = ( )1

0

( ), ( )
t

t
F x t x t dtα α

∫ ɺ . 

 
That integral is, in fact, intrinsically attached to F and C, and it does not depend upon the 
parametric representation. 
 Let us calculate the variation of that integral for an arbitrary variation of C with non-
fixed extremities.  Upon supposing that C is in an open subset of local coordinates, one 
will have: 

δ I = 
1

1 0
0

1 0

t

t t t
F t F t F dtδ δ δ⋅ − ⋅ + ∫ , 

 
so, from a classical argument in the calculus of variations, one will have: 
 

(2.4)   δ I = 
1

1 0
0

, , ,
t

x x t
x x P x dtω δ ω δ δ< > − < > − < >∫ , 

 
in which ω is the 1-form that is defined on T (Vn) by: 
 

(2.5)     ω  = 
F

dx
x

α
α

∂
∂ɺ

, 

 
and P is a covector that is defined in components by: 
 

(2.6)     Pα = 
d F F

dt x xα α
∂ ∂−
∂ ∂ɺ

, 

 
in which the Pα are nothing but the left-hand sides of the Euler equations from the 
calculus of variations.  δx is a vector. 
 If C is not in an open subset with local coordinates then one can cover it with a finite 
number of local charts, and one can study the variation of the integral I, which is the 
same thing. 
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 3. Extremal principle for the streamlines. – Apply the preceding results to the 
case in which V is space-time and: 
 

(3.1)     F = f g x xα β
αβ ɺ ɺ . 

 
Calculate the variations of the integral: 
 

(3.2)     S = 
1

0

t

t
f g x x dtα β

αβ∫ ɺ ɺ , 

 
which is assumed to be evaluated along a time-like curve C. 
 One will have: 
 

 
F

xα
∂
∂ɺ

= 
f g x

g x x

β
αβ

λ µ
λµ

ɺ

ɺ ɺ
,   

F

xα
∂
∂

= 
1
2f g x x f g x x

g x x

β γ β γ
α βγ α βγ

λ µ
λµ

∂ + ∂ɺ ɺ ɺ ɺ

ɺ ɺ
, 

 

Pα = 
1
2f g x f g x x f g x xd

dt g x x g x x

β β γ β γ
αβ α βγ α βγ

λ µ λ µ
λµ λµ

∂ + ∂
−

ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ
. 

 
Take the arc length s of the curve to be the parameter in place of an arbitrary parameter t .  
The vector xαɺ  = dxα / ds is the unit velocity vector, in such a way that one will get: 
 

(3.3)   Pα = ( )
f

f u u g u u
f

α α α α
α β β β

 ∂∇ − − 
 

, 

 
(3.4)   ω = f uα dxα  
 
from an easy calculation. 
 One thus obtains the formula: 
 

(3.5)   δ S = 
1

1 0
0

, , ,
s

x x s
x x P x dsω δ ω δ δ< > − < > − < >∫ , 

 
which gives the variation of the integral: 
 

(3.6)     S = 
1

0

s

s
f ds∫  

 
for non-fixed extremities. 
 If the variations have fixed extremities then δx0 = δx1 = 0, and one will have: 
 

(3.7)    δS = − 1

0

,
s

s
P x dsδ< >∫ . 
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In order for S to be an extremum, it is necessary and sufficient that P = 0 ; i.e. : 
 

uα ∇α uβ – (gα
β  − uα uβ) 

f

f
α∂

= 0, 

 
which are identical in form to (1.1).  Hence: 
 
 Theorem: 
 
 For any motion of an isentropic perfect fluid, the streamlines are locally time-like 
extremals of the integral (3.6) for variations with fixed extremities. 
 
 Introduce the conformal metric g  = f 2 g . One has: 
 
(3.8)    gαβ  = f 2 gαβ ,  gαβ  = f −2 gαβ . 

 
In regard to that metric, the arc length of the curve is defined by ds= f ds, in such a way 
that the streamlines are defined to be extremals of: 
 

(3.9)     S  = 
1

0

s

s
ds∫ . 

 
Those extremals are geodesics of (V4 , g ) .  Upon setting: 
 
(3.10)     Cα = f uα , 
 
one will see that Cα  = f uα and Cα = f −1 uα , in such a way that g C Cα β

αβ = 1, and its 

geodesics will have the equation: 
  
(3.11)     C Cα

α β∇ = 0 . 

 
 Corollary:  
 
 The streamlines of an isentropic perfect fluid are time-like geodesics of (V, g ) . 
 
 
 4. The integral invariant of hydrodynamics. – Consider a fluid motion that is 
defined, for example, by a Cauchy problem.  Let T be a flow tube that is generated by a 

one-dimensional cycle Γ0 that is traced on the initial hypersurface Σ (and not tangent to 
the streamlines), and let Γ1 be a cycle that is traced on T and is homotopic to Γ0 .  Each 

streamline of T is bounded at x0 ∈ Γ0 and x1 ∈ Γ1 .  We can apply formula (3.5) to each of 

those streamlines, so P = 0, and since the total variation of S will be zero when x0 
describes the cycle Γ0 , one will get: 
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(4.2)     
0

ω
Γ∫  = 

1

ω
Γ∫ . 

 The 1-form ω has the expression: 
 
(4.2)     ω = Cα dxα , 
 
so the property (4.1) will translate into the following statement, which generalizes a 
classical theorem on the conservation of circulation. 
 
 Theorem: 
 
 If one is given a one-dimensional cycle Γ that is not tangent to the streamlines then 
the circulation of the current vector along Γ will remain invariant when Γ is deformed 
along the flow tube that is defined by Γ. 
 
 If D is a two-dimensional differentiable manifold with boundary ∂D then Stokes’s 
formula will give: 
 

(4.3)     
D

ω
∂∫  = 

D
dω∫ . 

 
The integral of the form: 

Ω = dω 
 

over the submanifold D is preserved when it is deformed in such a manner that each point 
remains on the same streamline. 
 In the language of H. Poincaré, Ω defines an integral invariant for the differential 
system of the streamlines: 

dx

ds

α

 = uα , 

 
and ω defines a relative integral invariant.  The 2-form Ω plays a fundamental role in the 
description of motion.  It admits the local expression: 
 
(4.4) Ωαβ = ∂α Cβ − ∂β Cα . 
 
 Theorem: 
 
 The 2-form Ω is an invariant for the differential system for the streamlines; i.e.: 
 
(4.5)     LC Ω = 0. 

 
LC is the Lie derivative along C. 

 
 Indeed, if one uses the identity from the calculus of variations: 
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LC Ω = (diC + iC d) Ω 

 
then since Ω = dω, one will have d Ω = 0, and all that will remain is diC Ω ; now: 
 

(iC Ω)β = Cα
  Ωαβ = Cα (∂α Cβ − ∂β Cα) . 

 
Upon introducing the Riemannian connection that is associated with the conformal metric 
g , one will get: 

LC Ω = ( )C C Cα
α β β α∇ − ∇ . 

 
Since Cα  is a unit vector, C Cα

α β∇ = 0, and on the other hand, from (3.11), Cα  is a 

geodesic field, so one will indeed have LC Ω = 0. 

 The 2-form Ω is an invariant form for the differential system of the streamlines.  We 
shall look for all of the differential systems that leave it invariant.  We must determine all 
of the vector fields X such that: 

Ωαβ X α = 0. 
 
The existence of X depends upon the rank of the preceding system, and since Ωαβ is 
antisymmetric, one will have: 
 

1. If Ω has rank 2 then the characteristic vectors will form a 2-plane Πx at each point 
x.  The field of 2-planes Π admits 2-dimensional integral manifolds that are 
generated by the streamlines. 

 
2. If Ω has rank 0 then Ω = 0.  Since Ω = dω, ω will be a closed 1-form, so there will 

exist a function φ such that ω = dφ .  As a result, Cα = ∂α φ : The streamlines are 
orthogonal trajectories to the family of hypersurfaces φ = const. 

 
 Those results are important for the study of rotational and irrotational motions of 
fluids. 

 
 

§ 2. ROTATIONAL AND IRROTATIONAL MOTIONS  
 

 5. Vorticity tensor and Helmholtz equations. 
 
 Definition.  – One calls the antisymmetric tensor of order 2 that is defined by the 
invariant 2-form Ω the vorticity tensor. 
 
 It constitutes the true relativistic extension of the rotation of the velocity that is 
introduced in classical mechanics.  If one recalls the expression for f = 1 + ε c−2 + 

1 2p r c− − , in which c is the speed of light then one will see that Cα = f uα will differ from 
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uα by some terms in c−2, and Ωαβ = ∂α Cβ − ∂α Cβ  will differ from 
o

αβΩ  = ∂α uβ − ∂α uβ  by 
terms in c−2. 
 
 Theorem: 
 
 The vorticity tensor satisfies the Helmholtz equation: 
 
(5.1)    Cρ ∇ρ Ωαβ + ∇α Cρ Ωρβ + ∇β C

ρ Ωαρ = 0 . 
 
 Indeed, a simple calculation shows that these equations are a consequence of the 
equation LC Ω = 0, which expresses the idea that Ω is an invariant form.  One performs 

the calculation in the initial metric (V, g). 
 
 Definition.  – One says that a fluid motion is rotational if Ω ≠ 0 and irrotational if Ω 
= 0. 
 
 Theorem: 
 
 In order for a motion of an isentropic perfect fluid to be irrotational, it is necessary 
and sufficient that the streamlines should be orthogonal to the same (local) hypersurface. 
 
 Indeed, let Σ be a space-like hypersurface such that Ωαβ = 0 on Σ .  One can choose 
local coordinates such that Σ is represented by x0 = 0 and the streamlines are represented 
by xi = const. (i.e., Gaussian coordinates).  The Helmholtz equations show that ∂0 Ωαβ = 
0.  It will then result that Ωαβ = 0 in the neighborhood of Σ. 
 
 
 6. Vorticity vector. – Suppose that the motion is irrotational.  Let us study the 2-
plane Πx at the point x ∈ V4 that is composed of the characteristic vectors Xα ; viz., 
vectors such that: 
 
(6.1)     Ωαβ X

β = 0 . 
 
One will already have that the vector uα in Πx is tangent to the streamline that passes 
through x .  In order to succeed in determining Πx , it will suffice for us to look for a 
second vector that is not collinear with uα.  We choose one such vector θ that is 
orthogonal to the first one.  That vector is defined by the equations: 
 
(6.2)    Ωαβ θ β = 0,  θ α uα = 0 . 
 
 The vector θ α is defined only up to a factor, so one will have, by an algebraic 
calculation: 
 
(6.3)     θ α = 1

2 ηαβγδ uβ Ωγδ , 
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in which ηαβγδ is the Riemannian volume element for (V, g).  One remarks that θ α = 0 
implies that Ωαβ = 0. 
 
 Definition.  – One gives the name of vorticity vector to the vector θ α that is defined 
by (6.3), and its trajectories are called vortex lines. 
 
 From their definition, the vortex lines are orthogonal to the streamlines.  On the other 
hand, the differential system for the vortex lines: 
 

dx

dt

α

= θ α 

 
admits the 2-form Ω as an invariant form.  One will immediately deduce the following 
properties: 
 
 Theorem: 
 
 If one is given a one-dimensional cycle Γ that is not tangent to the vortex lines then 
the circulation of the vorticity vector along Γ will remain invariant when one deforms Γ 
along the vortex tube that is defined by Γ. 
 
 Let T  be a flow tube, while Γ and Γ′ are homotopic cycles on T.  Each of those cycles 

defines a vortex tube, namely, Θ and Θ′.  Let Γ1 be a cycle on Θ that is homotopic to Γ.  
The streamline that passes through Γ1 cuts the vortex tube Θ along a cycle 1′Γ  that is 

homotopic to Γ′.  Since ω is a relative integral invariant for the streamlines and also for 
the vortex lines, one will have: 

1

ω
′Γ∫  = 

1

ω
Γ∫ . 

 
That property constitutes the relativistic generalization of a theorem of Helmholtz in 
classical dynamics. 
 Finally, the field of 2-planes x → Πx that is defined by the characteristic system of the 
form Ω: 

Ωαβ X
β = 0 
 

is a completely-integrable field.  One gives the name of characteristic manifolds of Ω to 
the two-dimensional integral manifolds W2 .  If one then draws the streamlines that pass 
through the points of a vortex line then the orthogonal trajectories to those streamlines on 
W2 will be vortex lines.  That amounts to saying that if a fluid line is a vortex line at one 
instant then it will remain a vortex line at any instant. 
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§ 3.  PERMANENT MOTIONS 
 

 7. Stationary space-time. – One says that a space-time (V4 , g) is stationary if there 
exists a connected one-parameter group of global isometries that does not leave any point 
of V4 invariant, has time-like trajectories, and is such that: 
 
 1) Each trajectory z is homeomorphic to R. 
 
 2) There exists a three-dimensional differentiable manifold V3 and a diffeomorphism 
V4 → V3 × R that maps the trajectories z onto the right factor R. 
 
 V4 takes the form of a trivial fiber bundle with base V3 and fiber type R.  The fibers 
are the trajectories of the isometries; one calls them time-lines.  One calls the base 
manifold V3 space.  It is diffeomorphic to the quotient manifold of V4 by the equivalence 
relation that is defined by the group of isometries. 
 If ξ is the infinitesimal generator of the isometry group then it will satisfy the Killing 
equations: 
 
(7.1)    (Lξ g)αβ = ∇α ξβ + ∇β ξα . 

 

 It results from the definition that there exists a local coordinate system (x0, xi) such 
that the xi are a system of local coordinates on V3 and x0 defines the points on the 
trajectories of ξ, in such a way that the spatial sections x0 = const. are globally defined 
and diffeomorphic to V3 .  One says that those local coordinates (x0, xi) are locally 
adapted to the isometry group if the infinitesimal generator ξ admits the contravariant 
components: 
 
(7.2)    ξ 0 = 1,  ξ i = 0. 
 
If gαβ are the components of the metric tensor in that coordinate system then the covariant 
components of ξ will be: 

ξα = g0α . 
 
 The Killing equations (7.1) translate into: 
 

∇α ξβ = ∇α g0β + 0
ρ
αΓ  ⋅⋅⋅⋅ gρβ = [α 0, β] , 

namely: 
∇α ξβ + ∇β ξα = ∂0 gαβ = 0 . 

 
Hence, the gαβ will be independent of x0 in the adapted coordinates. 
 Upon decomposing the metric form using the director variable x0, one will have: 
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(7.3)    g = 0 0

00

ˆ i j
ij

g g dx dx
g dx dx

g

α β
α β ⊗

+ ⊗ , 

in which: 

(7.4)     ˆ ijg  = gij − 0 0

00

i jg g

g
 

 
defines a negative-definite metric on the spatial sections.  It is invariant under any change 
of adapted coordinate system of the form: 
 

x0′ = x0 + ψ (xi), xi′ = xi . 
 
One then endows V3 with that metric. 
 
 
 8. Permanent motion. – One says that the motion of an isentropic perfect fluid is 
permanent if the space-time is stationary and the isometry group leaves the index f and 
the unit velocity vector invariant; i.e.: 
 
(8.1)     Lξ f = 0, Lξ u = 0. 

 
If the coordinates are adapted then the conditions (8.1) will translate into: 
 
(8.2)     ∂ξ f = 0, ∂ξ u = 0. 
 
 Theorem: 
 
 In order for the motion of an isentropic perfect fluid to be permanent, it is necessary 
and sufficient that space-time should be stationary. 
 
 Choose adapted local coordinates (x0, xi) and let Σ be the hypersurface with the 
equation x0 = 0.  Σ is time-like.  It results from the Cauchy problem that on Σ and the 
neighboring hypersurface x0 = const., one will have [Chap. II.5, (5.9)]: 
 

 χ r f (S00 + χ p g00) – gαβ 0 0( )( )S p g S p gβ β
α α β βχ χ+ +  = 0 . 

 
In adapted coordinates, 0

0 S α∂ = 0, ∂0 gαβ = 0.  It then results that upon differentiating 

with respect to x0 and taking the thermodynamic equation dp = r df – θ dS (dS = 0) into 
account, one will get: 
 

00 00 2 2 00 0 0 0
0 0 0( )( ) 2 ( )ff r r S p g f r f g g S p g r fα

α αχ χ χ χ χ′ + + ∂ + ∂ − + ∂ = 0, 

 
namely, upon taking Chap. II.5, (5.7) into account: 
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00 0 01 ff r
g u u

r

′  
− −  
  

⋅⋅⋅⋅ ∂0f = 0 . 

 
 One then deduces that ∂0 f = 0 on Σ, and then ∂0 u

α = 0.  The motion is therefore 
permanent. 
 
 Theorem: 
 
 The scalar function: 
 
(8.3)     H = ξ α Cα 
 
preserves a constant value along each streamline under any permanent motion of a fluid. 
 
 It will suffice for us to show that LC (iξ ω) = 0, in which ω = Cα dxα .  Now, upon 

utilizing the identity from the calculus of variations: 
 
 LC (iξ ω) = (iC d + d iC ) iξ ω , 

we will have: 
 LC (iξ ω) = iC d iξ ω 

 
 = iC (Lξ − iξ d ) ω . 

 
Now it is obvious that Lξ ω = 0, which is to say that the differential system for the 

streamlines admits the infinitesimal transformation x, so we likewise deduce that Lξ ω = 

0.  That will give: 
  LC (iξ ω) = − iC iξ  dω 

   = iξ  iC Ω = 0 . 
 
 Remark. – The differential system for the streamlines admits the invariant form Ω 
and the infinitesimal transformation ξ .  Since Lξ θ = 0, one will see that the differential 

system for the vortex lines possesses the same property.  One then deduces that H = Cαξα 
is likewise constant along the vortex lines.  H is then constant along each characteristic 
manifold W2 of Ω . 
 One has: 
 
(8.4)     dH = Ωαβ ξ β dxα, 
 
which is a formula that makes the preceding results obvious. 
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 9. Bernoulli’s theorem. – Introduce the spatial magnitude of the vector uα relative 
to the time direction x .  Let: 

− v2 = ˆ ijg u i u j . 

 
By virtue of the unit character of u, one will have: 
 

gαβ u
α uβ = 2

00
00

1
ˆ( ) i j

ijg u g u u
g

α +  = 1, 

in which: 
 
(9.1)     (u0)

2 = g00 (1 + v2) . 
 
 The first integral H has the value C0 = f u0 in adapted coordinates.  One then deduces: 
 

H 2 = f 2 g00 (1 + v2) . 
 
Upon setting U = g00 , one will get: 
 
 Theorem: 
 
 The permanent motion of an isentropic perfect fluid satisfies: 
 
(9.2)     f 2 U (1 + v2) = const. 
 
along each streamline, in which U is the principal gravitational potential. 
 
 That theorem generalizes Bernoulli’s theorem.  Indeed, from the thermodynamic 
equation, it will give: 

f = 1 + 
0

2

p

p

dp

c r∫ . 

One deduces that: 

0

2 21 1
2 2

p

p

dp
c U U v

r
 + + 
 

∫  = const., 

up to terms in c−2 . 
 
 

§ 4. SPATIAL PROJECTIONS 
 

 10. A problem in the calculus of variations. – One proposes to study the permanent 
motions in space V3 .  In order to do that, one must study the projections of the geodesics 

of (V4 , g ) onto the quotient space (V3 , ĝ ). 
 Such a problem was solved in the most general case of a Finslerian manifold (Vn+1 , 
L) that is defined by a differential manifold that is endowed with a function L (x, X) that 

is positively-homogeneous of degree 1 on the fiber of the directions D (Vn+1) .  One will 
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suppose that (Vn+1 , L) admits a connected group of global isometries that are defined by 

a vector field x such that: 
Lx L = 0 . 

 
 One refers (Vn+1 , L) to local coordinates (x i, x0) that are adapted to its isometry 

group, and one denotes the quotient manifold by Vn . 
 The differential system for the extremals of L admits the relative integral invariant: 

 
(10.1)     ω = α∂ ɺ L dxα, 

 
in which α∂ ɺ  = / xα∂ ∂ɺ .  L does not depend upon x0 (viz., ∂0L = 0), so one has the first 

integral that is provided by the Euler equation in x0 : 
 
(10.2)     

0
∂ ɺ L  = h , 

 
in such a way that 

0
∂ ɺ L dx0 = h dx0 constitutes an integral invariant for the family (Ek) for 

the extremals that correspond to the value h.  It will then result that: 
 
(10.3)     π = α∂ ɺ L dxα 

 
is a relative integral invariant for the family (Eh). 
 If 

00
∂ ɺ ɺ L ≠ 0 then one can solve (10.2) for 0xɺ , namely: 

 
(10.4)     0xɺ = ϕ (xi, jxɺ , h), 
 
in which ϕ is a homogeneous function of degree 1 in jxɺ .  On the other hand, by virtue of 
the homogeneity of L, one has: 

0
0

i
ix x∂ + ∂ ɺɺ ɺL L  = L . 

 
As a result, the form πɺ  = i

ix ∂ɺ L  can be expressed by a function L of the variables xi, jxɺ , 
h, namely: 
 
(10.5)   L (xi, jxɺ , h) = ( , , ( , , )) ( , , )i j i j i jx x x x h h x x hϕ ϕ−ɺ ɺ ɺL , 
 
and one will have: 
 

∂i L = ∂i L + 
0 iϕ∂ ⋅∂ɺL  − h ∂i ϕ = ∂i L + h ∂i ϕ − h ∂i ϕ = ∂i L . 

 
 The theorem is thus proved. 
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 Theorem: 
 
 The projections onto Vn of the extremals (Eh) for a given value h are the extremals of 
the function L.  They are defined for a differential system that admits the relative integral 
invariant: 

π = κ∂ ɺ L dxκ. 

 
 
 11. Case of a Riemannian metric. – Consider the case in which the function L is 

defined by: 
L

2 = g x xα β
αβ ɺ ɺ  α, β = 0, 1, …, n . 

Suppose that g00 ≠ 0. 
 The descent process leads one to form the equation: 
 
(11.)    21

2 0
∂ ɺ L  = 0

00 0
i

ig x g x+ɺ ɺ = h L  

 
and to eliminate 0xɺ  from that equation, along with the equation: 
 
(11.2)     L = L – 0h xɺ . 

 
That elimination will give: 

(11.3)    L = 
2

0

00 00

1
i

i j i
ij

g xh
g x x h

g g

 
− + 

 

ɺ
ɺ ɺ . 

 
 If g00 = 0 then one will have: 
 
(11.4)    L

2 = 0
02 i i j
i ijg x x g x x+ɺ ɺ ɺ ɺ . 

 
One supposes that 0

i
ig xɺ  ≠ 0 .  The descent process leads one to eliminate 0xɺ  from (11.2) 

and the relations: 

0
i

ig xɺ  = h L , 

 
L = L − 0h xɺ . 

Elimination gives: 

(11.5) L = 0

02 2

i ji
iji

i
i

g x xg x
h

h g x
+

ɺ ɺɺ

ɺ
. 

 
 Application to permanent motions. – It suffices to replace gαβ with f 2 gαβ and obtain 
the function L whose extremals give the motion in space.  There is only one such case, 
because g00 ≠ 0.  One will then obtain: 
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(11.6)    L = 
2

2 0
2

00 00

1
i

i j i
ij

g xh
f g x x h

f g g

 
− + 

 

ɺ
ɺ ɺ . 

 
It would be interesting to develop the calculations. 
 
 
 12. Projection of null-length geodesics. – One considers time-like geodesics as 
limits.  In our problem: 

L = g x xα β
αβ ɺ ɺ , 

 
and upon differentiating with respect to 0xɺ , one will have h L = 0g xα

α ɺ , which shows 

that h → ∞ when L → 0, while h keeps the sign of 0g xα
α ɺ .  The extremals of L then 

coincide with those of L / h . 
 As a result, the desired extremals that define the projections of the isotropic geodesics 
of (V4 , g) will be the extremals of the function: 
 

(12.1)     Λ = 
1

lim ( , , )i j

h
L x x h

h→∞
ɺ  . 

 
 First case: g00 ≠ 0. Passing to the limit gives: 
 

(12.2)    Λ = 0

00 00

1
ˆ

i
i j i

ij

g x
g x x

g g
ε ε ′ − −

ɺ
ɺ ɺ , 

 
in which ε′ is the sign of 0g xα

α ɺ  and ε is the sign of g00 , and then: 

 

(12.3)    0xɺ = 0

00 00

1
ˆ

i
i j i

ij

g x
g x x

g g
ε ε ′ − −

ɺ
ɺ ɺ . 

 
 Second case: g00 = 0.  Passing to the limit gives: 
 

(12.4)     L = 
02

i j
ij

i
i

g x x

g x

ɺ ɺ

ɺ
, 

 

(12.5)     0xɺ  = − 
02

i j
ij

i
i

g x x

g x

ɺ ɺ

ɺ
. 

 
 We shall apply those results to the study of Fermat’s principle. 
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 13. Fermat’s principle. – One knows that light rays [16] are isotropic geodesics of 
the Riemannian manifold (V4 , g ) that is defined by space-time V4 when it is endowed 
with the metric: 

(13.1)    gαβ  = gαβ – 
1

1
λµ

 − 
 

uα uβ . 

 
Suppose that the motion is permanent.  If λ and µ are constant then the isometry group of 
(V4 , g) will induce an isometry group on (V4 , g ). 
 Choose adapted coordinates. 
 However, although the trajectories of the isometries of (V4 , g) are time-like, the 
trajectories of the induced isometries on (V4 , g ) can be time-like, space-like, or 

isotropic.  Indeed, if ζ is the infinitesimal generator of the isometry group of (V4 , g ) 
then one will have: 

ζ 0 = ξ 0 = 1,  ζ i = ξ i = 0 
 
for its contravariant components, and the square of that vector will have the value: 
 
(13.2)    00g  = g00 – (1 – w2) u0 u0 , 

 
in which w2 = 1 / λµ is the square of the speed of propagation of light in the fluid. 
 If we introduce the spatial magnitude of the unit velocity vector uα relative to the time 
direction ζ (namely, π 2 = − ˆ ijg u i u j) then we will see that: 

 
(u0)

2 ≠ g00 (1 + v2) . 
 
Upon substituting that value into (13.2), we will get: 
 
(13.3)    00g  = g00 (v

2 w2 + w2 − v2) . 

 

00g  can change sign. 

 Upon applying the formulas of the preceding paragraph, one will get the following 
theorem, which gives the law of propagation of light in space: 
 
 Theorem: 
 
 If the motion of the fluid is permanent and such that 00g ≠ 0 then the light rays in 

space will be the extremals of the integral: 
 

(13.4)   
1

0

x

x
duΛ∫  = 

1

0

0

00 00

1 ˆ
i

x
i j i

ijx

g x
g x x du

g g
ε ε
 

′ − − 
 

∫
ɺ

ɺ ɺ , 
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in which ixɺ  = dxi / du, for variations with fixed extremities in V3 .  The time that a ray 
takes to go from the point x0 to the point x1 will then be given by: 
 

(13.5)   
1

0

x

x
dt∫  = 

1

0

0

00 00

1 ˆ
i

x
i j i

ijx

g x
g x x du

g g
ε ε
 

′ − − 
 

∫
ɺ

ɺ ɺ . 

It is an extremum. 
 
 In the case 00g  = 0, one will have: 

 

(13.6)    
1

0

x

x
duΛ∫  = 

1

0
0

i j
x ij

ix
i

g x x
du

g x
−∫

ɺ ɺ

ɺ
, 

 

(13.7) 
1

0

x

x
dt∫   = 

1

0
0

i j
x ij

ix
i

g x x
du

g x
−∫

ɺ ɺ

ɺ
. 

 
 It is clear that the results do not depend upon the auxiliary variable u .  On the other 
hand, if space-time is statically orthogonal and its streamlines coincide with the time-
lines then one will have the world-metric: 
 

g = U dx0 ⊗ dx0 + gij dx i ⊗ dx j  
and the associated metric: 

g = 
2

U

n
dx0 ⊗ dx0 + gij dx i ⊗ dx j, 

 
in which n2 = λµ .  One can then put (13.5) into the form: 
 

1

0

x

x
dt∫ = 

1

0

x

x
n U dτ∫ , 

 
in which dτ 2 = gij dx i dx j is the line element of (V3 , g ).  In the case of a flat space-time 
U = 1, the preceding theorem translates into: 
 

1

0

x

x
ndδ τ∫ = 0 . 

 
 That is how Fermat’s principle gets stated in classical optics.  The theorem that we 
proved constitutes the statement of Fermat’s principle in general relativity in the case of a 
fluid in motion.  One can likewise prove the equivalence of the principle of least action 
and the principle of least time with that theorem. 
 
 
 14. Application: relativistic law of the composition of velocities. – We place 
ourselves in Minkowski space, which is referred to orthonormal coordinates.  uα is the 
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unit velocity world-vector of whose components are classically determined by starting 
from the spatial velocity ββββ, and c is taken to be unity.  A simple calculation will give the 
associated metric, which we will write in the form: 
 

(14.1)  2ds = 
2 2 2 2

0 2 0 2 2
2 2 2

1 1
( ) 2 ( ) ( )

1 1 1
i i i

i i
i

V V V
dx dx dx dx dx

β β β
β β β

− − −+ − −
− − −∑ . 

 
 That metric has hyperbolic normal type.  One should note the change of order in the 
signature when one passes to V 2 = β 2.  One can exhibit that fact by choosing the x1 axis 
to be parallel to ββββ (i.e., the flow velocity).  One will then have: 
 

(14.2)  2ds = 
2 2 2 2

0 2 0 1 2 2 2 3 2
2 2 2

1 1
( ) 2 ( ) ( ) ( )

1 1 1
iV V V

dx dx dx dx dx dx
β

β β β
− − −+ − − −

− − −
, 

 
which one can put into canonical form by a decomposition into squares.  If V 2 ≠ β 2 then 
one will get: 
 

2ds = 
22 2 2 2 2

0 1 2 2 2 3 2
2 2 2 2 2 2

1 1 1
( ) ( ) ( )

1 1
iV V

dx dx dx dx dx
V V

β β β
β β β β

 − − − −+ − − − − − − − 
, 

 
and one sees that for V 2 > β 2, one will have a signature + − − −, while for V 2 < β 2, one 
will have signature − + − − .  For V 2 = β 2, one will get: 
 

2ds = 2V dx0 dx1 – (1 + V 2) (dx1)2 − (dx2)2 − (dx3)2, 
 
which still has signature + − − − . 
 Starting from the associated metric (14.1), we seek to express that theorem by taking 
the arc length ζ of the ray to be the parameter.  We must replace the ixɺ  in (13.5) with λ i 
= dx i / dζ , in which dζ 2 = (dx1)2 + (dx2)2 + (dx3)2 .  We will then infer that: 
 

dt

dζ
= 

1

W
= 

22
2 2 2 2

2 2 2 2

(1 )( )1
(1 )( )

i
i i

i

V
V V

V V

β λβε ε β β λ
β β

−−′ − + − −
− −

. 

 
If V 2 – β 2 ≠ 0 then that relation will give: 
 

1 – β 2 – (1 – β 2) W 2 – (1 – V 2) (1 – W βi λ i ) 2 = 0 . 
 

 If one interprets V as the absolute velocity of the propagation of light and W as the 
relative velocity then one will obviously have: 
 

(14.3)  V 2 = 2

1

(1 )+ ⋅ ββββW
[W 2 + ββββ 2 + 2 W ⋅ ββββ + (W ⋅ ββββ)2 − W 2 ββββ 2] . 



50 Mathematical Problems in Relativistic Hydrodynamics 

One verifies that this relation will remain valid in the case of V 2 = β 2 by direct 
calculation; it is the relativistic formula for the composition of velocities.  It is easy to 
verify that one can put it into the form: 
 

V = 20
2 2

0

1
1 1

1

    ⋅+ + − −    +     

ββββ βββββ β ββ β ββ β ββ β β
β β ββ β ββ β ββ β β

W W
W

W
 . 

 
One thus obtains a proof of the relativistic law of composition of velocities by starting 
from Fermat’s principle. 
 
 

______________ 
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