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CHAPTER |

FLUID SCHEMAS IN RELATIVISTIC HYDRODYNAMICS

§ 1. GENERALITIES ON THE RELATIVISTIC DYNAMICS OF FLU IDS

1. The geometric context— The geometric context of relativistic fluid mechans
a differentiable manifold/ of dimension 4, clas€ *, on which one is given a pseudo-
Riemannian structurg of signature +—— . The geometry of the space-timé () is
that of the Riemannian connection that is canonicapeiated withy.

The metric that is defined liyis said to hav@ormal hyperbolidype. It introduces
the structure of a flat Minkowski space-time on eacdigéat vector spack (V). In local
coordinatesx®), one has:

(1.1) 0=0opdX 0 d¥ (a,B=0,1,2,3).
The tensorgys , which is called thédundamental tensoof gravitation is required to
verify a system of second-order partial differentgli&ions that generalizes the Laplace-

Poisson equations and gives rise to the conservatimditmms. Those equations are the
ten Einstein equations:

(1.2) Sop= X Tap,
in which Sy depends upon only the Riemannian structud space-time]T,z has a
purely-mechanical significance, agds a constant factor.

The tensoiT 43, which is called thempulse-energy tensarf the fluid, must describe,
at best, the energy distribution in space-time. ThesaeS,s is restricted by the
following two conditions:

1. TheSyzdepend upon only thg,zand their derivatives of the first two orders, and
they are linear in the second-order derivatives.

2. Sypis conservative; i.e.:
(1.3) 0, S; =0.
One can show'Y that one necessarily has:

Sep=h[Rap— 3 (R+K) dag,

() E. CARTAN, J. Math. pures et appliquéegl922), 141-203.
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in whichRyz is the Ricci curvatureR is the scalar curvature df,(g), andh andk are two
arbitrary constantsk is the cosmological constant, which plays no mléhe description

of fluids; one can then suppose tlkat 0. On the other hand, upon suppressing the
extraneous factdr, one can take the left-hand side of the Einstein expgtd be:

(1.4) Sep=Rap— 3R g,

andSwill be called theEinstein tensor.
Since the Einstein tens@.z is conservative, the same thing will be true for the
impulse-energy tensdr,z. The equations:

(1.5) 0,T%=0

then express the conservation of impulse energy anueddie evolution of the fluid.

2. The impulse-energy tensor— In any relativistic theory of fluids, the first step
consists of choosing an expression for the impulseggrtensorT,z . Each expression
for Ty defines a fluid schema. If one wishes to satisfy timstEin equations thefyg
must be symmetric. However, in order Tojz to be able to describe a physical fluid, it is
necessary that there must exist a unit vector €iéldhat is time-like:

(2.1) Jap uul=+1,

and for which the scaldf,; u” U is positive. u” is called theunit velocity vectoof the
fluid, and its trajectories defirgreamlines

Indeed, real fluids are endowed with various propertidhe forces of internal
constraint that play a fundamental role in the dynahstizdy translate into the proper
stress tensor. Caloric phenomena introduce a scaldrat is called theproper
temperature field. The electromagnetic properties can be represented loy tw
antisymmetric tensor fieldd s, Gos, as one knows. On the other hand, it is appropriate
to study the thermodynamic evolution of the fluid. Jdwevarious properties can be
envisioned in a geometric decomposition of the impulse-gnergor.

One is then led to pdt,sinto the form:

(2.2) Tap= P Ug Ug— Tig— Qup + Tap,

in which p is a positive scalar that represents the proper geosponderable matter-
energy, /s, the proper pressurédqgz, the thermal exchanges due to conduction, mad
is the electromagnetic energy tensor. If one mglsome of the properties then the
corresponding terms will not appear in the decomposit®milarly, one can introduce
some new terms in order to study new properties.

Each expression fof 45 will then correspond to a fluid schema. In each cHse,
evolution of the fluid will be defined by the conservateguations (1.5), and when one
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takes the unit vector character of into account, they will lead to the following
equations:

(2.3) u 0. T#=0,
(2.4) @ -vu)0aT*=0.

(2.3) is called theontinuity equationand (2.4) constitutes the differential system for the
streamlines.

One might possibly add some other equations to those sungs as the equations of
thermodynamics and the equations of the electromagheldc In that way, one will
obtain the fundamental system of equations for the sahmmsidered. Therefore, the
pure fluid schema has been the subject of numerous stadiekave become classical,
and in particular, the ones by L. P. Eisenhart and A. leicdwicz. The thermodynamic
fluid schema was studied by C. Eckart and the author inHheisist in 1954. The
electromagnetic field schema was the subject of ik Wy A. Lichnerowicz, and those
of the author dating back to 1955, which have since provokecknows papers, and
notably those of G. Pichon. He was led, in a specate, to relativistic
magnetohydrodynamics, which was the subject under study iretliebeautiful work of
Y. Choquet-Bruhat and A. Lichnerowicz.

The mathematical study of some of those schemastitmes the topic of this
conference.

3. Proper frame.— One calls an orthonormal framé,{ at a pointx in space-time
(V4 , g) aproper framewhen the first vectoYy coincides with the unit velocity vectar
and the other three vectdvs define the space that is associated with the timetaireu.

One can refer the space-time in the neighborhood opaimy to a proper frame field
that one supposes to be differentiable (but not nedlyssaegrable). The world-metric
will then take the canonical form:

(3.1) 9=mpd 0d'=d0d-Jd0d-Jd0d -0,

in which ¢/ are the dual 1-forms to the vector fields. Hence, <4, V,-> = &, , where
J/j,' Is the Kronecker symbol, which is equal to 1 whér ”and O whem’# p”. The

' thus constitute four linearly-independent Pfaff forms.

The consideration of the proper frame can be quitauliséideed, since the tangent
vector spacdy (V) has the structure of Minkowski space-time, the proenéV,.- must
be identified with a local Galilean frame in which ttheid has zero velocity. If one
knows the components of a tensoelative to the proper frame then its componentsin a
arbitrary frame €,) can be deduced from the latter by known transformdtionulas.

Indeed, if(A") is the matrix of the passage from the framg (o the frame\(,) and
(A7) is the inverse matrix then one will have:
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(3.2) AL =, A=V,

(3.2) A’ =y, A =-Vv0)

a a a

If t is a tensor of order 2 then its componégisn the frame €,) can be deduced from its
components, - in the proper frame by the formulas:

(3.3) top= A AGt, .
In particular, one has:
(3.4) Jap = Ua Ug—=Vwya Vivyg = Vi2ya Vi2)p = Viz)a Viz)s -

Hence, in order to determine the expression for the Isepenergy tensor of a pure
fluid, one must first refer it to the proper framen i, the fluid is characterized by its
proper matter-energy densipyand its partial pressure tensaoy ; . Its impulse-energy
tensor has components:

TO'O' = p, Ti:j: = - ]Tirjr

in the proper frame. Now refer space-time to locardimates<’, so one will haved =
A" dx", and an application of formulas (3.3) will give:

(3.5 Tap= P Ug Ug— TTp,

in which 7,5 = > 77, A', A, satisfy the identities:
i"j'

(3.6) U’ = 0.

One sees that in the case of a pure fluid, the imparisegy tensor decomposes relative
to u” into a temporal componeptu, Uz and a spatial component; .

Definition. — One says that the fluid perfectif the pressure quadric in the proper
frame is a sphere ; i.e.,f;y = p Oy , wherep is called thescalar pressuref the fluid.

For a perfect fluid, one hag; =pY_ A, A, so upon taking (3.2) and (3.4) into

account, ;s = p (gap—Ua Ug) . Therefore, the impulse-energy tensor of a perfdtbe
given by:

(3.7) Tap=(0+P) Ua Uz— P Qog.-
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Call the orthonormal frameA(;) at x such that each of its vectovs, is a proper
vector of the matrix Ry with respect to the matrixggs) the principal frame The
directions that are defined B, are nothing but the principal Ricci directions. Now, by
virtue of the Einstein equations, tWé are also proper vectors of the matiix) relative
to the matrix ¢op) -

One can express the component3 gfby starting from the proper values and proper
vectors in the form:

(3.8) Tap= % Woa Wop =2 8 W W -

3
i=1

One sees that, in general, the proper frame of a chérgadodynamic fluid is different
from the principal frame, except in the case of a pluid,fwhere:

Tap= pu, U _Z’Ti'i' Vira Mg »
|

for which p = 5, and one can perform a rotation of the spatial 3-pilaisech a manner
thatVi goes to\: . s will then be the proper values of the matmx:{) .

§ 2. THE THERMODYNAMIC FLUID

4. The perfect fluid and thermodynamic variables— The impulse-energy tensor
of a perfect fluid that is not a heat conductor is:

(4.1) Tap= (0 +P) Ug Ug—P Qup,

It is clear thaiu” is a time-like proper vector, agmlis the corresponding proper value of
(Tap . Any proper frame of that fluid will coincide with grincipal frame that is
indeterminate, due to the multiplicity of the triple propelue —p .

With an eye towards the energetic study, one decomplosgsoper density into
the sum of a matter densityand a kinetic energy densitgignsité d’énergie vitespes,
in which ¢ is the specific internal energy:

(4.2) p=rl+g.

One is then led to introduce the indeof a fluid, which is defined by:

(4.3) f:1+£+?p.

In these formulas, and in what follows, the physicatsuhave been chosen in such a
manner that the limiting velocity is equal to 1. Otherwise, one must replace with

-2 —2
ECco,pce.
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The impulse-energy tensor for a perfect fluid thatas a heat conductor then takes
the form:

(4.4) Taﬁ =rf Ug Ug—P ap.

From the thermodynamic viewpoint, the proper temperafaed the proper specific
entropyS can be defined as in classical hydrodynamics by theaela

(4.5) 6dS=de+pdr,
in which 7# 1 /r is the specific volume. Upon taking (4.3) into accoany takind, s,

p to be (not independent) thermodynamic variables, onevcige (4.5) in the equivalent
form:

(4.6) r 6dS=r df — dp.
These relations express the idea that among the \esf1all f, S p, there exist only two
independent variables, which one often chooses t@abdS or Sandp.

If one taked andSto be the independent variables and if one is givas a function
of f andSthen the relation (4.6) will imply that:

- % rH——@

r=—, :
of 0S

The first relation defines the equation of state offiind in the form:

r=r(,9),
and the second relation defines the temperature.
When one applies the conservation conditions to tipellse-energy tensor (4.4), one
can infer the continuity equation and the differergistem for the streamlines:
(4.7) Oa(rfu®)—u“o,p=0,
(4.8) rfu'd,P—@%-u’uv?)d,p=0.
If one takes (4.6) into account then one can writedmtinuity equation in the form:

(4.7) fOs(ru”) +r 8u?a,S=0,

from which, one can deduce that:
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Theorem:

For a perfect fluid, saying that matter is conserved is equivatestaying that the
entropy is constant along the streamlines; i.e.:

Oa(ru®) =0 - u’9,S=0.
A fluid such thau® d, S= 0 is calledadiabatic.

Similarly, if one takes the thermodynamic equatido imccount then the differential
system for the streamlines can be written:

(4.8) fu'd, - @*-uw o, f+60g%9,S=0

in terms of the variablds S
One then deduces that:

Theorem:

If the motion of the fluid is isentropic (viz., S = const.nttiee differential system for
the streamlines will reduce to:

(4.9) WO, WP = @*-u"bh % =0

We shall show that there exists a principal extrefmakthe streamlines of such an
isentropic fluid.

5. Viscous fluids.— In order to characterize the local deformation ef flbid, we
shall introduce the Lie derivative of the metric tangavith respect to the unit velocity
vectoru :

(Lu g)aﬂ = Da uﬂ + Dﬂ UQ
and set:

(5.1) Eap=3Vy Wy (Opuy+ 04Uy,
in which y,z is the spatial projector.
The laws of stress-deformation are assumed to barJise if the medium is isotropic
then the phenomena that pertain to viscosity will be destiby the tensor:
(52) Uaﬁ = Caﬁp'u fpy,

in which:

(5.3) Copou= A Vap You+ 1 Vap Vou + Yau Vo)
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or, if one takes into account thggz u” U” = 1 then:

(5.3) Copou= A VYap You + 1 (Dap 9z + Yo 9g0) -
The impulse-energy tensor of the viscous homogeneadsdlthen given by:
(5.4) Tap=(P+P) U Us =P Gap+ A (ToU”) Yap+ 21 &ap -

That expression was utilized by C. Eckart and G. Pichan.Lichnerowicz proposed
another expression fa,z in which the vectolC, = f u, entered into the definition of
viscosity. The impulse-energy tensor would then bergbye

(5.9) Top=(+p-A0,C°) UaUs— (P~ A0, C’) Gap+ U E,,
with

2g,,=0,C,+0,C,-C'(0,C G+0,G G).

0 denotes the covariant derivative for the megic=f 2 g.

6. Heat-conducting fluids.— One now takes the exchange of heat by conduction
into account. It is defined by a vectgy that is orthogonal to the vectaf. It is the
expression foilg, and its presence in the impulse-energy tensor that athares that
viewpoint.

Eckart chose the tensor:

(9.1) Tap=(P+P) UsUs =P Gup + Eop— (Ua O + Ug Qa) -
The equations that govern the evolution of the fluid avergby the conservation
conditions on the impulse-energy tensor, the conservaf the matter current, and the
defining equation foq, :

0, T%=0,

Oq (ru®) =0,
(9.2) Je==K(97~Us ) 0p6- 6 T,oup ,

and a thermodynamic equation.
In 1954, the author proposed the impulse-energy tensor:

(9.3) Tap=(0+P) UsUs= P Gop— (Uz Qs + Ug Qo) ,

in which one neglects the viscositg, is defined by:
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(9.4) Qo=— K (g7~ Ua ) 95 0.

The equations of motion consist of conservation camtt 0, T =0, and the

thermodynamic equation is replaced by the conduction iequathich generalizes the
Fourier equation:

(95) Daqazcuaaae_l_puaaap,

in which C is the specific heat at constant volume, higlthe heat of dilatation of the
fluid. Pichon reprised that model and added the viscasity &, .

For Landau and Lifschitz, the impulse-energy tensoa difeat-conducting fluid is
identical to that of a perfect fluid, and the heat airkectorg, makes its contribution by
way of the conservation equation for a certain vetor They set:

(9.6) Tap=rfusUs—p Qg
(9.7) Pe=rus,—q,.
The equations of motion are given by:

0, T#=0,

0, P9=0,

to which one adds the defining equatiorgef

1+ G
9.8) qa:—Kez(gf—uauﬁ)aﬂ[ . j

in which G is the Gibbs function that is defined by:

(9.10) G:s+$—es

Those models are justified by physical and kinetimsiderations and have the
advantage that they reduce to the classical, nanhwistic description in the limit. The
study of the Cauchy problem shows that the systhesjuations that give rise to them
are mixed and contain a parabolic part that is idexl by either the viscosity or the
definition of the heat current vectqy . It leads to an infinite speed of propagation.

In order to eliminate the difficulty thaf, introduces, Cattaneo and Vernotte
suggested that one should modify Fourier's hypashe#h a relaxation term. Kranys
translated that hypothesis into the language afivly:

(9.11) Q"+ v Osq"=-k(@¥-u" Az 0,
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The vectorg, will no longer be orthogonal ta, then. Mahjoreb proposed a new theory
in that same year while adopting the viewpoint of Landdsehitz and that of Cattaneo-
Vernotte-Kranys.

8§ 3. THE ELECTROMAGNETIC FIELD
7. Representation of the electromagnetic field— If an electromagnetic field is
present then the fluid will be subject to electromaignatuctions that one can describe
with the aid of two 2-forms: The electric field-magoeinduction 2-formH and the

electric induction-magnetic field 2-for@. One lets H, *G denote their dual forms in
the sense of the Riemannian volume elemgoit space-time. In components, one has:

(7.1) (H)ap= 2 Napru H ¥,
(7.2) (G)ap= 3 Nap G i
One calls the vectors that are defined by the 1-forms:
(7.3) e=iyH, d=i,G, h=iy(*G), b=iy(*H),

in whichi, is the interior product by the unit velocity vectortheelectric and magnetic
fields and inductiongesp. In components, one has:

(7.4) €=UWHu, da=UGpa, ha=t’(*G)ps, ba=U ("H)p.

Those vectors are orthogonaluitt
ConverselyH, G, *H, *G are expressed as functionsepd, h, b by the formulas:

(7.5) H=ulOe-*(ulb), G=uld-*(ulh),
(7.6) *H=ulOb+*(ule), *G=ulUh+*(ulOd).

In the last two relations, the + sign comes fromftue that the * will satisfy the relation
*2 = g (- 1Y ™™ on a Riemannian manifold, in which= dimV, p = degree of the form,
andg is the sign of deg. One then deduces the following relations, which arergby:

Haﬁ: Ug €g—Up € — MNapiu U/‘ bu,

Gop=Uq dﬁ—Uﬁ da—/7a,8/1,u u* i
in component form.
In Maxwell's theory of electromagnetism, the induntodepend upon the field
linearly. In the isotropic case, where the fluid lzaslielectric permittivityd and a
magnetic permeability, one will have:
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(7.7) d=A¢ b=uh.

The two relations (7.5) then give:

(7.8) G=2n+M#Ynin.
H H
namely, in components:
1 Au-1
(7.8) Gop= 2 Hup * H 2 (U P Hpp— Up U Hog) |
which one can put into the form:
1_ po
(7.9) Gap = ; 5a,8p Hoo ,
in which:

5™ =979, -0/9, with g'=g/-1-A)u U

The electromagnetic inductidt G satisfies the Maxwell equations:
(7.10) dH=0
(7.12) &G =1,
in which d is the codifferential, and is a 1-form whose associated vector defines the
electric current. The equation (7.10) signifieatttine 2-formH is locally exact; i.e., that
there locally exists a 1-forgasuch thaH =dg. @is called theslectromagnetic potential
vector, so upon remarking that? = 0, (7.11) will give:

(7.12) 5J=0,

which is an equation that expresses the consenvatielectric current.
In components, equations (7.10), (7.11), (7.1&)vaiitten:

%Uaﬁyama Hp =0,
0,G%=J7%,
0,39=0.
One decomposes the electric curréimto a convection current that is collinearuo
and a conduction curreftthat is orthogonal to. ' can be defined by Ohm’s lalw =

oe, wherecis theelectric conductiorof the fluid. One will then have:

(7.13) J9=yu" + o€,
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in which yis called thecharge density

8. The electromagnetic energy tensor Starting fronH 5, Gz, one can construct
the electromagnetic impulse-energy tensny whose divergence will give the
electromagnetic force density that acts upon the.fllipon generalizing a known result
from the non-inductive case (namely,= ¢ = 1), one will obtain the tensor that
Minkowski gave:

(8.1) Tap = Qap (Gpo H) = Gpa H 5.

In order to interpret that tensor, one must expresgth the aid of the vectors d, h,
b. One gets:

(8.2) Tap= (€,d” +hyb?) (Ug Us— 3 ap) — € s+ o bg) + (PaUs—ua Qg ,
in which:
(83) Pa = /7a/]/1|/ e/‘ HI UV y Qa = /757/]/” dA bu UV .

P, is the Poynting vector, ar@, = A P, . One can see the significance of each group
of terms in (8.2).
Iz 1s not symmetric. One can take the expression fbatt Abraham proposed:

(84)  Top=-(6d”+h,0”") (UgUs—3ap) — €2 ds+Na by + (PaUs—Ua Qg -
One might think of symmetrizing it, but the physical reasfom doing that are somewhat
obscure.
We preserve the expression (8.1). Upon taking the dineegef that tensor, we will
have:
(85) Da Taﬂ = Da Gap Hpﬂ + Gap Da Hpﬂ +%(G,DU Dﬁ Hpg + Hpa'DﬁGpa) .
Now, the first group of Maxwell equations can be written
After contracted multiplication witts %, one will get:

Upon substituting that in (8.4) and taking the definitiord afito account, one will then
have:

(8.5) Dafaﬁ :JpHpﬁ+%(GpUD'ngg—HpgD'ngo).
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One can transform the parenthesis by using the corsagumtions, which will finally
give:

(8.6) OaT% =3P Hop+ A= 1) 0puP Pyt (e, 05 A+ oh P35 1)

in which:
JPH=yes— o(e,€°) Uug+ auPs.

The significance of the group’ Hys is clear. The supplementary tenséu ¢ 1)Jzu” P,
will be zero if A =1 orP, = 0; i.e., if 755 is symmetric. It will also be zero if’ is a
field with a vanishing covariant derivative. The supplementerm (e, €’z A +h,h”

0 1) corresponds to the phenomena of magnetostrictiorel@utiostriction. Indeed,
L depend upon the state variables.

9. Case in which ther,s defined by (8.1) is symmetric. — The tensom,z is not
symmetric, in general. Its antisymmetric partAg ¢ 1)U, Pg— uz Py) . Sinceu, and
P, are orthogonal, the antisymmetric part will be zem (1,5 will be symmetric) if:

1. Au=1, which is the non-inductive case.

2. P, =0, which will be true when eithey, = 0 orh, = 0.

In the non-inductive case, one takés= ¢ = 1, sOHgp = G = Fagg . The
electromagnetic energy tensor is then written:

(9.1) Tap= % 9ap (Fpo F %) —=Fpa Fop,
and

The casee, = 0 corresponds to that of magnetohydrodynamics adsfluhose
conductivity iso = . Since the electric current must be boundeé € «), one will
necessarily have= 0. The impulse-energy tensor will then be written:

(9.3) Top=H{|h F (ua Us— 3 9ap) —ha g} .

The casd, = 0 will lead to:

(9.4) p=A{le |2 (Ug Us— 5 Qap) —€a €5 .

One agrees to describe the electron in question agiawcmus ball.
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In each of the cases above, the impulse-energyrteidte fluid was obtained by
adding a known expression tgz. One will get an impulse-energy tensor that is
symmetric, and as a result one can write down thedtmequations.

10. The charged perfect fluid with no inductions~ In this case, one will have the
total impulse-energy tensor:

(10.3) Tap=(0+P) U Us—P Gap + Tap,

in which:
Tap= 2 9ap (Fpo F) —Fpa F 5.

The equations of motion are given by the conservatmalitions:
(10.2) O, T%#=0,
the thermodynamic equation:
(10.3) r 6dS=rdf—-dp,
and the Maxwell equations:
(10.4) 1" 0,Fp=0,
(10.5) OoF%=37.
One supposes that the conductivity 0, in such a way that® = yu?, and:
(10.6) O (yu?) =0.

Upon takingf, Sto be thermodynamic variables, the conservatiorditions (10.2)
will give the continuity equation and the differenggbktem for the streamlines:

(10.7) rfudeP—@¥ - ) o.p-yu’FP=0,
(10.8) fO,(ru®) +r 8u”0,S=0.

One deduces from this that if the motion is adiab@tfcd,S = 0) then there will be
conservation of matter:

(10.9) Oa(Fu®=0.

One infers from (10.6) and (10.9) that:
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g 0.1

a aay a +|:|au£7:0’
r

u +0,u"=0, u

so taking the difference of these will yiald 0, log (y/ r) =0 . The ratioy/ r is then
constant along the streamlines, so one sets:

(10.10) K = ‘?’

The differential system for the streamlines cam tie put into the form:

(10.11) fu'0, - @@ - U UP)d.f+ 60970, S=K U F,”.




CHAPTER I

THE CAUCHY PROBLEM

For each fluid model, one obtains a fundamental syst¢ partial differential
equations that allow one to study the evolution of thel.fluAn essential problem is to
see the extent to which those equations determine thetidns that represent the
physical quantities that are being envisioned. Sinceishatproblem of evolution, the
mathematical problem that is posed in that way is tecBy problem. The initial data
that are carried by a hypersurfakein space-time determine those quantities in the
neighborhood ok.

The only classically-known general theorem that answet question in the analytic
case is the Cauchy-Kowalewski existence and uniquenesseth for a system dfl
partial differential equations iIN unknown functions whose characteristic polynonsal i
not identically zero.

The analyticity hypothesis restricts the scope dftitr@orem in physics considerably.
Now, one can do without the analyticity hypothesis dtictly-hyperbolic quasi-linear
systems. Leray proved an existence and uniguenessithémréhe non-analytic Cauchy
problem for such systems. Any solution of that problesspsses a domain of influence;
i.e., the value at a point depends upon only part of thalidiaita, namely, the data that
are found inside of a certain conoid with its summthat point. It is that notion of strict
hyperbolicity and its criterion that we shall presenthwan eye towards applying it to the
various systems of equations that were found in Chapter |

§ 1. EXISTENCE AND UNIQUENESS THEOREM FOR
STRICTLY-HYPERBOLIC SYSTEMS

1. Strictly-hyperbolic systems.— LetV, be a differentiable manifold of clag¥ (k
sufficiently large) and dimensian
Let a (x, D) be a differential operator of order that acts on functions. Locally, it

will depend upon local coordinat&§ and their partial derivatived, . Foré OT,"(V,),
a(x¢) is a real polynomial irf of degreem. One letsh (%, ) denote the principal part
ofa(x, &) ; i.e., the homogeneous part of degreef a (x, &). LetV, (h) be the projective
cone that is defined il "(V.) by the equatioh (x, &) = 0.

Definition 1. — The differential operataa (x, D) is calledstrictly hyperbolicat the
pointx [ V, if the following hypothesis is verified:

(H):  There exist pointg in T”(V,) such that any line that issues fr@nand does
not pass through the summit of the cdhé€h) will cut it at m distinct real points.
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It that were true then the set of poigtaould form the interior of two opposing non-
vacuous convex semi-con€$(a) andl (a) whose boundaries belong\ (h).

Now consider a diagonal matrix differential operafo(x, D) that is sufficiently
differentiable aix :

a(xD) O - 0
Agpy=| D AREIT 0
0 0 - a,(x,D)

in which theg; (x, D) are differential operators of order(i) .

Definition 2. — One says that the diagonal differential operétdk, D) is strictly
hyperbolicat a pointx if:

1) Thea (x, D) are strictly hyperbolic at .
2) The two opposing convex semi-cones:

riA=Nri@), r (A =)

have a non-vacuous interior.

In order to define strict hyperbolicity in a (camted open) domai®@ of V, ,
introduce the con€ (A) that is dual to the cong;(A) . C/(A) is the closure of the

set of vectorX O T (Vi) such that € X>=> 0 for anyé 0 ' (A). The coneC_ (A) that
is dual to the coné& _ (A) is defined in an analogous manner. Let:

(13) CX (A) = Cx+(A) D Cx_(A) .

A differentiable pathy: [0, 1] - V, is calledtime-like relative to Af the positive
semi-tangent at each point gfis in C(A). A differentiable hypersurfacg is called

space-like relative to K the tangent vector spadg (%) at each poink of Z is exterior to
C(A).

Definition 3. — One says that the operato(x, D) is strictly hyperbolic in a domain
Q 0O V, if the following two conditions are satisfied:

1) A(x D) is strictly hyperbolic at any point[] Q.

2) The set of temporal paths that join two arbytnaointsx, , X1 of Q is compact or
vacuous for the topology of uniform convergencetlom set {/: [0, 1] - Vi,

y(0) =x0, y(1) =xi}.
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If A (x, D) is differentiable ak andA (x, D) is strictly hyperbolic at a point then
one can show that there exists a connected open neigiolobfd of X, that is
homeomorphic to a ball in"Rn whichA (x, D) is strictly hyperbolic. Such an open set
will be calledsimple.

2. Leray systems.— Consider a system of partial differential equatiorig W
equations ilN unknowns ¢ ') andn variables x°) that one writes symbolically:

(2.1) A(XuD)u+B((xu)=0,

in which A (x, u, D) is a diagonal matrix with elemenés (x, u, D), i = 1, ...,N, and
B(x, u) is a column matrix with elements (x, u) . Thega (X, u, D) are differential
operators of ordem (i).

Associate each unknown' with an integes (i) = 1 and each equation of rajpkvith
an integet (j) = 1 such that:

(2.2) m(i) =s(i) -t (i) + 1,
in which the integers (i), t (j) are defined only up to an additive constant.

Definition. — One says that the diagonal system (2.Xuasi-linear in the Leray
senseif for any i, the differential operatoa (X, u, D) is linear with respect to the
derivatives of ordem (i), the relations (2.2) are verified, and tge b; are sufficiently
regular functions ok? u’, and the derivatives of ordsrs (i) —t (j), and ifs (i) —t (j) < 0
thena; andb; are independent of .

That being the case, the Cauchy problem for thetegy (2.1) is posed in the
following manner: LeQ be a simple domain of, . The Cauchy data on a hypersurface
> that is embedded € consist of the values of the functioms and their derivatives of
order <m (i) . There (always) exist functioms' that admit derivatives of orders (i) +
1 that are locally square-integrable, and theteseor> are the Cauchy data that one has
in mind.

A solution of the Cauchy problem that was posetés a solutiony) of (2.1) whose
derivatives of ordeg s (i) are locally square-integrable and coincide withse ofw on
>. Leray proved an existence and uniqueness posdhét problem that we shall state
without proof.

Theorem:
If the Cauchy data o are defined by functions \that verify the hypotheses:

1) The differential operator A(x, w, D) is strictly hyperbolic inQ and the
hypersurface is space-like relative to &, u, D) .
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2) The a(x, w, D) w+ by (x, w) are annulled orE, along with their derivatives up to
order t(i) — 1.

For any x[ %, the Cauchy problem fo2.1) admits at Ieast_one solution in a
neighborhood of x . IT') and(u') are two solutions, and ifi' and u' have derivatives
of order< s (i) + 1that are locally square-integrable then they wiircide.

Definition. — A quasi-linear system that verifies the preceding hyseth will be
called astrictly-hyperbolic quasi-linear systear aLeray system.

The quasi-linear systems that one encounters in physcsiar always diagonal
systems. In order to apply Leray’s theorem, one mosteart them to diagonal form.
One knows that one can always do that. Howeversttietly-hyperbolic character must
be proved. We shall present the method in one case.

§ 2. APPLICATION TO THE EQUATIONS OF THE HYDRODYNAMIC S
OF PERFECT FLUIDS

3. Harmonic coordinates.— Harmonic coordinates have been an invaluable tool in
the study of the Cauchy problem that relates to the Emstgiations.

Definition. — A local coordinate systerfx”) is calledharmonicif each coordinate
functionx ” is a solution of the Laplace equation:

(3.1) Af=-g% (9apf-T2;0,f) =0,
in which I/, are the coefficients of the Riemannian connection.

One remarks that the characteristic manifolds of (&&)tangent to the elementary
space-time con€y at each point.
If (x) is a local coordinate system then one sets:

— — af
(3.2) FP=Ax"= g”Tf,,

in which theF” depend upom,s and their first derivatives. IF° = O then the local

coordinate system will be harmonic.
One associates ti# with the quantitiet .5 that are defined by:

(3.3) Lap= 3(9ap 05 F’+ Qo 02 F) .
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Lemma:

In an arbitrary local coordinate system, the components of the Ricortean be put
into the form:

(3.4) Rap=Ras™ + Lyg,
in which:
(3.5) Rop™ = ~19" 0, 9ap+ Fo (G . 00 Qi)

where the- 3 are regular functions

In order to prove the lemma, it will suffice to exhithe second-order derivatives of
Oiu inLggandRys. One has (modulo termsdn, anddy giy):

Laﬁ = %{aﬂ(gap g/wr/fu)-kaa(gﬂp g/]#r/fu)}

= 1gM(0,[Ap al+0,[ Al A)
namely:

Laﬁ = %g/w(ami gﬂy +aﬂ/1 ga,u _aaﬂ g/l,u)
On the other hand:

Raﬁ = a/lrn/r]/] _aarj/]

= g%(0,[aB, 11-0,[1B H) ,

namely:
Raﬁ: %gw(am s +am 9 _aaﬂ G _a/i,u gzﬂ) .

One then deduces that:
Raﬁ: - %gwaaﬂ O + Ln/] ,

and one therefore has the lemma.
Corollary:

In arbitrary local coordinates, one will have:
(3.6) Saﬁ = S;;) + Kaﬁ,

in which:
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(3.7) S =Ry ~3RV g,
(3.8) Kag=Lag— %L Oap

with R” = g*R" andL = g" L, . If the coordinates are harmonic théfs = 0.

4. Application to the study of the solutions of the Einsteiequations.—
Theorem:
Any solution of the system of Einstein equations:

(4.1) Sep=X Tap

in harmonic coordinates is a solution of the system:
(4.2) SE =xTap,

(4.3) 0, T%=0.

Conversely, any solution of the system (4.2), (4.3) $hasisfies the following conditions
on a space-like hypersurfake

(4.4) FP=0,
(4.5) S = xT;

will be a solution to the corresponding Cauchy problentlie system (4.1) of Einstein
equations.

Indeed, any solution of (4.2) will verify (4.2) when it wgritten in harmonic
coordinates, becaudgs = 0, and as a solution of (4.1), it must verify the sesmation
conditions,S% =0 i.e., (4.3).

Conversely, consider a solution of (4.2), (4.3) thatesponds to Cauchy data &n
that satisfy the conditions (4.4) and (4.5)XnOne will haveS? = S™° + K° onz, and

by virtue of (4.2) and (4.5), one will have:
K% =0 onz .
Upon specifying the expression f&° , one will have:

K& =304, 970,F +30,F° -30,0,F,

a
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namely, upon taking the condition (4.4) into account, tvinieplies tha®; F” =0 onZ :
K(;' = %gap gOOaO Fp = O

SinceX is space-likeg® # 0, and one will necessarily hadgF * = 0.
Hence, the solution of (4.2), (4.3) that one considdisatisfy:

(4.6) 0 F”’=0
onZ. For that solution, one will further have:
0, K¥ =0, 8%-1, s«

=— O, T™.
One deduces by virtue of (4.3) that:

(4.7) 0, K¥=0.
Now, differentiation of:

KM =%~ 1L g¥=1(g%0,F*+g”0,F") - 19" 0d,F”
gives:
0, K¥=1(g%0,,F*+g*0:,F"—g"¥a,,F*) + terms linear im,F " .

It will then result that equation (4.7) can be written:
(4.8) g% o, FH4+A%,0,F*=0,

in which A%, are regular functions.

Hence, F* satisfies a hyperbolic linear system that admits aistence and
unigueness theorem. Ifis space-like then the only solution of (4.8) that fatis” = 0
and dp F¥ = 0 onZ will be the zero solution. It will then result ththe solution
considered is a solution of the Einstein equations (4.1) wWienare written in harmonic
coordinates.

5. Formal analysis of the fundamental system of hydrodynamics— The
fundamental system of equations for the hydrodynamics idégie adiabatic fluids is
composed of the equations:

(5.1) Sup= X (r f us Ug—p Qap),

(5.2) u?0,S=0,



Chapter Il — Cauchy problem 23

(5.3) OopU™ U =+ 1,
(5.4) dp=rdf-r@&ds.

One takeg andS to be the thermodynamic variables,rser (f, S andp =p (f, S
will then be known functions dfandS

One has a system of 16 partial differential equatinriGiunknown functionggg, f,
S u?. One must first make a formal analysis of the Cauchbiglpm. In order to do that,
one gives the values gfs, do 9o, Son a hypersurfacg with local equation® = 0 and

seeks to determine the solution in the neighborhodd.oSuppose thal is not tangent
to the elementary cones; i.e.:

(5.5) g®#0,
and that one has:
(5.6) FP=0
onz.
A classical study shows that gf° # 0 then the quantitieS °, will be known as

functions of the Cauchy datag, 0o 9o - The Cauchy datayég, do 9oz, S) must then
verify the compatibility conditions:

S%=x(fu’us—pgl).

Suppose, for the moment, that the values@fZ are known. The preceding equations
can be written:

(5.7) xrflu,=S>+xpd.

Upon taking into account the fact (5.3) thétis a unit vector, one will infer that:
Urfu)? =M1 =g” (S; +x P S+x PG).

(5.7) will then give the value af :

(5.8) o= S"txpg”
Q°(p)
and then that of:

__[Q°(p)]°
(5.9) xrf= 5y g
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Equation (5.9) implicitly defines the possible value(s) odne can then write:
(5.9) FE)=xrfS+xpd)-g” (S, +xpd )N S+x pg).
Upon differentiating with respect tand taking (5.4) into account, one will get:

F{= x(r+rif)S*+xpg®)+x°r’f g®-2g9°r(S;+x pg),

fr
F/ =¥ r2f {900—[1— fju"uo}.

namely, from (5.7):

r

One sees thditwill be known onz if F; #0;i.e.:
fr
g” —(1——fj u’u’2 0.
r

Oncef is known onz, one can dedua#’ with the aid of (5.7):

yo= Stxpg’
Q°(p)

uw#0.

Since that is true, by virtue of the argumentst there made in the preceding
paragraphd, one can replace the system (5.1), (5.2), (5534) (with the system:

(5.10) RY = x[rfuaus— (f—20) gad,
(5.11) u?9,S=0,

(5.12) Oa (ru®) =0,

(5.13) fru'd,P—@%-u"d) (0,F-00,9=0,

in which (5.12), (5.13) come from the conservationditionsC, T %= 0 and (5.3). One
remarks that (5.13) implies that:
u? 0, Pug=0,

which shows that ifi is a unit vector oix then it will remain in the neighborhood bf
Suppose that the Cauchy data are given in termforofal series in the local
coordinates and look for formal solutions of theteyn (5.10), (5.11), (5.12), (5.13).
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Upon exhibiting the derivativedyo 9oz, 00 S, 9o f , 9o U in these equations, one will
get:

(5.14) -1 g°0009ap = (C. d))
(5.15) uw dpS=(C.d),
(5.16) roou’ +rua,f+ru’a,f=(C.d),
(5.17) f Ul o P - (0P - P A dof + g% 3,S=(C.d),

in which the right-hand sides are known functions ofGhechy data. (5.14) then gives
000 Uop if g # 0 . 1’ # 0 then (5.15) will givedp S, and (5.16) and (5.17) will then

!

fr
determined, u’, 9 f for B = 0 if the determinang® — (1——fj wu’z 0. Finally,
r

(5.17) will givedo W° for B= 1 ifu’ # 0.
Hence, under the condition that:

fr,
gooio, uoio, gOO_(l_ rf j uO u0¢0’

one can calculat@o gas, 00 S 0o f, anddo u? . The same conclusions extend to the
higher-order derivatives that one obtains by diffesgimg the various equations with
respect tod, in such a way that the desired formal series witliéned uniquely.

If the Cauchy problem is analytic then the Cauchy-Kewaki theorem will imply
the following result:

Theorem:

In the analytic case, if the Cauchy datg oo 94z, S satisfy the conditions:

1) The form ggX? X% is normal hyperbolic,

2) The hypersurfacg that carries the Cauchy data is defined locally By=»0 and
is space-like,

3) One has F=0and S = xT, onZ,

then the Cauchy problem for the system of hydrodynamical equations willadrand
only one solution in a neighborhood of any point X.

Characteristic manifolds — The preceding study shows that the characteristic
manifolds of the Cauchy problem are defined by the following téansa
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9% 0, 0dz0=0,

u? o, @=0,
fr
g% - 1—T U’ | 0, 00590=0 .

The first one defines gravitational waves, the sdcone defines matter or entropy
waves, and the third one defines hydrodynamic waveslassical calculation will show
that these three types of waves propagate withedloeities 1, Oy, respectively, with:

Relativity demands that one must hagér;)/r = 1 in order to haver < 1, which

demands that the characteristic manifolds thaindefe hydrodynamical waves must be
time-like.

6. Existence and unigueness theorem. Recall the system that was studied in the
preceding paragraph:

(6.1) R = )([r fu,u,—3(rf-2p)u, u#],

(6.2) u?d,S=0,

(6.3) Oq (ruf =0,

(6.4) fu'l, - (@ - u o, f-0g%d,S=0.

It does not present itself in a diagonal form, @xctor (6.1) and (6.2). We shall
transform it in such a way that we obtain a diadgisgatem.

For the moment, keep (6.1) and (6.2) as they are.

In order to get an equationfintake the contracted derivatii; of (6.4) and get:

(@ - WP) O05F - 09 0,05 S-f U Up 0, UF°
=h(linggss, 1inS 1inf, 1inu“),
in which the notation on the right-hand side sigsifthat the terms that are not specified

contain derivatives whose maximum order is indiddte each unknown. In order to get
U’ Oq W’ consider equation (6.3), which develops into:
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I

r
O, P+ Lu'0pf=0.
r

Upon differentiating it along the streamlines and usingRicei identity:

(OaUp —0p0g) WP == Ry,
one will have:

I

r
W, P+ L P 0,08f =k (2ingep, 1inS 1inf, 1inu?) .
r

Upon substituting that into the equation fpone will get:
fr
(6.5) {g”ﬂ—(l—%j u”u"} DaDﬁf—Hg‘w Us0sS

=1(2inggs, 1inS 1linf, 1inu) .

Apply the operator” [J,to that equation:

{g”ﬂ —(1—%”'} u”uﬁ} uw,0,05f—0g% W 0,0,0;S
=m(3inggp, 2inS 2 inf, 2 inu’) .
Now, the Ricci identity gives:
(6.6) 9 w0,0,0,S=g”uw0,0z0,S-uwRA0,S,
so if one takes into account the fact thad, S= 0 then one will have:
(6.6) g W0,0,03S=n(2ingug, 2inS 0inf, 2inu% ,

and the equation ihwill ultimately be written as:

fr
(6.7) {g”ﬂ —(1—%} u”u"} Wdas f=F (3ingys, 2inS 2inf, 2 inu’) .

27

As for the unknowns?, consider the system (6.4), to which we applydperator

f I
{g”ﬂ —[1— rrf ju”u"} Oelp:
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f r' f I"
{g”ﬂ—(l—%ju”uﬁ} W g O, U/ - {g”ﬂ—(l—%juw} (@ -u) 0o O, f

+09”g” 0,050,S=p(Bingys, 2inS 2inf, 2 inu? .

Apply the operatord” —u” ') O, to (6.5):
fr
{g”ﬂ —(1—%} u”u"} @ -0, 04,f-609% (@ - 0, 041,S

=q(3inggs, 2inS 2inf, 2inu) .

Upon taking that relation into account, the equatiou iwill become:
fr
{gaﬂ _(1_%j Uauﬁ} uyDaDﬂDVU/‘ - 697 (g” -u'u) Hollpgdy S+ 69" gy/‘DaD/»’DyS

=1 (3inggs, 2inS 2inf, 2inu) .

Now, the fact that” 9, S= 0 implies (6.6), in such a way that one will finadlytain:
fr
(6.8) {g”ﬂ —(1—%} u”uﬁ} Wdzeu' =U" (3inges, 21inS 2inf, 2 inu .

We have thus transformed the system (6.1), (6.2), (663}) into the following
diagonal system:

(6.9) 19" 04590 = Gau (1 ingap, 0inS 0inf, 0inu?) ,
(610) Ua aa’ S: 01
i fr )
(6.11) g% - 1-—L |u" P | W f=F (3ingys, 2inS 2inf, 2inu?,

r

fr]
(6.12) g% - 1- rf W | Wagsu! =U" (Bingas, 21inS 2inf, 2 inu),

in which (6.9) is obtained by starting from (6.1), tharkghie expression foR{" .

U
Arrange the setdys, S f, u“} by enumerating it from 1 to 16. With some obvious
notations, we will have:
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a(af) =g% W g, m(@d =2, a =01 2,3,

a(l1) =u“a,, m(11) = 1,

I

a(12) :{g”ﬂ—(l—%ju"uﬁ} Wdgs, mM(12)=3.

Associate the following indices with the unknowmsl ahe equations:

fr]
a(N) = {g”ﬂ —(1—%} u”u"} Wdgs, mM(N)=3, N=13, 14,15, 16.
Associate the following indices with the unknowmsl ahe equations:
s(ap) =4, s(11) = 3, s(12) =3, s(N) =3,
t(ap) =3, t(11) = 3, t(12) =1, t(N) =1,

and draw a table for the maximum order of diffelsran, along with one for the
differencess (i) -t (j) :

1/0(0|0 1/{0/0|0

0 0 1/{0/0|0

3|2|2|2 3|12|2|2

3|2|2|2 3|12|2|2
Maximum order of differentiation Matrixs[i) —t (j)]

We see that the maximum order of differentiatiawell as the orders of the differential
operatorsa (i), is compatible with the choice of indices.

We have shown that the system (6.9), (6.10), {6(6112) is a quasi-linear system in
the Leray sense.

Let us show that it is a strictly-hyperbolic syste

The Cauchy data on are, for example, the formal series that wereutaled in 85.
(It suffices to take the sum of the firsterms for a suitabla.) Their derivatives of order
< s (i) + 1 are obviously locally square-integrable. $¥all suppose, moreover, that the
Cauchy datadys, 0o 9ap, S onZ satisfies the conditions:

1) The quadratic formgas X* X?is normal hyperbolic.
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2) One has” =0,S°% = ¥y T° onZ ; the second relation defines an admissible
value forf such that(fr;)/r = 1.

With those givens, one can look for the semi-cdngs,) .
The operaton (af) corresponds to the cmg@ﬂ u & ésé, % 0, and the semi-cone
> (aB) will be defined by:

9% & & 20.

The operatoa (11) corresponds to the con€ &, = 0, and the semi-cong; (11) will be
defined by:
u’ é,20.

The operatora (12) anda (N) correspond to the cone:

|:gaﬂ _(1_ f rf juauﬁ:| uyéfa gﬂgy: 0’

r

and the semi-cong; (12) = I';(N) will be defined by:
fr

Under the hypothesis thé@f r;)/r = 1, we see that the intersections of those thres-se

conesl; (aB), I, (1), I;(12) = I;(N) is nothing but the semi-cone (6.12), which has

a non-vacuous interior.

We have thus proved that the differential operdtor (&) is strictly hyperbolic at
each pointx. Since it is differentiable at it will be strictly hyperbolic in a connected
open neighborhood) of x. The initial hypersurfac& was chosen to be space-like
relative toA, so it remains to specify the values2wof the derivatives with indices O of
das, S f, u” of order< s (i) — 1, namely:

0a8, 000a3, 000Uas,  Oo00Uas,
S 00S 000S
f, Oof,  0oof,

a

u-, 60 Ua, 600 Ua .
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Jas, 0o Jap, Swere given in the formal Cauchy problem iB,8nddo0 9ap, S 00S f, dof,
u?, dou? are obtained by solving that problem. In order todg&tgas, 900 S, doof, doo U,
it suffices to differentiate equations (6.1), (6.2), (6a8)d (6.4).

The hypotheses of Leray’s theorem are then satisfi@de can then deduce that the
Cauchy problem that was posed for the non-analytic sy&ed (6.10), (6.11), (6.12)
admits a unique solutiom4z, S, f, u”) in the neighborhood of the poixt] 5.

It remains for us to show that this solution is a soluf the initial system (6.1),
(6.2), (6.3), (6.4). Now, if the data are analytic thies solution @z, S f, u?) will be
analytic, and it will necessarily be the analytic soluto the first problem.

If the data are not analytic then one can approxitin@eystem by analytic systems,
and in each case, the solution to the second Cauchy preklebe the solution to the
first Cauchy problem. Upon passing to the limit, Leraglsitson to the Cauchy problem
will again be a solution to the initial system, and wk mave proved the existence and
uniqueness theorem for the non-analytic Cauchy problenrdlaes to the fundamental
system of equations of the relativistic hydrodynamics depefluids.




CHAPTER IlI

THE RELATIVISTIC HYDRODYNAMICS OF
ISENTROPIC PERFECT FLUIDS

§ 4. THE INVARIANT DIFFERENTIAL FORM

1. Differential system for the streamlines— A perfect fluid is calledsentropicif
its entropyS is constant. In that case (cf., Chap. ¥)8the differential system for the
streamlines is written:

ax’ _ 4

(1.2) E—u :

(1.2) u? s ug— (g% —u”up a‘;f =0,

in whichsiis the curvilinear abscissa along the streamlined @nthe index of the fluid.
One has seen that:

f:1+£+£.

r

We propose to exhibit the geometric properties of theomaif the fluid.

2. Variation of an integral. — LetV, be ann-dimensional differentiable manifold,
let 77: T (Vn) —» Vi be the fiber bundle of tangent vectors at all paonfitg,, and letD (Vy)
- Vj be the bundle of tangent directionB.(V,) is 2n-dimensional and® (V) is (20—1)-
dimensional. T (V,,) andD (V,) are locally trivial and one can choose local chidnas are
induced by the ones dw), , so that a point of (V) will be defined in local coordinates
by the setxX?, X %), in which &“) is a point of the open subsgtof local coordinates of,
and X% are the components of a tangent vectox3dt[{ U relative to those coordinates
(x%). A point of D (V,) is defined by the setx{, u“), in which u” are the direction
parameters of the direction.

LetC: [to, t1] - Vi be a differentiable curve M, with its origin atxg = X (tp) and its

extremity atx; = x (t1) . In local coordinates, it is defined by the parametric
representation:
(2.1) X7 =x7(t) .

One sets:
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dx”
22 Ve =
(2.2) X "

That curve lifts to a curve : t — (X7 (t), x7(t)) in T (V,) , and if X” is non-zero for
everyt then it will lift to the curvd in D (Vy) .

LetF: w(Vh) - Rbe a function o (V,) with given scalar values that is positively
homogeneous of degree 1 with respectta.e., for any fixedk, F (x, AX) = A F (x, X) .
For any curveC : [to, ti] — Vi, F (x% %?) is a function oft, and one calculates the
integral:

(2.3) | = ij(x”(t),sa(t)) dt.

That integral is, in fact, intrinsically attachexlR andC, and it does not depend upon the
parametric representation.

Let us calculate the variation of that integral dm arbitrary variation o€ with non-
fixed extremities. Upon supposing ti@tis in an open subset of local coordinates, one
will have:

4
Sl = F, (Bt ~F, [+ JFdt,
so, from a classical argument in the calculus obtans, one will have:

(2.4) 51 = <wdx>, ~<wdx>, ~['<P.ox> dt

in which wis the 1-form that is defined dn(V,) by:

(2.5) w=—dx,
0X

andP is a covector that is defined in components by:

(2.6) p,= 4 0F OF
dt ox” ox
in which the P, are nothing but the left-hand sides of the Eulgnations from the
calculus of variationsox is a vector.
If Cis not in an open subset with local coordinates tbne can cover it with a finite
number of local charts, and one can study the t@mniaof the integral, which is the
same thing.
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3. Extremal principle for the streamlines. — Apply the preceding results to the
case in whiclV is space-time and:

(3.1) F=fg, X% .

Calculate the variations of the integral:

(3.2) S= jf t./0,, %€ dt,

which is assumed to be evaluated along a time-like dDirve
One will have:

oF _ fg,% apzaafgﬂyxﬂxf+% fo, g, ¥ X

Pa=£ fg,%x 0,fg, ¥X+}f, g, ')5'%.

dt /g, x' % J g, XX

Take the arc lengthof the curve to be the parameter in place of an arlgiparametet .
The vectorx? =dx”/ dsis the unit velocity vector, in such a way that onk geit:

|

(3:3) Po= {u” 0,y = (e - 1 ) %

(3.4) w="fu, dx¥

from an easy calculation.
One thus obtains the formula:

(3.5) 3S= <wdx>, ~<wdx>, - ['<P.ox>ds,
which gives the variation of the integral:
(3.6) S= [ fds

%

for non-fixed extremities.
If the variations have fixed extremities thég = ;. = 0, and one will have:

(3.7) as:—j:< P,dx> ds.
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In order forSto be an extremum, it is necessary and sufficiaaitRlx O ; i.e. :

a,f _
f

u? s ug— (g% —u”up 0,

which are identical in form to (1.1). Hence:
Theorem:

For any motion of an isentropic perfect fluid, thieeamlines are locally time-like
extremals of the integrgB.6)for variations with fixed extremities.

Introduce the conformal metrig =f2g. One has:
(38) gaﬂ = f 2 gaﬂ ’ gaﬂ :f 2 gaﬂ .

In regard to that metric, the arc length of the cunwefined byds=f ds in such a way
that the streamlines are defined to be extremals of:

(3.9) §:E$.

Those extremals are geodesics\of,(g) . Upon setting:
(3.10) Co=fuy,

one will see thaC, =f u; and C*=f ~* u,, in such a way thag,, C* C’= 1, and its
geodesics will have the equation:

(3.11) c’0,C,=0.

Corollary:

The streamlines of an isentropic perfect fluid tnee-like geodesics ¢¥, §) .

4. The integral invariant of hydrodynamics. — Consider a fluid motion that is
defined, for example, by a Cauchy problem. Tdte a flow tube that is generated by a
one-dimensional cyclgg that is traced on the initial hypersurfat€and not tangent to
the streamlines), and I€4 be a cycle that is traced @nand is homotopic tb,. Each
streamline of/ is bounded at, [1 Mg andx; 1, . We can apply formula (3.5) to each of

those streamlines, sB = 0, and since the total variation 8fwill be zero whenxg
describes the cycley, one will get:
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(4.2) jr w=| w.

The 1-formwhas the expression:
(4.2) w=Cgydx",

so the property (4.1) will translate into the followistatement, which generalizes a
classical theorem on the conservation of circutatio

Theorem:
If one is given a one-dimensional cy€leéhat is not tangent to the streamlines then
the circulation of the current vector aloigwill remain invariant wherd™ is deformed

along the flow tube that is defined by

If D is a two-dimensional differentiable manifold with bournydaD then Stokes’s
formula will give:

(4.3) jaDw = dew.

The integral of the form:
Q=dw

over the submanifol® is preserved when it is deformed in such a manneetg it point

remains on the same streamline.

In the language of H. PoincarQ, defines an integral invariant for the differential
system of the streamlines:

ds

and wdefines a relative integral invariant. The 2-faplays a fundamental role in the
description of motion. It admits the local expression:

(4.4) Qup=04Cs—05Cy.
Theorem:

The 2-formQ is an invariant for the differential system for tkteeamlines; i.e.:

(4.5) LcQ =0.
Lc is the Lie derivative alonG.

Indeed, if one uses the identity from the calculusaniations:
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LcQ = (dic+icd) Q
then since =da one will haved Q = 0, and all that will remain dic Q ; now:
(iC Q)ﬂ = Ca Qaﬁ = Ca (aa Cﬁ_ 6/; Ca) .

Upon introducing the Riemannian connection that is adsakcwith the conformal metric
g, one will get:

£eQ=¢4,c,-0,G,).

Since C, is a unit vector,C*0,C,= 0, and on the other hand, from (3.10, is a

geodesic field, so one will indeed hageQ = 0.

The 2-formQ is an invariant form for the differential systemtbé streamlines. We
shall look for all of the differential systems thaave it invariant. We must determine all
of the vector fieldX such that:

QupX%=0.

The existence oK depends upon the rank of the preceding system, and Qipces
antisymmetric, one will have:

1. If Q has rank 2 then the characteristic vectors will for2aanelly at each point
X. The field of 2-planed1 admits 2-dimensional integral manifolds that are
generated by the streamlines.

2. IfQ hasrank 0 thef = 0. SinceQ =da wwill be a closed 1-form, so there will
exist a functionpsuch thatw=dg. As aresultC, =0d,@: The streamlines are
orthogonal trajectories to the family of hypersurfagesconst.

Those results are important for the study of rotati@mal irrotational motions of
fluids.

8§ 2. ROTATIONAL AND IRROTATIONAL MOTIONS
5. Vorticity tensor and Helmholtz equations.

Definition. — One calls the antisymmetric tensor of order 2 thatefined by the
invariant 2-formQ thevorticity tensor.

It constitutes the true relativistic extension of timation of the velocity that is
introduced in classical mechanics. If one recalls @kpression forf = 1 + £c? +
pr'c?, in whichc is the speed of light then one will see t@at=f u, will differ from
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u, by some terms in?, andQ 3=, Cs— 8, Cp will differ from Qqs =0, Us— 94Uz by
terms inc™.

Theorem:
The vorticity tensor satisfies the Helmholtz equation:

Indeed, a simple calculation shows that these eq@ato® a consequence of the
equationLc Q = 0, which expresses the idea tkats an invariant form. One performs
the calculation in the initial metrid/( g).

Definition. — One says that a fluid motionristational if Q # 0 andirrotational if Q
=0.

Theorem:

In order for a motion of an isentropic perfect fluid to be irrotationaisinecessary
and sufficient that the streamlines should be orthogonal to the same (logatsimface.

Indeed, letZ be a space-like hypersurface such gt = 0 onZ. One can choose
local coordinates such thatis represented by’ = 0 and the streamlines are represented
by X = const. (i.e., Gaussian coordinates). The Helmtegjtmtions show thak Qup=
0. It will then result tha® 3 = 0 in the neighborhood &t

6. Vorticity vector. — Suppose that the motion is irrotational. Let us sthdy2t
planey at the pointx O V, that is composed of the characteristic vectts viz.,
vectors such that:

(6.1) QuXF=0.

One will already have that the vectaf in My is tangent to the streamline that passes
throughx . In order to succeed in determiniflg, it will suffice for us to look for a
second vector that is not collinear witl. We choose one such vectérthat is
orthogonal to the first one. That vector is definedhgyequations:

(6.2) Qu67=0, 69U =0.

The vector8? is defined only up to a factor, so one will have, by an taftje
calculation:

(6.3) 07 = 10" usQ,s,
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in which 77456 is the Riemannian volume element fof (). One remarks tha®#“ = 0
implies thatQz= 0.

Definition. — One gives the name wbrticity vectorto the vector@“ that is defined
by (6.3), and its trajectories are callemttex lines.

From their definition, the vortex lines are orthoddieathe streamlines. On the other
hand, the differential system for the vortex lines:

%: ea
dt

admits the 2-fornQ as an invariant form. One will immediately deduce thi®wWwing
properties:

Theorem:

If one is given a one-dimensional cy€leéhat is not tangent to the vortex lines then
the circulation of the vorticity vector alodgwill remain invariant when one deforms
along the vortex tube that is definedlhy

Let 7 be a flow tube, whil€ andl'" are homotopic cycles ch Each of those cycles

defines a vortex tube, namelp,and®’. Letl; be a cycle o® that is homotopic td.
The streamline that passes throughcuts the vortex tub® along a cyclel’; that is

homotopic tol". Sincewis a relative integral invariant for the streamliresl also for
the vortex lines, one will have:

J. w=| w.
r r

That property constitutes the relativistic generalizatid a theorem of Helmholtz in
classical dynamics.
Finally, the field of 2-planes - Ty that is defined by the characteristic system of the
form Q:
QupXf=0

is a completely-integrable field. One gives the nameharacteristic manifoldsf Q to

the two-dimensional integral manifol®, . If one then draws the streamlines that pass
through the points of a vortex line then the orthogtnagéctories to those streamlines on
W, will be vortex lines. That amounts to saying that filua line is a vortex line at one
instant then it will remain a vortex line at any instan
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§ 3. PERMANENT MOTIONS

7. Stationary space-time— One says that a space-tinfvg Q) is stationaryif there
exists a connected one-parameter group of global isosmétae does not leave any point
of V4 invariant, has time-like trajectories, and is sut:th

1) Each trajectory is homeomorphic t&.

2) There exists a three-dimensional differentiable ro&thif; and a diffeomorphism
Vs - V3 x Rthat maps the trajectorie®nto the right factoR.

V, takes the form of a trivial fiber bundle with ba#eand fiber typeR. The fibers
are the trajectories of the isometries; one cdilsmttime-lines. One calls the base
manifold V3 space It is diffeomorphic to the quotient manifold \¢f by the equivalence
relation that is defined by the group of isometries.

If £is the infinitesimal generator of the isometry groumthevill satisfy the Killing
equations:

(7.1) CeQap=Uaép+Upéa.

It results from the definition that there exists ealocoordinate systemx X) such
that thexX are a system of local coordinates #nand x° defines the points on the
trajectories ofé, in such a way that the spatial sectiohs: const. are globally defined
and diffeomorphic toVs . One says that those local coordinatés X) are locally
adaptedto the isometry group if the infinitesimal generagoadmits the contravariant
components:

(7.2) =1, &=o.

If gqp are the components of the metric tensor in that coatelisystem then the covariant
components of will be:

QZa:gOa-

The Killing equations (7.1) translate into:

Dafﬁ: Da90ﬁ+ rﬁo Egpﬁ: [a0, 4,
namely:
Dafﬁ+Dﬁ§(a:aogaﬁ:O-

Hence, they,s will be independent of’ in the adapted coordinates.
Upon decomposing the metric form using the directoabdei’, one will have:
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9= Oog s AX O dX

(7.3) +@, dX O dX,
Yoo
in which:
A Yoi 9o
(7.4) 9; =Gj~ ==

defines a negative-definite metric on the spatial sestidt is invariant under any change
of adapted coordinate system of the form:

XX =X+ g (X), X' =x .
One then endowg; with that metric.
8. Permanent motion.— One says that the motion of an isentropic perfead fis

permanentf the space-time is stationary and the isometry greapds the indek and
the unit velocity vector invariant; i.e.:

(8.1) Lef=0, Lsu=0.
If the coordinates are adapted then the conditions (8llityanslate into:
(8.2) 0:f=0, dsu=0.

Theorem:

In order for the motion of an isentropic perfect fluid to be permanei#t,nécessary
and sufficient that space-time should be stationary.

Choose adapted local coordinate ) and let= be the hypersurface with the

equationx’ = 0. = is time-like. It results from the Cauchy problem tbat and the
neighboring hypersurfac@ = const., one will have [Chap.3|.(5.9)]:

xri@E©+xpd) -g% (8%, +xpd (S +x pdy) =0.

In adapted coordinate®,, S, = 0, do gag = 0. It then results that upon differentiating

with respect to and taking the thermodynamic equatim= r df — 8dS(dS= 0) into
account, one will get:

X(fr+0)S%+xpg®)o, f+x2ro,f g®-2d (S, +x pg)x B, =0,

namely, upon taking Chap.3l.(5.7) into account:
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fr
{900—[1— ! ju"uo} [Bof = 0.
r

One then deduces thag f = 0 onZ, and them, u’ = 0. The motion is therefore
permanent.

Theorem:
The scalar function:
(8.3) H=¢&9C,
preserves a constant value along each streamline under any permanent matfancbf

It will suffice for us to show thatc (i;e) = 0, in whichw= C, dx”. Now, upon
utilizing the identity from the calculus of variations:

Lc(igd =(cd+dic)isw,
we will have:
Lc (Iga) =icd i{&)

=ic(Le—ifd) w.

Now it is obvious thats w = 0, which is to say that the differential system tioe
streamlines admits the infinitesimal transformatpso we likewise deduce thét w=
0. That will give:
Lc(isg =—icigdw
=igicQ=0.

Remark. — The differential system for the streamlines admfits invariant formQ
and the infinitesimal transformatiofi. Sincels 8= 0, one will see that the differential

system for the vortex lines possesses the same prog@ng then deduces that= C¢,
is likewise constant along the vortex lined. is then constant along each characteristic
manifold\W, of Q .

One has:

(8.4) dH = Qs P dX,

which is a formula that makes the preceding resulgoab.
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9. Bernoulli's theorem. — Introduce the spatial magnitude of the vectbrelative
to the time directiox . Let:
-V2=48 uluyl
V=gu'ul.
By virtue of the unit character af one will have:

Oap U P = i(goou"’)2 +g ud =1,
in which: ;
(9.1) (10)” = goo (1 +V°) .
The first integraH has the valu€, =f up in adapted coordinates. One then deduces:
H2=f%gop (1 +V).
Upon settingJ = goo , one will get:
Theorem:
The permanent motion of an isentropic perfect faatsfies:
(9.2) f2U (1 +V%) = const.
along each streamline, in which U is the princigevitational potential.
That theorem generalizes Bernoull’'s theorem. eéd] from the thermodynamic

equation, it will give:

One deduces that:

up to terms irc 2 .

§ 4. SPATIAL PROJECTIONS

10. A problem in the calculus of variations— One proposes to study the permanent
motions in spac¥s . In order to do that, one must study the praest of the geodesics

of (V4 , §) onto the quotient spac¥s(, g ).
Such a problem was solved in the most general @baeFinslerian manifold\fp. ,
£) that is defined by a differential manifold thatendowed with a functiof (x, X) that

is positively-homogeneous of degree 1 on the fdfehe direction®d (Vn+1) . One will
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suppose that\+1 , £) admits a connected group of global isometries thatigiieed by
a vector fieldx such that:
LyL£=0.

One refers \(ni1 , £) to local coordinatesx(', X°) that are adapted to its isometry

group, and one denotes the quotient manifol¥ by
The differential system for the extremalsbadmits the relative integral invariant:

(10.1) w=0, L dx,

in which 9, = 0/0x”. £ does not depend upodl (viz., 3£ = 0), so one has the first
integral that is provided by the Euler equation’in

(10.2) 9,£ =h,

in such a way thad, £ dX’ = h d¥ constitutes an integral invariant for the famif)(for
the extremals that correspond to the véudt will then result that:

(10.3) m=19,¢dX

is a relative integral invariant for the familigy.
If 9,,£ # 0then one can solve (10.2) f&t, namely:

(10.4) =g (X, X, h),

in which ¢ is a homogeneous function of degree kin On the other hand, by virtue of
the homogeneity of, one has:

X0,£+x0.L=¢.

As a result, the formir = X' 9,£ can be expressed by a functlonf the variables', x,
h, namely:

(10.5) L (Xi, X!, h) = S(Xi,Xj,¢()i,')i , )— i‘¢(5(, K, h,
and one will have:
0i L:6i£+602wi¢ —-hoi¢g=0L£+hoig-hoig=02L.

The theorem is thus proved.
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Theorem:

The projections onto Mf the extremaléE;) for a given value h are the extremals of
the function L. They are defined for a differential system that adh@trelative integral
invariant:

=0, L dX".

11. Case of a Riemannian metric- Consider the case in which the functifns
defined by:
LP=g,, X & a,=0,1,..n.
Suppose thaty # 0.

The descent process leads one to form the equation:
(11, 10,87 =gy, X+ gy X=h g
and to eliminatex’ from that equation, along with the equation:

(11.2) L=C—hs.

That elimination will give:

2 i
(11.3) L= \/[1—h—j g, X X + AR

00 gOO
If goo = O then one will have:
(11.4) L2=2gy X X+ g % %.

One supposes thal, X # 0. The descent process leads one to elimikatom (11.2)
and the relations:

Oy X =hg,
L=g-hx.
Elimination gives:
SRS,
(11.5) L=faX 8 XX
2h 2g, X

Application to permanent motions.It suffices to replacgqs with f 2 Jap and obtain
the functionL whose extremals give the motion in space. Theomlg one such case,
becauseayyo # 0. One will then obtain:
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2 iy
(11.6) L= [1— n jfzgij %% +pda X
f gOO gOO

It would be interesting to develop the calculations.

12. Projection of null-length geodesics— One considers time-like geodesics as

limits. In our problem:
L= 0, X %,

and upon differentiating with respect $8, one will haveh £ = g,, X, which shows

thath — c wheng - 0, while h keeps the sign ofy,, X*. The extremals of then

coincide with those df / h .
As a result, the desired extremals that define thegtiops of the isotropic geodesics
of (V4 , g) will be the extremals of the function:

(12.1) A = lim %L(x‘, X h .
First casegoo # 0. Passing to the limit gives:

(12.2) A=gé /—igij £ - X
gOO gOO

in which £’is the sign ofg,, X* and¢ is the sign ofjo , and then:

(12.3) X°=¢gé¢ /—igu 2 50— G X
gOO gOO

Second cas@o = 0. Passing to the limit gives:

Yk
(12.4) L=SH XX
29, X
. .j
(12.5) o = HXX
29, X

We shall apply those results to the study of Fernpatriple.
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13. Fermat’s principle. — One knows that light ray4 6] are isotropic geodesics of
the Riemannian manifoldv , g) that is defined by space-timé& when it is endowed

with the metric:

_ 1
(13.2) Oup =Yap— [kﬂj Ug Ug.

Suppose that the motion is permanentd &hdy are constant then the isometry group of
(V4 , g) will induce an isometry group oW{, @).

Choose adapted coordinates.
However, although the trajectories of the isometaégV, , g) are time-like, the
trajectories of the induced isometries ovy ( @) can be time-like, space-like, or

isotropic. Indeed, i is the infinitesimal generator of the isometry groug\af, §)
then one will have:

ZOZQZO:]-, Zi:EiZO
for its contravariant components, and the square ovdwor will have the value:
(13.2) Too = Goo— (1 -WP) o Lo,
in whichw? = 1 /Ay is the square of the speed of propagation of light irflifi:

If we introduce the spatial magnitude of the unit veloeitgtoru“ relative to the time
direction (namely, 7% = - g, u' u’) then we will see that:

(Uo)® # Qoo (1 +VP) .
Upon substituting that value into (13.2), we will get:
(13.3) oo = Goo (VW + W = V7).

U, Can change sign.

Upon applying the formulas of the preceding paragraph,wolheget the following
theorem, which gives the law of propagation of lightpace:

Theorem:
If the motion of the fluid is permanent and sucht tg,,# O then the light rays in

space will be the extremals of the integral:

(13.4)
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in which X = dX / du, for variations with fixed extremities insV The time that a ray
takes to go from the poing to the point xwill then be given by:

(13.5) Tdt = jxl

It is an extremum.

In the caseg,, = 0, one will have:

(13.6) j:/\du = j;l—gé_"—jt(jdu,
Oi

(13.7) L?dt _j g; M
Oi

It is clear that the results do not depend upenatinxiliary variablea . On the other
hand, if space-time is statically orthogonal argdstreamlines coincide with the time-
lines then one will have the world-metric:

g=Ud¥0d¥ +g; dx' Odx!
and the associated metric:

g= %dx‘)m o + gy dx' O dx,

in whichn? = Aiz. One can then put (13.5) into the form:
.[det: jxln\/Udr,
X X

in whichdr? = g; dx' dx/ is the line element oi%, §). In the case of a flat space-time
U = 1, the preceding theorem translates into:

5Ljndr:O.

That is how Fermat’s principle gets stated in sitzed optics. The theorem that we
proved constitutes the statement of Fermat’s guladn general relativity in the case of a
fluid in motion. One can likewise prove the eqlievece of the principle of least action
and the principle of least time with that theorem.

14. Application: relativistic law of the composition of velocites. — We place
ourselves in Minkowski space, which is referredbtthonormal coordinatesu? is the
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unit velocity world-vector of whose components are stagly determined by starting
from the spatial velocitf3, andc is taken to be unity. A simple calculation will gitree
associated metric, which we will write in the form:

1-V°
1-p

2_ VZ_,BZ 2 1
(14.1) ds’= T (dx°) +21

:\ﬁ’j/f dXdk-3 (d*-2— (8 Y™

That metric has hyperbolic normal type. One sthaowte the change of order in the
signature when one passesvtd = B2. One can exhibit that fact by choosing thexis
to be parallel tg3(i.e., the flow velocity). One will then have:

(14.2) ds?= Vlz__ﬁﬁ; (dX°)? +2

—(dR)°-(dy %

which one can put into canonical form by a decoritjpssinto squares. ¥/ ?# 82 then
one will get:

. 1= B, 1-v? T 1-p° P
uhs_vz_ﬁ{lﬁ dx + 1ﬁ2dx} Vzﬁ(df() —(dR)2-( d}?2

and one sees that fo’ > £2 one will have a signature—+- —, while forV? < £?, one
will have signature- + —— . ForV?=£? one will get:

ds?= 2V d¥ dxt — (1 +V?) ([dx)? - (dx8)? - (dxXP),

which still has signature +-—.
Starting from the associated metric (14.1), weé $eeexpress that theorem by taking

the arc length{ of the ray to be the parameter. We must repleet in (13.5) withA'
=dx'/d¢, in whichd{? = (@dx)? + (d@)? + (dx)? . We will then infer that:

dt_1__[1-8 (1-V3)(BA)
W ssjvz_ﬂ ~FH VA -

If V2— 2% 0 then that relation will give:

~B*—(1-BHYW?—(1 -V (1-WB )=

If one interprets/ as the absolute velocity of the propagation ditligndW as the
relative velocity then one will obviously have:

(14.3) v2:m[w2+ﬁ2+zwm+(\/\/m2—w2ﬁﬁ.
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One verifies that this relation will remain valid inetttase ofV 2 = 82 by direct
calculation; it is the relativistic formula for th@mposition of velocities. It is easy to
verify that one can put it into the form:

_ 1 W8 ~ 2w _WIB
]

B B

One thus obtains a proof of the relativistic law of position of velocities by starting
from Fermat’s principle.
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