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 1. – Suppose that one would like to express the idea that a body C rolls without slipping on a 

surface S at the moment t. One must write out the idea that the velocity of the point of contact of 

C with S is zero at that moment, which will give equations of constraint that express the rolling of 

C on S. Korteweg has shown, in a general manner (*), that those equations cannot be integrated. 

Following Hertz, one gives the name of non-holonomic constraints to all of the constraints that 

are expressed by non-integrable differential equations, whereas one calls constraints holonomic 

when they can be expressed by finite or integrable equations. 

 In what follows, we shall examine what the general equations of analytical mechanics will 

become in the case of non-holonomic constraints. 

 

 

I. – The Lagrange equations. 

 

 2. – Neumann (**), Vierkandt (***), and Korteweg (†) have shown that the Lagrange equations 

must be modified in the case of non-holonomic constraints. 

 Appell gave a proof of that fact in tome II of his Mécanique rationelle. 

 We shall reproduce it, while generalizing it slightly. 

 

 

 3. – In all of what follows, we shall suppose that: 

 

 
 (*) Korteweg, “Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden 

Bewegung, etc.,” Nieuw Archief voor Wiskunde, Tweede Reeks, Deel IV (1900), 130-155. 

 (**) C. Neumann, “Grundzüge der analytischer Mechanik, insbesondere der Mechanik starrer Körper (Zweiter 

Artikel), Ber. Verh. Kgl. Sächs. Ges. Wiss. Leipzig 40 (1888), 22-88, esp. pp. 32-56. 

 (***) Vierkandt, “Über gleitende und rollende Bewegung,” Mon. Math. und Physik 3 (1892), 31-54, esp., pp. 47. 

 (†) Loc. cit. 
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 1. D’Alembert’s principle is applicable. 

 

 2. It is possible to replace the geometric constraints that are imposed upon the system with 

forces of reaction. 

 

 3. The work done by those forces of reaction is zero for any displacement that is compatible 

with the constraints. 

 

 

 4. – Suppose that the coordinates of an arbitrary point of the systems are expressed by means 

of n parameters q1, q2, …, qn, and time t in such a way that: 
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 In addition, assume that the n parameters are coupled by k distinct non-holonomic relations: 

 

(2)     
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 A virtual displacement that is compatible with the constraints that exist at the moment t is 

determined by equations of the form: 
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  
= + +
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  (i = 1, 2, …, n). 

 

 If the q are coupled by the k equations (2) then one can deduce, e.g., the last k of the q as 

homogeneous linear functions of the first n – k of them, which will be arbitrary. If one eliminates 

the k dependent displacements from (3) then one will obtain values for xi , yi , zi  that take the 

form: 
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(4)     
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 (p = n – k). 

 

 If we substitute the values (4) in the general d’Alembert equations and equate the coefficients 

of the same variations q in both sides of them then we will get p equations of the form: 

 

(5)  

2 2 2

1 1 1 1 1 12 2 2

2 2 2

2 2 2 2 2 22 2 2

( ) ,

( ) ,
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which constitute n equations of motion when one includes equations (2). 

 I say that equations (5) differ from those of Lagrange, as a general rule. 

 Since the right-hand sides are the same in (5) and the Lagrange equations, I must prove that 

the left-hand sides are different. 

 One has: 

(6)    
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,

,
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  ,
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x y
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 
 = = 

 
. 

 

 The left-hand side of the first of equations (5) can be written: 

 

(7)    1 1 1
1 1 1( )

da db dcd
m a x b y c z m x y z

dt dt dt dt

 
     + + − + + 

 
   . 

Now, (6) gives: 

a1 = 
1

x

q




, b1 = 

1

y

q
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
, c1 = 

1

z

q




, 

and since 2T = 2 2 2( )m x y z  + + , the first term in (7) can be written 
1

d T

dt q

 
 

 
, which is nothing 

but the first term in the Lagrange equation. The difference between the second term of the 

Lagrange equation: 

− 
1

T

q




 = − 

1 1 1

x y z
m x y z

q q q

     
  + + 

   
  
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and the second term in the expression (7) is: 

 

(8)  R1 = 1 1 1

1 1 1

da db dcx y z
m x y z

dt q dt q dt q

          
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1
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If one takes those values into account then the coefficient of x  in (8) will be: 

 

(9)  31 2 1 1 1
2 3

2 1 3 1 1 1

p

p

aaa a a a a a
q q

q q q q q q t q

          
 − + − + + − + −                   

 . 

 

The coefficients of y  and z  have analogous forms. 

 In order for the Lagrange equation to apply to the parameter q1, it is necessary that (9) and the 

other two analogous expressions must be identically zero, which it not generally true. (See: Appell, 

Les mouvements de roulement en Dynamique, pp. 41.) 

 The theorem is then proved. 

 

 

 5. Remarks. – 

 

 I. No matter what the constraints might be, one can write the left-hand sides of the Lagrange 

equations, on the condition that one must add expressions like R1 to their left-hand sides. In any 

case, one will then have: 

(10) 
1 1

d T T

dt q q

  
− 

  
 = Q1 + R1 . 

 

We shall point out (no. 7) a differential equation that R1 must satisfy. 

 

 II. If the expressions (4) are integrable then one will see immediately that R1 = 0, and that 

equations (10) reduce to those of Lagrange. 

 

 III. First write out the terms a1 q1, b1 q1, 1 1c q  in the right-hand sides of formulas (4) and 

(6). Define two parts of the terms in terms of q2, q3, …, 2q , 3q , …, and the term  : The first 

one contains q1, while second one does not. Therefore, set: 
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a2 = 2 + A2 , a3 = 3 + A3 , …, b2 = 2 + B2 , …, c2 = 2 + C2 , …, 

 

in which the Greek symbols denote quantities that include the parameter q1, while the upper-case 

Latin characters do not. Formulas (4) and (6) can be written: 

 

(4)   

1 1 2 2 2 2

1 1 2 2 2 2

1 1 2 2 2 2
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( ) ( ) ,
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       
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

= + + + + + +
 = + + + + + +

 

 

(6)   
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  

      = + + + + + + + +


     = + + + + + + + +
      = + + + + + + + +

 

Let us prove: 

 

 If the first parentheses in the right-hand sides constitute exact differentials then the ordinary 

Lagrange formulas will be applicable to the parameter q1 . 

 

 By hypothesis, one has 1

2

a

q




 = 2

1q




, and since 2

1

A

q




 = 0, one can write: 

 

1

2

a

q




 = 2 2

1

( )A

q

 +


 or 1

2

a

q




 = 2

1

a

q




. 

 

 One has the same equalities for the other a, b, c, …, so R1 = 0. Appell (“Les mouvements de 

roulements en Dynamique,” pp. 44) gave another proof of that theorem and reproduced the 

application that Ferrers made (1872) to the construction of the equations of motion of the hoop. 

 

 Note. – It is pointless to show that the preceding theorem will always apply when the 

coefficients in (4) or (6), other than a1, do not contain q1, and if a1 does not contain q1, q2, …, qp, 

t. 

 

 IV. It might happen that some of equations (2) are integrable. Let us assume that s of those 

equations are found in that case. Upon integration, we will obtain s equations that couple the 

parameters, which will make the number of independent parameters drop from n to n – 1. 

 

 V. If equations (2) are not immediately integrable then one can demand to know if they do not 

admit an integration. That question was examined, in part, by Hamel in his paper “Die Lagrange-

Euler’schen Gleichungen der Mechanik,” Leipzig, Teubner, 1902. 
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 6. Appell equations. – We shall transform equation (10) in such a manner as to make the 

quantity R1 disappear, which is too complicated to define using formula (8). 

 One has: 

1

T

q




 = 

1 1 1

x y z
m x y z

q q q

     
  + + 

     
  , 

or, in view of (6): 

1

T

q




 = ( )1 1 1m a x b y c z  + +  . 

As a result: 

1

d T

dt q

 
 

 
 = 1 1 1

1 1 1

da db dc
m a x b y c z x y z

dt dt dt

 
     + + + + + 

 
  . 

 

With Appell, we set: 

S = ( )2 2 21
2

m x y z  + +  , 

and we can then write: 

(11) 
1

d T

dt q

 
 

 
 = 1 1 1

1

da db dcS
m x y z

q dt dt dt

  
  + + + 

  
  . 

 Moreover: 

(12)    
1

T

q




 = 

1 1 1

x y z
m x y z

q q q

     
  + + 
   

  . 

 

If we subtract (12) from (11) then we will duplicate the left-hand side of equation (10), which will 

become: 

1 1 1

1 1 1 1

da db dcS x y z
m x y z

q dt q dt q dt q

           
  + − + − + −      

         
  = Q1 + R1 . 

 

 Now, from (8), the second term on the left-hand side is nothing but R1. One will then have: 

 

(13)     
1

S

q




 = Q1 , 

 

and analogous equations that relate to the other independent parameters. Those equations are due 

to Appell, who gave another proof in the Comptes rendus de l’Académie des Sciences de Paris 

(1899). 

 Appell started from d’Alembert’s principle, instead of transforming the generalized 

Lagrange equation (10), as we did. 

 

 

 



Quanjel – Equations of mechanics for non-holonomic constraints. 7 

 

 7. Remark. – 

 

 I. When one follows the procedure that led to equations (13), the following viewpoints would 

seem advantageous: 

 

 1. Equations (13) present themselves quite naturally as a generalization of the Lagrange 

equations. 

 

 2. One immediately sees the equivalence of equations (10) and (13). Indeed, one will recover 

the latter upon performing the transformations on (13) that are inverse to the ones that one made 

on (10). 

 

 3. In addition, one sees that equations (13) are identical to the ordinary Lagrange equations 

for holonomic systems 

 

 4. Finally, following the procedure will allow one to easily show the equivalence of equations 

(13) and the ones that were obtained by the authors Kortweg and Vierkandt, among others, and 

we shall say a word about that shortly. 

 

 II. If one subtracts (13) from (10) then one will get: 

 

(14)   R1 = 
1 1 1

d T T S

dt q q q

   
− − 

    
,  R2 = … 

 

 Appell established the same equation (Journal de Jordan, 1901) and made some relatively 

interesting remarks in regard to it. 

 The quantities R1, R2 enter into the generalization of Jacobi’s theorem that we shall give later 

on. 

 

 

 8. The Korteweg equations (Nieuw Archief, 1899). – We shall give a simple exposition of 

the Korteweg procedure. Suppose for the moment that we abstract from the constraints (2) by 

replacing them with some reaction forces that we add to the applied forces. The body is then made 

free, and we can apply the Lagrange equations to it. 

 We will then write: 

(14)    

1 1

1 1

,

.......................................

,n n

n n

d T T
Q R

dt q q

d T T
Q R

dt q q

   
− = +  

  




   − = + 
   

 

 



Quanjel – Equations of mechanics for non-holonomic constraints. 8 

 

in which R1, R2, …, Rn are the components of the reaction forces. 

 Imagine a displacement q1, q2, …, qn that is compatible with the constraints and suppose 

that this displacement can be performed in such a manner that the work done by reaction forces is 

zero (which will be true for rolling motions in particular), i.e.: 

 

(15)    R1 q1 + R2 q2 + … + Rn qn = 0 . 

 

 By hypothesis, equations (2) express all of the constraints to which the system is subject. (15) 

must then a consequence of (2). In other words, the values of the k displacements qp+1 , …, qn 

that are deduced from (2) as functions of q1 , …, qp must satisfy (15) for any q1 , q2 , …, qp , 

which demands that the determinant: 

 

1 1 2 2 1

1 1 2 2 1

1 1 2 2 1

..............................................

p p p n

p p p n

p p p n

R q R q R q R R

A q A q A q A A

L q L q L q L L

  

  

  

+

+

+

+ + +

+ + +

+ + +

 

 

must be identically zero. That condition will produce the p equations: 

 

(16)  

1 1

1 1

1 1

p n

p n

p n

R R R

A A A

L L L

+

+

+

 = 0 , 

2 1

2 1

2 1

p n

p n

p n

R R R

A A A

L L L

+

+

+

 = 0 , … 

 

 If one eliminates the quantities R1, R2, …, Rn from equations (16) by means of (14) then one 

will get the equations of motion. 

 

 Remark. – The starting point for Korteweg is the same as the one that permitted us to recover 

the Appell equations. 

 The latter equations are superior to those of Korteweg. It is, moreover, possible to show the 

equivalence of the Korteweg equations and those of Appell by means of very lengthy calculations. 

 

 

 9. The Vierkandt method. – It is nothing but the method of Lagrange multipliers. 

 Upon substituting the values of x, y, z and x, y, z that are deduced from (1) in the 

d’Alembert equations, it will take the form: 

 

(17)   
1 1

i i

d T T
Q q

dt q q


   
− −  

   
  = 0  (i = 1, 2, …, n), 

or 
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(17)    ( )i i iP Q q−  = 0 , 

 

to abbreviate. 

 Suppose that the q are coupled by the k equations (2). 

 We add those equations to equations (17) after multiplying the former by the quantities 1, 2, 

…, k , respectively (which are undetermined for now). We will get: 

 

(18)  

1 1 1 2 2 1 1 1

1 1

( )

...............................................................

( ) 0.

k

n n n n k n n

P Q A A L q

P Q A A L q

   

   

− − − − −


 + − − − − − =

 

 

 As always, we take the independent parameters to be q1, q2, …, qp (p = n – k) . 

 We choose the multipliers  in such a manner that the coefficients of the k dependent 

displacements are zero. We will then get the k equations: 

 

(19)  

1 1 1 1 1

1

0,

...........................................................

0 .

p p p k p

n n n k n

P Q A L

P Q A L

 

 

+ + + +− − − − =


 − − − − =

 

 

 Equations (18) will become: 

 

(20) 
1 1 1 2 1 1 1( ) ( )k p p p k n pP Q A L q P Q A L q     − − − − + + − − − −  = 0 . 

 

The q that figure in the latter equation are independent, so their coefficients must be zero, which 

will produce p new equations, and when they are combined with the system (19) and the system 

(2), that will define a system of n + k equations for the n + k unknowns q1, q2, …, qp ; 1, 2, …, 

k . 

 

 Remark. – That procedure is subject to the same criticisms as that of Korteweg, which is not 

fundamentally different from it. Indeed, since (15) is a consequence of (2), one can write: 

 

 R1 q1 + R2 q2 + … + Rn qn  

 

 1 (A1 q1 + … + An qn) + 2 (B1 q1 + …) + … + k (L1 q1 + … + Ln qn) , 

 

which will demand that: 

  Ri = 1 Ai + 2 Bi + … + k Li   (i = 1, 2, …, n). 
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 10. On the improper applications that have been made of the non-generalized Lagrange 

equations. – Several esteemed authors have made improper applications of the non-generalized 

Lagrange equations, and above all, in the solution to the problem of rolling motion. 

 Here is how those authors proceed: They form the quantity 2T as a function of the n parameters 

q. They then eliminate k of the parameters from that expression by means of (2) and apply the non-

generalized Lagrange formulas to the n – k = p remaining parameters, but that would not be 

permissible, as was shown in no. 4. [Of those authors, we cite: Schouten, “Over de rollende 

beweging van een Omwentelingslichaam op een vlak,” Verslagen der Koninklijke Akademie, 

Amsterdam (1899); Ernest Lindelöf, “Mouvement de roulement d’un corps de revolution sur un 

plan”]. 

 

 

II. – The canonical equations. 

 

 11. – Painlevé showed (Leçons sur l’intégration des équations de la Mécanique, pp. 140, et 

seq.) how one can write the canonical equations of a holonomic system when the quantity 2T is not 

a quadratic form in 1q , 2q . 

 We shall see how one must modify the usual canonical equations for non-holonomic systems. 

 The generalized Lagrange equation 
1 1

d T T

dt q q

  
− 

  
 = Q1 + R1 , which has order two, is 

equivalent to the first-order system: 

(21)    
1 1

1 1

1
1

,

.

d T T
Q R

dt q q

dq
q

dt

   
− = +  

   



 =

 

 

 Apply the Poisson transformation to the system (21), which consists of making p1 = 
1

T

q




,  p2 

= 
2

T

q




, etc., and introducing a function K that is defined by: 

 

(22)    K = 1 1 2 2p q p q T + + − . 

 

 Upon following a path that was mapped out in the classical treatise on mechanics, one will get 

the system: 
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(23)  

1 1
1 1

1 1

, ,

, ,n k n k
n k n k

n k n k

dq dpK K
Q R

dt p dt q

dq dpK K
Q R

dt p dt q

− −
− −

− −

 
= + = +  



  
 = + = +

 

 

 

which are the most general canonical equations of motion. 

 

 

 12. – When there exists a force function U that is explicitly independent of time and the velocity 

of the points of the system (in other words, if U depends upon only the parameters q1, q2, …, qp), 

equations (23) will take the form: 

 

(24)  

1 1
1

1 1

( ) ( )
, ,

dq dpK U K U
R

dt p dt q

 −  −
= + =

 



 

 

 

 13. – If, in addition to the conditions on U that were indicated above, the expressions for the 

coordinates of the various points of the system are explicitly independent of time then one will 

know that one then has T = K, and if one then sets K – U = T – U = H, as usual, then the system 

(24) can be written in the simpler form: 

 

(25)   1dq

dt
 = 

1

H

p




,  1dp

dt
 = − 

1

H

p




= R . 

  

 

III. – Jacobi’s theorem. 

 

 14. – In this subsection, we shall assume that the coordinates x, y, z are expressed explicitly as 

functions of the parameters and time. We suppose only that U is explicitly independent of time, 

and we shall continue to denote the quantity K – U by H. The canonical equations will then keep 

the form (25). 

 Can the solution of the system (25) depend upon the solution of the ordinary Jacobi equation: 

 

(26)   1 2 3

1 2 3

, , , , , ,
V V V V

H q q q t
t q q q

    
+  

    
 = 0 

 

in the case of non-holonomic constraints? 

 (For easy of writing, we shall suppose that there are only three parameters q1, q2, q3.) 
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 If we verify the calculations as Appell did (Mécanique, tome II) then we will confirm that the 

values of dq / dt that are inferred by (25) are identical to the ones that (27) implies, but the same 

thing is not true for the values of the dp / dt. One must then pose the question: It is possible to 

modify equation (26) in such a manner that Jacobi’s theorem remains applicable? 

 We shall now examine that question. 

 

 

 15. – Let us try to determine a function  of the parameters such that a solution V (q1, q2, q3, t, 

a1, a2, a3) (a1, a2, a3 are arbitrary constants) of the equation: 

 

(26)   1 2 3

1 2 3

, , , , , ,
V V V V

H q q q t
t q q q

    
+  

    
 +  = 0 

 

will imply the same values for the dq / dt and dp / dt that the canonical equations (25) do, when 

one sets: 

(28)   

1 2 3

1 2 3

1 2 3

1 2 3

, , ,

, , .

V V V
b b b

a a a

V V V
p p p

q q q

  
= = =   


   = = =

   

 

 

 First, let us find the form that  must have in order for the dp / dt to have identical values in 

(25) and (28). The latter give: 

 

(24)  

2 2 2 2

1
1 2 32

1 1 1 2 1 3

,

.........................................................................

dp V V V V
q q q

dt q t q q q q q

    
  = + + +

      



 

    

 If we express the idea that V is a solution of (25) then we will get: 

 
2 2 2 2

12

1 1 1 2 1 3 1 1

1 2 3

V H V H V H V H

t q q q q q q q qH H H

q q q

        
+ + + + +

               
       

       

  0 , 

 

or, if one recalls (28): 

(30)  
2 2 2 2

1 2 32

1 1 1 2 1 3

V V V V
q q q

q t q q q q q

   
  + + +

      
 − 

1 1

H

q q

 
−

 
.   

 

The left-hand side of that equation is nothing but dp1 / dt [form. (20)]. If we write out that the value 

is identical to the one that (25) implies then we will have: 
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− 1

1

H
R

q


+


  − 

1 1

H

q q

 
−

 
 or − R1 = 

1q




. 

 

We will find analogous expressions for q2, q3 . We will then have the three conditions: 

 

(31)    

1

1

2

2

3

3

,

,

.

R
q

R
q

R
q







 
− =


 

− =


 
− =



 

 

 If there then exists a function  that admits the quantities – R1, – R2, – R3, as partial derivatives 

with to q1, q2, q3, resp., then the values of dp / dt that one infers from (25) and (28) will be identical. 

An easy calculation will show that if  exists then the values of q  that one infers from the 

canonical system will also be identical to the ones that are deduced from (28). Therefore: 

 

 The generalized Jacobi theorem. 

 

 In order for the Jacobi theorem to remain applicable to non-holonomic systems, it is necessary 

and sufficient that one can complete the ordinary Jacobi equation by means of a function  that 

admits – R1, – R2, – R3 as partial derivatives with respect to q1, q2, q3, resp. 

 

 

 16. – The function  will exist if: 

 

()    1

2

R

q




 = 2

1

R

q




, 1

3

R

q




 = 3

1

R

q




, 2

3

R

q




 = 3

2

R

q




, 

and since: 

R1 = 
1 1 1

d T T S

dt q q q

   
− − 

    
, R2 = …, 

the condition () can be written: 

 

(b)   
2

2 1 1 2

d T S

q dt q q q

   
− 

     
 = 

2

1 2 2 1

d T S

q dt q q q

   
− 

     
, … 

 

 One should remark that it suffices to calculate the first terms in the two sides of () in order 

for one to determine the terms in T that contain the products 2 1q q , 1 2q q , and in order to calculate 

the second ones, it will suffice to determine the terms in S that contain the products 1 2q q , 2 1q q . 
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 17. Particular case. – If the quantities – R1, – R2, – R3 are independent of q1, q2, q3 then the 

first of equations (25) can be written: 

  1dq

dt
 =    

1

( )H

p

 −


, 

and the last one can be written: 

  1dp

dt
 = − 

1

( )H

q

 −


, 

 

on the condition that one must take  to be the function that was defined in no. 16, but with its 

sign changed. 

 In that case, if one takes H to have the expression: 

 

H = K – U –  

 

then the generalizes Jacobi equation will have the ordinary form: 

 

1 2 3

1 2 3

, , , , , ,
V V V V

H q q q t
t q q q

    
+  

    
 +  = 0 . 

 

 

 18. – Certain authors have made an incorrect use of the non-generalized Jacobi theorem. We 

shall cite only Ezio Crescini [“Sul moto di una sfera che rotola su di un piano fisso,” Rend. Acc. 

Lincei 5, 1st sem. (1889), 204-209], who applied that theorem in number 3 of his study. 

 
 Halle Gate (Brussels), June 1906. 

 

 

____________ 

 

 

 

 

 


