The general equations of mechanics in the case of non-holonomic constraints.

By Jean Quanjel (Halle Gate)

Presented on 24 June 1906

Translated by D. H. Delphenich

1. - Suppose that one would like to express the idea that a body C rolls without slipping on a surface S at the moment t. One must write out the idea that the velocity of the point of contact of C with S is zero at that moment, which will give equations of constraint that express the rolling of C on S. Korteweg has shown, in a general manner (${ }^{*}$), that those equations cannot be integrated. Following Hertz, one gives the name of non-holonomic constraints to all of the constraints that are expressed by non-integrable differential equations, whereas one calls constraints holonomic when they can be expressed by finite or integrable equations.

In what follows, we shall examine what the general equations of analytical mechanics will become in the case of non-holonomic constraints.

I. - The Lagrange equations.

2. - Neumann (${ }^{* *}$), Vierkandt $\left({ }^{* * *}\right)$, and Korteweg $\left({ }^{\dagger}\right)$ have shown that the Lagrange equations must be modified in the case of non-holonomic constraints.

Appell gave a proof of that fact in tome II of his Mécanique rationelle.
We shall reproduce it, while generalizing it slightly.
3. - In all of what follows, we shall suppose that:

[^0]1. D'Alembert's principle is applicable.
2. It is possible to replace the geometric constraints that are imposed upon the system with forces of reaction.
3. The work done by those forces of reaction is zero for any displacement that is compatible with the constraints.
4. - Suppose that the coordinates of an arbitrary point of the systems are expressed by means of n parameters $q_{1}, q_{2}, \ldots, q_{n}$, and time t in such a way that:

In addition, assume that the n parameters are coupled by k distinct non-holonomic relations:

$$
\left\{\begin{array}{l}
A_{1} \delta q_{1}+A_{2} \delta q_{2}+\cdots+A_{n} \delta q_{n}=0 \tag{2}\\
B_{1} \delta q_{1}+B_{2} \delta q_{2}+\cdots+B_{n} \delta q_{n}=0 \\
\ldots \\
L_{1} \delta q_{1}+L_{2} \delta q_{2}+\cdots+L_{n} \delta q_{n}=0
\end{array}\right.
$$

A virtual displacement that is compatible with the constraints that exist at the moment t is determined by equations of the form:

$$
\left\{\begin{align*}
\delta x_{i} & =\frac{\partial x_{i}}{\partial q_{1}} \delta q_{1}+\cdots+\frac{\partial x_{i}}{\partial q_{n}} \delta q_{n}, \tag{3}\\
\delta y_{i} & =\frac{\partial y_{i}}{\partial q_{1}} \delta q_{1}+\cdots+\frac{\partial y_{i}}{\partial q_{n}} \delta q_{n}, \\
\delta z_{i} & =\frac{\partial z_{i}}{\partial q_{1}} \delta q_{1}+\cdots+\frac{\partial z_{i}}{\partial q_{n}} \delta q_{n}
\end{align*} \quad(i=1,2, \ldots, n)\right.
$$

If the δq are coupled by the k equations (2) then one can deduce, e.g., the last k of the δq as homogeneous linear functions of the first $n-k$ of them, which will be arbitrary. If one eliminates the k dependent displacements from (3) then one will obtain values for $\delta x_{i}, \delta y_{i}, \delta z_{i}$ that take the form:

$$
\left\{\begin{array}{rl}
\delta x_{i} & =a_{1} \delta q_{1}+a_{2} \delta q_{2}+\cdots+a_{p} \delta q_{p}, \tag{4}\\
\delta y_{i} & =b_{1} \delta q_{1}+b_{2} \delta q_{2}+\cdots+b_{p} \delta q_{p}, \\
\delta z_{i} & =c_{1} \delta q_{1}+c_{2} \delta q_{2}+\cdots+c_{p} \delta q_{p}
\end{array} \quad(p=n-k) .\right.
$$

If we substitute the values (4) in the general d'Alembert equations and equate the coefficients of the same variations δq in both sides of them then we will get p equations of the form:
which constitute n equations of motion when one includes equations (2).
I say that equations (5) differ from those of Lagrange, as a general rule.
Since the right-hand sides are the same in (5) and the Lagrange equations, I must prove that the left-hand sides are different.

One has:

$$
\left\{\begin{array}{l}
x^{\prime}=a_{1} q_{1}^{\prime}+a_{2} q_{2}^{\prime}+\cdots+a_{p} q_{p}^{\prime}+a, \tag{6}\\
y^{\prime}=b_{1} q_{1}^{\prime}+b_{2} q_{2}^{\prime}+\cdots+b_{p} q_{p}^{\prime}+b, \\
z^{\prime}=c_{1} q_{1}^{\prime}+c_{2} q_{2}^{\prime}+\cdots+c_{p} q_{p}^{\prime}+c
\end{array} \quad\left(x^{\prime}=\frac{d x}{d t}, y^{\prime}=\cdots\right) .\right.
$$

The left-hand side of the first of equations (5) can be written:

$$
\begin{equation*}
\frac{d}{d t} \sum m\left(a_{1} x^{\prime}+b_{1} y^{\prime}+c_{1} z^{\prime}\right)-\sum m\left(x^{\prime} \frac{d a_{1}}{d t}+y^{\prime} \frac{d b_{1}}{d t}+z^{\prime} \frac{d c_{1}}{d t}\right) \tag{7}
\end{equation*}
$$

Now, (6) gives:

$$
a_{1}=\frac{\partial x^{\prime}}{\partial q_{1}}, \quad b_{1}=\frac{\partial y^{\prime}}{\partial q_{1}}, \quad c_{1}=\frac{\partial z^{\prime}}{\partial q_{1}}
$$

and since $2 T=\sum m\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)$, the first term in (7) can be written $\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)$, which is nothing but the first term in the Lagrange equation. The difference between the second term of the Lagrange equation:

$$
-\frac{\partial T}{\partial q_{1}}=-\sum m\left(x^{\prime} \frac{\partial x^{\prime}}{\partial q_{1}}+y^{\prime} \frac{\partial y^{\prime}}{\partial q_{1}}+z^{\prime} \frac{\partial z^{\prime}}{\partial q_{1}}\right)
$$

and the second term in the expression (7) is:

$$
\begin{equation*}
R_{1}=\sum m\left[x^{\prime}\left(\frac{d a_{1}}{d t}-\frac{\partial x^{\prime}}{\partial q_{1}}\right)+y^{\prime}\left(\frac{d b_{1}}{d t}-\frac{\partial y^{\prime}}{\partial q_{1}}\right)+z^{\prime}\left(\frac{d c_{1}}{d t}-\frac{\partial z^{\prime}}{\partial q_{1}}\right)\right] . \tag{8}
\end{equation*}
$$

Now:

$$
\frac{d a_{1}}{d t}=\frac{\partial a_{1}}{\partial q_{1}} q_{1}^{\prime}+\frac{\partial a_{1}}{\partial q_{2}} q_{2}^{\prime}+\cdots+\frac{\partial a_{p}}{\partial q_{p}} q_{p}^{\prime}+\frac{\partial a}{\partial t}
$$

and

$$
\frac{\partial x^{\prime}}{\partial q_{1}}=\frac{\partial a_{1}}{\partial q_{1}} q_{1}^{\prime}+\frac{\partial a_{2}}{\partial q_{1}} q_{1}^{\prime}+\cdots+\frac{\partial a_{p}}{\partial q_{1}} q_{1}^{\prime}+\frac{\partial a}{\partial q_{1}} .
$$

If one takes those values into account then the coefficient of x^{\prime} in (8) will be:

$$
\begin{equation*}
\left(\frac{\partial a_{1}}{\partial q_{2}}-\frac{\partial a_{2}}{\partial q_{1}}\right) q_{2}^{\prime}+\left(\frac{\partial a_{1}}{\partial q_{3}}-\frac{\partial a_{3}}{\partial q_{1}}\right) q_{3}^{\prime}+\cdots+\left(\frac{\partial a_{1}}{\partial q_{p}}-\frac{\partial a_{p}}{\partial q_{1}}\right)+\left(\frac{\partial a_{1}}{\partial t}-\frac{\partial a}{\partial q_{1}}\right) . \tag{9}
\end{equation*}
$$

The coefficients of y^{\prime} and z^{\prime} have analogous forms.
In order for the Lagrange equation to apply to the parameter q_{1}, it is necessary that (9) and the other two analogous expressions must be identically zero, which it not generally true. (See: Appell, Les mouvements de roulement en Dynamique, pp. 41.)

The theorem is then proved.

5. Remarks. -

I. No matter what the constraints might be, one can write the left-hand sides of the Lagrange equations, on the condition that one must add expressions like R_{1} to their left-hand sides. In any case, one will then have:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial T}{\partial q_{1}}=Q_{1}+R_{1} \tag{10}
\end{equation*}
$$

We shall point out (no. 7) a differential equation that R_{1} must satisfy.
II. If the expressions (4) are integrable then one will see immediately that $R_{1}=0$, and that equations (10) reduce to those of Lagrange.
III. First write out the terms $a_{1} \delta q_{1}, b_{1} \delta q_{1}, c_{1} \delta q_{1}$ in the right-hand sides of formulas (4) and (6). Define two parts of the terms in terms of $\delta q_{2}, \delta q_{3}, \ldots, q_{2}^{\prime}, q_{3}^{\prime}, \ldots$, and the term α : The first one contains q_{1}, while second one does not. Therefore, set:

$$
a_{2}=\alpha_{2}+A_{2}, \quad a_{3}=\alpha_{3}+A_{3}, \ldots, \quad b_{2}=\beta_{2}+B_{2}, \quad \ldots, \quad c_{2}=\gamma_{2}+C_{2}, \quad \ldots,
$$

in which the Greek symbols denote quantities that include the parameter q_{1}, while the upper-case Latin characters do not. Formulas (4) and (6) can be written:

$$
\begin{gather*}
\left\{\begin{array}{l}
\delta x=\left(a_{1} \delta q_{1}+\alpha_{2} \delta q_{2}+\cdots+\alpha_{p} \delta q_{p}\right)+\left(A_{2} \delta q_{2}+\cdots+A_{p} \delta q_{p}\right), \\
\delta y=\left(b_{1} \delta q_{1}+\beta_{2} \delta q_{2}+\cdots+\beta_{p} \delta q_{p}\right)+\left(B_{2} \delta q_{2}+\cdots+B_{p} \delta q_{p}\right), \\
\delta z=\left(c_{1} \delta q_{1}+\gamma_{2} \delta q_{2}+\cdots+\gamma_{p} \delta q_{p}\right)+\left(C_{2} \delta q_{2}+\cdots+C_{p} \delta q_{p}\right),
\end{array}\right. \\
\left\{\begin{array}{l}
x^{\prime}=\left(a_{1} q_{1}^{\prime}+\alpha_{2} q_{2}^{\prime}+\cdots+\alpha_{p} q_{p}^{\prime}+\alpha\right)+\left(A_{2} q_{2}^{\prime}+\cdots+A_{p} q_{p}^{\prime}+A\right), \\
y^{\prime}=\left(b_{1} q_{1}^{\prime}+\beta_{2} q_{2}^{\prime}+\cdots+\beta_{p} q_{p}^{\prime}+\beta\right)+\left(B_{2} q_{2}^{\prime}+\cdots+B_{p} q_{p}^{\prime}+B\right), \\
z^{\prime}=\left(c_{1} q_{1}^{\prime}+\gamma_{2} q_{2}^{\prime}+\cdots+\gamma_{p} q_{p}^{\prime}+\gamma\right)+\left(C_{2} q_{2}^{\prime}+\cdots+C_{p} q_{p}^{\prime}+C\right) .
\end{array}\right.
\end{gather*}
$$

Let us prove:

If the first parentheses in the right-hand sides constitute exact differentials then the ordinary Lagrange formulas will be applicable to the parameter q_{1}.

By hypothesis, one has $\frac{\partial a_{1}}{\partial q_{2}}=\frac{\partial \alpha_{2}}{\partial q_{1}}$, and since $\frac{\partial A_{2}}{\partial q_{1}}=0$, one can write:

$$
\frac{\partial a_{1}}{\partial q_{2}}=\frac{\partial\left(\alpha_{2}+A_{2}\right)}{\partial q_{1}} \quad \text { or } \quad \frac{\partial a_{1}}{\partial q_{2}}=\frac{\partial a_{2}}{\partial q_{1}}
$$

One has the same equalities for the other a, b, c, \ldots, so $R_{1}=0$. Appell ("Les mouvements de roulements en Dynamique," pp. 44) gave another proof of that theorem and reproduced the application that Ferrers made (1872) to the construction of the equations of motion of the hoop.

Note. - It is pointless to show that the preceding theorem will always apply when the coefficients in (4) or (6), other than a_{1}, do not contain q_{1}, and if a_{1} does not contain $q_{1}, q_{2}, \ldots, q_{p}$, t.
IV. It might happen that some of equations (2) are integrable. Let us assume that s of those equations are found in that case. Upon integration, we will obtain s equations that couple the parameters, which will make the number of independent parameters drop from n to $n-1$.
V. If equations (2) are not immediately integrable then one can demand to know if they do not admit an integration. That question was examined, in part, by Hamel in his paper "Die LagrangeEuler'schen Gleichungen der Mechanik," Leipzig, Teubner, 1902.
6. Appell equations. - We shall transform equation (10) in such a manner as to make the quantity R_{1} disappear, which is too complicated to define using formula (8).

One has:

$$
\frac{\partial T}{\partial q_{1}^{\prime}}=\sum m\left(x^{\prime} \frac{\partial x^{\prime}}{\partial q_{1}^{\prime}}+y^{\prime} \frac{\partial y^{\prime}}{\partial q_{1}^{\prime}}+z^{\prime} \frac{\partial z^{\prime}}{\partial q_{1}^{\prime}}\right)
$$

or, in view of (6):

$$
\frac{\partial T}{\partial q_{1}^{\prime}}=\sum m\left(a_{1} x^{\prime}+b_{1} y^{\prime}+c_{1} z^{\prime}\right)
$$

As a result:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)=\sum m\left(a_{1} x^{\prime \prime}+b_{1} y^{\prime \prime}+c_{1} z^{\prime \prime}+x^{\prime} \frac{d a_{1}}{d t}+y^{\prime} \frac{d b_{1}}{d t}+z^{\prime} \frac{d c_{1}}{d t}\right) .
$$

With Appell, we set:

$$
S=\frac{1}{2} \sum m\left(x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}\right),
$$

and we can then write:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)=\frac{\partial S}{\partial q_{1}^{\prime \prime}}+\sum m\left(x^{\prime} \frac{d a_{1}}{d t}+y^{\prime} \frac{d b_{1}}{d t}+z^{\prime} \frac{d c_{1}}{d t}\right) \tag{11}
\end{equation*}
$$

Moreover:

$$
\begin{equation*}
\frac{\partial T}{\partial q_{1}}=\sum m\left(x^{\prime} \frac{\partial x^{\prime}}{\partial q_{1}}+y^{\prime} \frac{\partial y^{\prime}}{\partial q_{1}}+z^{\prime} \frac{\partial z^{\prime}}{\partial q_{1}}\right) \tag{12}
\end{equation*}
$$

If we subtract (12) from (11) then we will duplicate the left-hand side of equation (10), which will become:

$$
\frac{\partial S}{\partial q_{1}^{\prime \prime}}+\sum m\left[x^{\prime}\left(\frac{d a_{1}}{d t}-\frac{\partial x^{\prime}}{\partial q_{1}}\right)+y^{\prime}\left(\frac{d b_{1}}{d t}-\frac{\partial y^{\prime}}{\partial q_{1}}\right)+z^{\prime}\left(\frac{d c_{1}}{d t}-\frac{\partial z^{\prime}}{\partial q_{1}}\right)\right]=Q_{1}+R_{1}
$$

Now, from (8), the second term on the left-hand side is nothing but R_{1}. One will then have:

$$
\begin{equation*}
\frac{\partial S}{\partial q_{1}^{\prime \prime}}=Q_{1} \tag{13}
\end{equation*}
$$

and analogous equations that relate to the other independent parameters. Those equations are due to Appell, who gave another proof in the Comptes rendus de l'Académie des Sciences de Paris (1899).

Appell started from d'Alembert's principle, instead of transforming the generalized Lagrange equation (10), as we did.

7. Remark. -

I. When one follows the procedure that led to equations (13), the following viewpoints would seem advantageous:

1. Equations (13) present themselves quite naturally as a generalization of the Lagrange equations.
2. One immediately sees the equivalence of equations (10) and (13). Indeed, one will recover the latter upon performing the transformations on (13) that are inverse to the ones that one made on (10).
3. In addition, one sees that equations (13) are identical to the ordinary Lagrange equations for holonomic systems
4. Finally, following the procedure will allow one to easily show the equivalence of equations (13) and the ones that were obtained by the authors Kortweg and Vierkandt, among others, and we shall say a word about that shortly.
II. If one subtracts (13) from (10) then one will get:

$$
\begin{equation*}
R_{1}=\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial T}{\partial q_{1}}-\frac{\partial S}{\partial q_{1}^{\prime \prime}}, \quad R_{2}=\ldots \tag{14}
\end{equation*}
$$

Appell established the same equation (Journal de Jordan, 1901) and made some relatively interesting remarks in regard to it.

The quantities R_{1}, R_{2} enter into the generalization of Jacobi's theorem that we shall give later on.
8. The Korteweg equations (Nieuw Archief, 1899). - We shall give a simple exposition of the Korteweg procedure. Suppose for the moment that we abstract from the constraints (2) by replacing them with some reaction forces that we add to the applied forces. The body is then made free, and we can apply the Lagrange equations to it.

We will then write:

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial T}{\partial q_{1}}=Q_{1}+R_{1} \tag{14}\\
\ldots \\
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{n}^{\prime}}\right)-\frac{\partial T}{\partial q_{n}}=Q_{n}+R_{n}
\end{array}\right.
$$

in which $R_{1}, R_{2}, \ldots, R_{n}$ are the components of the reaction forces.
Imagine a displacement $\delta q_{1}, \delta q_{2}, \ldots, \delta q_{n}$ that is compatible with the constraints and suppose that this displacement can be performed in such a manner that the work done by reaction forces is zero (which will be true for rolling motions in particular), i.e.:

$$
\begin{equation*}
R_{1} \delta q_{1}+R_{2} \delta q_{2}+\ldots+R_{n} \delta q_{n}=0 \tag{15}
\end{equation*}
$$

By hypothesis, equations (2) express all of the constraints to which the system is subject. (15) must then a consequence of (2). In other words, the values of the k displacements $\delta q_{p+1}, \ldots, \delta q_{n}$ that are deduced from (2) as functions of $\delta q_{1}, \ldots, \delta q_{p}$ must satisfy (15) for any $\delta q_{1}, \delta q_{2}, \ldots, \delta q_{p}$, which demands that the determinant:

$$
\left|\begin{array}{cccc}
R_{1} \delta q_{1}+R_{2} \delta q_{2}+\cdots+R_{p} \delta q_{p} & R_{p+1} & \cdots & R_{n} \\
A_{1} \delta q_{1}+A_{2} \delta q_{2}+\cdots+A_{p} \delta q_{p} & A_{p+1} & \cdots & A_{n} \\
\cdots & \cdots & \cdots & \cdots \\
L_{1} \delta q_{1}+L_{2} \delta q_{2}+\cdots+L_{p} \delta q_{p} & L_{p+1} & \cdots & L_{n}
\end{array}\right|
$$

must be identically zero. That condition will produce the p equations:

$$
\left|\begin{array}{cccc}
R_{1} & R_{p+1} & \cdots & R_{n} \tag{16}\\
A_{1} & A_{p+1} & \cdots & A_{n} \\
\cdots & \cdots & \cdots & \cdots \\
L_{1} & L_{p+1} & \cdots & L_{n}
\end{array}\right|=0, \quad\left|\begin{array}{cccc}
R_{2} & R_{p+1} & \cdots & R_{n} \\
A_{2} & A_{p+1} & \cdots & A_{n} \\
\cdots & \cdots & \cdots & \cdots \\
L_{2} & L_{p+1} & \cdots & L_{n}
\end{array}\right|=0,
$$

If one eliminates the quantities $R_{1}, R_{2}, \ldots, R_{n}$ from equations (16) by means of (14) then one will get the equations of motion.

Remark. - The starting point for Korteweg is the same as the one that permitted us to recover the Appell equations.

The latter equations are superior to those of Korteweg. It is, moreover, possible to show the equivalence of the Korteweg equations and those of Appell by means of very lengthy calculations.
9. The Vierkandt method. - It is nothing but the method of Lagrange multipliers.

Upon substituting the values of x, y, z and $\delta x, \delta y, \delta z$ that are deduced from (1) in the d'Alembert equations, it will take the form:

$$
\begin{equation*}
\sum\left[\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial T}{\partial q_{1}}-Q_{i}\right] \delta q_{i}=0 \quad(i=1,2, \ldots, n) \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum\left(P_{i}-Q_{i}\right) \delta q_{i}=0, \tag{17}
\end{equation*}
$$

to abbreviate.
Suppose that the δq are coupled by the k equations (2).
We add those equations to equations (17) after multiplying the former by the quantities λ_{1}, λ_{2}, \ldots, λ_{k}, respectively (which are undetermined for now). We will get:

$$
\left\{\begin{array}{c}
\left(P_{1}-Q_{1}-\lambda_{1} A_{2}-\lambda_{2} A_{1}-\cdots-\lambda_{k} L_{1}\right) \delta q_{1} \tag{18}\\
\ldots \\
+\left(P_{n}-Q_{n}-\lambda_{1} A_{n}-\lambda_{n} A_{1}-\cdots-\lambda_{k} L_{n}\right) \delta q_{n}=0 .
\end{array}\right.
$$

As always, we take the independent parameters to be $q_{1}, q_{2}, \ldots, q_{p}(p=n-k)$.
We choose the multipliers λ in such a manner that the coefficients of the k dependent displacements are zero. We will then get the k equations:

Equations (18) will become:

$$
\begin{equation*}
\left(P_{1}-Q_{1}-\lambda_{1} A_{2}-\cdots-\lambda_{k} L_{1}\right) \delta q_{1}+\cdots+\left(P_{p}-Q_{p}-\lambda_{1} A_{p}-\cdots-\lambda_{k} L_{n}\right) \delta q_{p}=0 \tag{20}
\end{equation*}
$$

The δq that figure in the latter equation are independent, so their coefficients must be zero, which will produce p new equations, and when they are combined with the system (19) and the system (2), that will define a system of $n+k$ equations for the $n+k$ unknowns $q_{1}, q_{2}, \ldots, q_{p} ; \lambda_{1}, \lambda_{2}, \ldots$, λ_{k}.

Remark. - That procedure is subject to the same criticisms as that of Korteweg, which is not fundamentally different from it. Indeed, since (15) is a consequence of (2), one can write:

$$
\begin{aligned}
& R_{1} \delta q_{1}+R_{2} \delta q_{2}+\ldots+R_{n} \delta q_{n} \\
& \quad \equiv \lambda_{1}\left(A_{1} \delta q_{1}+\ldots+A_{n} \delta q_{n}\right)+\lambda_{2}\left(B_{1} \delta q_{1}+\ldots\right)+\ldots+\lambda_{k}\left(L_{1} \delta q_{1}+\ldots+L_{n} \delta q_{n}\right),
\end{aligned}
$$

which will demand that:

$$
R_{i}=\lambda_{1} A_{i}+\lambda_{2} B_{i}+\ldots+\lambda_{k} L_{i} \quad(i=1,2, \ldots, n)
$$

10. On the improper applications that have been made of the non-generalized Lagrange equations. - Several esteemed authors have made improper applications of the non-generalized Lagrange equations, and above all, in the solution to the problem of rolling motion.

Here is how those authors proceed: They form the quantity $2 T$ as a function of the n parameters q. They then eliminate k of the parameters from that expression by means of (2) and apply the nongeneralized Lagrange formulas to the $n-k=p$ remaining parameters, but that would not be permissible, as was shown in no. 4. [Of those authors, we cite: Schouten, "Over de rollende beweging van een Omwentelingslichaam op een vlak," Verslagen der Koninklijke Akademie, Amsterdam (1899); Ernest Lindelöf, "Mouvement de roulement d'un corps de revolution sur un plan"].

II. - The canonical equations.

11. - Painlevé showed (Leçons sur l'intégration des équations de la Mécanique, pp. 140, et seq.) how one can write the canonical equations of a holonomic system when the quantity $2 T$ is not a quadratic form in $q_{1}^{\prime}, q_{2}^{\prime}$.

We shall see how one must modify the usual canonical equations for non-holonomic systems.
The generalized Lagrange equation $\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial T}{\partial q_{1}}=Q_{1}+R_{1}$, which has order two, is equivalent to the first-order system:

$$
\left\{\begin{array}{c}
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial T}{\partial q_{1}}=Q_{1}+R_{1} \tag{21}\\
q_{1}^{\prime}=\frac{d q_{1}}{d t}
\end{array}\right.
$$

Apply the Poisson transformation to the system (21), which consists of making $p_{1}=\frac{\partial T}{\partial q_{1}^{\prime}}, p_{2}$ $=\frac{\partial T}{\partial q_{2}^{\prime}}$, etc., and introducing a function K that is defined by:

$$
\begin{equation*}
K=p_{1} q_{1}^{\prime}+p_{2} q_{2}^{\prime}+\cdots-T . \tag{22}
\end{equation*}
$$

Upon following a path that was mapped out in the classical treatise on mechanics, one will get the system:

$$
\left\{\begin{array}{rlrl}
\frac{d q_{1}}{d t}= & \frac{\partial K}{\partial p_{1}}, & \frac{d p_{1}}{d t}+\frac{\partial K}{\partial q_{1}} & =Q_{1}+R_{1}, \tag{23}\\
& \cdots \\
& \cdots \\
\frac{d q_{n-k}}{d t} & =\frac{\partial K}{\partial p_{n-k}}, & \frac{d p_{n-k}}{d t}+\frac{\partial K}{\partial q_{n-k}}=Q_{n-k}+R_{n-k},
\end{array}\right.
$$

which are the most general canonical equations of motion.
12. - When there exists a force function U that is explicitly independent of time and the velocity of the points of the system (in other words, if U depends upon only the parameters $q_{1}, q_{2}, \ldots, q_{p}$), equations (23) will take the form:

$$
\left\{\begin{array}{cc}
\frac{d q_{1}}{d t}=\frac{\partial(K-U)}{\partial p_{1}}, & \frac{d p_{1}}{d t}+\frac{\partial(K-U)}{\partial q_{1}}=R_{1} \tag{24}\\
\ldots & \ldots
\end{array}\right.
$$

13. - If, in addition to the conditions on U that were indicated above, the expressions for the coordinates of the various points of the system are explicitly independent of time then one will know that one then has $T=K$, and if one then sets $K-U=T-U=H$, as usual, then the system (24) can be written in the simpler form:

$$
\begin{equation*}
\frac{d q_{1}}{d t}=\frac{\partial H}{\partial p_{1}}, \quad \frac{d p_{1}}{d t}=-\frac{\partial H}{\partial p_{1}}=R . \tag{25}
\end{equation*}
$$

III. - Jacobi's theorem.

14. - In this subsection, we shall assume that the coordinates x, y, z are expressed explicitly as functions of the parameters and time. We suppose only that U is explicitly independent of time, and we shall continue to denote the quantity $K-U$ by H. The canonical equations will then keep the form (25).

Can the solution of the system (25) depend upon the solution of the ordinary Jacobi equation:

$$
\begin{equation*}
\frac{\partial V}{\partial t}+H\left(\frac{\partial V}{\partial q_{1}}, \frac{\partial V}{\partial q_{2}}, \frac{\partial V}{\partial q_{3}}, q_{1}, q_{2}, q_{3}, t\right)=0 \tag{26}
\end{equation*}
$$

in the case of non-holonomic constraints?
(For easy of writing, we shall suppose that there are only three parameters q_{1}, q_{2}, q_{3}.)

If we verify the calculations as Appell did (Mécanique, tome II) then we will confirm that the values of $d q / d t$ that are inferred by (25) are identical to the ones that (27) implies, but the same thing is not true for the values of the $d p / d t$. One must then pose the question: It is possible to modify equation (26) in such a manner that Jacobi's theorem remains applicable?

We shall now examine that question.
15. - Let us try to determine a function φ of the parameters such that a solution $V\left(q_{1}, q_{2}, q_{3}, t\right.$, $\left.a_{1}, a_{2}, a_{3}\right)\left(a_{1}, a_{2}, a_{3}\right.$ are arbitrary constants) of the equation:

$$
\begin{equation*}
\frac{\partial V}{\partial t}+H\left(\frac{\partial V}{\partial q_{1}}, \frac{\partial V}{\partial q_{2}}, \frac{\partial V}{\partial q_{3}}, q_{1}, q_{2}, q_{3}, t\right)+\varphi=0 \tag{26}
\end{equation*}
$$

will imply the same values for the $d q / d t$ and $d p / d t$ that the canonical equations (25) do, when one sets:

$$
\left\{\begin{array}{lll}
\frac{\partial V}{\partial a_{1}}=b_{1}, & \frac{\partial V}{\partial a_{2}}=b_{2}, & \frac{\partial V}{\partial a_{3}}=b_{3} \tag{28}\\
\frac{\partial V}{\partial q_{1}}=p_{1}, & \frac{\partial V}{\partial q_{2}}=p_{2}, & \frac{\partial V}{\partial q_{3}}=p_{3}
\end{array}\right.
$$

First, let us find the form that φ must have in order for the $d p / d t$ to have identical values in (25) and (28). The latter give:

$$
\left\{\begin{array}{l}
\frac{d p_{1}}{d t}=\frac{\partial^{2} V}{\partial q_{1} \partial t}+\frac{\partial^{2} V}{\partial q_{1}^{2}} q_{1}^{\prime}+\frac{\partial^{2} V}{\partial q_{1} \partial q_{2}} q_{2}^{\prime}+\frac{\partial^{2} V}{\partial q_{1} \partial q_{3}} q_{3}^{\prime} \tag{24}\\
\\
\end{array}\right.
$$

If we express the idea that V is a solution of (25) then we will get:

$$
\frac{\partial^{2} V}{\partial t \partial q_{1}}+\frac{\partial H}{\partial\left(\frac{\partial H}{\partial q_{1}}\right)} \frac{\partial^{2} V}{\partial q_{1}^{2}}+\frac{\partial H}{\partial\left(\frac{\partial H}{\partial q_{2}}\right)} \frac{\partial^{2} V}{\partial q_{1} \partial q_{2}}+\frac{\partial H}{\partial\left(\frac{\partial H}{\partial q_{3}}\right)} \frac{\partial^{2} V}{\partial q_{1} \partial q_{3}}+\frac{\partial H}{\partial q_{1}}+\frac{\partial \varphi}{\partial q_{1}} \equiv 0
$$

or, if one recalls (28):

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial q_{1} \partial t}+q_{1}^{\prime} \frac{\partial^{2} V}{\partial q_{1}^{2}}+q_{2}^{\prime} \frac{\partial^{2} V}{\partial q_{1} \partial q_{2}}+q_{3}^{\prime} \frac{\partial^{2} V}{\partial q_{1} \partial q_{3}} \equiv-\frac{\partial H}{\partial q_{1}}-\frac{\partial \varphi}{\partial q_{1}} . \tag{30}
\end{equation*}
$$

The left-hand side of that equation is nothing but $d p_{1} / d t$ [form. (20)]. If we write out that the value is identical to the one that (25) implies then we will have:

$$
-\frac{\partial H}{\partial q_{1}}+R_{1} \equiv-\frac{\partial H}{\partial q_{1}}-\frac{\partial \varphi}{\partial q_{1}} \quad \text { or } \quad-R_{1}=\frac{\partial \varphi}{\partial q_{1}} .
$$

We will find analogous expressions for q_{2}, q_{3}. We will then have the three conditions:

$$
\left\{\begin{array}{l}
-R_{1}=\frac{\partial \varphi}{\partial q_{1}} \tag{31}\\
-R_{2}=\frac{\partial \varphi}{\partial q_{2}} \\
-R_{3}=\frac{\partial \varphi}{\partial q_{3}}
\end{array}\right.
$$

If there then exists a function φ that admits the quantities $-R_{1},-R_{2},-R_{3}$, as partial derivatives with to q_{1}, q_{2}, q_{3}, resp., then the values of $d p / d t$ that one infers from (25) and (28) will be identical. An easy calculation will show that if φ exists then the values of q^{\prime} that one infers from the canonical system will also be identical to the ones that are deduced from (28). Therefore:

The generalized Jacobi theorem.

In order for the Jacobi theorem to remain applicable to non-holonomic systems, it is necessary and sufficient that one can complete the ordinary Jacobi equation by means of a function φ that admits $-R_{1},-R_{2},-R_{3}$ as partial derivatives with respect to q_{1}, q_{2}, q_{3}, resp.
16. - The function φ will exist if:

$$
\frac{\partial R_{1}}{\partial q_{2}}=\frac{\partial R_{2}}{\partial q_{1}}, \quad \frac{\partial R_{1}}{\partial q_{3}}=\frac{\partial R_{3}}{\partial q_{1}}, \quad \frac{\partial R_{2}}{\partial q_{3}}=\frac{\partial R_{3}}{\partial q_{2}}
$$

and since:

$$
R_{1}=\frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial T}{\partial q_{1}}-\frac{\partial S}{\partial q_{1}^{\prime \prime}}, \quad R_{2}=\ldots
$$

the condition (α) can be written:

$$
\begin{equation*}
\frac{\partial}{\partial q_{2}} \frac{d}{d t}\left(\frac{\partial T}{\partial q_{1}^{\prime}}\right)-\frac{\partial^{2} S}{\partial q_{1}^{\prime \prime} \partial q_{2}}=\frac{\partial}{\partial q_{1}} \frac{d}{d t}\left(\frac{\partial T}{\partial q_{2}^{\prime}}\right)-\frac{\partial^{2} S}{\partial q_{2}^{\prime \prime} \partial q_{1}}, \quad \ldots \tag{b}
\end{equation*}
$$

One should remark that it suffices to calculate the first terms in the two sides of (β) in order for one to determine the terms in T that contain the products $q_{2} q_{1}^{\prime}, q_{1} q_{2}^{\prime}$, and in order to calculate the second ones, it will suffice to determine the terms in S that contain the products $q_{1}^{\prime \prime} q_{2}, q_{2}^{\prime \prime} q_{1}$.
17. Particular case. - If the quantities $-R_{1},-R_{2},-R_{3}$ are independent of q_{1}, q_{2}, q_{3} then the first of equations (25) can be written:

$$
\frac{d q_{1}}{d t}=\frac{\partial(H-\varphi)}{\partial p_{1}},
$$

and the last one can be written:

$$
\frac{d p_{1}}{d t}=-\frac{\partial(H-\varphi)}{\partial q_{1}}
$$

on the condition that one must take φ to be the function that was defined in no. 16, but with its sign changed.

In that case, if one takes H to have the expression:

$$
H=K-U-\varphi
$$

then the generalizes Jacobi equation will have the ordinary form:

$$
\frac{\partial V}{\partial t}+H\left(\frac{\partial V}{\partial q_{1}}, \frac{\partial V}{\partial q_{2}}, \frac{\partial V}{\partial q_{3}}, q_{1}, q_{2}, q_{3}, t\right)+\varphi=0 .
$$

18. - Certain authors have made an incorrect use of the non-generalized Jacobi theorem. We shall cite only Ezio Crescini ["Sul moto di una sfera che rotola su di un piano fisso," Rend. Acc. Lincei 5, $1^{\text {st }}$ sem. (1889), 204-209], who applied that theorem in number 3 of his study.

Halle Gate (Brussels), June 1906.

[^0]: (*) Korteweg, "Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung, etc.," Nieuw Archief voor Wiskunde, Tweede Reeks, Deel IV (1900), 130-155.
 $\left(^{* *}\right)$ C. Neumann, "Grundzüge der analytischer Mechanik, insbesondere der Mechanik starrer Körper (Zweiter Artikel), Ber. Verh. Kgl. Sächs. Ges. Wiss. Leipzig 40 (1888), 22-88, esp. pp. 32-56.
 (***) Vierkandt, "Über gleitende und rollende Bewegung," Mon. Math. und Physik 3 (1892), 31-54, esp., pp. 47.
 $\left.{ }^{\dagger}\right)$ Loc. cit.

