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Introduction.

This paper has as its point of departure the fundamentalt p&ge. C. Spencer:
“Deformation of structures defined by transitive continuousugsgroups.” D. C.
Spencer has developed a new method for differential gepnibat he calls
“‘cohomological.” This method, which was illustratiedthe important treatise of I. M.
Singer and S. Sternberg: “On the infinite groups of Lnd &artan,” has, moreover,
proved to an elegant and essential formalism for thdysof differential operators or
linear differential systems in general (see the pradathesis of D. G. Quillen at Harvard
1964), which unfortunately appeared while this paper was bemen@d). Our goal is
to make more precise the general framework in which thiadeof D. C. Spencer is
applied and to apply it to the study of infinitesimal stoues in particular. The various
chapters of this paper are each preceded by an explanateryhat distills the essential
results that are obtained; we thus refer the readietm for a more detailed introduction.

Professor B. Malgrange gave me the essence of the itatsare contained in
paragraph 4 of chapter Il. In particular, | owe the afedorm of theorem II-4-b in that
paragraph to him. It would profit me to present him withaamplete acknowledgement
here.

Permit me to express my profound gratitude to Professdrichnerowicz, whose
benevolent advice and counsel have always guided mycbsea

() The subject of this paper was a part of the thesisepted on 16 June 1966 to the Faculté des
Sciences de Paris for obtaining the degree of Doctor ieh&es. The other part of this article, which
developed the ideas of D. C. Spencer on the theory of dafiormwill be presented in a later publication.
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CHAPTER ONE
LIE GROUPOIDS AND ASSOCIATED FIBER BUNDLES
In this paragraph, we recall the notion of Lie groupod associated fiber bundle. It

seems necessary to us in what follows to introducedien of Lie groupoid, which is
meanwhile equivalent to the well-known notion of principbér bundle with structure

group.
1. Liegroupoid.

DEFINITION l.1.a —A groupoid® on the set V (or, more precisely, with V as its set
of units) is a set endowed with a map:

(ab):d - VxV, z (a2, b(2)

and a law of internal composition that is associative and partial, and \erthe
following axioms:

1) If z and Zare two elements @ then the composition/z’is defined if and only
if a(2) =b(z), and one has:

b(z /2)) =b(2) and gz /2) =a(z).
2) Ox, x0OV, Oly which is an element @ such that:

a(ly) = b(ly) =x,
and:
if z/J is defined then 7zl = z,
if Iy /Z is defined then I Z = z

3) Oz zO®, OZ* which is an element @ such that:

z[F'=1,, where y =b(2),
z'/z=1,, where X =a(2).

The mapsa andb are called thesourceandtarget maps of®, respectively. From
axiom 2, the elemerif that is associated with any elemeandf V is unique; it is called
theunit of ® atx.

One verifies that the set of elementsiofvhose source and target coincide with the
same element of form a groupsy that is called thesotropy groupof ® atx, and ifz is
an element of with sourcex and targey then:

2: Gy - Gy, z27 2 0z°
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is an isomorphism of the gro@ with Gy .
In the case where the magp b) is surjective, we say that the groupdids transitive.

DEFINITION I.1.b. —® being a groupoid on Ve is a differentiable groupoid if
there exists the structure of a differentiable manifold ®@n(of infinite class and
paracompact) such that:

1) The map(a, b) is (indefinitely) differentiable.
2) The map:
is differentiable.

3) For any differentiable manifold W that is endowed with two differemtiatdps f
and g of W intab that verify:
aof=bog,
the map:
flg W- d,z- (2 92

that is thus defined is differentiable.

Following Matsushima, we say that a differentiable gradimoalie groupoidif the
map @, b) is a submersion (i.e., surjective and everywhere ofima rank). A Lie
groupoid is thus transitive.

PROPOSITION I. 1. ¥ @& is a Lie groupoid on the manifold V then one has:

1) The isotropy groups @b are isomorphic Lie groups.

2) Upon setting:
®, = {z z0O &, such that(z) =x},

@, is a differentiable principal fiber bundle on V with the target projectiprwhose
structure group is the isotropy Lie group G

Indeed:

a) Since the mapa( b) is a submersion, the isotropy groups ®fare closed
submanifolds ofp (Thom lemma), and conditions 2 and 3 of definition | dnkbail that
their algebraic structure is compatible with their efifintiable structure. They are
therefore Lie groups that are isomorphic, siicdeing a Lie groupoid, is transitive.

b) Likewise, since the magpis also a submersiomy is also a closed differentiable
submanifold ofd, and the map is a submersion ab ontoV: @, is thus a differentiable
fiber bundle ovel. On the other hand, condition 3 of definition I.1.badiatthatG is a
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Lie group that operates oby on the right in a simply transitive fashion on thigefs.
Then, by virtue of the theorem above, which generalizé®earem of Gleason, is a
differentiable fiber bundle oveY, with the Lie groupGy for its structure group (the
principal fiber bundle with structure group being defined msseof Steenrodlopology
of Fiber Bundlek

THEOREM. —Let E be a differentiable fiber bundle on a differentiable manifold V.
If G is a Lie group that operates in the differentiable manifold & simply transitive
fashion on the fiber then E is a differentiable principal fiber bundle ontlv structure
group G.

Proof:

LEMMA. — Let E be a differentiable fiber bundle over V. Any point of V admits
neighborhood U that is endowed with a differentiable map s of U into Elsach ¢ s=
Id, p being the projection of E onto V.

In other words, this lemma assures the existence dfdaftarentiable sections in the
neighborhood of any point df. This lemma is only an immediate consequence of
proposition 2, page 80, dheory of Lie Groupby C. Chevalley, which remains valid in
the differentiable case.

Therefore, letJ be an open subset ¥fthat is endowed with a differentiable section
s. Consider the map:

$s:UxG - Ey, (=p'(V)) (X0  sX o,

where the dot on the right-hand side denotes the aofidhe elemenig of G in an
element oE.

The mapgs is differentiable (like the map of the differentialpkeduct manifoldJ x
G into the differentiable manifolfy). It is also bijective, and one may easily see ighat
tangent map is a bijection at every point. It is tfemeea diffeomorphismg_* exists and
is differentiable.

It remains to see that theoordinate change functiongsee Steenrod) are
differentiable with values inG. This amounts to seeing that sf denotes another
differentiable section that is defined DOrthen the following map:

g U - G, X = g(x)

is such, thats” (x) = s(x) Ug(x) is differentiable. Now, the mag is nothing but the
composed map:

foplos,

wheref is the canonical projection &f x G ontoG. Since each of the mafisg_*, s’is

differentiable, the mag is therefore differentiable.
Q.E.D.
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From proposition I-1, we easily see the corollary.

COLROLLARY I.1. — The Lie groupoid® is locally isomorphic to the trivial
groupoid R" x G x R", where n is the dimension of V and G is a Lie group that is

isomorphic to the isotropy group @

The trivial Lie groupoidR" x G x R" admitsR" for its space of units and the

following composition law:
(zd,y) Y, 8. ¥ =z 9"L, X).

In a more precise fashion, the corollary confirmg #tteevery point oV there exists
an open neighborhodd and a diffeomorphism:

¢: (&b (UxU) -~ R'xGxR", z- (¥(2, 92, X(@),

such that ia(z) = b(z) then one has:
X(z) =y(@

9(z'[2) = §(2)) LP(2).

and

Examples.

1) V being a differentiable manifold, 161%(V) denote the set of invertible jets of
orderk of V into V (see C. Ehresmanna--). M%V) is a Lie groupoid otV with an
isotropy group that is isomorphic to the grolfp

2) IfE s a (locally trivial) differentiable fiber bundle ahnthen the sefl(E) of linear
isomorphisms of the fibers & onto other fibers dE is a Lie groupoid oV.

3) If® andd’ are two Lie groupoids o then letd x @' be the Whitney product of

® and @', or the set of pairsz(z) of elements ofp and®’ that verifya(z) = a(z) and
b(2) =b(z). The natural law of composition:

(z2,2)Uz2)= @& 7 ¥)

determines a Lie groupoid structure\dim & x @',

2. Associated fiber bundle.

DEFINITION I.2. —Let ® be a Lie groupoid on V, and let E be a differentiable
manifold that is fibered over V; i.e., endowed with a submersiong\aniWe say that E
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is a fiber bundle that is associated @@ if and only if the following conditions are
verified:

1) Oz zO ®, with a(z) = x andb(2) =y, zdetermines a diffeomorphism of the fiber
Ex ( = p (X)) onto the fiber E:

Z:Ex - E, e 2(e,whichis denoted z&,
and one has:
z[¥ = 27-7.

2) For any differentiable manifold W that is endowdthwwo differentiable maps f
and g with values i® and E, respectively, such that:

aof=peog,
the map /g, which is then defined:

flg:W - E, x> f(X) [G(X),
is differentiable.

PROPOSITION I.2. ¥ E is a fiber bundle that is associated with a Lieupoid ®
then E is a locally trivial differentiable fiber bdle with fiber F and structure group G,
where F is a differentiable manifold that is diffiearphic to any fiber of E, and G is a Lie
group that is isomorphic to the isotropy groupdof

Indeed, leF denote the fibeE, of E. It is easy to see thktis the fiber bundle that is
obtained by modeling on the principal fiber,, where the structure group operates
onF, according to the definition I-2.

We remark that iE is a differentiable fiber bundle that is obtair®dmodeling the
manifold F on the principal bundl®, thenE is an associated fiber bundle, in the sense of
the definition I-2 of the Lie groupoid.

Furthermore, when there exists an algebraic stredfgroup, vector space, algebra,
etc.) on each fiber d& that is compatible with its differentiable struewand is such that
z is an algebraic isomorphism for any elememf ®, thenE is a differentiable fiber
bundle with algebraic structure (fibered into grewgector spaces, algebras, etc., resp.).

1) Canonical group fibration associated with a Lie gpmid. Let ® be a Lie
groupoid onV. Let G(®) denote the seta( b)™(A), whereA is the closed diagonal
manifold inV x V. Since the mapa(b) is a submersion, from the Thom lemr{®) is
a closed differentiable submanifold @f(iG(®) is obviously a differentiable fiber bundle
onV under the mag@ or b, and is such that each of its fibers is a Lie grthat is the
isotropy group of® G(®P) is, on the other hand, canonically associateth @it in a
manner that is compatible with the algebraic stmectof its fibers: It is therefore a
differentiable bundle oN that is fibered by groups.
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2) A space of infinitesimal prolongation of ordeoka differentiable manifol® is,
by definition, a fiber bundle that is associated wlité Lie groupoid1“(V).

3) If E andE’are two fiber bundles ovéf that are associated with the Lie groupoids
® and®’, respectively, then their Whitney product ¥ns again a fiber bundle ov&f
that is associated with the groupadidx @' that is the Whitney product df and®d’ (see
ex. 3, I-1).

3. Liesubgroupoid and groupoid extension.
Let®d and®' be two groupoids oW. A functorof @' to ® is a mag:

o - O,
such that:
aof=a/ bof=b’
and
f(z[k) =f(2) 0(2).

When @ and &' are differentiable groupoids, a functor is alwaysuas=sl to be
differentiable.

Lie subgroupoid.

We say thatd’ is a Lie subgroupoid of the Lie groupafdif there exists an injective
functor of® into @'.

As in the case of Lie groups, an injective functornecessarily regular; i.e.,
everywhere of maximal rank®’ is realized by a differentiable submanifolddaf

DEFINITION 1.3. —Let E be a fiber bundle on V that is associated with the Lie
groupoid®. A global (differentiable) section of V in E is called regular if amdly if for
every pair of elements x and y in V there exists a z that &deament of® with source
and target at x and y, respectively, and is such that:

z[E(x) = g(y).

PROPOSITION I.3.a. -Any regular section s of a fiber bundle E that is associated
with a Lie groupoidd canonically defines a Lie subgroupaid of ®.

Proof.
Indeed, consider:

®' ={z zO P, such that [5a(2)) = s(b(2))}.

@' is a subgroupoid o® that is transitive oV — viz., the subgroupoid that leaves the
section invariant.



Ngo Van Que — On the prolongations of fiber bundles afitesimal structures. 9

@' is a Lie subgroupoid b is a differentiable submanifold @b. Now, in fact, it
will suffice for us to consider things locally — i.e., soppose that is a trivial Lie

groupoidR" x G x R" (see corollary I-1) and th&tis a trivial fiber bundI&R" x F, where

F is a differentiable manifold on which the Lie gro@mperates — that is associated to F
in the following manner: 10 ®, z=(x, g, y), ande U E, with e = (y, f) then

z[e = (x g ).

Moreover, let there be the regular secon
s:R" - R"xF, X = (% S(X)).
Consider the differentiable map:
SR'™GxR" - FxF,  (x0,% = (X, g HY)).

It is clear that®' is the setS(A), whereA is the diagonal submanifold df x F.
However, since the sectianis regular, one may suppose tkabperates transitively on
F, because otherwise one may take the orbit subman@olds(x) in place ofF.
Furthermore, the map is transversal td\, so from the Thom transversality theorem,
S}(A) is a closed differentiable submanifolddf

Q.E.D.

Examples.

An infinitesimal structure of order én the differentiable manifold is the given of a
(differentiable) section of a fiber bundle that is@sated with the Lie groupoid(V).
The infinitesimal structure is regular if that sectisrregular. It thus determines a Lie
subgroupoid of1%(V), and that subgroupoid is what one call§-atructure onV (G, a

subgroup ofL* that is isomorphic to the isotropy subgroup of a subgroupoid).

1) LetT denote the cotangent bundle\ofsoT is associated with the Lie groupoid
MY(V). The symmetric produc®(T), in the Whitney sense, d with itself is again
associated witfl*(V). Having said this, pseudo-Riemanniastructure onV/ is the given
of a non-zero regular section §{T).

2) The exterior produ@?®T’, in the Whitney sense, @f is likewise associated with
MY(V). A section ofA’T" that is everywhere of the same rank is a regulaiosectn the
case where the rank of the section (viz., the 2-fasrayerywhere equal to the dimension
of V, which must then be even, from a theorem of Lepage,haxs what one calls an
almost-symplectistructure orV. An almost-symplectic structure is therefore regula
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Groupoid extension.

Let ® and®’ be two groupoids oN. @ is called agroupoid extensionf @' if there
exists a surjective functa@ of ® ontod'.

Just as in the case of Lie groups, a surjective fundtar_ie groupoidd onto another
Lie groupoid®’ is necessarily everywhere of maximal rank: deis fibered oved'.

Moreover, to any extensio® of @', ® and ®' being two Lie groupoids, there
corresponds the following exact sequence of group bundlgs on

1~ N - G(@) - G(@) - 1. (1)

If we call any functop of @' to ® such thatp - p= Id areductionof ® to @' then to
any reduction ofd’ to @ there corresponds a splitting of the exact sequencgooip
bundles. Moreover, that splitting is regular, in ge:se that for any pair of elememts
andy of V there exists & which is an element ab with source and target atandy,
respectively, such that:

gOG(®), zOp(g) F'=p(¢2) B
Conversely, we have the proposition:

PROPOSITION 1.3.b. # @ is a Lie groupoid extension of the Lie groupdidthen
any splitting of the exact sequence of group bundledetermines a reduction @f' to ®
when it has the property that for any point x of G4(®') operates on W)k by the
adjoint operation with no other fixed point than the neutral element

Indeed, lejo denote the lift of this splitting. One can immediat®nfirm that the set
of elementz of ® such that:

z0p(g) (2™ = p(¢(2) o B2 ™)

for anyg of Gy(®') with x = a(2) is a Lie subgroupoid @b that is isomorphic t@' by the
functor ¢@.



CHAPTER I
PROLONGATIONS OF FIBER BUNDLES AND DIFFERENTIAL OPERATORS

Suppose is givenE( p, V), i.e., a differentiable manifolE fibered over the
differentiable manifoldv by the submersiop. Let J(E, p, V), or, when there is no risk
of confusion, simply(E), the set of jets of orddrof (differentiable) sections &. It is
again a differentiable manifold that is fibered oVely the source map that is called the
prolongation of order lof the fiber bundlde, and ifs is a differentiable section & then
the map:

*s:V o JE, p, V), x> jks
is a differentiable section &fin J(E, p, V).

If E is a vector bundle then we can show that the protanrgaf the bundle is also a
vector bundle and by defining the Spencer operator on thengation of the bundle we
can make a contribution to the study of differentialrajmes.

1. Prolongation of Lie groupoids.

If @ is a Lie groupoid oV then consider the set:

®* 0 (P, &, V),

which is such that iX is a jet of ordek of a section of®, a, V) thenX O ® if and only
if bX O M*(V), bX denoting the composition of jets.

PROPOSITION Il.1.a. Fhe se®* admits a canonical structure of a Lie groupoid on
V.

Indeed, consider the following maps to be the sourcéaagdt maps o®* ontoV:
a: PV, X aX),
wherea(X) is the source of the j&t, and:
ho:®* -V, X b(&X),
whereA(X) the target of the jex.
If X andX’ are two elements op* that satisfya(X) = bx(X’) then one defines the
composition:

X IX’= (X bX) X,

whereX bX’is the composition of jets, and the dot in the rigdutdh side is composed in
the following manner: 1Z = j¥f andZ’=j¥g, f andg being two differentiable maps of
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W into ® such thataof = b o g thenZ [O0Z is the jet j*(f [g) of the mapf Og (see
definition I-1-b), a jet that depends upon only the jetraerk of f andg at the poini.
When endowed with this law of internal and partial coritjpos ®* is obviously a
groupoid onV. To show that it is, in fact, a Lie groupoid ®@rnit will suffice to consider
things locally; i.e., to suppose thatis a trivial Lie groupoidR” x G x R", and this is left

to the reader.
Q. E. D.

PROPOSITION Il.1b. —If E is a differentiable fiber bundle that is associated with a
Lie groupoid® then the prolongation of the bundlgB) is canonically associated with
the Lie groupoidb®.

Indeed, leZ O ®*, with a(Z) = x, and letX 0 J(E) with sourcex. Set:

ZIX=@Z (2™ X 0™,

where the elements between parentheses are the caopmsit jets and the dot in the
right-hand side is defined as follows:ME j¥f andY’=j¥g, f andg being two maps of
W into ® andE, respectively, such that f = pogthen one ha¥ ¥’=j*(f [g), which

is the jet of the map/g of W into E (see definition 11.2), a jet that depends upon only the

jet of orderk of f andg at x.

Z [Xis then a jet of a section & with sourcey ( = b(Z)), and®* thus operates on
J(E). For the condition of differentiability (axiom 2 dafefinition 1.2), it is again

obviously sufficient to regard matters locally; i.eo, Suppose tha® is a trivial Lie
groupoidR" x G x R", and thak is the trivial bundlR" x F, G being a Lie groupoid that

operates on the manifolg this is left to the reader.
Q.E.D.

®* will be called theprolongation of ordeik of the groupoid®. It is an extension
groupoid of the product groupoit x M%) by the canonical functor:

oL oxMNV), Z- (82),b2D).

Furthermore, lepp denote the canonical map that associates any jetdef kbmwith
the jet of lower order. When applied tab¥, it is a surjective functor ob* onto @'
When applied ta(E), it is aV-morphism of surjective bundles a{E) onto J,(E), and
one has:

yAufol XOXE),  @(Z X =p2) OaX).
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2. Prolongation of vector bundles.

In all of what follows E will denote a (differentiable and locally trivial) vectoundle
on a manifoldv. Recall thaf1(E) — viz., the set of all linear isomorphisms of fiberd€of
to fibers ofE — is a Lie groupoid to which the fib&ris associated.

PROPOSITION II.2.a. Fhe bundle prolongation(E) is a vector bundle.

Indeed, ifJ(E) is a fiber bundle that is associated with the LizugioidM(E) then it
suffices to show that each fiber &(E) is a vector bundle such thatdfis an element of
M*(E) with sourcex and targey thenZ is a linear isomorphism Gk(E) |k onto(E)|y .

Therefore, le)X = j¥s andX’= j¥s' (s ands’being two sections d&); set:
X+ X'= jfs+9), A0OR, AX=j*(As).

When endowed with this law of compositiai(E)|x is obviously a vector bundle, and it
is easy to confirm that the elements[@df(E) are linear isomorphisms of the fibers of
J(E) to other fibers.

Q. E.D.

PROPOSITION II.2.b. or any integer k, we have the following exact sequence of
vector bundles over V:

0 - EOS(T) - JE) OfL Ja(E) - 0,

where EO S(T) is the tensor product, in the Whitney sense, of E WitR)Swhich is

the symmetric product, in the Whitney sense, of k examples aftémgent bundle Tof

the base manifold V, and-1 is the canonical morphism that associates any jet of a
section of order k with the jet of lower orderK.

This proposition is an immediate consequence of thenkes above.

LEMMA 1. — At any point of V, we have the following exact sequence of vector
spaces:
0 - EOS(T)k - WE)K 06 Ja(E)k - O.

Indeed, in order to prove the lemma, one may obviously seppaskE is the trivial
bundleR" x F, n being the dimension &f, andF, a vector space that is isomorphic to the
fiber of E. SinceJ(E) is the trivial bundIR" x T*(F), denoting the set of jets of order

of source 0 iR" into F by T*(F) the lemma is nothing but the exact sequence of vector
spaces:
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0 - EOSMR™) - TYF) OML TYF) - 0,

an exact sequence that one establishes immediately bypsnefathe polynomial
representation of jets of “(F) by starting with the given of a basis férand the

canonical basis foR".

LEMMA 2. — For any Z that is an element BI(E) with source x and target y, we
have the following isomorphism of exact sequences:

0— EOS(T)k — KEk — Ju(BE)xk — 0
£o(2) l l z lpH(Z)

0— EOS(T)y — KBl — Ka(B)l — 0
wherep, is the canonical functor d1%(E) ontoM(E) x M(V).

In order to establish this isomorphism, it again sufftceshake a local study; i.e., by
trivializing E in the neighborhood ofandy, which is left to the reader.

Q. E. D.
Remark.

Recall that the vector bundles ¥rform an additive category. It is easy to establish
that:
Jk:E - JWE)

is an exact functor of that additive category intelit and ifh is a V-morphism of
differentiable vector bundles:
h:E- E’
then one has:
Pe1 o Ih) = Ja(h) o e,

and, in particular, the restriction a{h) to the sub-bundI& O S(T") has its values in the
sub-bundleE’ 0 S{(T'), and that is nothing but the morphisn Id.
3. D operator and the Spencer exact sequence.

From the proposition I1.2.b, we thus have, in paréicul

0-JE DT - H[IE)] 0L IE) - 0.
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One confirms immediately thdi.1(E) is a differentiable sub-bundle &fJ(E)], and that
the restriction of the morphismto the sub-bundle is nothing but the canonical morphism

ot
Consider a differentiable sectianof Ju1(E); s andj'(oc o ) are two sections of

Ji[I(E)], which compose with the morphismto give the same section &{E). From

the preceding exact sequengép o S) —s is a section ofi(E) O T. Therefore, we

define an operatdD; i.e., anR-linear V-morphism of the sheaf of differentiable sections
of J1(E) with values in the sheaf of differentiable sectiohd(E) O T :

D:Jwi(E) - WE)DIT, s jY oo 9 -5
an operator that we call tiBpencer operatofsee Spencef)).

LEMMA 1. —If s is a differentiable section of.JE) and f is a differentiable function
on the base manifold V then one has:

D(fs) =f D(s) + (o« ° ) O df,
where df is the exterior differential of f.
This lemma is an immediate consequence of the fallgwiemark: Ifs is a
differentiable section of the vector bundeandf is a differentiable function on the base

manifoldV then one has:
j’(fs) =f ji(s) +s O df,

wheres [J df is a differentiable section & [J T*, which is a vector sub-bundle 3{(E),
from proposition 11.2.b
Consider &/-morphismh of differentiable vector bundles:
h:E - E".
From the remarks made at the end of paragraph Il.2ininediate that we have:

LEMMA 2.
D o Jea(h) = (3h) O Id) o D.

In particular, J+1(E) is a differentiable sub-bundle of-JJ;+1(E)], and the restriction of
J~(o) to that subspace is nothing but the canonical morplasm

() Recall that the sheaf of (differentiable) sectiona ekctor bundle is a sheaf Bfmodules, so it
is, in particularR-linear, D being the sheaf of differentiable functions on the lpageifold. We also point

out that in this paper any vector bundle and its sheaédions will be represented by the same symbol,
the context making it precise in each case which interjioa one must consider.
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LEMMA 2.
Do pe1 = (o O 1d)o D.

Finally, s being a differentiable section &f(E), we say that section istegrableif

and only ifs = ‘g, wherecis a section oE.

LEMMA 3. —If s is a differentiable section of.JdE) thenone has [s) = 0- viz., the
zero section of i(E) O T —if and only if s is an integrable section.

Indeed, it is clear from the definition itself of thperatorD that ifsis an integrable
section theD(s) = 0. We prove that iD(s) = 0 thensis an integrable section. Now, the
property is obvious whek = 0; it thus suffices to prove this by recurrence @nitieger
k. Consider the sectigi o s of J(E); from Lemma 2 one has:

D(oc ° 9) = (-1 0 Id) o D(s) = 0.
SinceD(px © 9) is zero, by the recurrence hypothesis, one has:

P o s=jk,
obeing a section dt.
One then has:
D(s) =j' (A > 9 —-s=0,
s=j'(a e 9 =j'("9 =j""a

THEOREM I1.3.a. df E is a differentiable vector bundle on V then there exists one
and only one operator D of.J(E) into J(E) O T such that:

1) If s is a differentiable section of.dE) thenD(s) = 0 - i.e., the zero section of
J(E) O T —if and only if s is an integrable section.

2) If fis a differentiable function on V then:
D(fs) =f D(s) + (o« o ) U df
in which df is the exterior differential of f.

From lemmas 1) and 3), the previously-defined Spencer operatifies the two
properties of the theorem,. It remains for us to &e¢ these properties are indeed
characteristic, or that B’is an operator od1(E) into J(E) O T that verifies these two
properties then one hd®’ = D, the Spencer operator. Now, these two operators are
identical if they coincide on the local sectionsJafi(E). Therefore, lets be a local
section ofl.1(E):

S:fijk+10i. (l<i<q),
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in which f and & are differentiable functions ox and differentiable sections d,
respectively, and one has, from properties 1) and 2):

D(s) =j*g O df =D'(9). Q.E.D.
The property 2) permits us to prolong in a natural fashion:
D: Je1(E) OAPT = J(E) O APT, sO w D(s) "w+ (o » 9 O dw

in which the notations have an obvious significance. Likewfis the prolonged operator
we have:

Do(ﬂ(DId):(ﬂ(DId)OD (1)
Denoting the composed operadr D by D? we have:
D?: Ja(E) AT 0P J(E) DAPT 0P Ja(E) O APT

LEMMA 1. — D? = 0, the zero operator, which associates any differentiable section of
J+1(E) O APT with the zero section of-d(E) 0 AP*T'.

Indeed, since it is the composition of two operat®5,s again an operator. It
suffices for us to verify that for any local sect®nf J.1(E) O APT, one haD?(s) = 0.
Now, locally: _

s=j*'g 0 & (1<i<q),

where g are differentiable sections & andc« are exteriop-forms onV. Thus, one
s D(s) =j*¢ O ddJ,
DX9) =j“'a 0 d?d = 0, becausd’ = 0.
Q. E. D.
The restriction of the operatbrto the sub-sheaf:

EQST)OAT

of the sheafl1(E) O APT s, in fact, D-linear, and thus defines &morphism of
differentiable vector bundles from:

EOQ SY(T) OAPT
into J(E) O AP"'T” that is denoted byl Formula (1) above shows that this morphism

takes its values in the vector sub-bunBlé&l S(T) O AP*T’, and one sees thakis
nothing but the morphism:
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Jd EOST)OAT - EDS(T) OAT,
edad" 0w -(k+1eldd0 @ .

We then have the following lemma, which was establighgdoszul (Séminaire de
Cartan, theorem, exposé 20, 1949-1950).

LEMMA 2. — The following sequence of vector bundles is exact:

0-EOS™T) O EOS(MOT OO EOSHTOAT 08 ...

THEOREM 11.3.b. —For any integer k, we have the following exact sequend& of
linear sheaves:

0-ED- Ja(E) 0P WE)OT 0% J(E)OAT O ..

in which [**is the canonical operator that associates any differentiable sectionithE
the differentiable sectiofi’f's of J:1(E).

(It is intended that in Lemma 2 and the theorem althae in everything we have
adopted the following convention:

ST =RxV, the trivial fiber bundle ovey,
S(T%) =0, ifk <0,

and:
J(E)=E, J(E)=0 ifk < 0).

Proof.

1) We indeed have the following exact sequence:

0-ED- Ja(E) O Ja(B)OT,

from the characteristic property 1) of the oper&cand the fact that the operaf6t is
obviously injective.

2) The sequence that we defined is cohomological bedtse0 (Lemma 1). It
remains for us to prove the exactness of the sequéihow, it is clear that the following
sequence is exact:

JWE)OAPT OFL EOAPT -0,

since the restriction of the operatbrto the sub-sheaf O T O AP T is already
surjective, from Lemma 2.
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We then prove by recurrence on the integahat we have the following exact
sequence dR-linear sheaves:

Je1(E) OAPIT OFL J(E)OAPT OPL Jea(E) OAPT.

Therefore, lets? be a differentiable section Gf(E) O AP T such thatD(s”) = 0. The
sectionp10 S0 of (E) O AP T is also such thaD(p1o s’) = (01 O 1d)e D(sP)= 0.
Then, by the recurrence hypothesis, there exists a segfidof J(E) O A" T such
that:

D(ay™) =10 S

Since the morphisrpx is surjective, we may fing",, which is a section od.1(E) O
APIT such that:
PcoSty = o0

Consider the sectios? - D( %) of J(E) O AP T. ltis, in fact, a section of the sub-
bundleE O S(T) O A’T', because:

Peao (S~ D(S5)) = paost — D(po s)) = 0.
It is, moreover, annulled by the morphigin
5(s¢ - D(sf1)) = D(s{ - D(s)) = D(sf) = 0.
From lemma 2, there thus exists a secti of:

EQSHT)OATT,
such that:
o(nyy) =0 - D(sl).
Hence:
s’ = D07 +s07),

when n’ +s71 is a sectiod1(E) O AP T,
Q. E. D.

If we let o« denote the canonical morphismJf«(E)] onto J«(E), and again leD be
the Spencer operator & J(E)] into J(E) O T then the restriction of this morphism and
that operator to the differentiable sub-bundda(E) of Ji[J(E)] are the maps that were
considered above that are denoted by the same letters.
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COROLLARY. —In order for a differentiable section s of[J(E)] to be a section
with values in the sub-bundlg.«E), it is necessary and sufficient that:

1) D(ox ° ) = k-1 °D(9), .
2) D%(s) = 0,the zero section ofJ(E) O AT .

The conditions are obviously necessary. They arecmiff; indeed, les be a section

of Ji[J(E)] such that conditions 1) and 2) are verifidd(s) is then a section ak(E) [
T such that:
D o D(s) =D%s) = 0,

so, from the last theorem, there exists a seaiohJy:1(E) such that:

D(0) = D(9).

However,s — gis then a section @f[J(E)] such that:

D(s—0) =D(s) —D(0) = 0.

From the first characteristic property of the oper&tps— o =y, with x a differentiable
section ofJ(E), and one has:

DOY) =D(ox > s—px ° ) = (-1 0 1d) D(s-0) = 0,
— ik
X=11,
with 77 a section oE and:
s=ix+o=j'(*n + g
=j"'n+o
a section ofy.1(E).
Q.E.D.

We conclude this paragraph by making the remark that thec&peperatob splits
the sheaf),(E) into a direct sum of twd-linear sheave&€ andE O T, or more

precisely, two sectionrsands of J(E) are identical if and only if:
P-1°S=fk-10° S

and:
D(s) =D(s).

4. A differential operator and its prolongation.

Let E andF be two vector bundles over the same Basdrecall that we call anig-
linearV-morphismd of the sheakE into the sheafF anoperator.
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DEFINITION I11.4. —An operatoro of E into F will be called a differential operator
of order k if, s being a differentiable section ofjEs = Oentails that thé(s) in F is zero
at the point x.

Any V-morphism of differential fiber bundles is obviously eqleve to a differential
operator of order 0, which is nothing but Zxlinear operator B, the sheaf of

differentiable functions on the base manifo)d

The Spencer operatd is, from its second characteristic property, a difices
operator of order 1 ak(E) into J1(E) O T .

If 0 is a differential operator of ord&rof E into F, andd’ is a differential operator of
orderr of F into G then the compositiod’ o 9 is obviously a differential operator of
orderr + k of E into G.

Consider the operator:

i E = J(E).

It is a differential operator of orddés and one easily establishes the following theorem
(see R. Palais, chap. '8eminar on the Atiyah-Singer Index Theogrem

THEOREM I1.4. —To any differential operatod of order k of E into F there
corresponds one and only one V-morphism of the vector bu@lefhk(E) into F such
that:

9 =h(d)-j~.

Letd be a differential operator of ordeof E into F. We call the operatqf o 9 that
mapsE into J;(F) theprolongation of order lof 0. We have, in an obvious fashion:

h(* e 9) = J(h(9)),

or more exactly, the restriction of tkemorphismJ;(h(d)) to the sub-bundléi.1(E) of
J[I(E)]. For any integer =k, let:

S = kerh(" ™ o 9))

be the sub-sheaf @fmodules of the shedf(E) that is formed from the sections that are
annulled by the operattij’ ™ o 9), and agree that:

S = Jr(E) forr <Kk,
and that:
SP =S ONT

is the tensor product, in the Whitney sense, of thestveaaves oD-modules. From the

definition ofh(j"™* o ), we have:
1) a0ld: 8°, - S°,
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2) D:S"

p+1
r+1 Sr :

Hence, one has the Spencer cohomology sequence rétathe differential operatar.

0-000. s 0% s40f 82,00 ..,

r

where® denotes the sheaf of solutionsdof i.e., of sections dE that are annulled by the
operato. Forr >k, the start of the sequence:

0-000- 8 0% S
is obviously exact.
Upon denoting the sub-sheaf @f-modules of Sf;, we have the cohomology

sequence of sheaves®fmodules:

ot Nr DN OO 0B VPO

r+q r+q-1

whose corresponding cohomology sheaves will be derytéd” .
Suppose that the operator;: S, — Si-1 IS surjective, so likewise for any, the

operatorp-1 U Id: S - SF, is also surjective. Let denote an arbitrary lift — i.e.\&
morphism of sheaves:
A 8P - SP, (G20 1d) o A=1d.
The morphism:
DodoD: & - S,
IS such that:
(G01d)oDoAdoD=Do (g401ld)o Ao D=D*=0.

It thus mapsS; into N'?, and takes values that are annulled by the operBtansd; it
thus passes to the quotient to define a morphism:

m:DOAOD:Sr—» 7—£rp—l

One immediately verifies that this morphism i®dinear operator t”, being obviously
a sheaf oD-modules that is defined independently of the choiceefitih/).

THEOREM I1.4.b f the operator:
O-1:S - S

is surjective then this canonically define®dinear operator:
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m:S - H>,,

such that the following sequence of sheavd2-pfodules is exact:
S.,0M-8 0TL H?,.

r+l

Proof.
Indeed, if the operatanis defined as before then one confirms immediately tha
mo o =0.

It remains for us to prove the exactness of the sequehie.reasoning consists of two
steps, which we make precise in the form of a Lemma.

LEMMA 1. — If s is a section of5; then there exists a sectiamof J[J(E)] that
verifies the following conditions:

1) Alh("™ > 9))(9) =0,
2) A0) =s,
3) (-1 1 1d) > D(g) =D(9).

Indeed, take a lifl of S", to S'. Let ;7 denote the section A4 o D(s), which we

consider to be a section &{E) O T, which is a sub-bundle d§[J.(E)]. The sectionm
is therefore such that:

1) Jh(™ e a)](7) == ("™ = 0)0Id)o Ao D(s) =0,
2) o) =0,
3) D(77) =A = D(9).

The section's is a section od,[J;(E)] such that:

1) JhG™ e 9)IG's) =j'h(™ < d) (5 =0,
2) Ajts) =s,
3) D(j's) = 0.

The sectiono = j's + 77 is therefore the section that responds to the comgitof the
lemma.

LEMMA 2. —If s is a section of, such that r(s) = Othen there exists a sectignof
Ji[J(E)] that verifies the three conditions of lemfnand the following fourth condition:

4) Do D(y) =0.

Indeed, always letting be a lift ofS;-; into S;, we say tham(s) = 0, i.e., that:
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Do Ao D=dAn),

with 77, a section of\'. We may considen to be a section af(E) O T, which is a
sub-bundle 08:1[J;(E)] such that:

1) UG 8)l(n) =0,
2) An) =0,
3) (-1 01d) o D(17)=— (&-1 O Id)(17) = 0.

If gis a section as in the Lemma then the section:

X=o0+1]

is a section o8] J,(E)] that verifies the conditions of Lemma 2.
Now, from the corollary to the theorem I1.3.b, tleeton y of Lemma 2, in fact, has

its values in the sub-bundle.»(E) of Ji[J.(E)]. It is therefore a section &%.1 such that
Ax) =s.

Remark.

Q. E.D.

1) One of the important problems of analysis is to knekether the Spencer
cohomology sequence relative to a given differentiatatped is exact or not.

2) 0 being a differential operator of orderfor r > k, the exactness of the sequence:
0-000. 8 0% S,

signifies that the integrable sectiofs of S;, are nothing but the prolongations of the
sections oE that are solutions @, i.e.:

(9 = 0.

We say that the differential operator of orles completely integrabléo orderr (= K) if
and only ifS; is locally generated by the integrable sections, i.e.:

If sis a section of, then one has locally, in the neighborhood of any pdint g =
fi'a, 1<i < p, wheref are differentiable functions on the base manifléndj'c are
integrable sections & .

If the differential operator is completely integrabfeorderr then the morphism:

() Indeed, D. G. Quillen has proved that showing the arastof the Spencer sequence is equivalent
to finding the necessary and sufficient conditions onstetionf of F for there to exist a sectionof E
such thad(s) =f.
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ﬂ* . Sr+1 bd Sr
is obviously surjective. The operator
m: Sr+1 — 7"[2_1

if it defined is then zero. The operatorthus presents us with an obstruction, in an
obvious sense, to the complete integrability of the idifidal operator of ordet.

3) LetE, denote the set:
{e e0J(E) suchthat h("™* o d)(e) = O}

The setE; is what one calls thénear differential systenthat is associated with the
differential operatoj"™ o 9 of orderr. The set&, are not necessarily vector subspaces
of the fibers ofJ,(E), but fibered by fibers ovey, so each fiber ok, is a vector subspace
of the fiber ofJ,(E); we may thus form the tensor product, in the WhitneyssgofE;
with APT", and we obviously have:

SP =E OAPT,

in which the right-hand side denote the differentiabletises of J(E) O APT with
values in the subset & 0 APT .

We say that the differential systefpis homogeneously linear Hy is a vector sub-
bundle ofJ,(E). Any homogeneous, linear, differential system camcdiesidered as the
associated system to the differential operator of dader

poj“:E 0D~ J(E) OFL JE)/Ex,

whereJ(E) / Ex denotes the quotient bundle &{E) by the sub-bundl&, andp is the
canonical projection morphism.

4) Theorem Il.4.b is a revised form of a known propositbéuillen (Singer and
Sternberg, “On the infinite groups of Lie and Cartan.l) the analytic case, it is
equivalent E andF being analytic vector bundles, and the differemidratoro of order
k transporting any analytic section Bfto an analytic section d¥) to the celebrated
Cartan-Kaehler theorem on involutive linear differensigstems (C. Buttin, “Existence
of local solutions for analytic systems of equations.”)



CHAPTER 1l

CONNECTIONS OF HIGHER ORDER IN A VECTOR BUNDLE

In this chapter, we shall introduce the theory of cotiors, whose role one knows of
from differential geometry. Our essential resulthat if E is a vector bundle that is
associated with a Lie groupod then a connection of ordds in the sense of C.
Ehresmann, in the Lie groupoi® canonically determines a splitting of the exact
sequence of vector bundles:

0- JXNE) - JE) O E - 0.

Conversely, any splitting of this sequence is determineal dynnection of ordek in the
Lie groupoidll1(E), the groupoid of all linear isomorphisms from fiberd&db fibers.

1. ConnectionisalLiegroupoid.
Let ® be a Lie groupoid on the differentiable base maniiéld From geometric
considerations, which we shall not recall, C. Ehresmaa® led to make the following
definition:

DEFINITION IIl.1.a —A connection element of order kdnis a jet of a section X:

X O (D, b, V),
such that:
1) BX) =lax, a(X) and A X) are the source and target of the jet X, respectively.

2) aX= j['j,(x) , the jet of order k of the constant map that maps Me pointa(X).

PROPOSITION Illl.1a. The space (®P) of all connection elements of order kd®df
is a differentiable fiber bundle over V under tlmise projection a that is associated
with the prolonged Lie groupoid*.

Proof.

Indeed, letX be a connection element of souxcand letZ be an element ab® with
sourcex and targey. LetY denote:

Y=bz YOnXVv) (see chap. Il-1).
One has a new connection elemgndf sourcey:

X'=@ZY)OxXYH) D™,
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where the elements between parentheses are the dtoomsosf jets, AZ)™ must be
considered as the jet of ordeof the constant map &f onto 42)™, and the dots have
the same significance as they did in the proof of pridpadI.1.

SetX’=Z [X; it is then clear tha®® operates o (®). It remains for us to verify
the differentiability conditions, which we may do |dgal

Now, if @ is trivial Lie groupoid:

OP=R"xGxR"

then one haQ(®) = T,*.(G) x R", whereT/,(G) is, we recall, the set of jets of order
of R" into G with source 0 and the neutral elemerdf G for target. Recall thad® is
then a trivial groupoid®* = R" x G“x R", whereG" is the semi-direct product df*,(G)

with the product groufs x L. This being the case, the previously-determined operator
®* on Q@) is defined by the operation 6f on Tn'fe(G) in the following manner:

yAuley Z=( V) X with (@ Y) DG x LS andX O T!,(G),
Z: T,.(G) - T (G), X' (g Y) XX, N

which are products of elements@fthat belong to the subgroﬂijfe(G) :
This indeed proves th&(®) is a differentiable fiber bundle that is associatsith
the Lie groupoidb.
Q. E. D.

DEFINITION I1ll.1b. — A connection of order k i® is the given of a differentiable
section of the bundle ().

Since the fiber ofQ(®P) is isomorphic toTn'fe(G), it is therefore contractible. We
remark that since the differentiable manifoldis assumed to be paracompact, there
always exists a connection of ordan the Lie groupoidb.

From the preceding, we remark that the isotropy gi@{imf ®* operates transitively
on the fiberQ(®P)x . Any section ofQ(P) is therefore regular; it canonically determines
a Lie subgroupoid ob*, namely, the subgroup that leaves it invariant. It $yéa prove
that this subgroupoid is isomorphic to the groupbig I'Ik(\/) by the surjective functor of
®* onto® x M(V). We thus have the proposition:

PROPOSITION IIl.1b. -Any connection of order k id® canonically defines a
reduction of® x M(V) in @,

Likewise, one immediately establishes that:
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PROPOSITION lll.1c. 4f ¢ is a reduction ofp x M%(V) in ®* such that at a certain
point x of V the isotropy group G ¢f{® x I'Ik(\/)) leaves invariant a connection element
of order k at x of® then there exists a connection of order kdothat defines that
reduction.

2. Connectionsin a vector bundle.

Suppose one is giver,(p, V); i.e., a differentiable manifold that is fibered by a
submersiorp onV. LetF(E, p, V) — or simplyF(E), when there is no risk of confusion

— denote the set of jets of ordeof V into E, such thatX 0 F(E), pX= jAf IS the jet of

orderk of the constant map & onto the poink = a(X), which is the source of.
F«(E) is obviously a differentiable manifold that is fiberleg the source magp onto
V. In a more precise fashion, we have the proposition:

PROPOSITION III.2. H E is a fiber bundle that is associated with the groupoid
@ then F(E) is a fiber bundle that is associated with the pradluie groupoid® x

M4v).

The proof is identical to that of proposition b,1if we remark that the groupofd x
M*(V) operates of(E) in the following fashion:

If (z,Y) O @ x MX(V), with sourcex and targey, X O F(E), with source,

X=jkg, whereg is a map oV into the fiberk, ,
Y= jff, wheref is a local diffeomorphism of,

then one has:
(z V) X= jé(zOg o ),

in whichz O(g o ) is, by definition of the operation (denoted by a dotjpobn E, a
differentiable map that is defined in a neighborhoog foémV into the fiberk, .

THEOREM IIl.2a. Hf E is a fiber bundle that is associated with the groupoid®
then any connection of order k W determines a V-isomorphism of differentiable
bundles of K{E) into X(E).

Indeed, letC, be a connection element of ordeat x of ®: C, = j“f , wheref is a
differentiable map that is defined in the neighborhoodfodm V into ® such that:
f=X, the constant map &fto X,
f=Id.

[¢] [¢]

a
b
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Cx determines a diffeomorphism Bf(E)|x with Jk(E)|x in the following manner:
Cx: FB)k - J(BE)k, X=jg = X'= ji(f @),

whereg is a map ol into the fiberEx andf (g is a section oE that is defined in a
neighborhood ox.

Therefore, a connectio@ of orderk in ® determines a bijective map B(E) into
J(E) that diffeomorphically transforms the fibEk(E)|x onto the fibed«(E)|x at any point
x of V. In order for this map to be a differentiable isomasphof fibers, it remains for
us to prove that is is a differentiable section d#(E) thenC o s is a differentiable
section ofJi(E); one may do this by (locally) trivializing.

Q. E.D.

Obviously, we have the following injectixé morphism:
i: E = Fy(E), e |6,

wherex = p(e), and € is the constant map &fto the pointe. When it is composed with
the morphisnC that is defined by a connection, we have an injedtiweorphism:

Co i E - J(E),
such that:
poCoi:JE) - E

(wherer is the canonical morphism):
poCoi =Id.

Indeed, let be inE such thap(e) = x, and let:

Ci= jif,
so we have:
C o i(e) =j«f Ue).
Thus:
po Coi(e) =f(x) (=g

because, from the definition of a connection elemext@ne has:
f(x) =1, the unit a of ®.
In the case wher€ is a differentiable vector bundIE,(E) is also a vector bundle and

the previously-defined morphismsand C are morphisms of vector bundles. We thus
have:
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COROLLARY -If E is a vector bundle that is associated with a Lie groudottien
any connection of order k i#®» canonically determines a splitting of the following exact
sequence of differentiable vector bundles:

0- JXNE) - JE) O E - 0.

In the case of vector bundles, we also have thewallptheorem:

THEOREM Il1.2b. —If E is a differentiable vector bundle over V then any splitting of
the exact sequence:

0- JXNE) - E) Of E-O

is determined by a connection of order k in the Lie groudd{&) of all linear
isomorphisms of fibers of E onto fibers that is associated with the bandle

Proof.

Let A be a lift of the splitting, and legf, e, ..., &) be a basis system for the vector
spaceky, which is the fiber oE atx. Set:

where one may obviously take differentiable sectignthat are defined in the same
neighborhood ok in V, and are such that in this neighborhoodgHerm a basis for the

sheafE of locally free D-modules. On this same neighborhoodxpfconsider the
differentiable sectiohof (M (E), b, V) such that:

1) ao f=xX, XV 5 X,
2) f(y) (& =s(y).

One must also have:
f(x) =1x, the unit off 1(E) atx,
because for any
fy) (b =s(y) =& .

The jetX = j¥f is then a connection element of ordeat x of M(E), and this

connection element is obviously defined in a mannerishiamdependent of the choice of
basis €, ..., &) of E, and the liftA at the poini precisely.

To any pointx of V, we thus associate a connection element or dedef1(E); in
other words, we have a section that we denoteChgf V in the connection space
QJM(E)]; it is a differentiable section. Indeed, tetbe the subgroupoid ¢1%(E) leaves
this section invariant. It is a transitive subgroupoidvbrbecausd1“(E) operates in a
transitive fashion on the spa@g[lM(E)]. The subgroupoi@® is also the subgroupoid of
M*E) that leaves the lift invariant, considered as a difféable section od(E) O E’
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(J(E) O E being associated in a canonical fashion with the Liepi [M%E)). Since
@ is transitive orV, the sectio is a regular section® is therefore a Lie subgroupoid
of MXE), and the sectiorC, which is left invariant by a Lie subgroupoid, is a
differentiable section.

Q. E. D.

The corollary to theorem Ill.2a and the last theorttins show the equivalence
between the notion of connection in a vector bundle thatssociated with a Lie
groupoid, a notion that is due to C. Ehresmann, andafh&ur-connection” that was
introduced by P. Libermann as a splitting of the exact segue

0- JXE) - JE) OfL E - 0.

3. Covariant derivation and connections of order 1.

Therefore, suppose we are given a connection of dederthe vector bundlds,
which, from our studies, amounts to being given a smitdof the preceding exact
sequence. Lettingx denote the lift of the splitting, we have the follogidifferential
operator:

Ok:E - J(E)O T, st Oks=D o A(9),

in whichD is the Spencer operator.
The differential operatdrlk obviously verifies the following properties by settihg:
= k1 ° A E - J1(E), which is the induced lift of the connection of oréder 1.

1) -2 0 1d) o [(s) =D o Ax-1(9) = Uk-1(9),
2) D ok(s) =0,
3) Ok(fs) =f Uk(s) + Ak-1(s) U df,

for any differentiable functiohonV. In a more precise fashion, we have the proposition:
PROPOSITION l11.3a. 4f one is given a lifd-, of E in 3-1(E) and a differential
operator:
Ok:E - J(E)OT

that verifies the three preceding properties then there existarmh®nly one liftdc of E
into X(E) such that if D is the Spencer operator then:

1) Ak-1= -1 0 Ak
2) Dk =Do /]k .

Proof.
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Therefore, les be a differentiable section & Takesto be a section al(E) such
that:

P1(0) = Aa(9).
From property 1 oflx, we have:

(01 U 1d)((s) —D(9)) = (02 0 1d) o T(s) —D(s) o Ak-a(s) = 0.
It then results thail(s) —D(o0) is a section of the sub-bundle:
EOSHT)OT of JYE)OT,
such that:

D(0(s) —D(9)) = 0;

Lk(s) —D(9) =DM,

from Lemma 2 of I11.3.b:

with y a section of 0 SXT"). The sectioro +y of J(E) is therefore such that:

1) Pa(T+)) = pa(s),
2) D(o+x) = 0«9).

Such a section is obviously unique, and we thus define a rsorpluf sheaves:
7 E - J(E),
which associates any sectiswf E with a section ody(E) that verifies the conditions 1)

and 2) above. If is a differentiable function o¥ then one obviously has, by the third
property of the operatdiy :

1(fe) =f 1(9).

The morphismr is therefore aD-linear morphism: There exists a morphiginof the
vectorial bundleE into J(E) such that:

sUE, A(S) = 1(9).
The morphismiy is the lift that answers the question.
Q. E.D.

As in the particular case wheke= 1, we have this corollary, which is a classical
theorem of differential geometry:

COROLLARY. —Suppose one is given a differential operator:

:E-EOT,
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such that if f is a differentiable function on V then:
sUE, O(fs) =f L(s) + s df,

There then exists one and only onedifif E into J(E), which is defined by a connection
of orderlin E such that:

sUE, ((s) =D o A(s).

The differential operatar that is associated with any connection of order Eas
what one calls theovariant derivativeof the connection, and we shall recall some of its
imprtant properties here. Since these properties assicdd (see, for example, J. L.
Koszul, Lectures on Fiber Bundles and Differential Geometwye shall do so without
giving the proofs.

Therefore, let a connection of order 1 in a Lie grougpide defined orv. For any
vector bundleE overV that is associated wit®, we let the same symbaol denote the
covariant derivative that is associated with thaneation:

:E-EOT, s 0(9),

and we letlIx(s) denote the value, in an obvious sense,l@ on the vectoX onV (a
vector field being a differentiable section of the taridrindleT).

PROPOSITION 111.3.b. —

a) If E is a vector bundle that is associated with a Lie grougoithen the same is
true for the dual bundle Eand the covariant derivatives in E and tBat are associated
with the same connection of ordem ® are coupled in the following way:

sOE wOE,XOT, [Ox(](s) = X Cafs) — e Ox(S)],
where X[k(s) is the Lie derivative with respect to the vector field ¥heffunctioncs).

b) If E and F are two vector bundles associated with the same biggid ® then
the same thing is true for the fiber bundlélE~, and the covariant derivatives in E, F,
and E[J F, respectively, that are associated with the same connection of brdep are
coupled by the following relation:

sOE, wOF, XOF, Ox(s 0 w) = Ox(s) O w+s 0 Ox(w).

Let G(®) denote the bundle of Lie algebras that correspood$fi@é canonical Lie
group bundles(®P) of the Lie groupoidb (see example 1 of I.2). For any connection of
order 1 in®, one defines a differentiable section @) O A?T that is called the
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curvature tensoof the connection, and which we denoteRoyWe also let] denote the
operator:

O: EOAPT - EOAPYT,
0=D o (A0 Id), A being the lift ofE in J;(E) that is defined by the connection.

PROPOSITION lII.3.c. H one is given a connection of ordein a Lie groupoidd,
where R denotes its curvature tensor:

1) In the vector bundle E that is associated wiXfthe operator:
D°:E0fL EOT OFL EOAT,

is, in fact,D-linear, and it is equal to the linear representati®iR) of R, in an obvious
senseG(®) being a Lie algebra bundle that operates on E.

2) If R(R) = 0, 0or, what amounts to the same thing[Jff= 0then the connection in

E will be called integrable. In a more precise fashion: At any poiat ¥ there exist
local sections s ..., & such that the sectionsferm a basis for the neighborhood of x of

the sheaf E of locally freP-modules and:

A(s) =j's, 0Oi, or inotherwords, 0(s)=0.



CHAPTER IV

PROLONGATIONS OF THE TANGENT BUNDLE

We show that there exists a canonical structure dleafsofR-Lie algebras in the

sheafJ(T), J(T) being the prolongation bundle of ordeof the tangent bundI& of a
differentiable manifoldV. A regular infinitesimal structure of ordé&ron V is then
equivalent to the given of a differentiable vector bubndle Ex of J(T) such that the

sheafE, is a sub-sheaf d&-Lie algebras of the shead{T).

1. Structureof the sheaf of R-Lie algebras.

T being the tangent bundle to a differentiable manifé|drecall that the Poisson
bracket [ , ] of vector fields (i.e., differentiablecsions ofT) defines the structure of a

sheaf ofR-Lie algebras in the sheaf of sectionsTofor, in a more precise fashion, it

verifies the following axioms:
If X, Y, Z are sections ofF anda, £ are real numbers then:

1) X, aY + fZ] = alX Y] + AX, Y],
2) X, Y] = - [Y, X],
3) X Y, 0] = [[X, Y], Z1 + [Y, [X, Z]].

Moreover, iff is a differentiable function ovf then we know that:
[X,fY] = {X, Y} + (X @)Y,
whereX [T is the function that is the Lie derivativefafith respect to the vector fiek

PROPOSITION IV.1 For any integer k, there exists one and only one structure of a
sheaf ofR-Lie algebras in the sheaf(J) such that:

1) If oandn are two integrable sections of(J) with o= j“X andn = j*Y then one
has:

[g, 7 =X, Y,

2) If gandn are two differentiable sections ofT) and f is a differentiable function
on V then one has:

[o fn] =flo ]l + (K(0) O) n,

A0) being the vector field that is the image of the seatitwy the canonical morphism of
JTonT.
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Proof:
Suppose that such a structure exists, so we immediatatiese two Lemmas:

LEMMA. — If g is the canonical morphism aof(J) onto J(T), r <k, then:

(o ) = (9, aln).

Indeed, this lemma is obvious from the first property wlaeand ;7 are integrable
sections. The same is true wheand 77 are of the fornf jX andg jY. The lemma is

therefore exact by linearity, since any sectiodF) is locally of the form»_ f'j X, .
i=1

LEMMA 2. —If D is the Spencer operator then one has the i@tat

D([a, 71) = [D(9), o] + [2-1(0), D(17)]
+D(0) O (o0 2d) - D(77) - D(n) O (o0 21d) - D(9),

where the elements in the right-hand side are sestdf d.4(T) O T whose values on a
vector field X are given by the following formulas:

[D(9), A-2(MI(X) = [Dx(9), A-1(1)] = Dix. (),
[D(0) T (o0 21d) o D(7](X) = (B(9))(p > Dx(1)),

respectively.

It is, moreover, sufficient to verify this far and ;7 of the formf jkY andg ij, which
is immediate.

Having established these lemmas, the existence of ssthu@ure is, on the one
hand, known for the sheaf which is the case wheke= 0, so it suffices for us to prove
the proposition by recurrence on the integemMNow, we leto and 7 be two sections of
J(T) that one may assume to have the form:

o=f and 7=d¢j*, 1l<ism

since this is true locally. Set: _ _
Lo, 7] = [f %, g ¥,

where the right-hand side is a sectjpaf J(T) that is perfectly determined, by reason of
the two properties of the proposition. From Lemma 1 laaima 2,0-1(x) andD(y)
depend upon only1(0),0-1(7), D(0), andD(7). From the remark at the end of 11.3,
that sectiony is perfectly determined independently of the choicente#grable sections
j*Xi andj“Y; by whichoandn are expressed. By the proposition, the bracket], thus

defined, indeed determines the structure of a sheRflaé algebras in the shedf(T),
precisely. Q. E.D.
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We remark that, from the second property, the braciwteen sections od(T) is,

in fact, D-linear. J2(T) is therefore canonically a Lie-algebra bundle.

We also verify that a regular infinitesimal structufeooderk on'V is essentially the
given of a morphisrh of differentiable vector bundles:

h: J(T) - F,

where F is a certain differentiable vector bundle ¥nsuch that the sub-sheaf &%
modules:
Sk = ker()

is also a sub-sheaf &FLie algebras ody(T). It is useful for us to establish the following
proposition:

PROPOSITION IV.1.b. H h is a V-morphism of vector bundles fropiT) into a
bundle F, such that:

Sk = ker()
is a sub-sheaf dk-Lie algebras of {T) then the sub-sheaf of prolongation:

Sksr = kerJy(h)

that is the kernel of the morphisp{h) that maps J.(T) into J(F) is also a sub-sheaf of
R-Lie algebras of J.(T) for any integer r.

Proof:

It suffices to prove the proposition in the case wherel. Therefore, letrand 77 be
two sections o8x:1:

oo Wh)([a, 7)) =h e pdla 7)) = hla(a), adn)),

S0, sincenx MapsSk+1 into Sk, one thus has:

o o J(h)([a 7]) = 0.

D o J(h)([o 7)) = (h 1 Id) - D([g, 7]);

On the other hand:

however, from Lemma 2, it is immediate that:
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D([g; 7)) is a section ofS; ( =Sk 0 ™),

since the Spencer opera@mapsSi.; intoS; . Therefore:
D o J(h)([o 7]) = 0.
From the remark at the end of 11.3, the sectigh)([ g; 77]) is such that:

1) oo h(h([a nl) =0,
2) D o Ji(h)([a, 7]) =0

IS a zero sectiond, /7] is a section 061 .

2. Notions of torsion.

The structure of a sheaf &fLie algebras ody(T) amounts to the given of an operator —

i.e., anR-linearV-morphism of sheaves:
I(T) 0 I(T) ~ I(T),

where J(T) RQ J(T) is the exterior product, in the Whitney senseRelfnear sheaves.

That operator is a differentiable operator of orderdn#é of the factors on the right-hand
side is fixed; it thus gives (see Il.4amorphism of differentiable vector bundles:

T2 I[I(N] A R[] - I(T).
In particular, since one hdg.1(T) O J1[J(T)]:

T Je1(T) N Jesa(T) - I(T).

DEFINITION IV.2. —Since a connection of order+klin T is a splitting of the exact
sequence:
O — Jl?ﬂ_(T) — Jk+1(T) D'D—» T — O,

whereA denotes the lift, we call the morphisnz = A:
—To A TAT 5 J(T)

the torsion tensor of the connection.
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If X andY are vector fields oW then one has:

= 7o AX™Y) = Dx(A(Y)) — DAUA(X) — ad[A(X), A,
a formula that one establishes immediately by exprgshe morphisnr as a function of

the operatoD and the bracket. In the particular case of the cdimmeof order 1, one
has:

= 7o AXMY) =0x(Y) =OAX) = [X, Y],
and we recover the classical notion of the torsioa obvariant derivativel( =D o A)
into T.

We remark that the lifd of T to J.1(T) may be considered to be a differentiable
section of},1(T) O T such that:

(p O 1d)(A) = 1d, the “identity” of T OT .
Moreover, we have:
D: Jea(MOT = J(T) O AT,
with:
(DA))XMY) =Dx(A(X)) —=DAAX)) — o« © I([X, Y]).

The following proposition is therefore established imratly, sincer - A is regarded as
a differentiable section df(T) O A’T :

PROPOSITION IV.2.a. 4n the case of the connection of ordepne has:
- 7o A=D().

The case of the connection of order T iis well-known; it is, nevertheless, useful for
us to recall the following two propositions:

Consider the morphis@that was introduced in 11.3:
O:TOS(T)OAPT - TOSHT) O AT,
edad 0w -kedd™ O @"w

PROPOSITION IV.2.h. Since the curvature tensor R of a connection of otderT
is a section of TI T O AT, one has:

O(=70 ) =-4R),
wherel(- 7 o A) is the covariant derivative of the torsion of the connection.

In effect:
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O(- 7o A) =0[D(A)] = 0%(1d),

in which 1d denotes the “identity” section &fC T. The equality thus posed, which is
called theBianchi identity is then an immediate consequence of the assel)iorf
proposition 111.3.c.

From theorem Ill.2.b, any connection of order ITims defined by a connection of
order 1 in the Lie groupoifl’(V). SinceT O S(T') is also canonically associated with
the Lie groupoid1*(V) for any integetk, a connection of order 1 in this groupoid thus
also defines a covariant derivative operator:

O:TOST) OAPT - TOS(T) OAPT,
Having made this recollection, we have:

PROPOSITION IV.2.c. H# the connection of ordek in T is without torsion (i.e., the
section —7 o A is a zero section of O A?T) then one has the following anti-
commutative diagramy o =—0 o &

x * 5 — x +
TOS(T)OAPT — TOSHT) OAT
TOS(T) OAPT .10 SHT) OAP?T

This proposition is a direct consequence of the fornilode was given in Koszul
(Fiber bundles and differential geometrif wis a section of " then:

Fo0(e) =daw

wherell is the covariant derivative if that corresponds to a connection without torsion
in T, Ois the anti-symmetrization morphism:

JTOT - A’T*, albr a”b,

anddwis the exterior derivative ab

3. Linear differential system associated with aregular infinitesmal structure.

Let X be a vector field oW. We know thaiX defines a local one-parameter group of
transformations ol (R. PalaisLie Theory of Transformation Groupdefinition II, page
33) that is presently denoted by Bx¥, wheret is the real parameter:

For anyx in V, there exists a positive real numizesuch that for any O (- ¢, &),
Expt Xis a diffeomorphism of a neighborhoodxahto an open subset vf
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Consider the map that is defined for arip V:
(—& 8 - NKV), tr jS(ExptX).

This map is a germ of a differentiable curvelij(V). Therefore, when the parameter
= 0, its tangent vectag(X) belongs taT [M%(V)], the tangent vector space at the phint

of M¥(V). One proves that this tangent vector depends only upgattb&orderk at x
of the sectiorX of T.

LEMMA (P. LIBERMANN). — For any integer k, there exists a canonical linear
isomorphismg of J(T)|x with T,[I%(V)] such that the following diagram is commutative:

3Dk~ TIN5 V)]
Fa"
I M= T V)]

The isomorphism is the preceding map that associatgstamfya sectionj’(X) with
the vectorg(X). This lemma may be established by direct local calmr (see P.
Libermann, “Pseudogroupes infinitésimaux,” prop. 1, par. 2).

Recall that a regular infinitesimal structure of orleon V determines a Lie sub-
groupoid® in MX(V) (see I-3). Ifd is a Lie sub-groupoid thefi(®,) is a vector sub-
bundle of T [M¥(V)]. From the lemma, we thus have:

O Tu(Py) = Ex, subset od«(T).

The subsekg of J(T) is what one calls thdifferential systenthat is associated to the
regular infinitesimal structure. We then state th®Wwihg theorem, which we shall not
prove, in order to not overextend our presentation.

THEOREM 1V.3. —The differential systemyEBssociated with a regular infinitesimal
is a homogeneous, linear, differential system; i.eis& differentiable vector sub-bundle
of J(T). It has no constant term; i.e., the restriction of the morphsrto E is
surjective:

Ek D'D—»T—»O,

and the sheaf of sectiong B5 a sub-sheaf oR-Lie algebras of the sheaf @&-Lie

algebras {(t).
Conversely, any homogeneous, linear, differential systemite no constant term,

and such that the sheaf of sectionsi€a sub-sheaf oR-Lie algebras of theR-Lie



Ngo Van Que — On the prolongations of fiber bundles afitesimal structures. 42

algebra §(T) may be considered to be the differential system that is associdte@ wi
regular infinitesimal structure of order k on V.

Remarks.

1) An idea of the proof may be found in Rodrigués (“The fastl second
fundamental theorems of Lie for pseudogroups,” Am. J. M) One shows that the

sheaf ofR-Lie algebrask(T) is canonically isomorphic to the sheaflodie algebras of

right-invariant vector fields on the principal bundle lwitructure grouply(V). The
sheafE, is then isomorphic to the sheaf of right-invariant gedtelds on the principal

bundle with structure groupy . In particular, the Lie algebra bundi - i.e., the kernel
of the morphisnp of Ex onto T — is isomorphic to the Lie algebra bundigb).

2) If F is a fiber bundle that is associated with the Lieuguoad My (V) thenF is a
prolongation space o¥( A(V)), A(V) being the pseudogroup of local diffeomorphisms of
V, in the sense that any local diffeomorphismith sourceU and targetJ’ can be lifted

to a diffeomorphismf of fibers:

f
FlU _— FlU’

b

Uu —Uu’

Since an infinitesimal structure is the given of tiedentiable sectiors of F, recall
that the pseudogroup of local automorphisms of the stru€i(8eis the set of local
diffeomorphismd of V such that:

foSo f1=95

or, in other words, it leaves the sectl®mvariant.

The differential systerfy of the infinitesimal structur8is then a prolongation space
of (V, I'(9).

We also le® denote the sheaf of solutionsEf— i.e., the set of local sectiokf T
such tha§“X is a section ofi(T) with values in the sub-bundi. The shea® is called
the sheaf of infinitesimal automorphism$the structure, in the sense that the local one-
parameter group Ex{X that is defined by the sectioXsthat are solutions df is an
element ofl (§ for fixed t. It is immediate from Theorem IV-3 that the shedf

infinitesimal automorphisms of a regular infinitesimatusture is a sheaf oR-Lie
algebras irv.

3) In practice, in order to find, for example, the d#faial systemE; that is
associated with the infinitesimal structure of orden¥dhat is defined by the given of a

p q
sectionSof T = 0T OT", one proceeds as follows:
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Consider the operat&:
ST-TP, X LX) 5

L(X) [Sbeing a local section of” that is the Lie derivative of the tensdwith respect

to the local vector fiel&. The operatof is a differential operator of order 1; it thus
defines a morphism of bundles:

h(S : J(T) - T.";

the systent; is the kernel of the morphism:

Ex = {e [ Jy(T) such thath(§(e) = 0.}



CHAPTER V

DIFFERENTIAL SYSTEM OF A G-STRUCTURE

Here, we recall the terminology that was estabiistiz Bernard, “Géo. dif. deG-
structures”) to refer to any regular infinitesimal stuwetof order 1 on a differentiable
manifold V as aG-structure. We shall then apply the Spencer theory to the study of
structures. In particular, the fundamental theoredblpermits us to define new tensors
that are the obstructions to integrability (in the vkalbwn sense, which we shall make
precise, moreover) of the structure, the primary obstnmudeing the structure tensor of
D. Bernard.

1. Typeand degree of the structure.

Therefore, let there be a regular infinitesimalicture of order 1 given ovi — i.e., a
regular sectiots of an infinitesimal prolongation space of order 1MonLet ® denote the
Lie sub-groupoid off1*(V) that leaves the section invariant, and Bgt denote the
homogeneous, linear, differential system that is astmt with the structure (Theorem
IV-3). Recall thatE; is a differentiable vector sub-bundle J{T), and selN; in such a
way that the following sequence of vector bundles istexa

SinceE; is a sub-sheaf dk-Lie algebras o8,(T), N; is a sub-bundle of Lie algebras of

J(T) =T O T ON; is, moreover, a Lie algebra bundle that is associatgtd® that is
currently called thésotropy bundle of Lie algebras the structure, being identified with

the bundlej(®), which is the Lie algebra bundle of the isotropy groof®.

E; being a differentiable vector sub-bundleJgfT), we thus consider (see Remark 3
of 11-4) the canonical morphism:

h: Ju(E) - J(E)/EL =F,

Ji(T) / E1 being the quotient vector bundle K(T) by E; . Furthermore, lefi denote the

subsheaf ked(-1(h)) in J(T):
Jk—l(h) ZJk(T) — Jk_l(F).

From Proposition 1V.1b, the subsheaf®fmodulesSy is also a subsheaf @&-Lie

algebras ofl(T). The sheaby are also defined by the following recurrence relatithn:
&1 is the subshedd; of Ji(T) thenSi is the subsheaf df(T) such that:

1) o1k — Sk,
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2) D:Sk - S, (=8ka 0 T).

Let Nk be the subsheaf kex(,) in Sk :
0 - N - S O S

Ni is the subsheaf of sectionsf] S(T") with values in the sé, the subsel being
defined by recurrence as the subsef af S(T’) such that:

O:TOST) - TOSHTHOT, Ne = 0 (Niea O T).

SinceN; is a vector sub-bundle @f0 T that is associated with the Lie groupdil the
subsetd\, are also differentiable vector sub-bundlesl S(T") that are associated with

the Lie groupoidb; the sheaf oD-modulesNk is therefore locally free:

N = Nk.

DEFINITION V.1la. —The regular infinitesimal structure S will be called of type p if
there exists an integer p such that:

N 20 and Np1=0 (soNk=0 0Ok > p).
In the contrary case, the structure will be called of infinifgety

We remark that the type of a regular infinitesimalicure S depends upon only on
the linear algebraic structure of the fibers\af. We thus have the following examples:

Examples.

1) A Lorentzian structure o¥f — i.e.,Sis a section of%(T") that is everywhere of
maximal rank is of type 1IN, = 0 (see V. Guillemin and S. Sternberg, “An Algebraic
Model for Transitive Differential Geometry,” par. 3).A

2) An almost-complex or almost-symplectic structareV is of infinite type (see,
more generally, Y. Matsushima, Theorem 3, “Algébre ddibé&ire semi-involutive”).

It is clear that if one is given:
ANY ONet O T,

for any integerg then the restriction of the morphisénto the vector sub-bundig, U
AT of T O S(T) O AT has its values ilNe; O A®*T". Therefore, consider the
cohomological sequence:



Ngo Van Que — On the prolongations of fiber bundles afitesimal structures. 46

Noa OAYTT O Ny OAT OfL Npy OATT,

which we denote byH }(S), the corresponding cohomology spdeé(S) is obviously a
vector bundle oveV that is associated with the Lie groupsid the sheafH }(S) is
nothing but the cohomology sheaf] of the sequence (see chap. 11.4):

NTOTL N O Ao

p-1

DEFINITION V.1b. —The degree of the regular infinitesimal structure S is the
smallest integer k such that ibyk then one has, for any integer q:

H2(S) =0.
This definition is meaningful by virtue of the followinigeiorem:

THEOREM V.1 —For any regular infinitesimal structure S, there exists an integer k
such that if 2 k:
HJ(S)=0  forany integer g.

The algebraic equivalence of this theorem — i.e., wome regards only the linear
algebraic structure of the fibers BNf — has been proved by I. Singer and S. Sternberg
(section 6, chap. IV, “The infinite groups of Lie and Cafta We thus refer the reader to
that paper for the proof of that theorem.

Example.

The degree of a O-deformable structure is 1. (One thestisat it isinvolutive)

2. S-connection.

DEFINITION V.2. —An S-connection is a connection of orddn the Lie groupoid
.

In the case where the infinitesimal prolongationceafor the infinitesimal structure
in question is defined as the given of a differentiabltice S is a vector bundle, a&
connection is nothing but a connection of order T1f§V) that determines a covariant
derivation in the vector bundlé- (see chap. Ill-3) such that the sect®rhas null
covariant derivative:

(S = 0.

Any S-connection obviously defines a splitting of the exaquseace:
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O-TOT - (M) Of- T-0.

We also recall that when one is given a covarianivaieve [J in T, A. Lichnerowicz
introduced Géom. des groupes de transformatipar. 19) a new covariant derivatiize

in T, that he calls “associated” fothat has its torsion tensor opposite to thail obr, in
a more precise fashion,XfandY are two vector fields o¥:

[X, Y] = O, (Y) = O(X) = Ox(Y) - O,(X).
Having said this, we have:

PROPOSITION V.2 #H O is the covariant derivative in T that is defined by an S-

connection then the associated covariant derivafivés such that the corresponding
splitting of the exact sequence:

O-TOT - X(MOfL T-0

has a liftA that maps T into E or, in other words, that splitting is, in fact, a splitting of
the exact sequence:

0-Ny-E OfL Ts 0.

Conversely, any splitting of the latter sequence determines a iaowar
derivativel] such that its associated is defined by an S-connection.

Proof:

We shall not give a general proof of the propositlmrt, only a direct verification in
the case where, for example, the infinitesimal stmectconsidered is the given of a
sectionSof TO T (case of a 0-deformable structure).

Indeed, we first make it rigorous that in this case éisew of Ji(T) is, in fact, a
section ofE; if and only if whenX is an arbitrary vector field ov, one has:

[(0), AX)] - S[(0), X]) + Ds(0) —Dx(9)) = 0.

Therefore, let a covariant derivativé in T be given that is defined by a&
connection — i.e., for any pair of vector fieldsandY:

Ox(S(Y) - SOx(Y)) =0, (1)

and letd be the associated covariant derivative:

Ox((Y)) = By (X) = [X, NI = 0, (2)
Ox(Y) = O, (X) = [X, Y] = 0. 3)
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From these three relations, one easily deduces:
[X, SN] = S(X, Y] + Ogiyy (X) = ST ( X)) =0, (4)

or again,A denoting the lift of the splitting that correspondshe tovariant derivative
O:
[X, (V)] =X, Y] + Dgy)(A(X)) —SDAA(X)) = 0.

This proves precisely that for any vector fi¥ldA(X) is a section of;.
Conversely, lefl be a lift of the splitting of the exact sequence:

0-N - E OfLTS 0.

For any pair of vector fieldX andY, we get the latter relation, or again the relation (4)
by lettingd denote the covariant derivative associatedtovhich therefore verifies the
relations (2) and (3), so we immediately deduce [thegrifies the relation:

Ox(S(Y)) —SOx(Y)) = 0. (1)
The covariant derivativel is therefore indeed defined by &tonnection.
Q. E. D.

COROLLARY. — Any S-connection without torsion canonically determines a
splitting of the exact sequence:

0N - E OfLTS 0.

More generally, we have the following theorem (for athive recall the notations of
V-1, by agreeing thatly =T).

THEOREM V.2. -Any S-connection without torsion canonically determines a lift:

A Nk = Siat,
i.e., aD-linear morphism of the sheaf Bfmodules such that:

Ok o A = Identity.
Proof.

From the preceding corollary, the theorem is trukfer0. We shall therefore prove
it by recurrence on the integler

Therefore, let there be given &tonnection without torsion, where shall let the same
symbol[] denote the corresponding covariant derivative infither bundleNy, the latter
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being all vector bundles that are associated with tieegktoupoid®. Furthermore,
suppose that by the recurrence hypothesis this connectionically defines lifts:

Ak Niep = Skpr1
for any integep with k= p = 1, and such that i is a section olN; then one has:
D o Aka(r) =0(7) + Ak T 1d) o A1)
If one takes a sectiomof Ny and considers the sectigrof S;:
X=0)+ A 01d) o dn)

(Pr-1 O 1d)(Y) = A7)
DY) =0 U(n) + 0o A1),

then one obviously has:

by the recurrence hypothesis, so:

D(x) = 0,

from proposition IV.2c.

One then shows that there exists a seatiofhJy:1(T) such that:

1) pdo) =n,
2) D(9) =x.

Indeed, leto” be a section ak.1(T) such thajw(o) = 1.
The sectioD(0”) — x is therefore a section &fT) O T that verifies:

(Pr1 O 1d)(D(0) = x) = &) — An) =0,
D(D(0) — x) =D¥ o) -D(x) = 0;

there thus exists a sectionmfof T O S*T"), such that:
D(a) —x=d17).

The sectiono = ¢ — 17 answers the question. Since this section verifieglitons 1 and
2, it is, in fact, a section &.1; it is obviously unique and depenBslinearly upon the

sectionsn. We thus have a lift dfi to Sk-1 .

Q. E.D.
3. Integrable structures.

DEFINITION V.3. —The infinitesimal structure S will be called integrable if and
only if for any point of V there exist infinitesimal automorphisms iXé., solutions of £
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that are defined on a neighborhood of x and are such that in this neighborhood the X
define a basis for the sheaf T of locally fi@enodules and:

[Xi, X] =0  for anyi and;.
In this neighborhood of x, consider the lift:

A ZTlU - EllU
such that for any.
A0%) =X .

This lift obviously defines anS-connection without curvature or torsion on this
neighborhood, and we let the same synibaenote the covariant derivative @y and
in the vector bundl&lyy .

Such a neighborhood will be called aflat neighborhood. In the sequel, we agree
that to simplify the notations the fiber bundles andasies considered will always be
taken to be their restriction to a given flat neigtioad — for exampleT|y will be
denoted by simply.

We thus have a canonical isomorphism of vector buridiethe lift consideredE; [

T O N; (direct sum, in the Whitney sense) and with that ispimem, a covariant
derivative without curvature:

0:E1 - E:OT, X+n OKX) + (5+0)(n),
whereX andn are sections of andN, respectively. This covariant derivative is defined
by a lift:
A E, - J]_(El), O0=Do A

This lift is such that for any sectian= X + n of E; one has:

1) D? o A(0) =0(0(X)) + &n)) + d=0O(n) = 0,
2) (o0 1d)o Do A(9) =O(X) + An) = D(0).

From the corollary to Theorem 11.3b, it therefore lita values id(T). One immediately
verifies that, more precisely, it has values in theass: :

A: El — 82.
We thus have the exact sequence of sheavPsmoddules:

O—>N2—>82|:|'E|—>E1—>O
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The sheafsS; is locally free; the prolonged differential syst&m(see remark 2 in 11-4),

which is, in this case:
E2 = Jz(T) N J]_(E]_),

is then a differentiable vector sub-bundle JfT), with a canonical isomorphism of
vector bundles:
E, UE1 O N OT O Np O N».

In a general fashion, by a simple recurrence argum&nhave that for any integkr
the prolonged differential system:

Ek = Jk(T) N Jk_l(El)
as a differentiable vector sub-bundleJgil), with a canonical isomorphism:
Ex OEx-1 O N¢ OT O Np O ...0 Ng—1 O Nk

This isomorphism determines a covariant derivafivg without curvature otky_; such
that with the isomorphism considered, one has:

D1  Exg » B O T,
X+m+ ... +nes > OX) + 0+ 0)(n) + ... + 0+ O)(Ne)

Since the covariant derivativex-; is without curvature, assertion 2 of Proposition I11-3c
permits us to conclude, in addition, that the differénsigstem E; is completely
integrable to ordek — 1; i.e.:

Sk-1 = Ex1

is locally generated by integrable section (see remafli249, or again that any element
of Ex-1 is the jet of ordek — 1 of a solution oE; .
From that local study, we therefore have the foilgnglobal theorem:

THEOREM V.3. —If the infinitesimal structure S is integrable then the diffeednti
system Eis completely integrable to all orders and for any integer k the prolonged
differential system Hs then a differentiable vector sub-bundle @) such that we have
the following exact sequence of vector bundles:

O—> Nk—> Ek D@D—» Ek-l—» O
Remark.

Let © denote the sheaf of infinitesimal automorphisms ofitfiaitesimal structure
S i.e., the sheaf of solutions &i . The shea® will be calledof finite or infinite type
according to whether the space of its germs at anamppoint of the base manifoldis
a vector space of finite or infinite dimension, respedy.
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From the preceding theorem, it is immediate thahef infinitesimal structuré is
integrable then the she@fhas the same type as the structure (definition V-1-a).
4. Structuretensor of D. Bernard.

Consider the exact sequence of vector bundles:

Any splitting of that sequence is equivalent to the mivka sectionl of E; O T  that
is a lift of the splitting such that:

pOld:ELOT-TOT, (pOld)A)=1d., the “identity” section.
Any other splitting of the sequence is a Aiftof the form:
A=A+ n,

where is an arbitrary section ™; 0 T', which is a sub-bundle & O T". Hence, for
the corresponding torsion tensor (see 1V.2):

D(4) =D(4 + 17) = D(A) + A1)

This entails that we have a canonical sectipof the quotient vector bunde 0 A?T/
AN OT), which is defined independently of any lft

ts = D(A) mod N, OT).
We have the following obvious proposition, upon recalling fittan Proposition V.2 any
splitting of the exact sequence considered that definesvariant derivative without

torsion inT is determined by ag-connection.

PROPOSITION V.4a. The nullity of the sectionstis a necessary and sufficient
condition for there to exist an S-connection without torsion.

Remark A.

1) The sections is therefore a given of the infinitesimal struct@that D. Bernard
defined (“Géom. diff. desG-structures”) that one calls th&ructure tensar for that
reason.

2) The sectiofs is automatically null if:

AN OT) =TO AT,
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This is the case of a Lorentzian structure; iSeis a regular section o8(T) that is
everywhere of maximal rank. In this caBl,= 0, so one has an isomorphism of vector
bundles:

d N, OT - TOAT.

In the case of a Lorentzian structure, there thussegise and onl-connection without
torsion.

Let G be a pesudogroup of differentiable transformation¥.o Recall that a fiber
bundleF — i.e., one endowed with a submergmantoV — will be called grolongation

bundleof (V, IN) if any element of I' with sourceU defines a diffeomorphisni~ of Flu
ontoFlsu) such that the following diagram is commutative:

f
Flu — Flw

b ]

U — f(U)

An element of ' with sourcex and targey thus defines a diffeomorphism:
fiFc~Fy (Fe=p'(%).

In a more precise fashion, the prolongation sfaeeill be called theprolongation of
order k of(V, I') if we have the following relation:

(f,=6) = (i) = i)

If s, denotes the restriction td of a differentiable sectiosiof F onV then f o5, o f™ is

a differentiable section df that is defined orfi(U). We say that the sectimis an
invariant of {, I') if for any element of I with sourcel one has:

fOSJO f_l:Sf(w.

In the case wherE is a prolongation space of ordeof (V, I'), such a sectios will be
called annvariant of order kof (V, I').

Having recalled these notions, it is immediate to stitat/the structure tenstyis an
invariant of order 1 of\{, I'), wherel" denotes the pseudogroup of local automorphisms
of the infinitesimal structur& (remark 2 of IV.3). We say simply th&fis aninvariant
of orderl of the structure.

PROPOSITION V.4.b (D. Bernard).Fhe structure tensogis an invariant of order
1 of the structure that is an obstruction to its integrability; i.e.:

ts= 0, viz., the zero section of MA?T / AN O T),
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is a necessary condition for the infinitesimal structure S to bgristdée.

Indeed, on any flat open détthere exists ai-torsion without torsion; therefore the
restriction ofty to U must be zero. It then follows from this that if timdinitesimal
structureSis integrable thets must be zero.

Recall that since the morphisoof E; onto T is surjective, a bundle morphismis

defined such that the following sequence of sheavésmbdules is exact:
0- N2> S Of- B O HZ(S),

whereH2(S)is the vector bundl& O A*T / AN, O T). It is immediate to show that the

morphismm considered, as a differentiable sectiontdf(S)0 E’, is an invariant of

order 2 of the structure. We shall show that the mem, which is an obstruction to
the complete integrability df;, is zero if the structure tensiris zero. In a more precise
fashion, we have the following theorem:

THEOREM V.4. -f the structure tensor is zero then we have the exact seguén
vector bundles:
O—>N2—>E2—>E1—>O,
where Eis the prolonged differential system of or@esf E; .

Proof.

It suffices to prove that the morphism:
82 D@—» E]_

is surjective. Since the structure tengois null, there exists a lifd of T to E; that
determines a covariant derivativewithout torsion onf. From theorem V.2, we already
know that 01(S2) contains the subshedl; of E; . It thus remains to show that the
morphism:

Mo A:T o E1 » HX(S)

is zero, which is an immediate consequence of theviilg lemma.
LEMMA. — For any section X of TJ*(X) is a section of{N; 0 T').

Now, indeed, since the covariant derivativas without torsion, it is determined by
an S-connection whose curvature ten$dis a section oy 0 A?T" (N1 = G(P)), and we
have, for any pair of vector fieldéandZ:

O2X)(Y ~ 2) = RY ~ 2)(X).
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Now, from the Bianchi identity (Proposition IV.2.b)hen it is applied to the case where
the torsion tensor is null, one has:

R(Y ™ Z)(X) + R(Z™ X)(Y) + RX*Y)(Z2) = 0,
or again:
R(Y ™ Z(X) = RX " Z)(Y) - RX " Y)(2),

which expresses the idea that for any fixed?*(X) is a section of{N; O T').
Q.E.D.
Remark B.

1) If Sis an absolute parallelism structure then we Mve 0, and:

Identifying E; with T, the morphismm: E; — T O A?T* = HZ(S) is nothing but the
curvature tensor of the canonical connection; the morphisis therefore zero. The
nullity of the structure tensdg in this case must say that the canonigabnnection,
which is without curvature, is also without torsion. Absolute parallelism structure
with zero structure tensor is therefore integrable.

2) In the case where the struct@és involutive — i.e., of degree N{ # 0, which
entails thatSis of infinite type; see Matsushima, “Algébres de Limismvolutives”) —
we may recursively apply Theorem I1.4.b to confirm ti@he structure tensdg is zero,

or if the morphismm : E - HZ(S)is zero, then for any integésr we have the exact
sequence of sheaves®fmodules orV:

O—> Nk—»Sk D@D—» Sk—]_—> O,
or furthermore, of vector bundles:

O—»Nk—»EkD@D—» Ek-l—»O,

the prolongation systents being differentiable vector sub-bundlesJqfT). However,

in the same case, we cannot actually conclude the ctamptegrability ofE;, since the
existence of formal solutions does not imply the exc#eaf solutions ofE. D. C.
Spencer has conjectured that if the struc&iig moreover, elliptic — i.eE; defines an
elliptic differential operator ol with values onJ;(T)/E; (see D. C. Spencer) — then the
infinitesimal structureS is completely integrable (indeed, we have the Newlander-
Nirenberg theorem, which asserts that an almost-congileicture with zero structure
tensor is integrable).
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5. Obstructionsof higher order. Case of structuresof finite type.

In a general fashion, suppose that the infinitesimatsireSis such that for ank <
p, we have the exact sequence of vector bundles:

O—»Nk—»EkD@D—» Ek-l—»O,

Ex being differentiable vector sub-bundlesJdfT), respectively. From Theorem 11.4.b, a
morphism:
m:E, -~ HZ (S)

is then defined such that the following sequence of shed\2snodules is exact:
O — Np+1 bd Sp+1 D@—» Ep D'El—» H;2)—1(S)

This morphism defines a section Hﬁ_l(S)D EE which we nevertheless denote by

O(p), which is obviously an invariant of orderof the structure. The nullity of that
section entails that we have the exact sequence:

O—> Np+1—>8p+1 D@—» Ep—> 0,

or furthermore the exact sequence of vector bundlef, Nyit: a differentiable vector
bundle 0fJp.1(T):
O—> Np+1—> Ep+1—> Ep—> 0

We have therefore defined, in an obvious se@$p) as an obstruction of orderto the
complete integrability of the structure.

In the case where the structure tenkpis zero, Theorem V.2 asserts that the
restriction of the morphismm to the sub-bundlbl, of E; is, in fact, zero; the morphism
then passes to the quotient to define a morphism

m- Ep1 - Hﬁ_l(S),

or again, a sectio®'(p) of H? (S)0 E;;, which is an invariant of order — 1 of the

structure, and is, in this case, the true obstructicsraddrk to the complete integrability
of the structure.

If the infinitesimal structure is of degredhen the nullity of these obstructions up to
order p obviously again entails that for any intederEy is a differentiable fiber sub-
bundle ofJ(T), and we have the exact sequence of vector bundles:

O—»Nk—»EkD@D—» Ek-]_—» O
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As in the remark B.2. of V.4, we may not conclude that structure is completely
integrable, in general. In the particular case of a streof finite type, we have the
theorem:

THEOREM V.5.a f the infinitesimal structure S is of type-fd—i.e., N = 0 —and
all of its obstructions up to order p are zero then the differentstegy k& is completely
integrable to all orders.

Proof:
Indeed, for ank = p we have the exact sequence:

O—»Ek—» Ek_l—> O

It suffices for us to prove th&, is completely integrable. From the assertion 2 ef th
proposition 111.3.c, this amounts to verifying that th@@aical isomorphism:

defines a covariant derivativeé = D o A without curvature irE, . Now, we obviously
have:
AOId)ye Do A=Do A
whereA’is the canonical isomorphism Bf into Ep+>. Thus:
0°=Do(A0Ild)oDoA=Do Do A =0.
Q. E.D.

COROLLARY (see remark in V.3). With the same hypotheses as in the preceding
theorem, the she® of infinitesimal automorphisms of the structure is of finite type.

Proof:

Indeed, let jf*'Xi)i< i < q be integrable sections that form a basisHg#, the locally
free sheaf oD-modules in the neighborhoddiof a pointx of V. In a neighborhood of

any sectior¥ of © is of the form:
jp+1Y — f i J-p+1xi ,

wheref ' are differentiable functions of that are defined in a neighborhoodxof We
thus have: _
D(PY) =P X O df' = 0.
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Now, thej” X; also define a basis fd,, which is a sheaf of locally freB-modules; this
relation entails that: _
df' =0,
f =a = constant.
We thus have: _
Y=a X.

Remark A.

Always with the same hypotheses as in Theorem Méi. 4, denote a global section
of @. It is immediate, from the proof of the corollatiyat the set:

{x, x OV such thatj"X = 0}

is an open subset. On the other hand, that set isudbyiolosed, like the set of “zeroes”
of a differentiable section. W is connected then the map:

jiP:HYV, 0) - Epk, X jPX

is therefore injective; one concludes from this tH¥t, ©) is a finite-dimensional vector
space, and a simple argument due to Palais shows ¢hgtatip of global automophisms
of the structure is then a Lie group whose Lie algebrathing but the Lie subalgebra of
H°(V, ©) that is defined by the elements that generate a lgtoteaparameter group (R.
Palais, “Lie Theory of Transformation Groups”). We thasover the theorem of S.
Kobayashi that says that the group of global automorphafnas absolute parallelism
structure is a Lie group.

In a more precise fashion, it is immediate that axehthe following theorem, which
clarifies the preceding corollary:

THEOREM V.5.b. —f the infinitesimal structure S is of type—p1, and all of its
obstructions are zero up to order p then the sieaf infinitesimal automorphisms of the

structure is a locally constant sheaf®fLie algebras.

In particular, ifV is simply connected then the shé&afis a constant sheaf — i.e.,
isomorphic toV x G, whereg is a Lie algebra that is isomorphic@y . If G is a simply-
connected Lie group that hag for its Lie algebra therG is a local group of
automorphisms oN, in the sense of Palais (definition II, page88, cit.).
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Remark B.

We return to the general case. Recall that, froopdsition IV.1.b, the shed is a
sheaf ofR-Lie algebras. Therefore, in the case where thétyhoff the obstructions to

complete integrability up to ordgx Ey is, for anyk < p + 1, a differentiable vector sub-
bundle ofJ(T) without constant term — i.e., the morphigmEx - T is surjective, and

the sheaf of sectiors O Sk is a subsheaf dR-Lie algebras ofl(T); , from Theorem

IV.3, Ey thus defines a Lie sub-groupoitl of M%(V) that is called theholonomic
prolongation groupoidof ® of orderk. The bundle of isotropy Lie algebrgé®dy) is

nothing but the bundI&, that is defined by the exact sequence:
0- E 0OfL T-0,

and the isotropy Lie algebra structure B) is what one calls theerived structureof the

Lie algebra structure on the fibres f [ G(®P) (see Y. Matsushima, “Algebres de Lie

linéaires semi-involutive,” or V. Guillemin and S. Stieerg, “Transitive differential
geometry”). We obviously have, for agyx k:

o 01 &g - 1.
One may prove, moreover, thgt is a vector bundle that is associated with the Lie

groupoid®yy; .
In IV.2, we defined a morphism:

7: (T "I > J-2(T) .
One immediately confirms that we have:
T:ExMNE - B1 .

This morphism, when considered as a sectidg.qf(] A°E_ is then left invariant by the

holonomic prolongation grou@..1, which, from the preceding, operates in an obvious
fashion on the fiber bundle considered. This morphisi® therefore an invariant of
orderk + 1 of the structure, and it is that invariant that \illémin and S. Sternberg
considered in the cited paper.

If the infinitesimal structur&is of typep — 1 then we have:

0 - E, 0113 Ept - 0.

Upon identifyingEp-1 with Ep,, the morphism:
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T Ep—l A Ep—l e Ep—l

defines a Lie algebra structure on each of the fibersEpf . The preceding
considerations show th&,-1, when endowed with that Lie algebra structure defined on
each of its fibers, is a bundle of Lie algebras tisatssociated with the holonomic
prolongation Lie groupoi®, . One may prove that this Lie algebra structure ifingt

but the Lie algebra structure ©f% , which is the space of germsxadf the sheaf oR-Lie
algebra.
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