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 § 1. – Before we begin the task of setting down what we understand the principle of least work 

done by lost forces to mean and deriving the equations of motion for a system of material points 

from it, we would like to prove a theorem from pure analysis. 

 Let: 

 

(1)      X x + Y y + Z z + … 

 

be a function that is homogeneous and linear in the infinitely small quantities x, y, z, …, where 

X, Y, Z, … are functions of x, y, z, …  In addition, let: 

 

(2)    A x + B y + C z + …, A1 x + B1 y + C1 z + …, 

 

and 

 

(3)    U x + V y + W z + …, U1 x + V1 y + W1 z + … 

 

be given functions of x, y, z, …, in which the coefficients of x, y, z, … are functions of x, 

y, z, … . 

 
 (†) Translator: The table and figure were not available to me at the time of translation. 
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 We would like to see what conditions the coefficients X, Y, Z, … of the functions (1) and the 

coefficients A, B, …, A1, B1, …, U, V, …, U1, V1, … of the functions (2) and (3) must fulfill in 

order for the function (1) to not assume any positive values for those infinitely small x, y, z, … 

that make the functions (2) positive or equal to zero and the function (3) equal to zero. 

 If we assume that the number of functions (2) and (3) is smaller than that of the variables x, y, 

z, … then we shall add just as many arbitrary homogeneous linear functions  ,  1, … of the 

x, y, z, … as it takes to make the number of functions (2) and (3), along with the arbitrary  , 

 1, …, equal to the number of infinitely small x, y, z, … 

 Since the functions  ,  1, … are arbitrary and different from (2) and (3), they can be either 

positive, negative, or zero for those values of x, y, z, … that make the functions (2) positive or 

equal to zero, and the functions (3) equal to zero. 

 No matter what the coefficients of the functions (1), (2), and (3) might also be, we can always 

set: 

 X x + Y y + Z z + … +   (A  x + B   y + C  z + …) 

  + 1 (A1 x + B1 y + C1 z + …) + … 

(4)  +   (U  x + V  y + W  z + …) 

  + 1 (U1 x + V1 y + W1 z + …) + … 

  +    + 1  1 + … = 0 

 

for all arbitrary values of x, y, z, …, in which we understand , 1, …, , 1, …, , 1, … to 

mean undetermined quantities.  In fact, since x, y, z, … are always completely arbitrary and , 

1, …, , 1, …, , 1, … remain undetermined, we will have to set the coefficients that enter into 

equation (4) next to the latter equal to zero.  In that way, one will get just as many equations as 

quantities , 1, …, , 1, …, , 1, …, and from those equations, we can ascertain the values of 

, 1, …, , 1, …, , 1, … that equation (4) makes possible for all arbitrary x, y, z, … 

 We would now like to present equation (4) in the form: 

 

 X x + Y y + … = −  (A x + B y + …) − 1 (A1 x + B1 y + …) + … 

(5)  −  (U x + V y + …) − 1 (U1 x + V1 y + …) + … 

  −   – 1 1 − … 

 

 In order for the first part of this equation to not assume positive values for any values of the 

finitely small quantities that make the functions (2) positive or zero and the functions (3) equal to 

zero, one must be able to determine the quantities x, y, z, … as being equal to zero.  Otherwise, 

one would be able to choose only those values for the infinitely small x, y, z, … that make the 

functions (2) equal to zero, and the function (1) would be equal to a sum of arbitrary functions , 

1, … that could also prove to be positive, but the latter consequence would contradict the basic 

assumption.  As a result, one must have: 

 

 X x + Y y + … =  −  (A   x + B   y + …) 

(6)   − 1 (A1 x + B1 y + …) + … 
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  −  (U    x + V  y + …) 

  − 1 (U1 x + V1 y + …) + … = 0 

 

for all arbitrary values of x, y, z, …, or what amounts to the same thing: 

 

 

(7)     

 

 

which are the equations into which the expression (6) decomposes.  Furthermore, it is clear that 

the coefficients , 1, …, must be determined to be positive from equations (7), in order to make 

the first part of equation (5) assume no positive values for those values of the infinitely quantities 

that make the functions (2) positive or equal to zero and functions (3) equal zero.  Otherwise, the 

first part of equation (5) would prove to have negative values  if one were to one choose values 

for x, y, z, … that made the function: 

 

A x + B y + C z + … 

 

positive and the other functions (2) and (3) equal to zero. 

 We have then found the following conditions that must be fulfilled in order for the function (1) 

to assume no positive values for those values of x, y, z, … that make the functions (2) positive 

or equal to zero and the functions (3) equal to zero. 

 

 1. Equation (6) must be valid for all arbitrary values of x, y, z, …; i.e., when the function 

(1) is added to the functions (2) and (3), each of which is multiplied by an undetermined factor, 

that sum must be equal to zero for all arbitrary values of x, y, z, … 

 

 2. The factors , 1, … must be positive.  That condition is not only necessary, but also 

sufficient, since the function (1) will assume no positive values when it is fulfilled for all values of 

x, y, z, … that make the functions (2) positive or equal to zero and the functions (3) equal to 

zero. 

 

 Since x, y, z, … are arbitrary, their coefficients in equation (6) must be set equal to zero.  

One will then get just as many equations (7) from that as there are infinitesimals x, y, z, ...  If 

one eliminates the undetermined factors , 1, … , 1, … from them then one will get the 

expressions that represent the stated mutual dependency of the coefficients of the functions (1), 

(2), and (3) upon each other. 

 One must combine the equations that are obtained in that way with the inequalities that should 

express the idea that the factors that are ascertained from equations (7) must always remain 

positive, no matter what numerical values they might also assume. 

 

 

1 1 1 1
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 § 2. – We shall now go on to the explanation of what we understand the principle of least work 

done by lost forces to mean and the derivation of the equations of motion for a system of material 

points from it.  In order to be able to ascertain the motion of a system of material points, one must 

first determine the latter; i.e., one must show what displacements are possible for the system 

considered.  The forces that act upon the material points must then be given.  It is known that a 

system of material points is determined analytically by means of the following conditions: 

Displacements will be possible that make certain linear functions of the displacements equal to 

zero or equal to zero and positive.  In the latter case, the aforementioned functions will change 

signs only when one goes from possible displacements to impossible ones.  The system whose 

motion is to be ascertained consists of n material points whose masses are m1, m2, …, mi , …, mn , 

and whose coordinates at the end of time t are: 

 

(x1, y1, z1),   (x2, y2, z2), …, (xi , yi , zi), …, (xn , yn , zn) . 

 

 Let those displacements of the system: 

 

(x1, y1, z1),   (x2, y2, z2), …, (xi , yi , zi), …, (xn , yn , zn) 

 

be possible that make the linear functions of them: 

 

 

 

 

(8)     

 

 

 

 

positive or equal to zero, and make the functions: 

 

 

 

 

(9)     

 

 

 

 

equal to zero.  In the cited expression, xi , yi , zi mean the coordinates of a point mi of the system, 

and the i are assigned all whole number values from 1 to n. 

 We further assume that forces F1 , F2 , …, Fi , …, Fn act upon the material points of the system 

that is determined by means of the conditions on the possible displacements (8) and (9): 
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(X1, Y1, Z1),   (X2, Y2, Z2), …, (Xi , Yi , Zi), …, (Xn , Yn , Zn) . 

 

If one knows the conditions on the possible displacements of a system and the forces that act upon 

its material points then one will find the conditions (equations) on an actual displacement of the 

system during an infinitely small time interval t, and in that way, ascertain the motion of the 

system.  We would like to say that it is characteristic of a differential that it represents those 

changes in the coordinates that take place as a result of actual displacements of the material point. 

 Since the actual displacements: 

 

(x1, y1, z1),   (x2, y2, z2), …, (xi , yi , zi), …, (xn , yn , zn) 

 

of the material points of a system will also belong to its possible displacements then, they must 

make the functions (8) and (9) equal to zero in the case where the constraints to which those 

functions refer actual exist as such.  The constraints to which the functions (8) refer exclude one 

part of space for the masses that move in it and leave them free to move in the other part.  For the 

former part of space, the functions (8) will be negative, while they will be positive for the latter.  

The constraint only comes into effect when it obstructs the transition of a material point from one 

part of space to the other.  As a result, the actual displacements of the system will proceed to the 

boundary that separates the two spaces from each other, since otherwise the displacements would 

be independent of the constraints.  Now, as far as the functions (9) are concerned, it is clear that 

the actual displacements that are possible in them are the ones that make the functions (9) equal to 

zero.  We conclude from this that an actual displacement that makes the functions (8) and (9) equal 

to zero can be determined by means of the following equations: 
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 § 3. – Since the number of equations (10) and (11) is always smaller than the number of 

coordinates that determine the position of the material points of a system, the actual displacements 

must be determined by some other conditions. 

 Let Oi be the position of a material point of the system at the end of time t, let 
i iO A  represent 

the direction of the velocity vi that the point mi has at the end of time t .  
i iO A  will then likewise 

represent the displacement that the point mi would have as a result of the velocity that it has 

acquired during the infinitely small time interval t . 

 Let 
i iO B  be the displacement that the point mi would experience during the time t under the 

action of the force Fi if it did not acquire any velocity and is entirely free.  The diagonal line 
i iO C  

of the parallelogram that is constructed from 
i iO A  and 

i iO B  would represent the displacement of 

the material point mi in the event that the latter were free at time t and moved with the previously 

acquired velocity vi under the action of the force Fi .  However, since the point in question is not 

free, it cannot displace along 
i iO C  and complete an actual displacement 

i iO E .  We would like to 

decompose the force Fi that acts along the direction 
i iAC  into two others that act along the 

directions 
i iA E  and

i iE C , respectively, and denote them by Ji and Pi , resp.  The first of those 

forces will produce a displacement Ai Ei that has the actual displacement of the material point as a 

consequence when it is coupled with the displacement Oi Ai that takes place as a result of the 

acquired velocity as if that point moved freely.  If one carries out that decomposition for all points 

of the system then one will see that the forces J1 , J2 , …, Ji , …, Jn will produce actual 

displacements as if each of the points were free. 

 As far as the forces F1 , F2 , …, Fi , …, Fn are concerned, they cannot seek to generate a 

displacement that will have a possible displacement as a consequence when it is coupled with an 

actual one.  The latter condition serves to exhibit the missing equations in the actual displacements.  

However, we would first like to focus our attention more upon those displacements that do give 

possible displacements when they are coupled with the actual ones.  Let: 

 

(12) (x1 , y1 , z1),      (x2 , y2 , z2),      …, (xi , yi , zi),      …, (xn , yn , zn) 

 

be an arbitrary displacement of a system.  If it is coupled with the actual displacement then that 

will yield the displacements: 

 

(x1 + x1 , y1 + y1 , z1 + z1),      (x2 + x2 , y2 + y2 , z2 + z2), 

(13)    …, (xi + xi , yi + yi , zi + zi), 

     …, (xn + xn , yn + yn , zn + zn) . 

 

If the displacement (12), in conjunction with the actual one, has a possible displacement as a 

consequence then xi + xi , yi + yi , zi + zi must make the functions: 
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positive or equal to zero when they are substituted in the functions (8) and (9) in place of xi , yi, 

zi , and make the functions: 

 

 

 

(15)    

 

 

 

 

equal to zero. 

 However, as a result of equations (10) and (11), the expressions (14) and (15) will go to the 

following homogeneous linear functions: 

 

(16)   

 

and 

 

(17)  

 

 

It is clear from this that all displacements (12) that have possible displacements as a consequence 

in conjunction with actual ones will make the homogeneous linear functions (16) positive and 

equal to and the functions (17) equal to zero.  One also sees that the expressions (16) and (17) 

represent changes in the functions L, L, …, M, M, … that are independent of the changes in 

time. 

 Let 
i iE D  be the aforementioned displacement si of a material point mi and let xi , yi , zi 

be its projections onto the coordinates.  From the triangle Di Ei Ci , one gets: 
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in which ( , )i i i iD E E C  denotes the angle between the displacement and the direction of the lost 

force Pi .  If one multiplies those equations by mi and sums over all points of the system then one 

will get: 

 

(18) 

 

In the second term on the right-hand side of the last equation, 
i iE C  denotes the displacement that 

the lost force Pi would generate for the free motion of the material point in question. 

 However, that displacement will be determined by the equation: 

 

(19)      

 

If 
i iE C  were replaced with its value then one would get: 

 

 

 

However, since the lost forces P1, P2, …, Pi , …, Pn cannot generate displacements that would have 

possible displacements as a consequence in conjunction with the actual ones, and since forces in 

general have no ambition to generate displacements relative to which the total moment can assume 

no positive values, we conclude that the total moment of the lost force: 

 

 

 

and as a result, the second term on the right-hand side of equations (18): 

 

 

 

cannot assume positive values and the right-hand sides of the aforementioned equations must 

always remain positive.  In that way, one will come to the conclusion that during the motion of a 

system of material points, one will have: 

 

 

 

That inequality includes the so-called Gaussian principle of least constraint, although Gauss only 

proved it in the case where the conditions on the system were independent of time.  As Gauss said: 

 

 “The new principle is the following one: The motion of a system of material 

points that are coupled with each other in some way, and whose motions are, at the 

same time, constrained by whatever sort of external restrictions, will take place at 

each moment with the greatest possible agreement with the free motion or under 

the smallest possible constraint, when one considers a measure of the constraint 
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that the entire system suffers at each time point to be the sum of the products of the 

square of the deviation of each point from its free motion with its mass.” 

 

  (Gauss, Werke, Bd. V, pp. 26) 

 

 However, one can consider the inequality (20) from a different angle that expresses its 

mechanical meaning more precisely.  Namely, the expression: 

 

 

 

which assumes its smallest value for the actual displacements, can be transformed into the form: 

 

 

 

using equation (19), or also into: 

 

 

 

when one sets Ei Ci = pi .  However, since Pi denotes the lost force and pi  denotes the displacement 

that the force would impart to the material point under free motion, Pi pi will represent the work 

that the lost forces would do under free motion.  The meaning of the expression (20) is clear from 

that: The work that is done by lost forces under the motion of a system of material points will have 

its smallest value for free motion.  The infinitely small increase in that work done will remain 

positive for any displacement that has a possible displacement as a consequence when it is 

combined with the actual one. 

 One then sees that Gauss’s principle of least constraint can be called the principle of least 

work done by lost forces, which will bring one into much closer agreement with the present 

viewpoint on natural phenomena. 

 

 

 § 4. – We would now like to derive the equations of the actual displacements from the principle 

of least work done by lost forces. 

 Let   (Pi pi) denote the change in the lost work that would be produced by the displacements 

that generate possible displacements when combined with the actual ones.  From the principle of 

least work done by lost forces: 

 

(21)   (Pi pi) 

 

will always be positive then.  If one replaces Pi with its magnitude in equation (19) then one will 

get: 

 

 

 

2

,i i im E C

2

2
i i i

t
P E C


 

2

2
i i

t
P p




2 2

2 2

2 2
( ) .i i i i i iP p m p m p

t t
 =  =  

 
  
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The coordinates xi , yi , zi determine the position of the material point mi at the time t .  One lets ai, 

bi , ci denote the coordinates of mi at time t + t in the case where the material point in question 

moves entirely freely during the time interval t, and lets i , i , i denote the coordinates of that 

point for the case of the actual displacement of it that takes place.  One will then have: 

 
2

ip  = (i – ai)
2 + (i – bi)

2 + (i – ci)
2 . 

 

One lets i , i , i denote the projections onto the coordinate axes of Di Ei ; i.e., the changes 

that the coordinates i , i , i experience under those infinitely small displacements of the system 

that have a possible displacement as a consequence when they are combined with the actual one.  

If one draws a line Oi Gi through the point Oi whose coordinates are xi , yi , zi that is parallel equal 

to Ei Di then one will see that: 

 

i = xi , i = yi , i = zi , 

 
2

ip = 2{(i − ai)  xi + (i − bi)  yi + (i − ci)  zi }, 

 

(22)    (Pi pi) = 
2

4

t
 mi{(i − ai)  xi + (i − bi)  yi + (i − ci)  zi}. 

 

From the principle of the least work done by lost forces, the right-hand side of the equation above 

must remain positive for any displacement that has a possible displacement as a consequence when 

it is combined with the actual one, or what amounts to the same thing, the function: 

 

(23)   
2

2

t
 mi{(ai − i)  xi + (bi − i)  yi + (ci − i)  zi}, 

 

which is homogeneous and linear in the displacements, must not assume any positive values for 

those displacements that make the functions (16) positive and equal to zero and the functions (17) 

equal to zero. 

 In order to fulfill those conditions, it will suffice that when the function (23) is added to the 

functions (16) and (17), each of which is multiplied by a suitable factor, that sum will remain equal 

to zero for all arbitrary displacements of the system: 

 

2

2

t
 mi{(ai − i)  xi + (bi − i)  yi + (ci − i)  zi} 

 
 

 

 

i i i

i i i

L L L
x y z

x y z


     
+  +  +  + 

   


0,i i i

i i i

M M M
x y z

x y z


     
+  +  +  + = 

   

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where , , …, , , … are the aforementioned factors, of which , , … always remain 

positive.  Since xi , yi , zi are arbitrary, the equation above will decompose into the following 

one: 

 

 

 

(24)  

 

 

 

 

in which i is set to all whole numbers from 1 to n . From the theory of the motion of a material 

point, one has: 

 ai = xi + vi cos (vi , x)  t + 
2

2

i

i

X t

m


 , 

 bi = yi + vi cos (vi , y)  t + 
2

2

i

i

Y t

m


 , 

 ci = zi + vi cos (vi , z)  t  +
2

2

i

i

Z t

m


 . 

 

 The actual position of the material point mi whose coordinates at time t are xi , yi , zi will be 

determined by the equations: 

 

 

 

 

 

 

 

 

at time t + t.  If one introduces the expression for ai , bi , ci , i , i , i thus obtained into equations 

(24) and remarks that: 

 

vi cos (vi , x) = ix

t




, vi cos (vi , y) = iy

t




, vi cos (vi , z) = iz

t




 

 

then one will get the equations of motion:  

 

 

 

 

2

2

2

2
( ) 0,

2
( ) 0,

2
( ) 0,

i
i i

i i

i
i i

i i

i
i i

i i

m L M
a

t x x

m L M
b

t y y

m L M
c

t z z

  

  

  

   
 − + + + + =

  
   

 − + + + + =
  

   
 − + + + + =

  

2 2

2
,

2

i i
i i

x x t
x

t t


  
= + + 

 

2 2

2 2

i i
i i

z z t
z

t t


  
= + + 

 

2 2

2
,

2

i i
i i

y y t
y

t t


  
= + + 

 
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(25)   

 

 

 

 

whose number is known to amount to 3n.  Those equations, in conjunction with the ones for the 

actual displacements (10) and (11), determine the 3n coordinates of the of the material point and 

the factors , , …, , , ... 

 

 

 § 5. – From what was said above, it is easy to show the connection that exists between the 

principle of least work done by lost forces and the principle of virtual displacements, in 

conjunction with d’Alembert’s principle. 

 If one couples the principle of virtual displacements with that of d’Alembert and extends it to 

the case in which the conditions of a system depend upon time then it is known that the principle 

expresses the idea that the lost forces cannot generate displacements of the system that have a 

possible one as a result of being combined with the actual one.  However, in order for that to be 

true, it is necessary that the total moment of the lost forces: 

 

(26)      Pi  cos (Pi , si)  si 

 

cannot assume a positive value for the displacement s1 , s2 , …, si , …, sn that might be 

possible when combined with the actual one.  Now, if one decomposes the lost force Pi into two 

others: viz., the actual force Fi and the force Ji = 
2

2

i
i

z
m

t




 that generates the actual motion of the 

material point and is taken with the opposite sign: 

 Pi  cos (Pi , x) = Xi −
2

2

i
i

x
m

t




, 

 Pi  cos (Pi , y) = Yi −
2

2

i
i

y
m

t




, 

 Pi  cos (Pi , z) = Zi −
2

2

i
i

z
m

t




, 

xi = si  cos (si , x),  yi = si  cos (si , y),  zi = si  cos (si , z), 

 

cos (Pi , si) = cos (Pi , x)  cos (si , x) + cos (Pi , y)  cos (si , y) + cos (Pi , z)  cos (si , z), 

 

then the total moment of the lost forces (26) will assume the form: 

 

2

2

2

2

2

2

0,

0,

0,

i
i i

i i

i
i i

i i

i
i i

i i

x L M
X m

t x x

y L M
Y m

t y y

z L M
Z m

t z z

 

 

 

    
 − +  + + + =

  
    

 − +  + + + =
  

    
  − +  + + + =

  



Rachmaninoff – The principle of least work done by lost forces.  13 
 

2 2 2

2 2 2

i i i
i i i i i i i i i

x y z
X m x Y m y Z m z

t t t

         
−  + −  + −       

         
 . 

 

That function, which is linear in the displacements, cannot assume any positive value for those 

displacements that are possible when combined with the actual one; i.e., ones that make the 

functions (16) positive and equal to zero and the functions (17) equal to zero.  However, from the 

lemma that was discussed at the beginning, it is necessary and sufficient that the equation: 

 

2 2 2

2 2 2

i i i
i i i i i i i i i

x y z
X m x Y m y Z m z

t t t

         
−  + −  + −       

         
  

  + i i i

i i i

L L L
x y z

x y z


     
  +  +  

   
 + … 

  + i i i

i i i

M M M
x y z

x y z


     
  +  +  

   
 + … = 0 

 

should be valid for all arbitrary displacements of the system, and therefore , , … must be 

positive.  The equation above decomposed into equations (25).  If one introduces the values of ai, 

bi, ci, i, i, i into equation (22) then one will get: 

 

− ( )i iP p = 
2 2 2

2 2 2
2 i i i

i i i i i i i i i

x y z
X m x Y m y Z m z

t t t

         
−  + −  + −       

         
 , 

or 

− ( )i iP p = 2  Pi  si  cos (Pi , si) . 

 

That equation expresses the connection between the principle of virtual velocities, in conjunction 

with d’Alembert’s principle and that of the least work done by lost forces.  From the latter 

principle, the increase in the lost work is always positive, while the principle of virtual 

displacements, in conjunction with d’Alembert’s, expresses the idea that the total moment of the 

lost forces: 

 Pi  si  cos (Pi , si) 

 

does not assume any positive value relative to those displacements, as above. 

 

 

 § 6. – We shall now move on to the principle of least action, about which an English 

mathematician expressed the following opinion: The Principle of Least Action, in the form 

commonly given, is a meaningless proposition. 

 One lets T denote the vis viva of a system of material points: 
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T = 
2 2 2

1
2 2

i i i
i

x y z
m

t

  +  + 
 

 
  

and sets: 

 (Xi xi + Yi yi + Zi zi) = U, 

 

in which U can generally be a function of time, since  refers to the coordinate changes that are 

independent of time.  If one changes T by means of the symbol  then one will get, in succession: 

 

 T  = 
2 2 2

i i i
i i i i

x y z
m x y z

t t t

   
  +   +   

   
  

 = 
2 2 2

i i i
i i i i

x y z
m x y z

t t t

   
 +  +  

   
  

 

 =  i i i
i i i i

x y z
m x y z

t t t t

    
 +  +  

    
  

 −
2 2 2

2 2 2

i i i
i i i i

x y z
m x y z

t t t

   
 +  +  

   
 , 

 

from which it will follow that: 

 
2 2 2

2 2 2

i i i
i i i i

x y z
m x y z

t t t

   
 +  +  

   
  

(28) 

= i i i
i i i i

x y z
m x y z

t t t t

    
 +  +  

    
  − T . 

 

As a result of this, equation (27) will assume the form: 

 

− ( )i iP p = 2 i i i
i i i i

x y z
U T m x y z

t t t t

      
 +  −  +  +   

     
 . 

 

If one multiplies that equation, which is always considered to be positive, by t and integrates both 

sides of it between the limits t = t0 and t = t1, which correspond to two well-defined positions of 

the system in space, such that one will have: 

 

xi = 0, yi = 0, zi = 0 

 

at the limits, then one will get: 
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− 
1

0

( )

t

i i

t

P p t   = 
1

0

2 ( )

t

t

U T t +   . 

 

However, since  refers to a time-independent change, one can put the equation above into the 

form: 

− 
1

0

( )

t

i i

t

P p t   = 
1

0

2 ( )

t

t

U T t  +  . 

 

That equation expresses the connection between the so-called principle of least action and that of 

least lost work and explains the dynamical meaning of the expression in the right-hand side of the 

equation above.  Since  (Pi pi) cannot assume positive value for the displacement that is possible 

when it is combined with the actual one, we will see that: 

 
1

0

( )

t

t

U T t +   

 

cannot assume positive values for that displacement.  In that sense, one can call the principle of 

least action, more precisely, the principle of greatest action, although neither of the two statements 

can be regarded to be strictly rigorous, and that can cause some confusion as to their meaning. 

 If one considers the expression: 
1

0

( )

t

t

U T t+   

 

by itself, which will experience negative increments for a displacement that is possible in 

conjunction with the actual one, then one will be in a position to derive the equations of motion of 

a system of material points regularly even in the case where the conditions depend upon time, and 

are expressed by means of equations and inequalities.  In fact, from what was said above: 

 
1

0

( )

t

t

U T t +    or 
1

0

( )

t

t

U T t +    

 

cannot assume positive values for the displacements that make the functions (16) positive and 

equal to zero and the functions (17) equal to zero.  If one introduces the value of U into the 

integral above, namely: 

( )i i i i i iX x Y y Z z +  +  , 

 

and the expression for T in equation (28) then one will get: 
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(29)  
1

0

2 2 2

2 2 2

t

i i i
i i i i i i i i i

t

x y z
X m x Y m y Z m z t

t t t

          
−  + −  + −         

          
 , 

since the sum: 

i i i
i i i i

x y z
m x y z

t t t

   
 +  +  

   
  

 

will be zero at the limits of the interval.  In order for the expression (29) to not assume positive 

values for the displacements that make the functions (16) positive or equal to zero and the functions 

(17) equal to zero, it is necessary and sufficient that the equation: 

 

1

0

1 2 2 2

2 2 2

t

i i i
i i i i i i i i i

t

x y z
X m x Y m y Z m z t

t t t

=          
−  + −  + −         

         
  

  + i i i

i i i

L L L
x y z

x y z


     
  +  +  
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 + … 

  + 
i i i

i i i

M M M
x y z

x y z


      
  +  +  +  

     
 + … = 0 

 

should be true for all arbitrary displacements, in which , , …, , , … are undetermined 

factors, the first of which , , … always remain positive.  Due to the arbitrariness of xi , yi, zi 

the equation above will decompose into 3n equations (25).  If the expression (29) could assume 

only positive values for the displacements that make the functions (16) positive and equal to zero 

and the functions (17) equal to zero then we would reach the false conclusion that the factors , 

, … would have to be negative. 

 

__________ 

 

 


