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 The subject of the following lines is defined by the transformation of the expression for the 

constraint on a material system from its analytical representation by means of rectangular 

coordinates into one that uses general coordinates.  That problem was solved for the first time by 

Lipschitz (“Bemerkungen zu dem Princip des kleinsten Zwanges,” Borch. Journ., Bd. 82, pp. 316) 

and in recent times in a very elegant way by Wassmuth (Sitzber. kais. Akad. Wiss. Wien, Bd. 

CIV, Abt. II.a).  Nonetheless, the specification of a method of proof that deviates from the path to 

solution that was employed in cited papers would not be lacking in theoretical interest. 

 Let a system of n mass-points be given.  The position of each individual point might be 

determined by specifying its three coordinates relative to a rectangular coordinate system, where 

the th mass-point will be denoted x3−2 , x3−1 , x3  when one fixes a definite sequence of axes.  In 

a corresponding way, the components of the resultant of all forces that act upon the mass-point 

relative to the three coordinates axes will then be represented by the symbols X3−2 , X3−1 , X3  

while the equivalent symbols m3−2 = m3−1 = m3  will be chosen for the mass of the point in 

question in order to achieve unity in our notation.  The system of mass-points considered might be 

assumed to be such that its connections can be described by specifying (3n – k) equations: 

 

(1)     fi (x1, x2, …, x3n) = 0  (i = 1, 2, …, 3n – k) 

 

between the 3n coordinates of the system points analytically, in which it will be assumed that these 

equations do not contain time explicitly, for the sake of greater simplicity. 

 Under those assumptions, one can also determine the position of the individual system points 

by specifying k independent variables p1, p2, …, pk that are connected with the rectangular 

coordinates by 3n equations: 

 

(2)     x =  (p1, p2, …, pk)  ( = 1, 2, …, 3n) . 

 

 The state of the system in question at a particular moment in time can be regarded as being 

given when one specifies the position and velocity of the individual mass-points, such that the 

values of the coordinates x and their first derivatives x  can be regarded as having known values 
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for the moment in time considered.  The accelerations of the system points are restricted from the 

outset by the constraint on the system in such a way that they cannot assume any arbitrary value 

b , but only ones for which the equations: 
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are satisfied.  The right-hand side of those equations can be regarded as constant, since the given 

values of those quantities at the moment in time considered can be substituted in them for the 

coordinates and their first derivatives with respect to time.  With the chosen system connections 

between the possible accelerations b , the accelerations that actually occur for a given force 

configuration can be selected using Gauss’s principle using the condition that the function: 
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must be a minimum for all possible values of the accelerations that might actually occur. 

 For the purpose of representing that minimum condition with the use of general coordinates, it 

is important to first derive a lemma.  If one denotes the accelerations that actually occur by g then 

one can decompose any acceleration b into a sum: 

 

(3)      b = g + z . 

 

Physically, that corresponds to the decomposition of any possible motion of the system for a well-

defined initial position and a given velocity configuration into the actually-occurring motion plus 

a possible motion for the same initial positions of all points when they are all at rest, under the 

assumptions that were made.  One sees that this argument corresponds to the fact that the 

supplementary acceleration z cannot be chosen arbitrarily.  Moreover, they must satisfy the 

conditions (I), in which all of the initial velocities are set equal to zero, such that the accelerations 

z are chosen to correspond with the (3n – k) equations: 

 

(II)     
3
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 If one substitutes the decomposition of the possible accelerations b that was encountered 

above into the expression for the constraint then one will get it in the form: 
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 The required condition that this function Z should be a minimum for all possible choices of the 

accelerations for the choice b = g can also be replaced with the condition that the expression: 
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for all admissible [i.e., compatible with the conditions (II)] choices of the supplementary 

accelerations z .  That condition can be expressed in yet another form.  Namely, if z
  means any 

system of supplementary accelerations z that are compatible with the equations (II) then z   will 

also be such a thing, in which the numerical factor  can be chosen arbitrarily.  Hence, the 

inequality: 
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must then be fulfilled for every positive value of  .  However, that is possible only when the sum: 
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is either zero or positive. 

 Nevertheless, since any choice z
  of the supplementary accelerations can also be associated 

with the choice of z = − z
 , for which the sum considered can change sign under the assumption 

that it is positive, the expression S can only be zero. 

 The condition that is contained in Gauss’s principle that the constraint on the system should be 

a minimum for the motion that actually occurs can then be replaced with the condition that the 

sum will be: 
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and in fact for all choices of the numbers z that correspond to the conditions (II). 

 It then seems that the d’Alembert’s principle is the expression for not only the sufficient, but 

also necessary, condition for the constraint on the system will be a minimum for the actually-

occurring motion compared to all possible motions.  However, since d’Alembert’s principle can 

also be regarded as a combination of Lagrange’s differential equations of order 1 or 2, it is also 

permissible to regard the fulfillment of the latter equations as the necessary and sufficient condition 

for the function Z to have the minimum property that is required by the principle of least constraint. 



Radaković – The analytical representation of the constraint on a material system. 4 
 

 With the use of equation (III) that was just developed, the expression for the constraint on the 

system will go over to the form: 

Z = 
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The problem of the transformation of that expression into general coordinates will then further 

reduce to the transformation of the sum: 

Z = 
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which exhibits the actually-occurring minimum value of the constraint, necessarily plays the role 

of a constant in the search for the minimum of the function Z . 

 The transformation of the sum Z  can be performed in the following form.  The  arbitrarily-

chosen numbers  ( = 1, 2, …, k) might represent arbitrary accelerations of the coordinates p .  

Any choice of those numbers  then belongs to a choice of accelerations b , in which the 

reciprocal relationships are given by the 3n equations: 

 

(IV)  b = 
2
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such that all possible choices of the numbers b also seem to be given by all arbitrary choice of the 

numbers  .  Naturally, the quantities p and p  in equations (IV) are to be assigned vales that 

correspond to the initial values x and x .  Now, one can once more decompose the accelerations 

 into sums: 

 

(4)       =  +  , 

 

in which the numbers  mean the accelerations of the general coordinates that correspond to the 

actual motions, while the numbers  are supplementary accelerations of the p that one is 

completely free to choose.  Since that decomposition of the accelerations  once more corresponds 

to the same decomposition of any possible motion of the system into the actually-occurring motion 

plus a possible motion with the same initial position of all points that can be performed when all 

of then are completely at rest, which was the case for the decomposition of the accelerations b 

into the sum g + z , all of the choices of supplementary accelerations z that are compatible with 

the conditions (II) must represent all conceivable choices of the values  that correspond to 
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equations (IV), when one only sets all of the velocities p  equal to zero in those equations.  One 

will then get the 3n equations: 

 

(V)     z = 
1

k
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between the values z and  . 

 It is easy to replace the supplementary accelerations  with other variables.  If L means the vis 

viva of the system, and P means the general force components, then it is known that the theorem 

that the expressions: 

Q = 
d L L

P
dt p p



 
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− − 
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should vanish for the actual motion will follow from equations (III).  The expressions Q contain 

the accelerations in the first power, and indeed: 

 

(VI)    Q = ,

1
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and the F in those equations mean well-defined functions of the coordinates p and their first 

derivatives p , as well as the general force components P , while the factors a are defined by 

the equations: 
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If one replaces the accelerations  in the right-hand sides of equations (VI) with the sums  +  , 

which are equivalent to them, and further observes that the expressions Q must vanish as a result 

of equations (III) when the possible accelerations  are replaced with the ones that actually occur 

then one will get the k linear relations: 

 

  Q = ,

1

k

a  



=

   ( = 1, 2, …, k) 

 

between the expressions Q and the supplementary  , from which one can conclude the relations: 

 

(VII)  = ,

1

1 k

A Q
D

  
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In them, D means the determinant of the k2 elements a , and A means the adjoint of the element 

a .  Equations (V) and (VII) imply the equations: 
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(VIII)   z = 
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which define the relations between the supplementary accelerations z of the rectangular 

coordinates and the expressions Q .  Now, with the help of equations (VIII), one will be in a 

position to exhibit the expression for the function Z with the use of general coordinates.  To that 

end, one merely has to replace the quantities 2z
 in Z with the Q and obtain: 
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 If one observes the defining equations of the quantities a and the relation: 

 

1 1
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which ensues from the property of the determinant that the sum 
, ,
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according to whether  is or is not different from , resp., then one will arrive at the formula: 
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 That will then imply the theorem that the expression for the constraint on a material system 

with the use of general coordinates can be written in the form: 

 

Z = ,

1 1

1 k k

A Q Q
D

   
 = =

 + , 

in which the function: 

 = 

2
3

1

n X
m g

m


 

 =

 
− 

 
  

 

means the value of the constraint for the motion that actually occurs, which plays the role of a 

constant in the search for the minimum value of the function Z .  As one can see from the 

representation of Z in rectangular coordinates itself, its smallest value is zero, and that can happen 

only when all z = 0, or when all Q vanish. 

 

__________ 

 


