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The general idea of the translation and rotation of a solid system 

 

 1. – I intend a solid system to mean an arbitrary assemblage, whether continuous or 

discontinuous, of points that are invariably linked with each other in such a way that when three 

of those points that are not in a straight line are given, along with their distances to all other points 

of the system, the position of that system will be invariably determined for each change in position 

of the triangle that is formed by those three points. 

 Indeed, that must be the case, since one can construct only one pyramid on a given triangular 

base with given distances that is identical to or superimposable with another given pyramid. Thus, 

when three points of a solid that are not in a straight line are fixed, no displacement of that solid 

will be possible. 

 However, if there are only two given points that must remain immobile in the system then the 

invariability of the distances to any other point from those two would initially imply the immobility 

of all points with which it is in a straight line. That line will become a fixed axis, around which 

any other point can only turn around a circumference that is concentric and normal to the axis, and 

since all points of the system are invariably coupled with one of them and the fixed axis, so the 

rotation of one implies the rotation of all of them, and the amplitude of that rotation is equal for 

all points of the system. 

 Any displacement of a solid around two fixed points will then reduce to a rotation of equal 

amplitude and in the same sense for all points of the system around an axis that is defined those 

two fixed points. 

 This would be the place to remark that any given rotation can be replaced with a rotation in the 

opposite sense with an amplitude that is the complement of the first one in 400o. 

 Different rotations around the same axis can be combined into one rotation that is equal to their 

sum, when one takes care to assign opposite signs to the amplitudes of rotations that are performed 

in opposite senses, while the order of succession of the rotations will remain arbitrary, moreover. 

 If the amplitudes of the rotations are infinitely small then the arcs that are described by the 

points of a solid that are displaced to a finite distance from the axis will agree with their chords, 
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which are variously inclined with respect to each other according to the angles between the radii 

that are drawn from the axis to the points of the system. 

 However, if one supposes that the axis is invariably coupled to the system that one considers 

to be nonetheless infinitely distant then an infinitely-small rotation of an infinitesimal order that is 

reciprocal to that of the distance to the axis of that system will have the effect of making all of its 

points describe finite lines that are equal and parallel in such a manner that the system will be 

subject to only a translation, which is how one then refers to the displacement of a solid that results 

from the equal transport of all points parallel to a given direction. 

 Therefore, any translation of a system can be rigorously considered to be a rotation of an 

infinitely-small amplitude around a fixed axis that is infinitely distant and normal to the direction 

of that translation. 

 One would not be surprised then to ultimately find that all of the properties of translations are 

included in those of rotations, just as the properties of the straight line are included in those of the 

circumference, and we will nonetheless stop there, in particular. 

 However, first we shall complete this general discussion of displacements around fixed axes 

with the following theorem, which will become intuitive by inspecting the figure, and whose 

consequences will help us in what follows. 

 

On the transport of the axis of rotation parallel to itself 

 

 The rotation of a solid system around a fixed axis can be replaced with an equal rotation around 

another axis that is parallel to the first one followed by a translation of that system that is equal 

and parallel to the chord of the arc that is described by a point on the second axis around the first 

one, by virtue of the first rotation, or what amounts to the same thing, except for the sense of the 

translation, which is changed, to the chord of the arc that will be described by a point on the first 

axis around the second one. 

 

 2. – Let us return to displacement by translation. 

 If two positions of the same solid are such that the chords that connect each point of the solid 

in one of those position to its correspondent in the other are equal and parallel then it will be clear 

that in order for the solid to arrive at the second position from the first one, one will only need to 

slide it in some way parallel to itself along one of those chords, whose magnitude and direction 

will be a measure of the magnitude and direction of the translation of that system, and vice versa. 

Nothing would be simpler than the translation of a solid system with the direction and magnitude 

of a given translation. 

 

General law of the composition of successive translations 

 

 If the system is subjected to several consecutive translations that are different in direction, as 

well as extent, then all of those translations can obviously be composed into a single translation 

that is equal and parallel to the line that connects a point in the first position to its correspondent 

in the position that defines the system. It is the line that closes the polygon that is traced by the 

successive translations of that point, whose magnitude and direction depend, as one knows, upon 
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only the magnitudes and directions of the various edges of that polygon, and no matter what their 

order of succession might be, moreover. 

 The projections of that resultant translation onto three rectangular coordinate axes will be 

equal to the sums of the projections of the given translations onto the same axes and will thus 

determine its magnitude and direction by an analytical process that is independent of the graphical 

process of constructing the polygon. 

 That is the law of composition of the successive translations of a solid system by means of 

which one can conversely decompose any given translation into a sequence of translations that 

differ in magnitude and direction and are subject to only the condition that the sum of their 

projections onto three rectangular axes is equal to that of the projections of the given translation 

onto the same axis, or more generally, onto an arbitrary axis. 

 One can call that law of composition the law of the polygon of the translations. 

 

On the displacement of a system around a fixed point 

 

 3. – Two different positions of the same system are given around a point that remains immobile 

under that displacement. One arbitrarily chooses a triangle in that solid whose summit will be the 

fixed point, and one considers the two corresponding positions of that triangle, and in particular, 

the angles that are formed by the corresponding edges of the two triangles that start from the same 

common summit. If one draws two planes through that summit that are normal to the respective 

planes of those angles then they will be separated likewise. It is obvious that the intersection of 

those two planes will enjoy the property that each of its points can be considered to be the common 

summit of two identical or superimposable pyramids that have the two triangles in question as 

their bases in such a manner that the intersection is supposed to be invariably coupled with the 

displaced system, so it will necessarily remain immobile under the supposed displacement. That 

displacement itself will then reduce to a displacement by rotation around a fixed axis that one 

determined the construction that was just explained. 

 In the singular case (which one can always avoid, moreover) in which the two bisecting planes, 

whose intersection serves to determine the axis of rotation, coincide in just one plane, the axis will 

obviously be nothing but the line of intersection of the planes of the two triangles in question. Any 

other line than that one, although it might belong to two bisecting plane that coincide in just one, 

will form symmetric, non-superimposable, trihedral angles with the edges of the triangles 

considered. 

 Therefore, any displacement of a system around a fixed point will amount to a displacement 

along a path of rotation around a fixed axis that passes through that point, or more generally, it can 

be obtained by an equal rotation around a different axis that is parallel to the first one and located 

wherever one desires, provided that the rotation is followed by a displacement that takes the form 

of a parallel translation with an extent that is equal to the chord of the arc that the fixed point will 

describe around that new axis when it becomes mobile with a sense of translation that is opposite 

to that of the chord. 

 That generalization of a displacement around a fixed point is a consequence of the theorem 

that relates to the transport of the axis of rotation parallel to itself (no. 1). 
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On the arbitrary displacement of a solid system in space 

 

 4. – Finally, consider two entirely-arbitrary positions of the same solid and seek to represent 

the mode of displacement that will take the solid from one of those positions to the other in the 

simplest manner. 

 Imagine that one draws lines through an arbitrary point of that solid in its first position that are 

equal and parallel to the ones that join the corresponding points in the second position to those of 

all the other points of the displaced solid. One will have thus constructed an assemblage of points 

that is a solid that is entirely identical to the one in question, but whose intermediate position 

between the two given positions will be derived from the first one by means of a certain rotation 

around a fixed axis that passes through that chosen point in order to refer the displacement of the 

system to it, while in turn, the second position of the solid will be derived from that intermediate 

position by means of a translation whose direction and extent are equal to those of the line that 

joins the chosen point and its correspondent. 

 If one observes, moreover, that by virtue of the theorem that relates to the transport of the 

rotation around a given axis to another axis that is parallel to it then nothing will prevent one from 

supposing that the intermediate position of the solid will result from an equal rotation with the 

same sense around an axis that passes through an arbitrary point of the solid, followed by a 

translation that is equal and parallel to the chord of the arc that is described by a new point that is 

chosen in order to refer it to the displacement of the system around the first axis in in the first 

rotation that was admitted, since that translation, when composed with the one that acts on the 

intermediate solid in the defining position, will reduce to a translation that is equal and parallel to 

the line that joins that new origin to its corresponding points in the defining situation, and finally, 

since there is only one possible axis of rotation for each origin of the displacement. One ultimately 

finds that one has proved the following theorem completely, which is indisputably one of the most 

beautiful in geometry, and which must be considered to be the fundamental basis for the geometric 

laws of motion. 

 

Fundamental theorem 

 

 No matter how a solid has been transported from one place to another, one can always consider 

that displacement to be the result of two consecutive displacements by rotation and translation, 

where the rotation is performed around a fixed axis that is drawn through an arbitrary point of the 

solid in the first position and parallel to a certain direction that is invariably determined by the two 

positions of the solid being considered, as well as the sense and amplitude of the rotation. The 

translation then operates parallel to the line that joins a point on that axis to its correspondent in 

the second position of the system, so the magnitude of that line will be a measure of the translation. 

 The order of those displacements can be inverted: The translation can precede the rotation, but 

it will then be performed around an axis that passes through the point in the second position that 

corresponds to the one in the first position to which the displacement is referred. Furthermore, the 

direction of the axis of rotation, the amplitude, and the sense of rotation are the same for all points 

of the system before or after the translation. 
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 In that succession of displacements, one remarks that the line that joins an arbitrary point of 

the solid in its first position to its correspondent in the second, i.e., the line that is actually traversed 

by that point, will form the third edge of a triangle such that the first one, which varies for each 

point of the system. is normal to the axis of rotation, and the second one, which is constant for all 

points of the system, is a measure of the translation of the system relative to the origin of the 

displacement. 

 The projection of that line onto the axis of rotation is then constant for all points of the solid 

and can be constant only with respect to that same direction of the axis of rotation because that 

projection onto any direction is sum of two projections, namely, that of the chord of the arc of 

rotation and that of the line that is traversed by translation. The first of those projections is 

variables, and the second is constant. Their sum cannot be constant then for any direction other 

than the one that makes the first of those projections zero, namely, the direction of the axis of 

rotation itself. 

 All of the points of a solid system that displaces in an arbitrary manner are then transported 

equally relative to the direction of the axis of rotation. 

 If that constant projection is zero then the displacement will reduce to a rotation without 

translation around a certain axis (which is easy to determine), so the line that is traversed by each 

point in a plane normal to the common direction to all of the axes of rotation will be found to be 

the base of an isosceles triangle that is located in that plane, whose angle at the summit will be 

equal to the amplitude of that rotation, and whose summit will belong to the desired axis. 

 In general, that constant projection is a measure of the absolute translation of the system, which 

is minimum for all of the ones that are relative to the various origins of the displacement. It is the 

translation itself of the points of the system that will be transported parallel to the axis of rotation. 

In order for those points considered to be origins of the displacement, the axis of rotation, which 

we call the central axis of the displacement in order to distinguish it, is at the same time the axis 

of translation, in such a manner that the displacement of the system is referred to that central axis. 

It reduces to turning around that axis while sliding parallel to its direction in such a way that the 

motion can be compared to that of a screw in its nut, which is the simplest expression for the 

fundamental theorem in which the two displacements of rotation and translation are found to be 

performed orthogonal to each other (*). 

 

 

 5. – However, one must find that central axis, i.e., one must determine the points of the system 

whose defining displacement reduces to a translation parallel to the direction of the axis of rotation. 

Now that will happen by the following construction: 

 Draw a perpendicular to the axis of rotation that is equal in extent to the projection of the 

translation onto that perpendicular through an arbitrary point of the solid and in the plane of the 

two axes of rotation and translation relative to the point that is considered to be the origin of the 

displacement. Construct an isosceles triangle whose summit angle is equal to the amplitude of the 

rotation of the system whose base is along that perpendicular and normal to the plane of the two 

 
 (*) I believe that beautiful theorem in geometry belong to Chasles, who published it in the Bulletin universel des 

Sciences 14 (1830). 
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axes and whose summit belong to the central axis if the isosceles triangle is placed in the sense of 

rotation relative to the plane of the two axes, moreover. 

 Conversely, if one considers the displacement of the origin of the two given relative axes with 

respect to the axis of rotation, which is drawn through that summit, then one will see that by virtue 

of the rotation around the central axis, the point will first arrive at the extremity of the base of the 

isosceles triangle that was indicated above, and that base measures the displacement of the point 

perpendicular to the central axis of rotation, and then by virtue of the translation parallel to that 

same axis, it will finally arrive at its defining situation at the extremity of the relative axis of the 

supposed translation. 

 That construction will indeed show that the entire displacement reduces to a simple rotation 

around the central axis when the axis of relative translation is normal to the axis of rotation, so the 

summit of the isosceles triangle will return to its first position, by definition. 

 Moreover, whenever the various points of a solid remain in a parallel plane under the 

displacement of the solid, that displacement will reduce to a rotation around a certain fixed axis 

that is normal to those planes. 

 

Displacing a planar figure in its plane 

 

 The displacement of a planar figure in its plane always reduces to a rotation around a fixed 

center in that plane then, which is easy to establish directly. 

 If one considers the quadrilateral that is composed of the line that joins two corresponding 

positions of a point of the solid, the central axis, and the perpendiculars that are based at those two 

positions along that axis then one will find that the line that joins to the midpoint of the first side 

of that quadrilateral to the one that is opposite to it will be perpendicular to those two lines, which 

is a property that gives another construction of the central axis when one is given only two points 

of the system, their correspondents, and the direction of the axis of rotation. 

 One passes a line through the midpoints of each of the lines that join one of the given points to 

its correspondent that is parallel to the given direction of the axis of rotation and a normal to those 

two lines, so the planes that are formed at each midpoint by that normal and the line parallel to the 

axis of rotation will cut along locus of the central axis itself (*). 

 

 

 6. – We must now state the main corollaries that one can deduce from the fundamental theory 

that relate to the particular displacements of the points, lines, and planes in a solid system. 

 

 1. The distances that separate each point of the solid in its first position from its correspondent 

in the second one all project equally onto the direction of the axis of rotation. That common 

projection is a measure of the absolute translation of the system. 

 

 2. Any line that belongs to a displaced system can only turn with respect to its direction 

around the axis of rotation, so a very simple relationship will result between the angle that the line 

 
 (*) That construction was pointed out to me by my friend Lévy. 
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forms with the axis of rotation and the one that it forms with its original position as a result of its 

displacement and the amplitude of the rotation, namely: 

 

 The sine of one-half the angular displacement of any line that belongs to a displaced solid 

system is equal to the sine of one-half the rotation of that system, multiplied by the sine of the angle 

between that line and the axis of rotation. 

 

 That proposition, which will become clear when one inspects the figure, serves to establish, in 

the most elementary manner, one of the most remarkable properties of the motion of the Earth, 

which is the almost-absolute invariability of the poles of the globe, since the angular motion of 

the terrestrial axis is infinitely less than that of the rotation of the Earth. 

 

 3. Any line parallel to the axis of rotation is transported parallel to itself, while the angular 

displacement of any line normal to that axis is equal to the amplitude of that rotation. 

 

 4. Any plane figure that is invariably linked with the displaced system and whose plane is 

normal to the axis of rotation is then transported in a plane parallel to the first one to a distance 

that is equal to the absolute translation of the system. 

 

 Any plane figure that is parallel to the axis is, on the contrary, transported in a plane that is 

inclined with respect to its original position through an angle that is equal to the amplitude of the 

rotation. 

 

 5. The midpoint of the line that joins an arbitrary point of the system to its correspondent is 

the point on that line that is closest to the central axis of the displacement. 

 

 6. The midpoints of all lines that join all points of a plane figure to their correspondents after 

an arbitrary displacement of that figure are in the same plane as the midpoints of all the lines that 

join any point that is external to that plane figure to its symmetric correspondent. 

 

 That plane makes an equal angle with the planes of the two plane figures, as well as with the 

corresponding lines in the two figures, whether in their plane or outside of it, but symmetrically 

inclined. 

 

 7. Now that we have presented the fundamental geometric law for the passage of a solid from 

a given position to another likewise-given one in an arbitrary manner, we must look for the law of 

successive composition of those displacements by means of which if we are given the elements of 

those successive displacements then we can construct or calculate the element of the defining 

position of the solid, the position of its defining central axis, the amplitude of the rotation, and the 

length of the translation. 
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 We have already discussed the law of composition of translation, so we shall give that of 

rotations around different fixed axes, and finally that of arbitrary displacements that each result 

from a combined translation and a rotation. 

 We deduce an important transformation of the fundamental theorem from that law of 

composition of rotations around different axes, namely: 

 

 Any displacement of a solid system can be represented by a succession of two rotations of that 

system around two fixed, non-concurrent axes in an infinitude of way. The product of the sine of 

one-half its rotation, multiplied by the sine of the angle between those two planes, and the shortest 

distance between them is equal, for all pairs of conjugate axes, to the product of the sine of one-

half the rotation of the system around the central axis of the displacement, multiplied by one-half 

the absolute translation of the system. 

 Otherwise, the volume of the tetrahedron whose opposite edges are situated in an arbitrary 

manner along each of the conjugate axes and whose magnitudes are proportional to the sines of 

one-half the respective rotations will be constant for all pairs of conjugate rotations that are 

suitable for representing a given displacement 

 

 Therefore, any displacement of a solid system will, by definition, reduce to turning around one 

or both fixed axes. 

 In the case where one of those axes is parallel to the central axis, it will result from the law of 

composition of rotations that its conjugate will be situated at infinity, that the rotation that 

corresponds to it will become infinitely small, and that it will be thus transformed into a simple 

rotation, which leads back to the first statement of the fundamental theorem, which is a statement 

that is only a special case of the one that we just gave. 

 

On the composition of successive rotations of a solid around two convergent axes 

 

 8. – We shall now present the law of composition of successive rotation of a solid around 

different axes. We begin by consider only two convergent axes and then seek to determine the 

resultant axis of those two rotations, which is, by definition, the one around which one will find 

that the given solid has turned in order to arrive at its final position from its initial one. 

 That resultant axis must be placed in such a way that when one has accomplished the two 

indicated rotations around convergent axes, it will return to its first position. Therefore, if one 

draws a plane through each of the given axes that makes an angle with those two axes that is equal 

to one-half the rotation relative to that axis, so the intersection of those two planes is the desired 

resultant axis, then by virtue of the first rotation, it will arrive at its symmetric position with respect 

to the plane of the two axes and return to its original position by the second rotation. 

 At the same time, one sees that the angle between those two planes is a measure of one-half 

the composed rotation, since the first axis, which is immobile during the first rotation, is displaced 

only by the second one and is found to describe an angle around the resultant axis (which is 

determined as was just said) that is twice the angle between the two planes. Observe that one-half 

the rotation around each axis can be measured indifferently by the internal or external angle 

between the two planes that go through that axis, while the sense of rotation is all that will change 
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according to whether one adopts one or the other measure, since any rotation that is accomplished 

in one sense around an axis is equivalent to the opposite rotation with an amplitude that is 

complementary to the first one with respect 400o. 

 Depending upon the order of succession of those rotations, it will then happen that the axis that 

is symmetric to the one that was just determined with respect to the plane of the two given axes 

will correspond, as the resultant axis, to the same rotations when they are accomplished in an order 

that is inverse to the one that is supposed around the same axes. Hence, one sees that the value of 

the resultant rotation will not depend upon the order of the rotations, but the position of the 

resultant axis will depend upon it essentially, and that in the composition of rotations of a solid 

system, the order of those rotations cannot be modified without altering the position of the resultant 

axis and the value itself of the resultant rotation if there are more than two axes to be successively 

composed. 

 That is the characteristic difference to be pointed out between the composition of successive 

rotations and that of successive translations. Furthermore, an analogy exists between those two 

types of composition and the properties of the rectilinear triangle and those of the spherical 

triangle, and if one compares the translations that are parallel to the three edges of a rectilinear 

triangle to the sines of the half-rotations that are accomplished around those three edges of a 

trihedral angle then the values of the translations and those of the sines will be likewise 

proportional to the sines of the angles that are opposite to the respective edges in the rectilinear 

triangle and the trihedral angle. 

 

Composition of infinitely-small rotations 

 

 9. – However, those two resultant symmetric axes that correspond to the same rotations in two 

different orders of succession will coincide in the plane of the two axes if the rotations become 

infinitely small, and two important consequences will result: 

 The first one is that the order of succession of infinitely-small rotations around two convergent 

axes, and as a result, around any axis that one desires, will be irrelevant. The second one is that 

the axis and the amplitude of the infinitely-small rotation that is the resultant of the succession of 

two infinitely-small rotations around two convergent axes is determined in the same manner as the 

axis and magnitude of the translation that will result from two successive translations that are 

proportional to the given rotations and parallel to their axes, and since upon moving the axes of 

rotation to infinity, one will transform the infinitely-small rotations into finite translations that are 

perpendicular to those axes and inclined with respect to each other like the axes themselves, so 

one will encompass the full generality of the law of composition of finite rotations, which also 

encompasses the law of composition of translations by the intermediary of infinitely-small 

rotations. 

 

On the composition of rotations around two parallel axes 

 

 10. – All of the points of the system that displace as a result of two consecutive rotations around 

two parallel axes will remain in planes normal to those axes. The displacement will then reduce to 

a simple rotation around a certain axis that is parallel to the first one. Having said that, the method 
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for determining and constructing that axis that was presented for two convergent axes will appy 

likewise to two parallel axes and will give the result that an axis that is parallel to the first one and 

a composed rotation will be equal to the sum or the difference of the given rotations according to 

whether they are performed in the same sense or in opposite senses, resp. 

 

Pairs of parallel rotations 

 

 However, a very remarkable case presents itself here, which is that of two rotations that are 

equal and have opposite sense, so the composed rotation is zero and the resultant axis will be 

situated at infinity, which is a situation in which the displacement will come down to a simple 

translation. Indeed, as a result of two equal, but opposite, rotations around two parallel axes, each 

point of the displaced solid will have traversed, by definition, a line that is constant in magnitude 

and direction for all points of the system. The direction of the line defines an angle with the normal 

to the plane of the two axes that is equal to one-half the supposed rotation around each axis, at the 

same time as it is normal to those two axes. Its magnitude is equal to the product of the distance 

between the two axes with twice the sine of one-half the rotation. 

 The order of succession of the rotations is not irrelevant. The symmetric position of the 

direction of the translation relative to the normal to the plane of the two axes corresponds to a 

change in the order of succession of the rotations. 

 All of that results easily from a comparison of similar triangles, and when the rotations are 

infinitely small, one will once more see that the order of succession is irrelevant, so the translation 

will then operate along the normal to the plane of the two axes. 

 Therefore, any pair of parallel rotations is equivalent to a simple translation, and conversely, 

any translation can be replaced with a pair of that type in an infinitude of ways. 

 Those pairs of parallel rotations, which are then composed and decomposed according to the 

law of translations in an arbitrary order of succession, can occupy all positions in space that 

correspond to the same translation in magnitude and direction. 

 Those compositions and decompositions are obtained by replacing the pairs with the 

translations that they represent. 

 One thus finds the generalization to pairs of finite rotations of the law of composition that 

Poinsot was, I believe, the first to point out for pairs of infinitely-small rotations. 

 

 

 11. – Any displacement of a solid system reduces to a rotation followed by a translation, and 

that translation can always be replaced with a pair of rotations for which one of the axes will 

intersect the given axis of rotation of the system, so the rotations around those two convergent axes 

will compose into just one rotation, and that will give the proof of the transformations of the 

fundamental theory that was asserted above, namely: Any displacement of a solid system can 

always be produced by the succession of two rotations around two non-convergent fixed axes, and 

in an infinitude of ways. 
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On the composition of rotations around an arbitrary number of non-convergent fixed axes 

 

 12. – Finally, one must deal with the composition of rotations around an arbitrary number of 

non-convergent fixed axes. Take a point in space in order to refer all of those rotations to it. We 

have seen that any rotation around a fixed axis can be replaced with another equal rotation that is 

accomplished around another axis that is parallel to the first one, followed by a translation that is 

equal to the chord of the arc that is described by a point on the new axis around first one as a result 

of the given first rotations. We have also seen that a translation followed by rotation that is 

accomplished around an axis that passes through the extremity of the axis of translation can, on 

the contrary, be preceded by it of the axis of rotation passes through the origin of the axis of 

translation. Having said that, if one passes axes that are parallel to the given non-convergent axes 

through the point that is chosen so that one can refer all of the rotations to it then the displacement 

of the system will successively take place around those axes by means of the transport of the 

rotations to the convergent axes that are drawn parallel to the first ones and the successive 

exchange of the rotations around axes that pass through the extremities of the lines of translation 

with rotations around axes that pass through their origin. Then the displacement of the system will 

then split into a sequence of rotations that are equal to the given rotations, respectively, which are 

accomplished successively around convergent axes that are parallel to the first ones, followed by 

a series of translations that result from the chords that are successively traversed by the chosen 

point around the given non-convergent axes in the order that is indicated by the rotations. 

 The composition of rotations around convergent axes and that of translations takes place 

according to the methods that were indicated above. By definition, the displacement of the system 

will come down to a rotation and a translation relative to two axes of rotation and translation that 

pass through the point that is chosen to be the origin of the displacement. 

 One sees by that construction that the elements of the defining rotation of the system depend 

upon only the amplitude and direction of the rotations, and not at all on the distribution of the axes 

of rotation, whereas the magnitude and direction of the translation depend upon both the rotations, 

their directions, and the position of the axes of those composed rotations, insofar as the chords that 

are successively described by the point that is chosen in order to refer the displacement of the 

system to it will vary in magnitude and direction according to the successive positions that the 

displaced point will take relative to the various axes of the given rotation. 

 If one finds consecutive axes among the system of those axes that form pairs of parallel 

rotations then it will be obvious that those pairs will not provide any element in the determination 

of the direction and amplitude of the resultant rotation and that they will influence only the 

magnitude and direction of the result translation, so as a result of those pairs of rotations, the point 

where the successive rotations determine that translation will be found to describe the equivalent 

translation for each respective pair when it happens. 

 

Examination of the particular case of two non-convergent fixed axes 

 

 13. – If we consider two non-convergent axes and the shortest distance between them, and we 

take the origin of the displacement to be the extremity of that shortest distance along the first axis 

of rotation, i.e., along the axis of rotation that the first one must perform, while passing an axis 
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parallel to the given second one through that origin then we will have combined the two convergent 

axes into a third one, which will be the axis of rotation of the displacement relative to that origin, 

and we will have the axis of the relative translation in the form of the chord of the arc that the 

origin describes by virtue of the rotation to be performed around the second given axis. The 

projections of that chord into the relative axis of rotation, thus-determined, are a measure of the 

absolute translation of the displacement. It is equal to the sum of the projections of the two sides 

of the isosceles triangle that is its base. Each of those edges is equal to the shortest distance between 

the two given non-convergent axes, and it is easy to assure oneself, in addition, that each of those 

edges is equally inclined with respect to the composed relative axis. Indeed, that shortest distance 

is normal to the plane of the two convergent axes. Now, upon considering the angle that is formed 

by that normal and the line that is symmetric to the resultant axis relative to that plane, one will 

see that the angle will not change when one supposes it to be mobile and implied by the second 

rotation that makes the symmetric line that we spoke of coincide with the resultant axis. However, 

under that rotation, the normal will be inclined over a plane that is perpendicular to the second axis 

in such a manner as to be parallel to the second edge of the isosceles triangle that we consider, and 

since it is obvious that the angle between the normal and the resultant axis is supplementary to the 

one that it forms with its symmetric position, we will see that the resultant axis is, effectively, as 

we just said, equally inclined with respect to the two edges of that isosceles triangle. Hence, we 

finally conclude that the absolute translation of a solid system that is produced by the succession 

of two rotations around two non-convergent fixed axes is equal to twice the distance between those 

two axes when they are projected onto the direction of the axis of the composed or resultant axis 

of rotation. 

 However, it is obvious that the cosine of the angle between that distance and the composed 

axis is equal to the sine of the angle between that same axis and the plane of the two component 

axes, and as a result of the law of the proportionality of the sines of the semi-rotations and those 

of the angles that are found between the opposite axes, it is found to be equal to the product of the 

sines of the given semi-rotations with the sine of the angle between the two axes, divided by that 

of the composed semi-rotation. We have thus succeeded in completing the fundamental theorem 

that we have already stated, thus-transformed, namely, that any displacement of a solid system can 

always be produced in an infinitude of ways by the succession of two rotations around two non-

convergent fixed axes, provided that the product of the sines of the successive semi-rotations, 

multiplied by the distance between the two conjugate axes and the sine of the angle between those 

axis, is equal to the product of the absolute semi-translation of the displaced system, multiplied by 

the sine of the resultant semi-rotation. 

 

On the composition of successive displacements of a system of  

combined rotations and translations 

 

 14. – We are now in a position to solve the following general problem completely, in which 

we consider the succession of arbitrary displacements of the same solid. 

 If one is given the axes of rotation and translation, as well as the amplitude and extent of those 

rotations and translations for each successive displacement of a system then one wishes to 

construct the axes of rotation and translation of that system relative to a given origin. 
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 The solution of that problem is obviously the same as that of the preceding problem, in which 

one deals with only rotations around fixed axes since the translations can be replaced with pairs of 

rotations around fixed axes. We have neatly indicated that fact in the last paragraph to no. 12. 

There is therefore no reason to stop to discuss it further. 

 

Examination of the particular case of successive infinitely-small displacements 

 

 That solution will be simplified appreciably when one considers only infinitely-small 

displacements. Firstly, as far as the given rotations and their result are concerned, that is because 

the order of those rotations is irrelevant, and the composition of an arbitrary number of them 

around convergent axes will work like that of translations that are proportional to those rotations 

and parallel to those axes. Then, as far as the composed translation is concerned, it is because the 

order of the successive rotations and translations that are performed by the origin of the 

displacement is likewise irrelevant, and each of those rotations and translations can be established 

directly and separately as if the point being displaced were being displaced only alternately, and 

not successively, which amounts to saying that the space swept out by each of those displacements 

is infinitely small. The composition of those partial translations that results from the distribution 

of the given axes, or that of the translations themselves that are coupled with the rotations, obeys 

the same law as that of the rotations. 

 

 

 15. – We must now apply calculations to the geometric laws that we just discussed relative to 

the arbitrary displacements of a solid system, and first deduce the formulas for the variation of the 

coordinates of a solid system, which occupy a distinguished place in analytical mechanics. 

 

Determining the formulas for the variation of the coordinates of a solid system 

that are produced by an arbitrary displacement 

 

 Let x, y, z, …, x + x, y + y, z + z be the coordinates of two arbitrary points that correspond 

in the two positions of the displaced system. Furthermore, let x, y, z be the coordinates of the 

midpoint of the line that connects them in such a way that one will have: 

 

x = x + 1
2

x , y = y + 1
2

y , z = z + 1
2

z  . 

 

Finally, let g, h, l be the angles that are formed by the direction of the axis of rotation with the 

coordinate axes, let  be the amplitude of the rotation, let t be the magnitude of the absolute 

translation, and let X, Y, Z be the coordinates of an arbitrary point on the central axis of 

displacement. 

 Consider the rectangular triangle whose hypotenuse is formed from the line that joins two 

corresponding points and whose other two sides are given, in one case, by the chord of the arc that 

is described by the first point by virtue of the rotation , and in the other, by the line that is traversed 

by translating that same point after the rotation has been performed. It is clear that the variations 

x, y, z will be equal to the respective projections of that hypotenuse, i.e., the sum of the 
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projections of the other two sides of that rectangular triangle onto the respective coordinate axes. 

Now, the side that is equal and parallel to the absolute translation t gives the three projections t cos 

g, t cos h, t cos l. The other side is equal to 2u tan 1
2
 , where u denotes the distance from the central 

axis to the side to which it is perpendicular. That distance is obviously the same as the distance 

from the point (x, y, z) to that central axis, since the direction of that side is the same as that of a 

line that is drawn through the point (x, y, z) perpendicular to the central axis and at the distance 

from that point to the axis. If we let G, H, L denote the angles between that line and the coordinate 

axes then we will first have the following expressions: 

 

  x = t cos g + 2u tan 1
2
  cos G , 

  y = t cos h + 2u tan 1
2
  cos H , 

  z = t cos l + 2u tan 1
2
  cos L , 

and since we necessarily have: 

 

cos g cos G + cos h cos H + cos l cos L = 0 , 

we will deduce that: 

x cos g + y cos h + z cos l = t , 

 
2 2 2x y z +  +   = 2 2 2 1

2
4 tant u + , 

 

which would also result from the figure (†). The first terms t cos g, t cos h, t cos l represent the part 

of the variations that produce the absolute displacement by translation. The second terms are due 

to the rotation that is performed by the displacement. Upon comparing those first and second terms 

to each other, relative to each coordinate axis, one will find that the first ones, which measure the 

effect or moment of the translation of the system relative to each coordinate axis, have values that 

equal the projections relative to each coordinate axis of a triangle whose summit is the midpoint 

of the line that is, by definition, traversed by the point in question and whose base is a line segment 

that is included along the central axis and has a length of 4 tan 1
2
 . In the case of an infinitely-

small displacement, that midpoint and the point itself will coincide, and it will then result that for 

a point of the system that has been displaced by infinitely little, the effect of the rotation relative 

to a given direction is equal to twice the projection relative to that direction of a triangle whose 

summit at that point and whose base is taken along the central is equal to the rotation of the system. 

 That fact shows how the theory of projections is attached to the laws of translation by way of 

linear projections and to the laws of rotation of solids by way of projections of area. Let us pursue 

that idea. 

 The chord 2u tan 1
2
  is normal to both the central axis and the perpendicular that is based at 

the point (x, y, z) on that axis, which is equal to u, which is equal to: 

 

 

 
 (†) Translator: I have not succeeded in locating the figures that are alluded to in this treatise. 
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  u cos G = (y – Y) cos l – (z – Z) cos h , 

  u cos H = (z – Z) cos g – (x – X) cos l , 

  u cos L = (x – X) cos h – (y – Y) cos g , 

and as a result: 

  x = t cos g + 2u tan 1
2
 cos G =  + p y – n z , 

  y = t cos h + 2u tan 1
2
 cos H =  + m z – p x , 

  z = t cos l  + 2u tan 1
2
 cos L  =  + n x – m y , 

 

, , , m, n, p denote six constants that depend upon the position of the central axis of the 

displacement, the magnitude of the translation, and the amplitude of the rotation, so it will follow 

that: 

   = t cos g + 2 tan 1
2
  (Z cos h – Y cos l) , 

   = t cos h + 2 tan 1
2
  (X cos l – X cos g) , 

   = t cos l  + 2 tan 1
2
  (Y cos g – X cos h) , 

 

m = 2u tan 1
2
 cos g , n = 2u tan 1

2
 cos h , p = 2u tan 1

2
 cos l . 

 

If one denotes the variations of the coordinates of the origin of the coordinate axes by , ,  then 

one will have the following relations: 

 

   =  + 1
2

 (p  – n ) , 

   =  + 1
2

 (m  – p ) , 

    =  + 1
2

 (n  – m ) , 

 

by means of which one can replace the constants , ,  with their values as functions of the 

variations , , , if one so desires, and one will then have: 

 

  x =  + 2 tan 1
2
  [(y − 1

2
 ) cos l – (z − 1

2
 )  cos h] , 

  y =  + 2 tan 1
2
  [(z − 1

2
 )  cos g – (x − 1

2
 ) cos l] , 

  z =  + 2 tan 1
2
  [(x − 1

2
 ) cos h – (y − 1

2
 ) cos g] , 

 

whose first terms , ,  express the moments of the translation relative to the origin of the 

coordinates, whose values is 
2 2 2  + + , and the ones that are affected by the rotation express 

the moments of that rotation around the axis relative to the origin. We can establish those formulas 

directly, like the preceding ones that we constructed along the central axis. 
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Equations of the central axis 

 

 16. – The equations of the central axis are, in turn, deduced from the formulas above with the 

greatest simplicity, because for all points of that axis, the effect of the rotation is zero, so one will 

have x = t cos g, y = t cos h, z = t cos l. The coordinates x, y, z will belong to that axis, and 

upon suppressing the line, one will get the desired equations expressed in terms of the elements of 

the variations: 

p y – n z +  = t cos g = 
2 2 2

( )m m n p

m n p

 +  + 

+ +
 = 

2 2 2

( )m m n p

m n p

  + +

+ +
, 

 

m z – p x +  = t cos h = 
2 2 2

( )n m n p

m n p

 +  + 

+ +
 = 

2 2 2

( )n m n p

m n p

  + +

+ +
, 

 

n x – m y +  = t cos l = 
2 2 2

( )p m n p

m n p

 +  + 

+ +
 = 

2 2 2

( )p m n p

m n p

  + +

+ +
, 

 

and even more simply by eliminating the constants , , : 

 

1
2 2 2 2

p n
x

m n p

m

 


−
− −

+ +
 = 

1
2 2 2 2

m p
y

m n p

n

 


−
− −

+ +
 = 

1
2 2 2 2

n m
z

m n p

p

 


−
− −

+ +
 , 

 

which are equations in which the coordinates that are subtracted from the general coordinates x, y, 

z are precisely those of the summit of the isosceles triangle that is normal to the plane of the two 

axes that relates to the translation and rotation that pass through the origin of the coordinate axes 

and is raised over a base that is perpendicular to the axis that relates to the rotation, and is cut by 

one-half the axis of relative translation and a magnitude that is equal to the translation projected 

onto its appropriate direction with the summit angle being equal to the amplitude of the rotation . 

That agrees well with the construction that was just given. 

 Those equations can be further written as follows, by introducing the rotation and the 

inclinations of the axis of rotation: 

 
1 1 1
2 2 2

cos ( cos cos )

cos

x l h

g

   − − −
  

= 
1 1 1
2 2 2

cos ( cos cos )

cos

y g l

h

   − − −
  

=
1 1 1
2 2 2

cos ( cos cos )

cos

z h g

l

   − − −
 . 
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General equation of the central axis 

 

 However, one can represent those three equations for the projections of central axis by just one 

equation with undetermined coefficients, namely: 

 

cos a x + cos b y + cos c z = t cos (t, a, b, c) , 

in which: 

cos (t, a, b, c) = cos a cos g + cos b cos h + cos c cos l , 

 

in which a, b, c denote three angles that are formed arbitrarily by an arbitrary direction and the 

coordinate axes. Due to the indeterminacy in those angles a, b, c, that single equation will resolve 

into three others x = t cos g, y = t cos h, z = t cos l, and it expresses the most general property 

of the displacement of points that are located along the central axis, which is that it must be equal 

to the absolute translation of the system without rotation relative to an arbitrary direction and 

estimated along that direction. 

 

Examination of the case of infinitely-small variations 

 

 17. – If one considers only the variations of the coordinates of a solid system that are produced 

by an infinitely-small displacement in which the constants , ,  are infinitely small of the same 

order as those variations when the symbol  is exchanged for the usual symbol , and one neglects 

the second-order terms in the formulas that were given above, then one will have the following 

expressions for the variations: 

 

 x =  + p y – n z ,  y =  + m z – p x ,  z =  + n x – m y , 

 

  m =  cos g , n =  cos h , p =  cos l , 

 

and for the equations of the central axis: 

 

cos cos

cos

x h l

g

  + −
 = 

cos cos

cos

y l g

h

  + −
 = 

cos cos

cos

z g h

l

  + −
 . 

 

 

 18. – Let us return to the general formula: 

 

  x =  + p y – n z  =  + p (y − 1
2

 ) – n (x − 1
2
 ) , 

  y =  + m z – p x  =  + m (z − 1
2
 ) – p (z − 1

2
 ) , 

  z =  + n x – m y  =  + n (x − 1
2
 ) – m (y − 1

2
 ) , 

in which: 

m = 2 tan 1
2
  cos g , n = 2 tan 1

2
  cos h , p = 2 tan 1

2
  cos l . 
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One then infers that: 

 

(x – )2 + (y – )2 + (x – )2 

 

= 2 2 2 2 21 1 1 1 1 1 1
2 2 2 2 2 2 2

4tan {(x ) (y ) (z ) [(x )cos (y )cos (z )cos ]}g h l      − + − + − − − + − + − , 

 

which is an equation that expresses the idea that the chord that is described by a rotation around 

the relative axis that passes through the origin is equal to twice the tangent of one-half the rotation, 

multiplied by the distance from the origin to the midpoint of that chord, which is estimated 

perpendicularly to the axis of rotation, which is a distance that is equal to the distance between the 

midpoints of the lines that are, by definition, traversed by the point in question and by the origin. 

 Upon starting from that property, which the figure will explain, of the equality of the 

projections of all of the lines that are traversed, by definition, onto the direction of the axis of 

rotation and the invariability of the distance from an arbitrary point to the origin, one will 

immediately have the following three equations, from which one will easily deduce the value for 

the variations x, y, z that were found before, namely: 

 

(x – )2 + (y – )2 + (z – )2  

 

= 2 2 2 2 21 1 1 1 1 1 1
2 2 2 2 2 2 2

4tan {(x ) (y ) (z ) [(x )cos (y )cos (z )cos ]}g h l      − + − + − − − + − + − , 

 

(x – ) cos g + (y – ) cos h + (z – ) cos l = 0 , 

 
1 1 1
2 2 2

( ) (x ) ( ) (y ) ( ) (z )x y z      − − +  − − +  − −  = 0 . 

 

 However, one will finally succeed in expressing those variations as functions of the variables 

x, y, z by eliminating the coordinates x, y, z by means of their values x + 1
2

x , y + 1
2

y , z + 1
2

,z

respectively. With that elimination, one will have: 

 

  x –  = 2 tan 1
2
 (y cos l – z cos h) + tan 1

2
 [(y – ) cos l + (z – ) cos l] , 

  y –  = 2 tan 1
2
 (z cos g – x cos l) + tan 1

2
 [(z – ) cos g + (x – ) cos l] , 

  z –  = 2 tan 1
2
 (y cos l – y cos g) + tan 1

2
 [(x – ) cos h + (y – ) cos g] , 

 

so one will finally have these definitive formulas: 

 

  x =  + sin  (y cos l – z cos h) + 2 sin2 1
2
 [cos g  (x cos g + y cos h + z cos l) – x] , 

  y =  + sin  (z cos g – x cos l) + 2 sin2 1
2
 [ cos h (x cos g + y cos h + z cos l) – y] , 

  z =  + sin   (y cos l – y cos g) + 2 sin2 1
2
 [ cos l  (x cos g + y cos h + z cos l) – z] , 
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and only the first terms will survive when one passes from finite variations to infinitely-small 

variations. 

 

Expressions for the finite variations as rational functions of the six arbitrary constants 

, , , m, n, p 

 

 If one preserves the original constants m, n, p in those formulas, and infers the values of x, 

y, z directly from the equations: 

 

  x = 1 1 1 1
2 2 2 2

( ) ( )p y y n z z  + +  − − +  −  , 

  y = 1 1 1 1
2 2 2 2

( ) ( )m z z p x x  + +  − − +  − , 

  z = 1 1 1 1
2 2 2 2

( ) ( )n x x m y y  + +  − − +  −  

 

then one will have the following expressions for them as rational functions of the six constants , 

, , m, n, p : 

  x = 
2 2 21 1

2 2

2 2 21
4

( ) ( )

1 ( )

p y n z m m x n y p z m n p x

m n p


− + + + − + +
+

+ + +
 , 

  y = 
2 2 21 1

2 2

2 2 21
4

( ) ( )

1 ( )

m z p x n m x n y p z m n p y

m n p


− + + + − + +
+

+ + +
 , 

  z = 
2 2 21 1

2 2

2 2 21
4

( ) ( )

1 ( )

n x m y p m x n y p z m n p z

m n p


− + + + − + +
+

+ + +
 . 

 

Important consequence relating to the transformation formulas for rectangular coordinates 

 

 Upon comparing those expressions to the ones that one would obtain by considering the 

transformation of rectangular coordinates, as will be pointed out in no. 26, one will obtain a method 

for reducing the nine coefficients that enter into the formulas for that transformation of three 

independent variables m, n, p that is free of any radicals, which has not been done before, I believe. 

Upon denoting, as is customary, those nine coefficients by a, b, c, a , b , c , a , b , c , and 

letting cos ( )x x , cos( )y y , etc. denote the cosines of the angles between the old and new axes, 

one will easily find that: 

 

 a = cos ( )x x  = 
2 2 21

4

2 2 21
4

1 ( )

1 ( )

m n p

m n p

+ − −

+ + +
 ,  a  = cos( )y x  = 

1
2

2 2 21
4

1 ( )

m n p

m n p

−

+ + +
 , 

 b = cos( )x y  = 
1
2

2 2 21
4

1 ( )

mn p

m n p

+

+ + +
 ,  b  = cos( )y y  = 

2 2 21
4

2 2 21
4

1 ( )

1 ( )

n m p

m n p

+ − −

+ + +
 , 

 c = cos ( )x z  = 
1
2

2 2 21
4

1 ( )

m p n

m n p

−

+ + +
 ,  c  = cos ( )y z  = 

1
2

2 2 21
4

1 ( )

n p m

m n p

+

+ + +
 , 
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 a  = cos ( )z x  = 
1
2

2 2 21
4

1 ( )

p m n

m n p

+

+ + +
 , b  = cos ( )z y  = 

1
2

2 2 21
4

1 ( )

n p m

m n p

−

+ + +
 , 

 c  = cos( )z z  = 
2 2 21

4

2 2 21
4

1 ( )

1 ( )

p m n

m n p

+ − −

+ + +
, 

and conversely: 

 

21
4
m  = 

1

1

a b c

a b c

 + − −

 + + +
,  21

4
n  = 

1

1

b a c

a b c

 + − −

 + + +
,  21

4
p  = 

1

1

c a b

a b c

 + − −

 + + +
, 

 

 m = 
2( )

1

c b

a b c

 −

 + + +
, n = 

2( )

1

a c

a b c

 −

 + + +
, p = 

2( )

1

b a

a b c

−

 + + +
 . 

 

Upon eliminating m, n, p from the values of the coefficients a , b, c , a , b , c, one will obtain 

the Monge formulas in the form of irrational functions of the three constants a, b , c  (*). 

 

 

 19. – Starting from the geometric consideration of the displacement of a solid system, we first 

deduced the characteristic properties or general laws of that displacement, which always reduced 

to a rotation and a subsequent translation, or even to just a pair of rotations around two fixed 

parallel or non-parallel axes, and the displacement will reduce to a simple translation in the first 

case if the rotations are equal and in the opposite sense, moreover. From those properties, we just 

concluded the analytical expressions for the finite or infinitely-small variations of the coordinates 

of a solid system that is displaced in an arbitrary manner. 

 We shall now deduce the laws of composition of rotations and translation that we first 

discussed synthetically from the expressions for those variations, and we will then establish those 

same formulas for the variation of the coordinates of a solid system directly by following three 

distinct analytical procedures, while deducing the invariability of the distances between the points 

of that system uniquely. 

 

Laws of composition for successive translations and rotations, deduced analytically from the 

formulas for the variations of the coordinates of the displaced system 

 

 Let the symbols ,  denote the successive variations of the coordinates of the displaced 

solid, let the symbol  denote the composed variations that result from the succession of 

displacements, let x, y, z, x, y, z denote the coordinates of the midpoints of the lines that are 

traversed in succession by the point (x, y, z), and as always, let x, y, z be those of the midpoint of 

the line that is, by definition, traversed by that point, in such a way that one has: 

 

 x = x + 1
2

x , y = y + 1
2

y , z = z + 1
2

z , 

 
 (*) Lacroix, tome I, page 533. 
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y = x + 1
2

x x  +  ,  y = y + 1
2

y y  +  ,  z = z + 1
2

z z  +  , 

 x  = x + 1
2

x , y  = y + 1
2

y , z  = z + 1
2

z , 

 

 x = x + x , y = y + y , z = z + z . 

 

Moreover, let t, t , ,  , g, h, l, g  , h , l  denote the absolute translations, the rotations, and the 

inclinations of the axes of rotation, resp., for each of the two consecutive displacements that are 

being considered, and let T, , G, H, L, resp., denote the analogous elements of the defining or 

composed displacement. 

 Now examine the composition of the simple translations and the rotations without translation 

separately. First suppose that the displacements reduce to translations, so one will have: 

 

 x = t cos g , x = cost g  , x = T cos G = t cos g + cost g  , 

 y = t cos h , y = cost h  , y = T cos H = t cos h + cost h  , 

 z = t cos l , z = cost l , z = T cos L  = t cos l  + cost l , 

 

from which one will see that the length and direction of the resultant translation of two successive 

translations are nothing but the third side of a triangle that is defined by a point of the system that 

successively traversed it by virtue of the two given translations, and one can easily generalize that 

method of composition by passing from the triangle to the polygon of translations. 

 Now suppose that one is dealing with the composition of two rotations without translation 

around two convergent axes at the origin of the coordinates. One will have, successively: 

 

 x = 1
2

2 tan (y cos z cos )l h  − , x = 1
2

2 tan (y cos z cos )l h    − , 

 y = 1
2

2 tan (z cos x cos )g l  − , y = 1
2

2 tan (z cos x cos )g l    − , 

 z = 1
2

2 tan (x cos y cos )h g  − , z = 1
2

2 tan (x cos y cos )h g     − , 

 

 x = x + x = 2 tan 1
2

 (y cos L – z cos H) , 

 y = y + y = 2 tan 1
2

 (z cos G – x cos L) , 

 z = z + z  = 2 tan 1
2

 (x cos H – y cos G) . 

 

One must determine the elements , G, H, L as functions of the given elements , g, h, l,  , g  , 

h , l  for each of the rotations being composed. 

 Now, it is appropriate to first eliminate the variables x, y, z, x, y, z from those relations 

by means of the relations that were given above. Indeed, one easily concludes that: 

 

  x = x − 1
2

x ,  x = x + 1
2

x , 

  y = y − 1
2

y , y = y + 1
2

y , 

  z = z − 1
2

z ,  z = z + 1
2

z , 
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and then, in turn: 

 

  x = 1
2

2 tan (y cos z cos )l h  −  + tan 1
2
 (cos h z – cos l y) , 

  x = 1 1
2 2

2 tan (ycos z cos ) tan (cos cos )l h l y h z        − +  −  , 

  y = 1
2

2 tan (z cos x cos )g l −  + tan 1
2
 (cos l x – cos g z) , 

  y = 1 1
2 2

2 tan (z cos x cos ) tan (cos cos )g l g z l x        − +  −   , 

  z = 1
2

2 tan (x cos ycos )h g −  + tan 1
2
 (cos g y – cos h x) , 

  z = 1 1
2 2

2 tan (x cos ycos ) tan (cos cos )h g h x g y        − +  −   . 

 

One then deduces the following values for the partial variations x, x, y, y, z, z : 

 

x  = 
1 1 1
2 2 2

1 1
2 2

2 tan (ycos z cos ) 2 tan tan [x cos cos (x cos ycos z cos )]

1 tan tan cos

l h g g h l   

  

 − + − + +

−
, 

 

x = 
1 1 1
2 2 2

1 1
2 2

2 tan (ycos z cos ) 2 tan tan [x cos cos (x cos ycos z cos )]

1 tan tan cos

l h g g h l   

  

      − + − + +

−
, 

 

and similarly for the other ones, in which  represents the angle between the two rotational axes 

(*). One forms the complete variations x, y, z from those expressions by addition, and upon 

comparing their terms with their expressions as functions of the desired elements , G, H, L, one 

will arrive at the following relations: 

 

1
2

tan cosG  = 
1 1 1 1
2 2 2 2

1 1
2 2

tan cos tan cos 2 tan tan (cos cos cos cos )

1 tan tan cos

g g h l l h   

  

    + + −

−
, 

1
2

tan cos H  = 
1 1 1 1
2 2 2 2

1 1
2 2

tan cos tan cos 2 tan tan (cos cos cos cos )

1 tan tan cos

h h l g g l   

  

    + + −

−
, 

1
2

tan cos L  = 
1 1 1 1
2 2 2 2

1 1
2 2

tan cos tan cos 2 tan tan (cos cos cos cos )

1 tan tan cos

l l g h h g   

  

    + + −

−
, 

 

from which, one will derive the ultimate value for the resultant rotation: 

 
1
2

cos   = 1 1 1 1
2 2 2 2

cos cos sin sin cos     − , 

 

and the inclinations of the resultant axis: 

 

 

 

 
 (*) One has cos  = cos g cos g  + cos h cos h  + cos l cos l  . 
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1
2

sin cosG = 1 1 1 1 1 1
2 2 2 2 2 2

sin sin cos sin cos cos sin sin (cos cos cos cos )g g h l l h          + + − , 

1
2

sin cos H = 1 1 1 1 1 1
2 2 2 2 2 2

sin cos cos sin cos cos sin sin (cos cos cos cos )h h l g g l          + + − , 

1
2

sin cos L = 1 1 1 1 1 1
2 2 2 2 2 2

sin cos cos sin cos cos sin sin (cos cos cos cos )l l g h h g          + + − . 

 

One first remarks that the order of succession of the rotations ,   in those formulas is irrelevant 

to the amplitude of the resultant rotation, but it is not irrelevant to the direction of the axis of that 

rotation, because the transposition of the elements  , g h l, g h l   , which will not alter the value 

of the rotations, will alter those of the cosines of the angles of its axis when changing the signs of 

the terms of second order with respect to those rotations in the expression for the cosine, unless 

those terms do not disappear for infinitely-small values of ,  . 

 The expression for cos 1
2

  is then well-suited to the angle of a spherical triangle whose 

opposite arc is equal to  and whose other two angles are equal to 1
2
 , 1

2
  . Meanwhile, in order 

to specify the position of the resultant axis with respect to the component axes, suppose (as is 

always possible) that: 

 

cos l = cos l  = 0 , cos h = 0, cos g = 1, cos g  = cos ,  cos h  = sin  , 

 

so one will have: 

   1
2

sin cosG = 1 1 1 1
2 2 2 2

sin cos sin cos cos     + , 

  1
2

sin cos H = 1 1
2 2

sin sin sin   , 

  1
2

sin cos L = 1 1
2 2

sin sin sin   . 

 

In case the order of the rotations is changed, the sign of cos L will become negative, and that is the 

only alteration that the change will produce in those formulas, so one sees that the new axis that 

results from that change in the order of rotation will be placed in a position that is symmetric to 

that of the first one relative to the plane of the two given axes. 

 If one lets H   denote the angle that is formed by the resultant axis and the axis of the rotation 

  then one will have: 

 

cos H   = cos cos cos cosH h + G g +  = 
1 1 1 1
2 2 2 2

1
2

sin cos sin cos cos

sin

     +


 . 

Moreover, one will have: 

 

2 1
2

sin   = 

2 2 21 1 1 1 1
2 2 2 2 2

2 2 21 1 1 1 1
2 2 2 2 2

sin sin (sin cos sin cos cos ) ,

sin sin (sin cos sin cos cos ) ,

      

      

  + +


  + +
 

 

and consequently: 

sin2 G = 
2 21

2

2 1
2

sin sin

sin

 


, 

2sin H   = 
2 21

2

2 1
2

sin sin

sin

 


, 
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which are equations that establish the inverse proportionality between the sines of the semi-

rotations and those of the angles that are defined by the resultant axis and the those of the 

corresponding component axes, and that will then lead to the construction that we first indicated 

for the composition of rotations. 

 The terms of second order relative to the rotations would make the formulas that one would 

obtain by following an analogous path for the composition of rotations around a finite number of 

converging axes very complicated. We shall not stop to dwell upon that then. 

 

On the analytical composition of rotations around non-convergent axes 

 

 20. – As for the composition of rotations around non-convergent axes, and generally the 

composition of given successive arbitrary displacements of a solid system by variations such as 

x, x, x, etc., whose analytical form is known, one will generally have: 

 

  x = x + x + x + … =  + 2 tan 1
2

 (y cos L – z cos H) , 

  y = y + y + y + … =  + 2 tan 1
2

 (z cos G – x cos L) , 

  z = z + z  + z + … =  + 2 tan 1
2

 (x cos H – y cos G) . 

 

The constants , , , … are found to be determined as functions of the analogous constants , 

, , , , , … that are appropriate to each of the consecutive displacements that are being 

composed and the other elements of those displacements. However, it is obvious that the elements 

, G, H, L of the defining rotation will be only functions of the rotational elements of those 

displacements, as we saw before by geometric considerations. For example, take the calculation 

of the composition of rotations around two non-convergent fixed axes, one of which coincides 

with the x-axis, and the other of which is normal to the z-axis and cuts that axis at a distance from 

the origin that is equal to u. As always, let  denote the angle between those two axes of rotation, 

and let ,   denote the amplitudes of the respective rotations. One will first have the values that 

were given above for the amplitude of the rotation and the direction of the resultant axis, and in 

order to either complete the variations of the coordinates or fix the position of the central axis, one 

will only have to calculate the variations of the origin or the coordinates , , . Now the ones that 

produce the first rotation around the x-axis are zero. It will then suffice to calculate the ones that 

produce the rotation  , for which one will generally have: 

 

  x =  + 1 1 1
2 2 2

2 tan [(y )cos (z )cos ]l h      − − −  , 

  y =  + 1 1 1
2 2 2

2 tan [(z )cos (x )cos ]g l      − − −  , 

  z =  + 1 1 1
2 2 2

2 tan [(x )cos (y )cos ]h g      − − −  . 

 

Those variations must be zero for all points on the axis of the rotation  , for which one has: 

 

cos l  = 0 ,    cos h  = sin  ,    cos g   = cos  ,    y = x tan  ,    z = u . 
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The following values for , ,  will then result, which one easily deduces by the same 

construction: 

 = u sin  sin  ,  = − u sin  sin  ,  = 2u sin2 1
2
  . 

 

Hence, one infers the value T of the absolute translation that results from two rotations around two 

non-convergent fixed axes: 

T =  cos G +  cos H +  cos L = 
1 1
2 2

2 1
2

2 sin sin sin

sin

u    


 = − 2 cos L , 

which conforms to the theorems in no. 13. 

 Therefore, the resultant axis and the two given divergent axes will come even closer to being 

parallel to the same plane as the distance that separates the latter two becomes greater with respect 

to the absolute translation of the composed displacement. 

 The equations of the central axis are obtained by replacing , , , , G, H, L with their values 

that were given above in the general equations: 

 
1 1 1
2 2 2

cot ( cos cos )

cos

x L H

G

  − −  −
  

  = 
1 1 1
2 2 2

cot ( cos cos )

cos

y G L

H

  − −  −
 

  = 
1 1 1
2 2 2

cot ( cos cos )

cos

z H G

L

  − −  −
. 

 

 In the case of infinitely-small rotations, those formulas simplify considerably, and one will 

find that the central axis is parallel to the plane of the two component axes and will meet the line 

of shortest distance between them. Under that hypothesis, upon neglecting the second-order 

infinitesimals, one will effectively have: 

 

cos G = 
cos  +


,  cos H = 

2sin 


, cos L = 

sin

2

  


, 

 

 = 
2 2 2 cos     + + , 

 

 = sinu  ,     = − sin cosu   ,     = 0 ,    T = 
sin

2

u   


, 

 

and for the equations of the central axis, one will have: 

 

y = 
sin

cos

x 

  



+
, z = 

2

( cos )u     +


. 
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Composition of successive rotation around three rectangular axes 

 

 21. – We conclude our discussion of that subject by giving the following formulas for the 

composition of three successive relations ,  ,   around the three coordinate axes of x, y, z. The 

elements of the composed rotation , G, H, L are then expressed by: 

 

cos 1
2

  = 1 1 1 1 1 1
2 2 2 2 2 2

cos cos cos sin sin sin        − , 

 

sin2 G = 
2 1

2

1 cos cos

2sin

  −


,   sin2 H = 

2 1
2

1 cos cos sin sin sin

2sin

       − +


,   sin2 G = 

2 1
2

1 cos cos

2sin

  −


. 

 

Those formulas will become symmetric with respect to each coordinate only when the rotations 

become infinitely small, since the term sin sin sin     will vanish in sin2 H, which is hypothesis 

that makes the order of those rotations irrelevant, moreover, and for which one will find that: 

 

2 = 
2 2 2   + + , cos G = 




, cos H = 

 


, cos L = 

 


, 

 

according to the law of composition of infinitely-small rotations. 

 The inverse problem to the one that we just solved, which has the goal that when we are given 

a finite rotation and its axis, we must decompose it into three rotations around the coordinate axes, 

comes down to inferring the values of ,  ,   as functions of the given elements , G, H, L 

from the equations above, which is an operation that is intractable for finite rotations, but takes on 

great simplicity for the infinitely-small rotations. 

 

On the composition of the successive infinitely-small displacements of a solid system 

 

 22. – We shall now consider the laws of composition and decomposition of successive 

infinitely-small displacements that are inferred from the analytical expressions for the infinitely-

small variations of the coordinates of a solid system directly and within a certain scope. 

 Those variations are generally expressed linearly in the following manner as functions of the 

infinitely-small elements of the displacement , , , m, n, p : 

 

x =  + p y – n z , y =  + m z – p x , z =  + n x – m y . 

 

It then results that the variations that produce several successive infinitely-small displacements are 

composed by adding the variations that are due to each of those successive displacements 

separately when referred to the first position of the system. The elements of the composed or 

defining displacement are formed by the sum of the analogous elements of the partial 

displacements. 

 That is why the complete differential of a function of several variables is formed by adding the 

partial differentials that relate to each of the variables, which are partial differentials for which it 
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is irrelevant whether one takes them on the original function itself or that function when it is 

successively augmented by infinitely-small increases in each of its variables, since one can neglect 

the second-order infinitesimals. 

 If one then lets  ,   ,   , m , n , p ,  ,   ,   , m , n , p ,  ,  ,   , m , n , 

,p  etc., denote the elements of the successive displacements that one must compose, and one has: 

 

x   = p y n z  + − ,  y   = m z p x  + − , z   = n x m y   + − , 

x   = p y n z  + − , y   = m z p x  + − , z   = n x m y   + − , 

… 

 

for each of them, when considered separately, then the elements of the defining displacement of 

the system, which are represented by A, B, C, M, N, P, will be the sums of the given partial 

elements, respectively. One will have: 

 

A =     + +  =  ,   B =  ,   C =  ,   M = m ,   N = n ,   P = p , 

 

and for the defining expressions of the variations of the coordinates of the system: 

 

   x = A + P y – M z = A +  (y cos L – z cos H) , 

   y = B + M z – P x = B +  (z cos C – x cos L) , 

   z = C + N x – M y = C +  (x cos H – y cos G) , 

 

upon introducing the rotation and the inclinations of its axis. Conversely, one can consider any 

given infinitely-small displacement of a solid system whose elements are A, B, C, M, N, P to be 

the result of successive displacements whose elements are  ,   ,   , m , n , p , etc., which are 

subject to only the condition that they must be collectively equal to the given elements A, B, C, M, 

N, P, respectively, and the order of succession of those displacements is entirely arbitrary, 

moreover. Consequently, it will become obvious that the rotation , whose components relative to 

the coordinate axes are equal to m, n, p, respectively, results from successive rotations m, n, p, 

since the translation t, which is parallel to the axis of rotation, can also be considered to be the 

resultant of three successive translations t cos g, t cos h, t cos l that are parallel to the coordinate 

axes. 

 

 

 23. – In mechanics, those successive rotations m, n, p are referred to by the name of elementary 

rotations, and they are considered to be simultaneous under the passage from the geometric laws 

to the mechanical laws of the displacement of the body, although geometry can account for them 

only by supposing that they are successive, because it is obvious that while the system turns around 

the axis though a rotation of  when the angles with the coordinate axes are g, h, l, that rotation is 

not accomplished at the same time as the three rotations m, n, p around those coordinate axes. That 

will imply four axes of rotation, instead of one (Mécanique analytique, t. I, page 52). Here, we 
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have touched upon a fundamental point in the philosophy of mathematics that separates geometry 

from mechanics, and the objective of this treatise is to confirm all of its importance. 

 The rotation  results from the successive composition of the rotations  cos g,  cos h,  cos 

l, because for each coordinate axis, the variation due to that rotation  is the sum of the variations 

that are due to each of those rotations separately. Indeed, if the system turns only around the x-axis 

with a rotation  cos g then one will have: 

 

x   = 0 ,      y   =   z cos g ,      z   = −  y cos g . 

 

On the contrary, it turns around the y-axis with a rotation of  cos h, one will have: 

 

x   =  z cos h ,      y   =  ,      z   =  h cos h 

 

for the second displacement, and finally, the rotation  cos l around the z-axis, when considered to 

be the only one, will give: 

 

x  =  y cos l ,      y   = −  x cos l ,      z  = 0 . 

 

The sum of those composed variations relative to each axis will then give the following expressions 

for the composed displacement, when it is performed, by definition, as the rotation  around the 

axis (g, h, l): 

 

 x =  (y cos l – z cos h) ,  y =  (z cos g – x cos l) ,  z =  (x cos h – y cos g) . 

 

 

 24. – Let us return to the composition of arbitrarily-given successive displacements for the 

same system. Conforming to no. 15, the formulas for the variations can then be written: 

 

   x =  +  (y cos l – z cos h) = t cos g +  u cos G , 

   y =  +  (x cos g – x cos l) = t cos h +  u cos H , 

   z =  +  (x cos h – y cos g) = t cos l +  u cos L , 

 

in which u denotes the distance from the point (x, y, z) to the central axis of the displacement, and 

G, H, L are the angles that are formed by the coordinate axes and the direction of the infinitely-

small arc u , which describes a rotation around that central axis. 

 One has the general expression for the relative displacement along an arbitrary direction s that 

makes the angles a, b, c with the coordinate axes: 

 

 s = t cos (t, s) +  u cos (t u, s) , 

 

in which cos (t, s), cos ( u, s) denote the cosines of the angles between that direction and the 

central axis, and  denotes the arc of the infinitely-small rotation. 
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 However, if two lines are given in space then one knows that the distance from a point on one 

line to the other line is inverse to the sine of the angle that the first line forms with the plane that 

contains the second one and the point in question, or what amounts to the same thing, that the 

product of that sine and distance is constantly equal to the product of the shortest distance between 

those lines with the sine of their inclination. If one then lets D denote the distance from the central 

axis to the line that is drawn through the point of the system that one considers in the direction s, 

and lets  denote the angle between that direction and the axis then one will have: 

 

u cos ( u, s) = D sin   and  s = t cos  + D  sin  . 

 

t cos  is the moment of the translation of the system relative to the direction s. D  sin  is that of 

the rotation of the relative to that same direction (*). 

 Now, if one considers the successive displacement of the system around the central axes whose 

elements are t, t , t , ,  ,  , g, h, l, g  , h , l , g  , h , l , etc., and one lets  S denote the 

composed resultant displacement of a point of the system relative to that same direction s, while 

T, , G, H, L denote the elements of resultant central axis, then one will have: 

 

 S = cos cost D  +   = T cos V +  D sin V , 

 

in which D denotes the distance from the resultant axis to the line s, which is drawn through the 

point (x, y, z). 

 Due to the indeterminates a, b, c that the equation includes, and since it must be true for all 

points of the system, it will be equivalent to the following six equations, which give the position 

of the central axis of the displacement, the translation, and the resultant rotation: 

 

    − T cos G +  y cos L –  z cos H = 0 , 

    − T cos H +  z cos G –  x cos L = 0 , 

    − T cos L +  x cos H –  y cos G = 0 , 

 

 cos G = cos g ,  cos H = cosh ,   cos L = cosl , 

 

from which one infers that: 

T = cos cos cosG H L  + +   , 

 

in which x, y, z denote the coordinates of an arbitrary point of the resultant central axis, because 

one has: 

 
 (*) That moment is also a measure of the entire translation that is performed by an arbitrary point on the central 

axis along that same axis with a length that is equal to the product of the rotation  with the distance from that point 

to the line s, so that translation is estimated or projected orthogonally to that line s, i.e., along a line that is drawn 

through the point in question normally to the plane that contains that point and the latter line. 
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 S = cos cos cosa x b y c z  + +   , 

 

cos V = cos a [(y – y) cos L – (z – z) cos H] + cos b [(z – z) cos G – (x – x) cos L] 

  + cos c [(x – x) cos H – (y – y) cos G] . 

 

 One can rigorously consider only rotations in that analysis, since the translations t, t  can 

always be represented by pairs of rotations, and one sets simply: 

 

 S = T cos V +  D sin V = sinD  . 

 

 In order to transform a translation t along the direction g, h, l into a pair of rotations, one must 

solve the following three equations: 

 

  t cos g = u1 1 cos G1 + u2 2 cos G2  = 1 [(y – y) cos l1 – (z – z) cos h1] 

  + 2 [(y – y) cos l2 – (z – z) cos h2] , 

 

  t cos h = u1 1 cos H1 + u2 2 cos H2  = 1 [(z – z) cos g1 – (x – x) cos l1] 

  + 2 [(z – z) cos g2 – (x – x) cos l2] , 

 

  t cos l = u1 1 cos L1 + u2 2 cos L2  = 1 [(x – x) cos h1 – (y – y) cos g1] 

  + 2 [(x – x) cos h2 – (y – y) cos g2] , 

 

in which x, y, z, x, y, z, etc., represent the coordinates of the axes of rotation, and g1, h1, l1, g2, 

h2, l2 represent their inclinations. Those equations must be satisfied independently of the variables 

x, y, z, and will then give the following six equations: 

 

1 cos g1 + 2 cos g2 = 0 , 1 cos h1 + 2 cos h2 = 0 , 1 cos l1 + 2 cos l2 = 0 , 

 

  t cos g = (z cos h1 – y cos l1) 1 + (z cos h2 – y cos l2)  2 , 

  t cos h = (x cos l1 – z cos g1) 1 + (z cos l2 – z cos g2)  2 , 

  t cos l = (y cos g1 – x cos h1) 1 + (y cos g2 – x cos h2) 2 , 

 

from which one infers that: 

 

2 = − 1 ,      cos g1 = cos g2 ,      cos h1 = cos h2 ,      cos l1 = cos l2 , 

 

t cos g = 2 [(z – z) cos l1 – (y – y) cos l2] ,  etc., 

 

which are equations that are appropriate to exclusively the two parallel axes of rotation in a plane 

normal to t when the distance between the two axes is equal to the quotient 
2/t  . Let us return to 

the equation: 



Rodrigues – The geometric laws that govern a solid system in space. 31 

 

 S = T cos V +  D sin V = sinD  . 

 

It then results that, relative to an arbitrary direction s, the composition of the rotations ,  ,   

around fixed axes will resolve into a rotation  and a translation or pair of rotations whose moment 

T cos V is equal to the excess of the sum of the moments of those partial rotations beyond the 

resultant moment of the composed rotation, where those moments are estimated relative to the 

same point. 

 For an arbitrary point that is distinct from the origin of the coordinates, one will have: 

 

 S –  S0 = 
0 0sin sinD D   −   =  sin V (D – D0) . 

 

 Therefore, the difference between the composed moments of a solid system that is subject to 

successively submitting to infinitely-small displacements with respect to points of that system is 

equal to the sum of the differences between the resultant moments for those two points of each of 

the successive rotations of the system when all of those moments are estimated relative to the same 

direction. 

 One knows that those moments refer to nothing but the effect of the displacement of the system 

to the point that is it referred to. The translation is common to all points so it cannot alter their 

relative positions, either under the partial displacements or under the composed displacement. It 

will then be obvious a priori that any relative displacement, whether partial or composed, of an 

independent point of the system with respect to another point of that system can depend upon only 

the partial or composed rotations of that system. 

 

Conditions for equilibrium for several successive infinitely-small displacements 

 

 24. – We are led to search for the conditions that must be satisfied by the elements of the 

indicated successive displacements of a solid system in order that the system should successively 

pass through the various infinitely-close positions that correspond to those elements and return to 

its original position, which would constitute, by definition, an equilibrium state or neutralization 

of those successive displacements. Now, it is obvious that all of the conditions that one deals with 

are included in just one equation that is decomposable into six others, due to the indeterminates 

that it includes, namely: 

 S = 0 , 

 

since that equation expresses the idea that each point of the system returns to its original position. 

The six equations that are included in the general equation  S = 0 are: 

 

 x0 =   = 0 , 

 y0 =   = 0 , 

 z0 =   = 0 , 
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cos g  = 0 , cosh  = 0 , cos l  = 0 , 

 

in which one lets  x0 ,  y0 ,  z0 denote the complete variations or the coordinates of the origin. 

The first three express the immobility of the origin of the coordinates, and the other three express 

the idea that no rotation has taken place in the displaced system, by definition, which is a double 

condition that excludes the possibility of an arbitrary defining displacement. That double condition 

immediately results from the relation: 

 

 S = T cos V +  D sin V = 0 , 

 

which is a relation that can be satisfied for an arbitrary point only if one has: 

 

T = 0 ,  = 0 . 

 

Now  = 0 implies a fortiori that following three equations: 

 

cos g  = 0 , cosh  = 0 , cos l  = 0 , 

 

and when the fundamental equation (no. 15) is applied to the origin: 

 
2 2 2

0 0 0x y z  + +  = 
2 2 2t u+ , 

 

when the rotation is zero with the translation, will give three other ones: 

 

 x0 = 0 ,       y0 = 0 ,       z0 = 0 . 

 

 Therefore, the equilibrium condition for a series of successive infinitely-small displacements 

of the same solid will be six in number, three of which express the idea that the displacement of a 

system admits no translation, and the other three of which exclude any rotation. 

 Those six equilibrium equations are analytically included in just one equation that expresses 

the general law of that equilibrium in the simplest manner, namely: 

 

sinD   = 0 , 

 

which expresses the idea that the resultant moment for an arbitrary point of the system, which is 

the sum of all moments that are produced at that point by the rotations and translations or pairs of 

rotations that are successively transmitted to or suffered by the system, is zero with respect to an 

arbitrary direction. However, if all conditions remain the same then the equilibrium of those 

successive infinitely-small displacements will continue to prevail, no matter how rapid one 

supposes the succession of those displacements to be: Upon passing to the limits, one will arrive 
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at the identity of the laws of equilibrium for successive causes of infinitely-small displacements, 

along with the equilibrium of simultaneous causes of infinitely-small displacements. 

 Therefore, the equation: 

sinD V  = 0 

 

expresses the general condition for the immobility of an invariable system that is subjected to 

arbitrary causes that act simultaneously in such a way that they describe infinitely-small rotations 

,  , etc., around given fixed axes. 

 

The analogy between those laws of composition and equilibrium with those of  

the composition and equilibrium of forces applied to an invariable system 

 

 26. – The analogy between that general law and that of the equilibrium of forces that are applied 

to an invariable is striking. The applied forces along the axes of rotation are supposed to be 

proportional to those rotations, so the moment of a force on that system will be identically 

proportional to that of the corresponding rotation, and each translation will be replaced by a pair 

of forces that are applied along the axes of the pair of rotations that is equivalent to that translation. 

However, the analogy extends to the laws of composition in the same way that it does to 

equilibrium and can be stated as follows: A given system of successive displacements is to be 

composed into a defining displacement, and at the same time, a system of forces that that 

proportional to the given successive rotations for each displacement that are applied along the 

same axes as those rotation. If one does not suppose that the translations of the successive 

displacements are implicitly included in the rotations by way of their representation as pairs of 

rotations then they will be represented in the system of forces considered by pairs of forces whose 

moments are equal to those of the translations relative to the three coordinate axes, and the system 

of successive displacements will then come down to a defining displacement that is composed of 

a rotation and an absolute translation relative to the central axis of rotation. Similarly, the system 

of forces will resolve by the successive composition of its elements into just one force and just one 

force-couple that is situated in a plane normal to the resultant force. That resultant force is applied 

to the central axis of the defining displacement, which will be, at the same time, the central axis 

of the static system. It will be proportional to the resultant rotation, and moment of the couple 

normal to that force will be proportional to the absolute translation of the system that acts parallel 

to the central axis. When the axes of rotations to be composed are all parallel and pass through 

well-defined points, the central axis that results from them will also be parallel and pass through a 

certain point that corresponds to the center of the parallel forces, and it will always be the same no 

matter what the direction of the axes of rotation might be, and it is nothing but the center of gravity 

of some well-defined points along the axes of the component rotations when all of the rotations 

are equal (*). 

 
 (*) Just as any arbitrary number of successive infinitely-small rotations that are performed on a solid around 

different fixed axes reduces to two conjugate rotations in an infinitude of ways, similarly, any system of forces that 

are applied to a solid can be represented in an infinitude of ways by two conjugate forces whose product, multiplied 

by the distance that separates them and the sine of their direction, is constant. 
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 Indeed, the equations of the central axis that result from composing the fixed axes of rotation 

reduce to: 

y cos l – z cos h + 







 = 0 ,  x cos h – y cos g + 







 = 0 ,  

 

in this case, and one will have: 

 

T = 0 ,  =   =   =   (Z cos h – Y cos l) ,  etc., 

 

in which X, Y, Z denote the coordinates of the axis of rotation , so the resultant axis will pass 

through the point whose coordinates are: 

 

x = 
X






, y = 
Y






, z = 
Z






. 

 

On the determination of the variations of the coordinates of a solid system that are due to an 

arbitrary displacement of that system, analytically deduced from the conditions of invariability 

of that system 

 

 27. – The consideration of the displacement of coordinate axes that are supposed to be 

invariably coupled with the displaced system leads immediately to the algebraic expression for the 

variations of the coordinates of that system and it all comes down to reducing the number of 

arbitrary constants that are present in the calculations to a minimum, as one will see. 

 Indeed, if one lets a, b, c, a ,b , c , a ,b , c  denote the cosines of the angles that the displaced 

coordinate axes form with their original directions then the coordinates x + x, y + y, z + z of a 

point of the system after displacement, when referred to the original position of the coordinate 

axes, can be expressed as functions of the coordinates of that same displaced point when they are 

referred to the displaced axes, and they will be the same as those of the point considered in the 

first position, when referred to the first axes according to known formulas for the transformation 

of the rectangular coordinates. One will then have the following three equations: 

 

  x + x =  + a  x + b y + c z , 

  y + y =  + a x b y c z  + + , 

  z + z =   + a x b y c z  + + , 

 

by means of which x, y, z are generally found to be expressed, no matter what the displacement 

of the solid might be, as linear functions of the coordinates x, y, z that include twelve arbitrary 

coefficients that actually reduce to six constants, because the first three of them , ,  express the 

variation of the coordinates of the origin, and the other three a,b , c , by means of which one 

eliminates the other six cosines using the Monge formulas, define the change of direction in the 

space of the original coordinate axes. 
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 However, the reduction of those twelve constants to six can be achieved even more simply 

without the use of the Monge formulas, which are complicated and radical, and along a path that, 

will lead to less-complicated analytical expressions for x, y, z relative to the variables x, y, z. 

Indeed, introduce the coordinates x, y, z of the midpoint of the line that joins the two corresponding 

positions of the point x, y, z into the equations above in such a way that one has: 

 

x = x – 1
2

x ,  y = y – 1
2

y ,  z = z – 1
2

z . 

 

In order to combine those three equations into just one, multiply them by the three undetermined 

factors , , , and additionally consider the single equation: 

 
1 1 1
2 2 2

( ) ( ) ( )x a a a y b b b z c c c                 + + + +  + + + +  + + +  

 

= ( ) x ( ) y ( )za a a b b b c c c                   + + + + + − + + + − + + + − . 

 

In order to determine x, one must give values to m, n, p in that equation that will annul the 

coefficients of y, z, i.e., one must set: 

 

b b b    + + +  = 0 , c c c    + + +  = 0 , 

 

from which, one infers that: 

 

 = (1 )(1 )b c c b   + + − ,  = (1 )a b c − +  ,  = (1 )bc c b − + . 

 

Now, as one knows, there exist the following relations between the nine cosines a, b, c, a ,b , c ,

a ,b , c : 

  a = b c c b   − , a  = cb bc − , a  = bc cb − , 

  b = c a a c   − , b  = ac c a − , b  = c a a c − , 

  c = c b b c   − , c  = ba ab − , c  = ab ba − , 

 

from which, one deduces these six other ones: 

 

  
2 2 2a a a + +  = 1 , 

2 2 2b b b + +  = 1 , 
2 2 2c c c + +  = 0 , 

  ab a b a b   + +  = 0 , ac a c a c   + +  = 0 , bc b c b c   + +  = 0 , 

 

which express the idea that the original axes and the new ones are rectangular. The ambiguity in 

the signs that presents itself in the logic in question is resolved by another condition that is 

completely necessary in the consideration of the displacement of a solid system, namely: The new 

system of coordinate axes that is produced by the displacement of the first axes, along with the 

first one, will always remain subject to the conditions of superposition that are possible for each 

respective axis and its correspondent. 
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 Having said that, it is clear that due to the relations above, one has: 

 

 = 1 a b c + + + ,  = a b− ,  = a c − , 

so one infers that: 

a a a   + +  = 1 + a + b c +  =  , 

which gives: 

x –  = 
1 1
2 2

2[(y )( ) (z )( )

1

b a b a

a b c

  − − − − −

 + + +
 , 

and one will similarly have: 

 

  y –  = 
1 1
2 2

2[(z )( ) (x )( )

1

c b b a

a b c

   − − − − −

 + + +
 , 

 

  z –  = 
1 1
2 2

2[(x )( ) (y )( )

1

a c c b

a b c

   − − − − −

 + + +
 , 

 

which are formulas that will become identical to the ones in no. 15 upon setting: 

 

m = 
2( )

1

c b

a b c

 −

 + + +
 , n = 

2( )

1

a c

a b c

 −

 + + +
, p = 

2( )

1

b a

a b c

−

 + + +
. 

 

 

 28. – In the case of infinitely-small displacements, upon neglecting the second-order angular 

displacement, one will have: 

a = 1 , b  = 1 , c  = 1 

directly, which will give: 

 

 x =  + b y + c z ,  y = a x c z  + + ,  z = a x b y  + + , 

 

and since the distance from an arbitrary point to the origin is invariable under the displacement of 

the system, one will have: 

x ( x – ) + y ( y – ) + z ( z – ) = 0 

 

for any x, y, z, so the following relations will necessarily exist between the cosines b, c, a , c , 

,a  b  which are infinitely-small of order one: 

 

b + a  = 0 ,  c + a  = 0 , c b +  = 0 , 

and one will finally have: 

 

 x =  + p y – n z ,  y = b + m z – p x ,  z =  + n x – m y  
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then upon setting: 

m = c  = − b , n = a  = − c ,  p = b = − a . 

 

 

 29. – However, it is interesting to arrive at the same formulas for the finite or infinitesimal 

variations of the coordinates of a solid system along a purely-algebraic path that is independent of 

any geometric considerations by starting from the algorithmic expression for the conditions of the 

problem, i.e., the invariability of the distance between the points of that solid. 

 Therefore, let: 

x0, x1, x2, x,  y0, y1, y2, y, z0, z1, z2, z 

 

be the coordinates of four points that are invariably coupled to each other and belong to the system 

that one considers, the first three of which are specially chosen so that one can refer the other ones 

to them. The distances between those four points must remain constant, no matter what the 

variations of their coordinates as a result of an arbitrary displacement of the system, so when that 

condition is expressed algorithmically, it will give the following six equations between the 

variations of those twelve coordinates: 

 

 2 2 2

1 1 0 0 1 1 0 0 1 1 0 0( ) ( ) ( )x x x x y y y y z z z z+  − − + +  − − + +  − −  = 2 2 2

1 0 1 0 1 0( ) ( ) ( )x x y y z z− + − + − , 

 2 2 2

2 2 0 0 2 2 0 0 2 2 0 0( ) ( ) ( )x x x x y y y y z z z z+  − − + +  − − + +  − −  = 2 2 2

2 0 2 0 2 0( ) ( ) ( )x x y y z z− + − + − , 

 2 2 2

2 2 1 1 2 2 1 1 2 2 1 1( ) ( ) ( )x x x x y y y y z z z z+  − − + +  − − + +  − −   = 2 2 2

2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + − , 

 2 2 2

0 0 0 0 0 0( ) ( ) ( )x x x x y y y y z z z z+  − − + +  − − + +  − −   = 2 2 2

0 0 0( ) ( ) ( )x x y y z z− + − + − , 

 2 2 2

1 1 1 1 1 1( ) ( ) ( )x x x x y y y y z z z z+  − − + +  − − + +  − −   = 2 2 2

1 0 1 0 1 0( ) ( ) ( )x x y y z z− + − + − , 

 2 2 2

2 2 2 2 2 2( ) ( ) ( )x x x x y y y y z z z z+  − − + +  − − + +  − −  = 2 2 2

2 2 2( ) ( ) ( )x x y y z z− + − + − . 

 

Those six equations serve to determine x, y, z as functions of the variations of the coordinates 

of the first three points, which must reduce to six constants as a result of the three equations that 

coupled them. 

 One essentially comes down to solving the six equations, and although they are of degree two 

with respect to the variations x, y, z, they will become linear when one replaces the variables 

x, y, z with these ones: 

x = x + 1
2

x , y = y + 1
2

y , z = z + 1
2

z , 

 

and similarly for the other points: The system of six equations above can then be written as: 

 

  (x – x0) (x – x0) + (y – y0) (y – y0) + (z – z0) (z – z0)  = 0 , 

 

  (x – x0) (x1 – x0) + (y – y0) (y1 – y0) + (z – z0) (z1 – z0) 

  + (x1 – x0) (x – x0) + (y1 – y0) (y – y0) + (z1 – z0) (z – z0)  = 0  

 

  (x – x0) (x2 – x0) + (y – y0) (y2 – y0) + (z – z0) (z2 – z0) 
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  + (x2 – x0) (x – x0) + (y2 – y0) (y – y0) + (z2 – z0) (z – z0) = 0  

 

  (x1 – x0) (x1 – x0) + (y1 – y0) (y1 – y0) + (z1 – z0) (z1 – z0) = 0 , 

 

  (x2 – x0) (x2 – x0) + (y2 – y0) (y2 – y0) + (z2 – z0) (z2 – z0) = 0 , 

 

  (x1 – x0) (x2 – x0) + (y1 – y0) (y2 – y0) + (z1 – z0) (z2 – z0) 

  + (x2 – x0) (x1 – x0) + (y2 – y0) (y1 – y0) + (z2 – z0) (z1 – z0)  = 0 . 

 

Upon multiplying those six equations by the undetermined factors 2 ,  ,  , 2 , 2 ,  , in 

succession, and adding them, one will form the following complex equation, which includes the 

system of the first six: 

 

0 1 0 2 0 0 1 0 2 0

0 1 0 2 0 0 1 0 2 0

0 1 0 2 0 0 1 0 2 0

[ (x x ) (x x ) (x x )][ ( ) ( ) ( )]

[ (y y ) (y y ) (y y )][ ( ) ( ) ( )]

[ (z z ) (z z ) (z z )][ ( ) ( ) ( )]

x x x x x x

y y y y y y

z z z z z z

     

     

     

− + − + −  −  +  −  +  −  


+ − + − + −  −  +  −  +  −  
+ − + − + −  −  +  −  +  −  

 = 0 . 

 

 Upon choosing , ,  conveniently, one will successively reduce that equation to one that 

contains only x, y, z, and one can then deduces the values of those variations from it in the 

simplest manner. Indeed, set: 

   (y – y0) +  (y1 – y0) +  (y2 – y0) = 0 , 

    (z – z0)  +  (z1 – z0) +  (z2 – z0)  = 0 , 

 

so the general equation reduces to: 

 

[ (x – x0) +  (x1 – x0) +  (x2 – x0)] [ (x – x0) +  (x1 – x0) +  (x2 – x0)] = 0 . 

 

Now, the first factor of that product cannot be zero unless the second is likewise zero, as will be 

proved below. One will then have, simultaneously: 

 

   (x – x0) +  (x1 – x0) +  (x2 – x0)  = 0 , 

   (y – y0) +  (y1 – y0)  +  (y2 – y0)  = 0 , 

   (z – z0) +  (z1 – z0)  +  (z2 – z0)  = 0 , 

 

which are equations that obviously transform into these ones: 

 

  x1 – x0 = p (y1 – y0) – n (z1 – z0) , 

  x2 – x0 = p (y2 – y0) – n (z2 – z0) , 

  x – x0  = p (x1 – x0) – n (z – z0) , 
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in which n and p are two constants that are coupled with the variations of the first three points by 

the first two of those three equations. 

 The same analysis will give: 

 

y – y0 = 0 0(z z ) (x x )m p − − − , 

z – z0 = 0 0(x x ) (y y )n m − − − , 

and since one has: 

 

(x – x0) (x – x0) + (y – y0) (y – y0) + (z – z0) (z – z0) = 0 , 

 

it will then follow that m= m, n  = n, p  = p, and that one will finally have the following general 

formulas: 

x =  + p y – n z , 

y =  + m z – p x , 

z =  + n x – m y , 

 

in which the six constants , , , m, n, p are functions of the variations: 

 

x0 , x1, x2,   y0, y1, y2,   z0, z1, z2 . 

 

 

 30. – However, it remains for us to prove our assertion that the factor  (x – x0) +  (x1 – x0) + 

 (x2 – x0) cannot be zero in the problem at hand without the second factor: 

 

 (x – x0) +  (x1 – x0) +  (x2 – x0) 

 

being likewise. Indeed, upon eliminating the factors , , , the three simultaneous equations: 

 

   (x – x0) +  (x1 – x0) +  (x2 – x0) = 0 , 

   (y – y0) +  (y1 – y0) +  (y2 – y0)  = 0 , 

   (z – z0) +  (z1 – z0)  +  (z2 – z0)  = 0 

 

will give a final equation between the coordinates x0, x1, x2, x, y0, y1, y2, y, z0, z1, z2, z that expresses 

the idea that the midpoints of the lines that are traversed by the four points that we consider are in 

the same plane. However, that singular condition cannot be fulfilled unless the pyramids that are 

formed by those four points in their first and second positions will be symmetric, instead of 

identical or superposable. That second hypothesis is not admissible in the problem to be solved. 

However, the first one must be examined. Therefore, if the four given points are in the same plane 

then we will say that we have both: 

 

 (x – x0) +  (x1 – x0) +  (x2 – x0) = 0 ,  (x – x0) +  (x1 – x0) +  (x2 – x0) = 0 , 
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and similarly for the variables y, z, and the variations y, z. 

 Indeed, if the four points considered are in the same plane, as well as their correspondents, then 

one will have, simultaneously, upon distinguishing the coordinates of the latter by a prime: 

 

 g (x – x0) + h (x1 – x0) + l (x2 – x0) = 0 , 0 1 0 2 0( ) ( ) ( )g x x h x x l x x        − + − + −  = 0 , 

 g (y – y0) + h (y1 – y0) + l (y2 – y0)  = 0 , 0 1 0 2 0( ) ( ) ( )g y y h y y l y y        − + − + − = 0 , 

 g (z – z0) + h (z1 – z0) + l (z2 – z0)  = 0 , 0 1 0 2 0( ) ( ) ( )g z z h z z l z z        − + − + −   = 0 , 

 

in which g, h, l, g  , h , l  are coefficients to be eliminated. Since one has: 

 

(x – x0)
2 + (y – y0)

2 + (z – z0)
2 = 2 2 2

0 0 0( ) ( ) ( )x x y y z z     − + − + − , 

 

  (x – x0) (x1 – x0) + (y – y0) (y1 – y0) + (z – z0) (z1 – z0) 

= 0 1 0 0 1 0 0 1 0( ) ( ) ( ) ( ) ( ) ( )x x x x y y y y z z z z           − − + − − + − − , etc., 

 

by the invariability of the distances, and the ratios h / g, /h g  , l / g, /l g   will be functions that 

are identical to those same quantities, will then follow that they are equal and that one can suppose 

that g   = g, h  = h, l  = l, from which, upon introducing the coordinates of the midpoint x = 

( ) / 2x x+ , etc., and the differences x, y, etc., one can conclude that one also has: 

 

  g (x – x0) + h (x1 – x0) + l (x2 – x0) = 0 , 

  g (y – y0) + h (y1 – y0) + l (y2 – y0) = 0 , 

  g (z – z0) + h (z1 – z0)  + l (z2 – z0) = 0 , 

 

  g (x – x0) + h (x1 – x0) + l (x2 – x0) = 0 , 

  g (y – y0) + h (y1 – y0) + l (y2 – y0) = 0 , 

  g (z – z0) + h (z1 – z0)  + l (z2 – z0) = 0 . 

 

When the first three equations are compared to the given three in terms of , , , that will show 

the proportionality of the coefficients g, h, l to the latter ones, and that will finally lead to the 

equation: 

   (x – x0) +  (x1 – x0) +  (x2 – x0) = 0 , 

 

which was to be established. 

 

 

 34. – The two analytical methods that we just presented for determining the formulas for the 

variations of the coordinates of a solid system are deduced by purely-algebraic processes. The 

infinitesimal algorithm again provides a simpler proof of those formulas that is close to the one 
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that Lagrange gave in his Mécanique, and includes expressions for the finite, as well as infinitely-

small, variations in the same analysis. Here is that proof: 

 One lets  denote the infinitely-small differences in the coordinates of a point of the system 

from those of an infinitely-close point in the undisplaced systems, since according to whether one 

considers a finite or infinitely-small displacement of that system, the symbol  or  for the 

variations of those coordinates will be due to that displacement itself. One must generally 

determine the variations x, y, z by means of the following equation, which includes the 

simplest algorithmic expression for the invariability of the mutual distances between all points of 

the system: 
2 2 2( )dx dy dz + + = 0 . 

Now, upon setting: 

x = x + 1
2

x , y = y + 1
2

y , z = z + 1
2

z , 

that equation will become: 

dx d x + dy d y + dz d z = 0 

 

by means of the rule for the inversion of the symbols , , and it must be satisfied in the most-

general manner. To that end, consider x, y, z to be functions of the independent variables x, y, 

z. The equation above will first produce the following integral upon considering dx, dy, dz to be 

constants: 

2 2 2

x y z

x y z

d x d y d z

d d d

 +  + 

+ +
 = constant, 

 

which is the algorithmic translation of the property of the quadrilateral whose two opposite sides 

are equal that consists of the fact that those sides and the other two will project equally onto the 

line that joins the midpoints of the latter. However, the equation: 

 

dx d x + dy d y + dz d z = 0 

will become: 

 

2 2 2x y z x y x z y z
x y z y x z x z y

d x d y d z d x d y d x d z d y d z
d d d d d d d d d

d d d d d d d d d

            
+ + + + + + + +    

    
 = 0 

 

when one substitutes partial differentials for the complete differentials, and due to the 

independence of the differentials dx, dy, dz, that will give these six other ones: 

 

x

d x

d


 = 0 ,      

y

d y

d


 = 0 ,      

z

d z

d


= 0 ,  

 

y x

d x d y

d d

 
+  = 0 , 

z x

d x d z

d d

 
+  = 0 , 

z y

d y d z

d d

 
+  = 0 . 
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That system of six equation is easily integrated. The first three show that the variations x, y, z 

are formulated independently of the variables x, y, z, respectively. Consequently, the same thing 

will be true of their derivatives, so it is easy to conclude that those six derivatives are constants 

that are pairwise equal and of opposite sign, which will finally produce the expressions to which 

we arrived before: 

 

x =  + p y – n z ,  y =  + m z – p x ,   z =  + n x – m y . 

 

We shall not return to the transformations that those formulas will experience when we reestablish 

the variables x, y, z. It suffices for us to have shown how the method of variations applies to the 

search for those formulas and gives the finite and infinitesimal variations of the coordinates of a 

solid system in the same algorithmic form, with the one difference that the coordinates of the 

displaced points are replaced with those of the midpoint of the space that is traversed by those 

points along a straight line in the case of finite variations. 

 

 

 32. – To conclude this work, it now remains for us to rapidly deduce the geometric laws of the 

displacement of a solid body that we first presented synthetically from the expressions for those 

variations, and to take our initial analysis for the starting point. 

 The formulas: 

 

x =  + p y – n z ,  y =  + m z – p x ,   z =  + n x – m y 

 

immediately give the following fundamental relation: 

 

m x + n y + p x =  m +  n +  p , 

 

from which, one sees that the lines that are actually traversed by all points of the system upon 

passing from one position to the other are all equally projected onto the same direction (m, n, p). 

Upon denoting the angles of that direction by g, h, l, and letting t denote their common projections, 

one will have: 

cos g x + cos h y + cos l z = t 

 

for all points of the displaced system, and for two different points: 

 

cos ( ) cos ( ) cos ( )g x x h y y l z z   −  +  −  +  −   = 0 . 

 

x − x , y − y , z − z  measure the projections onto the respective coordinate axes of the 

chord of the arc that is described by the first point around an axis of rotation that is drawn through 

the second point ( , , )x y z    parallel to the direction (m, n, p). If one lets  denote the angle of that 

rotation and lets u denote the distance from that chord to that axis of rotation then one will 

obviously have: 
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2 2 1
2

4 tanu   = 
2 2 2

2 2 2 2 2 2

( ) ( ) ( ) ,

( ){(x x ) (y y ) [(x x )cos (y y )cos ( )cos ] }

x x y y z z

m n p g h z z g

    −  +  −  +  − 


    + + − + − − − + − + −
 

 
2u  = 2 2 2 2(x x ) (y y ) (z z ) [(x x )cos (y y )cos (z z )cos ]g h l     − + − + − − − + − + − . 

 

One will then have: 
2 1

2
4tan   = 2 2 2m n p+ +  

 

for any points considered. Therefore, the given displacement of a solid from one position to another 

can always result from two consecutive displacements by rotation and translation, as was explained 

at the beginning of this article. 

 Furthermore, let  be the amplitude of the angular displacement of a line in the solid, let  be 

the angle that it forms with the direction of the axis of rotation, and let x, y, z, x , y , z  be the 

coordinates of two points on that line. One will have: 

 

cos  = 
2 2 2

( )cos ( )cos ( )cos

( ) ( ) ( )

x x g y y h z z l

x x y y z z

  − + − + −

  − + − + −
 , 

 

and due to the invariability of the mutual distances between the points of that solid: 

 

 cos  = 
2 2 2

( )cos ( )cos ( )cos

( ) ( ) ( )

x x g y y h z z l

x x y y z z

   −  +  −  +  − 

  − + − + −
 = 0 . 

 

The angle  will remain the same before and after the displacement. As for the angle , one will 

have: 

cos  = 
2 2 2

( )( ) ( )( ) ( )( )

( ) ( ) ( )

x x x x x x y y y y y y z z z z z z

x x y y z z

        − − +  −  + − − +  −  + − − +  − 

  − + − + −
 . 

 

Finally, one has the remarkable relation: 

 
1
2

sin   = 1
2

sin sin  , 

 

which expresses the theorem that was stated in no. 5. 

 The lines parallel to the direction of the axis of rotation are then transported parallel to 

themselves. Among all of those lines, there is one of them that only slides along itself, and for 

which the variations x, y, z must obviously be proportional to the cosines of the angles g, h, l. 

The equations for that line will then be: 
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cos

x

g


 = 

cos

y

h


 = 

cos

y

l


 = t , 

and since one has: 

x = x + 1
2

x , y = y + 1
2

y , z = z + 1
2

z , 

one will have: 

  p y – n z +  = t cos g , 

  m z – p x +  = t cos h , 

  n x – m y +  = t cos l , 

… 

 

for the equations of the central axis of the displacement, which we gave already in no. 16. 

 

 

CONCLUSION. – The general law of statics. 

 

 33. – Geometry considers finite or infinitesimal displacements of solid bodies that are due to 

the successive action of causes or forces that are capable of producing them. 

 Mechanics considers the consecutive displacements of solid bodies, and more generally, those 

of arbitrary systems of points that are due to the simultaneous and prolonged action of cause or 

forces that are capable of producing them. 

 Statics is the first branch of mechanics in which one considers only the possibility of infinitely-

small – or virtual – displacements of those systems that result from the simultaneous and 

discontinuous action of the same causes. 

 Geometry teaches that the displacement of a solid body reduces to turning around one or two 

fixed axes. 

 It then results that if the forces that act simultaneously on a solid system cannot impose any 

rotation around an arbitrary fixed axis on it then those forces must be in equilibrium or be 

neutralized, and the body will remain immobile. 

 When considered separately, those forces can act in only two manners: Either they tend to 

make the solid body turn around a fixed axis or they will tend to displace a certain point of the 

system, or more expressively, they will vary the coordinates of that point. That is the most general 

manner of considering and examining the action of forces in mechanics. 

 Nonetheless, the law of equilibrium is identical in those two ways of looking at things, as we 

will see. 

 If the arbitrary forces or cause of the displacement tend to impose elementary or virtual 

rotations ,  ,  , … around fixed, well-defined axes on a solid, in succession or simultaneously, 

then upon passing to the limits, i.e., upon passing from geometry to mechanics, the law of 

equilibrium of those forces will consist of saying that the sum of the moments of those rotations 

should be zero with respect to an arbitrary axis. 

 The equation: 

sinD   = 0 , 
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which is the algorithmic translation of that law, implies six specialized equations due to the 

indeterminacy in that arbitrary axis, which will reduce to three when that solid system reduces to 

a point. 

 Let us now examine what happens when the forces that act simultaneously on the solid 

separately tend to make the coordinates of the various points of that system vary. Any displacement 

is referred virtually to a fixed axis of rotation, so it will suffice to consider the variations of the 

coordinates of each point that might result from the action of the forces that act on that point 

orthogonally to that same fixed axis, whose resistance will oppose any variation of its other 

rectangular coordinate axes. 

 Now, it is obvious that the infinitely-small displacement of a point can be considered to be 

performed successively with respect to each of the rectangular coordinates of that point, so the 

variation of each of those coordinates is equal to the projection of the total displacement onto the 

direction of that coordinate, moreover. It then results that for any system in which one finds a fixed 

axis, the forces that act upon a point of that system can actually only vary the coordinate that point 

orthogonally to that fixed axis. 

 On the other hand, due to the invariability of the system, it is obvious that when two equal 

forces act upon the same point, they will be found to be in equilibrium: 

 

 1. If they tend to vary its coordinates equally, but in the opposite sense. 

 

 2. If they are applied to the extremities of an invariable line, but in the opposite sense. 

 

 3. If they tend to make a circumference turn in opposite sense whose center is fixed and lies 

in a plane to which they are applied tangentially. 

 

 4. If, more generally, they tend to make a right cylinder turn in contrary senses whose axis is 

fixed and on whose surface they are orthogonally tangent to its axis. 

 

 It results from those proposition that if one considers all forces that tend to displace the various 

points of a solid system in which one finds a fixed axis along given direction and imposes given 

virtual translations upon them then there will be equilibrium between all of those forces if, upon 

supposing that they are all applied to points that are equidistant from the fixed axis (which is 

always possible), the sum of the moments of the virtual translations that measure the effect of those 

forces is zero with respect to that axis. 

 Upon passing from a well-defined fixed axis to an arbitrary one, it will necessarily follow that 

the general equation: 

sinD   = 0 

 

is the algorithmic translation of the equilibrium of a system of forces that is capable of producing 

virtual or infinitely-small translations that are proportional to the rotations ,  ,  , …, those 

forces being applied to the axes of those rotations positively or negatively, according to the sign of 

those rotations. 
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 That explains the very remarkably analogy between the laws of equilibrium, and consequently, 

those of the composition of infinitely-small rotations, and the laws of equilibrium and composition 

of forces that are considered in statics. 

 If one generally denotes those forces by finite quantities P, P  , … that are proportional to the 

virtual translations that they tend to impose then the equation of the equilibrium will be: 

 

sinP D   = 0 . 

 

The general term P D sin  expresses the static moment of the force P relative to the fixed axis and 

is equal to the product of the distance from the point of application of that force to the fixed axis, 

multiplied by the component of that force orthogonal to the same axis. 

 The conditions for the equilibrium of the forces that are applied to a solid system, namely, that 

the second consideration of couples, however admirably ingenious, which reduces to two 

conditions in finite terms, is therefore comprised of just one law that is likewise expressed in finite 

terms, which consists of saying that the sum of the moments or the forces on the system is zero 

with respect to an arbitrary axis. 

 That law is general, and like the principle of virtual velocities, which applies to only 

infinitesimal transformations, it applies to the equilibrium of any system, whether invariable or 

not, provided that the conditions of constraint of the points of that system can be replaced by the 

introduction of forces that permit one to regard those points as entirely free, which are forces that 

analysis will then determine and eliminate from equations that give the equilibrium of each point. 

 By means of that introduction, the law of equilibrium of a point immediately implies that of a 

solid system. We shall not stop to dwell upon that here. We remark only that in this particular case, 

the forces that were introduced are pairwise equal and opposite in sign, so the sum of the moments 

of all of the forces that are applied to all points, which must be zero for equilibrium, will contain 

only those given forces, and will thus express the law of equilibrium of a point or several points 

that are entirely free, and that of an invariable system as an identity. 

 

On the equation of virtual velocity 

 

 If the force P tends to vary the coordinate p then the product P p will be equal to P D  sin , 

and D  sin  expresses the moment of the virtual rotation , under the hypothesis that the 

infinitely-small displacement of the system is arbitrary, which will produce variations of the 

coordinates of that system that are characterized by the symbol . 

 Indeed, since that infinitely-small displacement reduces a fortiori to one of two successive 

rotations, one must consider it only the first one or its single rotation virtually. Moreover, the 

infinitely-small arc that is described by the point of application of the force P, when projected onto 

the direction of that force, is found to be equal to the variation itself of the coordinate p along 

which that force acts, which will give: 

 

 p =  D sin  , P  p =  P D sin  . 
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The general equation of equilibrium of those forces: 

 

sinP D   = 0 

is then transformed into this one: 

P p  = 0 , 

 

which expresses the idea that the forces will be in equilibrium in a solid system if that system is 

perturbed infinitely little from its current position by an arbitrary cause, and the sum of the forces, 

multiplied by the infinitely-small lengths that are traversed by the points of that system in the 

direction of those respective forces must be zero, and conversely, which is the statement of the 

principle of virtual velocities. 

 Algorithmically speaking, that equation is indeed superior to the first one, but it is not 

fundamentally more general. However, it expresses, and as simply as possible, the law of 

equilibrium of all systems in which the conditions of constraint are capable of being translated into 

linear equations between the variations of the coordinates of the various points of the system. 

 Indeed, those conditions are expressed by equations such as: 

 

 L = 0 , L   = 0 , L   = 0 , 

 

or more generally, by just one equation such as: 

 

L L L       + + +  = 0 , 

 

in which ,  ,   are arbitrary multipliers, and one denotes the coefficients of the variations  x, 

 y,  z by X, Y, Z in that equation. If one lets r denote a linear quantity whose direction is (X, Y, 

Z), while R is a force that is applied to the point (x, y, z) in the direction of that line in which it 

tends make the point vary, which is equal to 2 2 2X Y Z+ + , then one will have: 

 

 r = 
2 2 2

X x Y y Z z

X Y Z

  + +

+ +
, 

 

and similarly, for r  , r  , … The equation above will then take the form: 

 

R r R r R r     + + +  = 0 , 

and the two equations: 

 

P p  = 0 ,  P p R r R r R r      + + + +  = 0 
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will have the same generality, in which the variations are constrained in the first one by the 

equations of condition and are completely independent in that second one. Now, in the latter case, 

the equation: 

P p R r R r R r      + + + +  = 0 , 

 

which expresses the equilibrium condition for all points of the system when they are free from any 

constraint, but subject to the forces that were given originally P, P  , P , …, and to other forces 

R, R  , R , … that have statically replaced the conditions of constraint that were supposed. 

 The elimination of R, R  , R  from the particular equations that are included in the preceding 

equation will provide the definitive equations of equilibrium for the first forces, which would result 

from the constraint on the system. Conversely, if those equations are true then one will have 

equilibrium because the forces R, R  , R  are, at the same time, found to be determinate, and the 

equation: 

P p R r R r R r      + + + +  = 0 , 

 

with independent variations, established the immobility of all points of the system as a result of 

the action of the given forces and the ones that statically equivalent to the given constraint on the 

various points of the system. 

 When the system that one considers is continuous, the equations of condition will include 

definite integrals that represent, in some way, an infinite number of linear conditions between the 

variations of the coordinates of the system. The arbitrary multipliers appear within that integral 

sign, so it remains for one to obtain the variations by a method that is entirely analytical and 

independent of any static consideration. One will easily arrive there by the following general 

formula: 

1 2 3

n

nS U dx dx dx dx  = 1 2
1 2 3

1 2

n n
n

n

d xd x d x
S dx dx dx dx U U

dx dx dx

 


  
+ + + +  

  

 , 

 

in which U is an arbitrary function of the independent variables x1, x2, x3, …, xn , and the symbol 
nS  denote a definite multiple integral of order n. 
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