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From the work ] (%) of Lorentz, Hilbert, De Donder, F. Klein, and Weyl,eon
recognizes the close relationship that links the enemgyentum tensor of an arbitrary
system of physical agencies, such as material parbclas electromagnetic field, to the
gravitational field. In principle, that relation wiélutomatically lead to a well-defined
symmetric form for that tensor once one has givenegoression for the Lagrange
function of the system considered that is invariant urerbitrary spatio-temporal
coordinate transformation. However, on first glantemight seem that this general
procedure for constructing the energy-momentum tendbpresent practical difficulties
in it application, since it seems to necessitate ap@onsiderations in each case and
calculations that depend upon the gravitational potentialsupon variables that are not
directly related to the problem and whose influence isegdly negligible from an
empirical viewpoint. That is why one often prefergéeort to procedures that are less
direct, but immediately applicable to a Lagrange functi@t is invariant under only the
Lorentz group. Nevertheless, these procedures themsals@snecessitate a special
study in each case, notably, in order to insure that theedetensor has a symmetric
form [2], in such a way that no practical advantage will corapn for the small
satisfaction that is derived from not taking into accatlnet profound relationship that
exists between the energy-momentum tensor and theag@meariance of the Lagrange
function.

Meanwhile, it seems that the problem is susceptiblestdugion that presents none of
the inconveniences that were just mentioned. Indeed¢@mféms that upon taking into
account the invariance properties of the Lagrange fumtio a manner that is as
complete as possible, one will arrive at a general ssme for the energy-momentum
tensor by a very simple and direct path whose “spe@aith (i.e., invariant under only
the Lorentz group) can be specified immediately in evgrgcial case when one
recognizes the “special” form of the corresponding Laggannction. It is the deduction
of that expression, under conditions of generality #raompass all of the cases that

() Numbers in square brackets refer to the bibliographyp 23.
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have peresented themselves in physics up to now, that themabjective of these present
study ().

8 1. Thedefinition of the energy-momentum tensor

We begin by recalling how the energy-momentum tensamtieduced within the
context of the deduction of the gravitational field equaiovhen one starts with a
Lagrange function. The gravitational field admits two eal@nt specifications, both of
which we will have to consider: With the first one, fledd variables are the components
of a metric tensog, . With the second one]J, one introduces a “vierbein” at every

point, or a set of four orthogonal vectdrj‘é’) (w=1, 2, 3, 4), with whose help the metric
tensor can be defined){(

0 w#v,
(1) Om=duw K*HY  in which Ouv) = +1 u=v=123,
-1 u=v=4.

Whenever we do not need to specify which choice of thesedescriptions was
made, we will denote the gravitational variables @y, where y is a fixed ordinal
number. Since these variables play only an auxiliary f@l us, it will be pointless to
imagine quantizing them, and we will treat them as snpalrameters (i.e.c-numbers”)
in all of the following calculations.

The Lagrange function of a system that is composed gfavitational field and
certain physical agencies that are capable of gengtdit field is the sum of a term that
relates to the only the gravitational fields and anotkem that refers to the physical
agencies and their interaction with the gravitatiomaldf These two terms are both
integrals of scalar densiti€gsand £ that depend upon th@, and their derivatives over

the spatio-temporal region that is occupied by the systdéf we denote an arbitrary
choice of independent combination of ®gthat is homogeneous of degree oneQy

then we will get the field equations of gravitation by s$fygrg that the Lagrange
function of the total system should be an extremunafbitrary variations of th€, that

go to zero on the boundary. With the aid of an integndiypparts, that condition:

5j(g+c)dw =0 dw=dx" dx dx¢ dxh,

() While the present paper (whose publication was deldyedarious corrections) was already
complete, some results that coincide essentially wighohes in 8 5 were published by F. BELINFANTE
[Physica,6 (1939), pp. 887]. On the other hand, | was kindly informedafiat having been made aware
of my manuscript, he himself quite recently recovered Wwis i@sults by a method that is quite analogous
to the one that forms the objective of this paper it several interesting differences. Given the didacti
form of my treatise, its present publication with nodifications might nonetheless offer some utility,
since it presents a general view of a methodologs¢a of a problem that Belinfante first published the
solution to.

(® One adopts the usual convention of summing over any mtlie¢ appear twice in the same term.
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will take the form:
o(G+L)
—=__"750Q_dw=0,
.[ 5Q17 QV

in which the coefficient 0foQ, defines the “variational derivative4] of the density
functionG + £ with respect tdQ_ ; one deduces the field equations from that:

o %t
SHRNF)

In this form, the left-hand side will contain orgyavitational variables, while the right-
hand side, which presents the role of the physigahcies as sources of the gravitational
field precisely, will determine the “energy-momemtuensor density” of the system
considered.

If the variables that specify the nature of thistem do not involve spinorial
guantities, such as the wave functions of elemgntaterial particles of spin 1 / 2, then
we can adopt the usual description of the grawitetii with the help of thgn; otherwise,

the function£ will depend upon the vierbeinlsf") in a manner that is not rationally

reducible to thaym, and it would be advantageous to choose thesbeier to represent
the field. In the former situation, equations (#2juld give us the components of the
energy-momentum tensor density directly, in the reygtmic form:

3) 7= 7l = —[£+£j.
5glm 5gml

In order to see how to generalize this definittonthe case in whicl depends
essentially upon thé]f") , it will suffice to observe that for any functigauch agj) that
depends upon the*’ only by the intermediary of thgm, one will have 4):

6G _ G 0g,,
Sh® " &g, oh#)

(4)

Therefore, since from (1), one will have:

a j eV j k(v
(5) S = g {1 + ).
i

one can infer that:

oG oG . oG
6 (1) — = mii -
© o {59@ +5ng ’
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One then sees that in this case the energy-momeensor density will be given by:

N 7
(7) T == N
]

h(#) ,
which is an expression that, from (6), will reduce3pwhenZ contains theh* only by

the intermediary of thgm . The condition of symmetry with respect to the ¢gegdiis no
longer satisfied identically for the quantity (7); we $hetlurn to that fact later on.

§ 2. Fundamental identities

Our goal now is to show how the direct calculatidrnthe variational derivatives
o0L10Q, that enter into formulas (3) or (7) can be avoidedayng into account some

fundamental identities that result from the invariaotthe Lagrange function:
j L dw

under an arbitrary coordinate transformation. Sinceishjgst a matter of dealing with
well-known things, we shall rapidly recall the deductioh tbose identities after
specifying the conditions that we shall impose upon owgseand using a system of
notation that will bring about certain auxiliary quiéias that we shall make use of later
on.

The variables that specify the physical agencies whashall consider will be the

components of certain tenso@(’?), k=1, 2, .... To fix ideas, we choose covariant
components exclusively, and we denote them everywhem®,bywhere the indexr
represents a set of values for the indices,, ..., i, of the tensor, in addition to the

ordinal numberm. We can add the gravitational variab{@s which will define either a
tensor Q) = (g) or a system of four tensor®¢ #) = (h*) to this system of variables.
We then denote the total system of varialdesandQ, by the collective notatioQ,, : An
expression that contains a summation over the indéke., one in which that index
appears twice) can therefore be decomposed into a stwo @inalogous expressions that
contain a summation overand another ovey, respectively.

If we now consider an arbitrary infinitesimal coordm&tansformation that is defined
by:
®) =% -x=¢ K

then, by virtue of the tensor character of the varghlee (“substantial”) variation of the
variableQ,, will be given by an expression of the form:

(©) K= QR - Qu = cly
X
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The auxiliary quantities«:({)yi are the components of a system of tensors that tacheat
to each type of variabl€X”) by the following definition:

n
(k)] - — i O«
(10) Cllli(z”J'inj - 25':) Qlll'("i p—lii pi-l"i n’
p=1

respectively.
For example, for the gravitational variables, we have

1) If we are concerned with the vierbein varial&s :
CI(Y?,;I)J =-5 h¥.

2) If we are concerned with the metric tenggr:
Gt = (0 G + 01, 9)).

If we compare these expressions with formulas (8)(@hthen we will see that with
either convention the energy-momentum tensor density eanriten, with the aid of
this notation:

(11) T = ﬁcl’

e 5Qy y,i ’

and we shall see that it is precisely this expression ghters into the fundamental
identities. We once more employ the “local” vanas:

0Q,
ox’

(12) 3'Qu= Q,(¥ ~ Qu¥) = Nu- &,

for which, one will obviously have:

£0Q, _ 0
13 d =2 =— 5 Q..
(13) o O Q@

The condition of the invariance of the Lagrange fuorctinder the transformation
(8), which we assume to be satisfied for an arbitraryadomf integration, can be written
as:

(14) 5jcdw = jaﬂcdwﬁ%wé) dw = 0.

We now assume that the functiGrdepends upon only the variab{@g and their first
derivatives:
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0Q,
ox

Qulj

Since the derivatives of the gravitational variablegeint only by the intermediary of the
covariant derivatives of the other variabl@g, it will suffice for us to formulate this
hypothesis for just th®, , moreover. If we refrain from the quantization cégé latter
variables, as well as tifg,, then we will get:

(15) o'r=9% 50 + 95

0Q, ¢ 0Q, I
However, one will similarly verify that for all ahe quantized field®,, that have been
introduced into physics, the Lagrange function will depend upei®., andQ,; in a
sufficiently simple manner that formulas (15) can bes@reed, as long as one adds a
“symmetrization” condition?); i.e., one interprets the right-hand side as ontthalsum
of the quantity in question and its Hermitian conjugate.

First of all, by means of (13), we can put (15) intoftren:

.. oL o ( oc
(16) 5L = 5—%5%“%{@5%@},

so, under our hypotheses, the variation derivative vdlice to:

(17)

or _ oL _ 9 oc
5Q, 9Q, ax(oQ, )

If we substitute the expression (16) into (14) and usegi2)9) then we will obtain
the invariance condition:

0 (oL i |,0L '
‘J{ﬁ[@%ﬂ}a@ }é’dw

0 i oL oL j i oL 65' _
+ j@{{cd _aQ@” Qa,i +5Q0 Ca)j j@a +6—Q‘“ é;i a—*}dw— 0.

If one considers a transformatiefﬁ that goes to zero on the boundary of the domain
of integration then that will imply that the coeffinteof &' in the first integral of (18)
must be annulled identically:

(18)

() This “symmetrization” conventions applies to diltioe following formulas. However, recall that it
does not concern the gravitational variables.
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0 (00 ), 50 _
(19) W[EC“”}LJQUQM 0.

In order for the second integral to be annulled for ebitrary choice of integration
domain and transformatiod', one will find that by annulling the coefficients éf,
along with their first and second derivatives, individuadiye will get two new groups of
independent identities:

;oL oL R Y _
(20) L3 Q. Qu + 50, Chyt o = 0
and
(21) RM+R1=0,
in which one has set:
(22) R¥ = 9L o
0Qy

From the manner by which they were deduced, the fundamdatslties (19), (20),
(21) are covariant. For the sake of clarity in thdofwing calculations, it will be
advantageous to make that covariance enter into themaligr by introducing the
covariant derivatives, instead of the partial derivatiQg; .

However, before we do that, we shall adopt the viewprfispecial relativity for the
moment, in the name of orientation. If we compidue identity (20) with formula (11)

and setQ,;; = 0 then we will see that this identity amounts to ¢hkulation of 7., by

operations that depend upon the non-gravitational varig@hleprovided that one knows
the tensor densitfR . On the other hand, the expression (22) for therlattews that it

contains the gravitational variables explicitly only byyed the derivative®L / 0Q,;,

which immediately revert to th@L / dQ |, since theQ,; enter in only by the
intermediary of the covariant derivatives of tQg. The entire problem then comes
down to eliminating théL / Q,;; from the R, and we shall see that this elimination is
extremely easy. Since the consideration of spihovariables would demand
supplementary developments (which are entirely pardtelthe foregoing ones,
moreover) in regard to the invariance of the Lagrangectfon under orthogonal
transformations of the vierbeins, we shall first tregparately the case in which one is
concerned with only tensorial variables, properly spegkor the sake of clarity.

8 3. Tensorial variables

We now distinguish between the variab@@gs, which are purely tensorial, and which
we shall collectively denote 9., and the spinorial variables that we shall all. We
temporarily assume that all of the variables of théesysconsidered are of the former
type. In that case, the expression for the covadanvativeQ.|; , with our system of
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notation, is obtained easily by observing that a pardigdlacement of the poink)(will
be represented formulas of the type (8), (9), (12) winenimposes the condition:

08 i o4 _
§+rﬂf‘—0

upon theé' at that point, in which thele"jI are the components of the affine connection

[5]. The covariant derivative),|; will then be defined to be the coefficient &fin the
corresponding expression ford-Q, ; i.e.:

(23) Qe = Qe+ ¢/ T

If we describe the gravitational field with the help of tinetric tensor then we will get,
on the other hand, and with an analogous notation:

(24) Qy||| =0.

Finally, the tensorial densities that enter into thentities (19) and (20) by way of
their partial derivatives will have the divergences:

25) [ﬁczﬂj - "j[“ c;;ij—“ o,
Q, ) w(aQ, ™) Q™
and
RN _
(26) Rik= 5 "R

respectively. In formula (26), one has taken into accthenantisymmetric character of
in RY its upper indices, which is expressed by the identity (21).

Formulas (23), (25), (26), and (22) allow us to write thatities (20) and (19) in the
covariant form:

SL 5 _ 0L o
(27) 5_Qw wi aQ_a” Qa,“ ['d 72l|l1<
oL | oL . _
(28) [5—%0(,” jm +_0Qw Qy =0.

Formula (24) will give the desired expression for therggmomentum tensor
density by means of (11) and (24):

(29) 7= 9L
aQTIIj

. Y Vo
Qru _['au_J _RflTli _EC;L-
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In order to better emphasize the covariant fornhisféxpression, we have written:

_6£ instead of—a£ .

7llj 7l

As for (28), it will take on a simple, well-known gsificance when one takes the
field equation that the variabl€3, must satisfy into account. In order to write down
these equations, we shall define a set of independaablesQ. with the help of th&),
and in order to avoid any complication that might be duehe quantization of the
variables, we shall assume that Qe are linear, homogeneous functions@f. The
field equations will then be:

oL

30 — =0.
(30) 30,
In addition, one will see that:

(31) £c,"i =0
oQ,

and
oL

(32) EQTW = 01

by virtue of equations (30). From (11) and (24), the ider2®y (ill then mean that:

(33) T

J. .

:O,

by virtue of the field equations; this is the general-reitic expression of the
conservation of energy-momentum.

Now, observe that one can profit from (31) to sinyptiie definition (29) of the
energy-momentum density without affecting the consemaheorem (33): Indeed, one
can set:

(34) t oL

= =—Q,~ L3 -RY,
17 9q, < Rk

instead of (29). However, the symmetry condition (3)nd necessarily satisfied
identically byt "; that would only be a consequence of the field equatibipgn setting:

(35) d} = 4(ceg? - ¢, d')
in a general manner, from (3), and upon comparing (29) @4}y bne can write:

(36) th =2 =224l
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The antisymmetric tensad’ that is defined by (36), and which will soon play an
essential role, takes on a very simple meaning in the alespecialrelativity, for which
we can attribute constant valugs, to thegm . Indeed, from (8) and (9), one sees that an

infinitesimal Lorentz transformation will correspond tthe Ei linearly and
homogeneously:

(37) &= g X,
with the orthogonality condition:

(38) &+ & =0  (inwhichg = g,&;).
In that way, one will have:
(39) 5Q, = dis, .

It now remains for us to expression tf that enter into (29) or (34), and are
defined by (22), as functions of only th€ / dQ;; . One can achieve the elimination of
thedL /0Q,; immediately when one observes that from (35) onehaie:

(40) di =0
for the component®; of the metric tensor. Indeed, one concludes thajubetities:

(41) Dk; ij = %(Rkiglj +72]kj gIi) — oL d;j
aQT”k

no longer depend explicitly upon the gravitational variables the other hand, by virtue
of the antisymmetry property (21), the" can be expressed in terms of only p&” in
the form of:

(42) Rkigli:Dj;ki —p ik pki

One should observe that the explicit form of tinergy-momentum density that is
given by (29) or (34), (41), (42) was obtained by using the gecensequence of the
invariance of the Lagrange function as expressed bytigafmental identities (20), (21),
while the third identity (19) led to the conservation tleeo (33). Similarly, the
extension of the preceding considerations to the gasehich the Lagrange function
contains spinorial variables must necessitate the ugkenfities that would result from
the invariance of that function under orthogonal ti@msations of the vierbeins. That is
what we shall show in the next section.
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84. Spinorial variables

We shall assume that the variables of the systemrucmiasideration are both
tensorial, which will be denoted I8y;, and spinorial, which will be calleQ,, while we
take the vierbein$\*) to be the gravitational variabl€},. An infinitesimal orthogonal
transformation of these vierbeins will be represented by

(43) Sh® = d® e (€M + £ = ),

in which the coefficientsl), are related to thel*’* that were defined by the general
formula (35) by the simple relations:

(44) di((l;)v) = G0 Yvay rfp) hﬁg) q(mjk ;
explicitly, one has:
d(#)jk — 1[5kh(#)1' _51' h(#)k]
(45) { (W) —1r “ a) _ §H a)
dl(/h/) [5 g(va)h( 5 g/m)H ]

The spinorial variables will submit to variatioosthe form:

with d,,,, ==d,

under such a transformation.

If Q. represents, in particular, the Sétof two spinors whose rank corresponds to an
elementary particle of spin 1 / 2 then one will &d®):

(47) diaav =5 (M Mv = W W) Qo

in which the matriceg, satisfy the relations:

(48) Yy M+ Mv My == 200 -
One has, in turn:
(49) dory) = 1 Qo (M) Mv) — Mv M)

for the adjoint variabl€, = ® = W'A (in whichW' is the Hermitian conjugate & and
[ is a matrix that transforms the) into their Hermitian conjugates).

The invariance of the Lagrange function under tit@nsformations (43), (46) is
expressed by the condition:

0
J.{Cm(#) Jh(l‘) Qa 5Q0} ox! {ah(#) Jh(l‘) aQru 5Q0} dw =0,
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and will give rise to two independent groups of identities:

oL oL

S o Gt + 5Q, =~ Qoo =0,
(50)
OL . . OC .
S dl(/h/) o da(/h/) =0.
I Qy

From (44), one has:
R T )k d‘(‘j) = gk

If we likewise set (except for a sign difference wdaseaning will emerge later on):
(A iRk (h) jk
(51) h'h**d, ,,, == d;"’

[the index ) has been added in order to avoid any confusion with thetiguat}* that
was defined by (35)] then we can put the identities (50)tiheequivalent form:

;ﬁ) d(ll)Jk ;é d(h) jk =0,

(52) iy
oL d(ll)lk oL d(h)lk =0.

a0,

Thanks to (45) and the definition (7) @Y, , the first identity in (52) will give us:

(53) Tk 72295 o,

g

If we once more assume that the independent spinoriaghbles Q, are linear,
homogeneous functions of t, then we will see that we can write:

oL

(54) —dMk =0,
oQ,

by virtue of the field equations:

(55) oL _o
0Q,

Formula (53) then shows][that the energy-momentum tensor denSit§ is once more

symmetric in the indicesg k; if that is not true identically, then it will atdst be a
consequence of the field equations (55).
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Now, if we return to the identities (19) and (20) tHest of all, we can give them the
following covariant form [which is analogous to (27), (28)]

oL . oL - -
c = =L -RY,

5Qw wW,i aQw“ Qa),] ( Rﬂ(
(56) oL oL

Gl | +5==-Q, =0,

Q, Il oQ, ’
in which we have set:
(57) Qu:1 = Quyi + CJ

for all of the variables, and we have taken (25), (26) atwount, in addition. As far as
the purely tensorial variables are concerned, natui@lly, is nothing but the covariant
derivative Q.| that was defined by (23). However, for spinor variabiles, covariant
derivativeQ. | will differ from Q.. by a term ] that originates in the fact that a parallel
displacement of the vierbeins is equivalent to an odhabtransformation that affects
theQ, . If parallel displacement is defined by a vecforthat is stationary at the point
considered) then, from (43), this equivalence will be esged in the form:

p) — j.
5( V)dl((ﬂ)v) - h(;ll)gm ;

hence, one can infer the parametéf¥ of the equivalent orthogonal transformation by
means of (45):

EM O gl
(58) . (Av) — Jl (D) W) v) )i .
with T} ——E{h;j h"" — W H }

it will then result that the covariant derivative@f is:
(59) Qo = Qo1 + iy ™.
The first identity (50) will then give:

r =o,

(;1) h(#) U(/h/) |
oh 5Q

SO

oL
Sh® h + Qa Qa _E Qi

likewise, if one starts with the second identity50) then one will get:
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= hi t

li 5Q0IJ'

oL oL

QT;i = mQUHi '

If one substitutes these results in (56) then onegsit

oL ; _ 0L sk

5_chw,i _—aQa”,- QL9 ~ Ry,
(60) oL . oL

[5—%@‘“ j”j +£ Qa” =0,

in which, the symboQ, encompasses all of the tensofaland spinorialQ, variables.
From (11), the first formula (60) can be written:

Qa||i _['a.-j _Rfﬁ - oL c,

(61) 7= 9%
oQ, ™

; aQ0’|IJ'

which then provides a direct generalization of (29).
The field equations (30) and (55) have the consequence tbaé ifakes (54) and
(59), in particular, into account then:

Eccjv,i =0,
(62) !

oL

5_Q0Qa||i =0,

which will permit us to conclude the conservation theof83), as before. Thanks to
(62), one can further simply the definition (61) by setting energy-momentum tensor
density equal to:

(63) t! oL

=25 Quy LA Ry
0Qu;

By virtue of (35) and (53), one will then have:

(64) (iogi=p 98 oi
oQ,
if one sets:
STji - d;'i ,
(65) { Sji = dji + Cg])ji ,
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and from (62) and (54), relation (64) will express the ide#t the symmetry of the
tensorial density " is a consequence of the field equations.

As for the tensorial densit%ﬁ{(, it will always be calculated from formula (42), but

one will now have:
oL

Dkl =
0Q

d;

w !

instead of (41), or furthermore, from the second idemtit{pR), and with the notation in
(65):

(66) pri= 9 g

Q.

which is a formula to which the gravitational variabldl no longer contribute
explicitly.

If one assumes the viewpoint ggecial relativitythen one can immediately confirm
that thes’ constitute the natural generalization of tui,é that appear in formula (39) to

the case in which there are spinorial variables. ttiqudar, one can set:
h(/l) = O

in which, the orthogonal transformation of the viengewill be identical to the spatio-
temporal Lorentz transformation that was defined (37pne takes (39), (46), and (51)

into account then one will see that in this caseghehat were given by (65) will reduce
to the coefficients of the variation:

(67) 3Q,= 8¢y,
which (by reason of the choice of covariant tensar@ahponents for the variablé€y,)
corresponds to the Lorentz transformation thaiistragrediento the transformation of

the spatio-temporal variables (37). [It is this contrdignet relationship that was at the
root of the — sign that was introduced into formula (51)].

8 5. Summary and applications

Formulas (63), (42), (66) express the general result tohwhe will arrive for a
system that is described by tensorial and spinoriahbles Q,, and whose Lagrange
function is assumed to contain tlle, and their first (covariant) derivatived, j; (in
addition to certain supplementary restriction that wolld necessitated by the
guantization of the variables). If we regroup these tdasithen we will see that the
energy-momentum tensor density of such a system caalb@ated by starting with the

Lagrange function — viz., the densify— with the aid of the formula:
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(1) tl, = %Qam -LS =Ry
by means of:

(11 RYg" =DIK—DEK 4 DRI,
(l”) Dklj_ 1(7?1k| i _ 72|k]gl) -

aQwuk i

in which thes’ are certain very simple linear combinations of@xe The components
t" are symmetric in the indices by virtue of the field etumst for theQ,, and these same

equations will likewise imply the conservation theorem:

(V) t).. =0.

il
One will observe that, except for the ter3d’ , the expression far . will depend upon

only the derivatives of the Lagrange function with respecthe derivatives of the
variablesQ, .

Since formulas (1)-(1ll) do not exhibit the manner byigh the Lagrange function
depends upon the gravitational variables explicitly, thesyimmediately adapted to the
usual case in which one desires to calculate the exprefsi the energy-momentum
tensor in the context o$pecial relativity by starting with the “special’ form (i.e.,
invariant under only the Lorentz group) of the Lagrangetfanc

In that case, the covariant derivatives will reduoethe corresponding partial
derivatives, and the quantities will take on an especially simple meaning: They are the

coefficients that determine the variations:

(V1) 0Q, =98¢

ajl

of the variable$), under an infinitesimal Lorentz transformation:

oX =&, X,
0 i #1,
(V2) g=0"¢, d =4+1 i=1=12,3
-1 i=l=
& +& =0.

By reason of the antisymmetry & in the indices, j, the divergence of the term
Rlﬁf( that appears in the tensor density can be written in a general manner:
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(68) (Rik), = 3RRi
in which R;‘k is the Riemann-Christoffel tensor. This expressidhgo to zero in the

case ofspecialrelativity (as one sees immediately, moreover, sineall reduce to the
second partial derivatives of the antisymmetric comp@)eni that case, one can then

omit the divergenceR,! from the definition (1) oft!; without affecting the validity of
the conservation theorem (IV). Conversely, a spegiacess of inquiry into the
expression fort!, in special relativity that starts with simply the diion that the
desired expression must satisfy equation (1V) by virtudefield equation (1V) will lead
only to the addition of the terrﬂzl'ﬁ{(. Meanwhile, if one omits it then the resulting
expression fot" will no longer possess the essential property of symynie the indices

J, 1 (by virtue of the field equations, in general).
If one always remains in the context sfecialrelativity then one will see that the

term Rllﬁf( has no influence on the definition of ttetal energy-momentum vectof the

system:
(69) G=- j t“dv (dv = dxt dx dxd).

By contrast, itwill affect the expression for thetal moment of momentum:
(70) M} :—j(xit‘” -xt1) dv (,j=1,2,3)
in an essential manner. Indeed, if one sets:

oL
aQa|4

(71) P

then the definition (69) (in which the — sign wdmsen in order to conform to the usual
conventions) will give):

(72) G=- j PgradQ, dv
for thetotal momentumand:
(73) Gs= [{PQue—L} dv

for thetotal energy

However, due to the presence of the divergenaa ”{( in the form (I) of the
energy-momentum tensor, the definition (70) witkhdevery naturally to a distinction
between “orbital moment”:
(74) Mo =~ [P“(x Ograd )Q, dv,

() One setsx, = ct. The expressions faB andM will then represent the corresponding physical
quantities, but multiplied bg.
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which corresponds directly to the momentum density dmers effectively into the
expression (72) and an “intrinsic moment” or “spin”;

(75) M= | {X‘ ARG ammgn)} av,

s oxX ox

which is due to the divergence term precisely. Of coutse,separation of the total
moment of momentum into two terms:

(76) M= MI+ME

has a direct physical meaning only for physical agencetsatie endowed with inertia so
that one could attach a system of reference thatresawith respect to it. With the help
of an integration by parts, the intrinsic moment (7&) be put into the simpler form:

Misj — J’{RMQM _Rmdj} dv,

or furthermore, from (ll1):
(77) MI =2 [ P7s) dv.

A discussion of the passage to the Hamiltonian form thedquantization of the
variables with the help of (71), (73) would go beyond the sajpbe present article.
We shall then content ourselves with several compieang remarks on those subjects,
while confining ourselves to the “regular’ case in which fovenulas (71) that relate to
the independent variabl®, do not give rise to identities between those variabfes a

their canonically-conjugate momentB”. One can observe that if the independent
variablesQ, are not homogeneous, linear combination of@aethen the summations

over all of the component®, that enter into the formulas of the paragraph can be
replaced with corresponding summations over the independdablesQ, . If one then

introduces suitable commutation relations betweenQheand theP?, while remaining

in the “regular” case in which we have placed ourseltlesn one will immediately
recover the well-known connection between the total exdam operator and the group
of translations in formula (72), and the analogous cdiorebetween the total moment
of momentum and the rotation group in formula (76) [alentdp (74) and (77)]. One
will then verify (with no difficulty, moreover) thahe components of the orbital moment,
on the one hand, and those of spin on the other witelzged amongst themselves by
commutation relations that are characteristic of ¢gmeup of rotations, while each
component of the orbital moment will commute with eaomponent of the spin; these
properties serve to justify the distinction between orliitament and spin for physical
agencies that have finite mass.



Rosenfeld — On the energy-momentum tensor 19

§ 6. Examples

In conclusion, we shall treat, by way of examptls,case of elementary particles of
spin 1 / 2 and then that of fields of spin 1, such teé&ldi of vector mesons or the
electromagnetic field.

A. - Spin$

With the notations that were introduced above inateasion of formulas (47), (48),
(49), we can take the Lagrange density function to be:

(78) L=-Re {?q:yiwm +CD,LNJ},

when we sey' =h”! i, and denote the real part of any quantity by Re. Theatgrgr
relates to the mass of the particle considered in the usyal In order for us to recover
the usual representation, we chog@sey* and introduce the current matrices:

(79) al=yty
and the spin matrices: _
(80) ol =iy (i, k | are permuted cyclically),

while, from the choice o8, the (0 =1, 2, 3) will be skew-Hermitian, while the matsce
B a’l, o', andy will be Hermitian.
The momenta that are conjugatéit@nd® =" Bare:

(81) Po=-2"0p  Py=2"py.
2 i 21
One will then get:
G=-[{RW,+®R} dv
(82) = Re® [opw, dv
|

= j WipW dy,
for the total momentum when one introduces the operator:
(83) p= Egrad.
[

Likewise, the total energy will become:

Gy = j{aw” +®,B, - L} dv
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(84) =J. WT{iaj p, +,3,U}W dv.

As for the moment of momentum, it will split iném orbital moment:

(85) Mo = j Wi(xOp)W dv
and spin:
MI=2[{Rsh+4 R} dv

From (47), (48), (49), (51), and (65), one will bav
28, =4y Y'Y,

25 =304y,
SO
M! = iRe[ B,/y'Wdy,
or finally, with the notation in (80):
_ he oyt
(86) Ms_7jwow.

B. — Spin 1.

We take the covariant componer@ of the quadri-vector potential to be the
variables; i.e., the components of the vector gakd and the scalar potential with the
sign inverted V. We introduce the field tensor:

L =9Q _0Q
(87) Flk = 6x‘ an )

which represents two spatial vectétsandE that are defined by:

E=F, i=123

(88) { H =F, (ik,l are permuted cylically

respectively.
We set the Lagrange density function equal to:

FikFik_%KZQiQ

L =-
=—1(H2—E? —%/(2(U2—V2),

(89) =-

1
4
1
2
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in which x is, as one knows, a constant that relates to thes rmathe particle that is
associated with the field in question.

From (89), the momenta that are conjugate to the componef U are the
corresponding components ot while the momenta that conjugateMaare identically
zero. It then results from this that the field equatithat expresses the annulment of the

variational derivativedC / oV will reduce to form that contains no temporal derivegiv

(90) divE + ¥ V = 0.

The total energy is easily put into the form:
(91) G4:%'[{(H2+E2)+K2(U2+V)} dv—j\(div E+42V) dv.

One knows that from the viewpoint of the quant@abf the variables, one can take
(U, — E) to be canonical variables, but that two essdwtaifferent cases will present
themselves, according to whethelis non-zero or zero. In the former case, one must
then consider equation (90) to be the definitionhaf operatol, and the last integral in
(91) will be zero identically. In the latter ca@ehich is the case of electrodynamics),
equation (90), when reduced to d&v= 0, will be an “accessory condition,” by virtué o
which, the last term of (91) will go to zero.

As for the total momentum and the orbital andimsic moments of momentum, they
will take the following forms, which are indepenten «:

(92) G= 23: j E'gradU, dv,
(93) M, = i j E'(x Ograd)u, dv,
(94) Ms= [EDUdv.

Instead of (92), one can write:

G = jEDrotUdv+j(Egrale dv
(95) :jE OH dv—ju divE dv,

which will reduce to the familiar expression foretHPoynting vector for a pure
electromagnetic field, by virtue of the accessaopdition that divE = 0. If one starts
with (93) and (94) then one will likewise find therresponding form of the total moment
of momentum:

(96) M :jxD(EDH)dv—j(xDU)divEdv.
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In order to establish this result in the case oflact®magnetic field, it is nonetheless
necessary to return to the original form (75) for #mentM . In this case, one will see
that, by virtue of the condition that di# = 0, the expression (96) will possess the
property of gauge invariance precisely, (vhile the separation into orbital moment and
spin no will longer have any unambiguous meaning.

*

* *

The present work was dome (in April 1939) at the Princétetitute for Advanced
Studies, in the course of a study-voyage to the UnitecesSSthlat was made possible
thanks to a subsidy from the Belgian-American Educati&nundation.

() If we consider an electromagnetic field that intesagith a system of charges with dengitshen
the accessory condition will become @w p= 0. The last terms on the right-hand side of (95) and (96)
will then combine with the supplementary terms thaateelto the momentum and the moment of
momentum of the system of charges, respectively, in auetanner that the resulting expressions will
possess gauge invariance precisely.
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