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 From the work [1] (1) of Lorentz, Hilbert, De Donder, F. Klein, and Weyl, one 
recognizes the close relationship that links the energy-momentum tensor of an arbitrary 
system of physical agencies, such as material particles or an electromagnetic field, to the 
gravitational field.  In principle, that relation will automatically lead to a well-defined 
symmetric form for that tensor once one has given an expression for the Lagrange 
function of the system considered that is invariant under an arbitrary spatio-temporal 
coordinate transformation.  However, on first glance, it might seem that this general 
procedure for constructing the energy-momentum tensor will present practical difficulties 
in it application, since it seems to necessitate special considerations in each case and 
calculations that depend upon the gravitational potentials; i.e., upon variables that are not 
directly related to the problem and whose influence is generally negligible from an 
empirical viewpoint.  That is why one often prefers to resort to procedures that are less 
direct, but immediately applicable to a Lagrange function that is invariant under only the 
Lorentz group.  Nevertheless, these procedures themselves also necessitate a special 
study in each case, notably, in order to insure that the desired tensor has a symmetric 
form [2], in such a way that no practical advantage will compensate for the small 
satisfaction that is derived from not taking into account the profound relationship that 
exists between the energy-momentum tensor and the general invariance of the Lagrange 
function. 
 Meanwhile, it seems that the problem is susceptible to a solution that presents none of 
the inconveniences that were just mentioned.  Indeed, one confirms that upon taking into 
account the invariance properties of the Lagrange functions in a manner that is as 
complete as possible, one will arrive at a general expression for the energy-momentum 
tensor by a very simple and direct path whose “special” form (i.e., invariant under only 
the Lorentz group) can be specified immediately in every special case when one 
recognizes the “special” form of the corresponding Lagrange function.  It is the deduction 
of that expression, under conditions of generality that encompass all of the cases that 

                                                
 (1) Numbers in square brackets refer to the bibliography on pp. 23. 



Rosenfeld – On the energy-momentum tensor 2 

have presented themselves in physics up to now, that forms the objective of these present 
study (1). 
 
 

§ 1.  The definition of the energy-momentum tensor 
 

 We begin by recalling how the energy-momentum tensor is introduced within the 
context of the deduction of the gravitational field equations when one starts with a 
Lagrange function.  The gravitational field admits two equivalent specifications, both of 
which we will have to consider: With the first one, the field variables are the components 
of a metric tensor glm .  With the second one [3], one introduces a “vierbein” at every 
point, or a set of four orthogonal vectors ( )

jh µ  (µ = 1, 2, 3, 4), with whose help the metric 

tensor can be defined (2): 

(1)   glm = g(µν)  
( ) ( )
l mh hµ ν  in which g(µν) = 

0 ,

1 1,2,3,

1 4.

µ ν
µ ν
µ ν

≠
 + = =
 − = =

 

 
 Whenever we do not need to specify which choice of these two descriptions was 
made, we will denote the gravitational variables by Qγ , where γ is a fixed ordinal 
number.  Since these variables play only an auxiliary role for us, it will be pointless to 
imagine quantizing them, and we will treat them as simple parameters (i.e., “c-numbers”) 
in all of the following calculations. 
 The Lagrange function of a system that is composed of a gravitational field and 
certain physical agencies that are capable of generating that field is the sum of a term that 
relates to the only the gravitational fields and another term that refers to the physical 
agencies and their interaction with the gravitational field.  These two terms are both 
integrals of scalar densities G and L that depend upon the Qγ and their derivatives over 

the spatio-temporal region that is occupied by the system.  If we denote an arbitrary 
choice of independent combination of the Qγ that is homogeneous of degree one by Qγ  

then we will get the field equations of gravitation by specifying that the Lagrange 
function of the total system should be an extremum for arbitrary variations of the Qγ  that 

go to zero on the boundary.  With the aid of an integration by parts, that condition: 
 

( ) dwδ +∫ G L  = 0  (dw = dx1 dx2 dx3 dx4), 

 
                                                
 (1) While the present paper (whose publication was delayed by various corrections) was already 
complete, some results that coincide essentially with the ones in § 5 were published by F. BELINFANTE 
[Physica, 6 (1939), pp. 887].  On the other hand, I was kindly informed that after having been made aware 
of my manuscript, he himself quite recently recovered his own results by a method that is quite analogous 
to the one that forms the objective of this paper, but with several interesting differences.  Given the didactic 
form of my treatise, its present publication with no modifications might nonetheless offer some utility, 
since it presents a general view of a methodological aspect of a problem that Belinfante first published the 
solution to. 
 (2) One adopts the usual convention of summing over any indices that appear twice in the same term.  
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will take the form: 
( )

Q dw
Q γ

γ

δ δ
δ

+
∫
G L

 = 0, 

 
in which the coefficient of Qγδ  defines the “variational derivative” [4] of the density 

function G + L with respect to Qγ ; one deduces the field equations from that: 

 

(2)      
Qγ

δ
δ
G

= −
Qγ

δ
δ
L

. 

 
In this form, the left-hand side will contain only gravitational variables, while the right-
hand side, which presents the role of the physical agencies as sources of the gravitational 
field precisely, will determine the “energy-momentum tensor density” of the system 
considered. 
 If the variables that specify the nature of this system do not involve spinorial 
quantities, such as the wave functions of elementary material particles of spin 1 / 2, then 
we can adopt the usual description of the gravitational with the help of the glm; otherwise, 
the function L will depend upon the vierbeins ( )

jh µ  in a manner that is not rationally 

reducible to the glm, and it would be advantageous to choose these vierbeins to represent 
the field.  In the former situation, equations (2) would give us the components of the 
energy-momentum tensor density directly, in the symmetric form: 
 

(3)     T
lm ≡ Tml =  − 

lm mlg g

δ δ
δ δ
 

+ 
 

L L
. 

 
 In order to see how to generalize this definition to the case in which L depends 

essentially upon the ( )
jh µ , it will suffice to observe that for any function (such as G) that 

depends upon the ( )
jh µ  only by the intermediary of the glm, one will have [4]: 

 

(4)     
( )
jh µ

δ
δ
G

 = 
( )
lm

lm j

g

g h µ
δ

δ
∂
∂

G
. 

 
Therefore, since from (1), one will have: 
 

(5)     
( )
lm

j

g

h µ
∂
∂

 = g(µν) { }( ) ( )j j
l m m lh hν νδ δ+ , 

one can infer that: 

(6)     ( )
( ) i
j

h
h

µ
µ

δ
δ
G

 = 
jm mjg g

δ δ
δ δ
 

+  
 

G G
 gmi . 
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 One then sees that in this case the energy-momentum tensor density will be given by: 
 

(7)     j
i…T  = − ( )

( ) i
j

h
h

µ
µ

δ
δ
L

, 

 
which is an expression that, from (6), will reduce to (3) when L contains the ( )

jh µ  only by 

the intermediary of the glm .  The condition of symmetry with respect to the indices is no 
longer satisfied identically for the quantity (7); we shall return to that fact later on. 
 
 

§ 2.  Fundamental identities 
 

 Our goal now is to show how the direct calculation of the variational derivatives 
/ Qγδ δL  that enter into formulas (3) or (7) can be avoided by taking into account some 

fundamental identities that result from the invariance of the Lagrange function: 
 

dw∫L  

 
under an arbitrary coordinate transformation.  Since this is just a matter of dealing with 
well-known things, we shall rapidly recall the deduction of those identities after 
specifying the conditions that we shall impose upon ourselves and using a system of 
notation that will bring about certain auxiliary quantities that we shall make use of later 
on. 
 The variables that specify the physical agencies that we shall consider will be the 
components of certain tensors (Q(κ)),  κ = 1, 2, ….  To fix ideas, we choose covariant 
components exclusively, and we denote them everywhere by Qα , where the index α 
represents a set of values for the indices i1, i2, …, in of the tensor, in addition to the 
ordinal number κ.  We can add the gravitational variables Qγ , which will define either a 
tensor (Q(0)) ≡ (g) or a system of four tensors (Q(0, µ)) ≡ (h(µ)) to this system of variables.  
We then denote the total system of variables Qα and Qγ by the collective notation Qω : An 
expression that contains a summation over the index ω (i.e., one in which that index 
appears twice) can therefore be decomposed into a sum of two analogous expressions that 
contain a summation over α and another over γ, respectively. 
 If we now consider an arbitrary infinitesimal coordinate transformation that is defined 
by: 
(8)     δxi = ix  − xi = ξ i (x) 
 
then, by virtue of the tensor character of the variables, the (“substantial”) variation of the 
variable Qω will be given by an expression of the form: 
 

(9)     δQω ≡ ( )Q xω  − Qω(x) = ,

i
j

i j
c

xω
ξ∂

∂
. 
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The auxiliary quantities ,
j

icω  are the components of a system of tensors that are attached 

to each type of variable (Q(κ)) by the following definition: 
 

(10)    
1 2

( )
,n

j
i i i ic κ
⋯

 = − 
1 1 1

( )

1
p p p n

n
j

i i i i i i
p

Q κδ
− +

=
∑ ⋯ ⋯

. 

respectively. 
 For example, for the gravitational variables, we have: 
 
 1) If we are concerned with the vierbein variables ( )

ih µ : 

 
     (0, )

,
j

l ic µ  = − ( )j
l ih µδ . 

 
 2) If we are concerned with the metric tensor glm : 
 
     (0)

,
j

lm ic  =  − ( )j j
l mi m lig gδ δ+ . 

 
 If we compare these expressions with formulas (3) and (7) then we will see that with 
either convention the energy-momentum tensor density can be written, with the aid of 
this notation: 

(11)    j
i⋯T  = ,

j
ic

Q γ
γ

δ
δ
L

 , 

 
and we shall see that it is precisely this expression that enters into the fundamental 
identities.  We once more employ the “local” variations: 
 

(12)    δ *Qω ≡ ( )Q xω  − Qω(x) = δQω − 
j

Q

x
ω∂

∂
ξ j, 

 
for which, one will obviously have: 
 

(13)    δ * 
j

Q

x
ω∂

∂
 = 

jx

∂
∂

 δ *Qω . 

 
 The condition of the invariance of the Lagrange function under the transformation 
(8), which we assume to be satisfied for an arbitrary domain of integration, can be written 
as: 

(14)    dwδ ∫L  = ( )i
j

dw dw
x

δ ξ∗ ∂+
∂∫ ∫L L  = 0. 

 
 We now assume that the function L depends upon only the variables Qω and their first 

derivatives: 
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Qω | j ≡ 
j

Q

x
ω∂

∂
. 

 
Since the derivatives of the gravitational variables enter in only by the intermediary of the 
covariant derivatives of the other variables Qα, it will suffice for us to formulate this 
hypothesis for just the Qα , moreover.  If we refrain from the quantization of these latter 
variables, as well as the Qγ , then we will get: 
 

(15)      δ *L = |
|

j
j

Q Q
Q Qω ω

ω ω

δ δ∗ ∗∂ ∂+
∂ ∂
L L

. 

 
However, one will similarly verify that for all of the quantized fields Qω that have been 
introduced into physics, the Lagrange function will depend upon the Qω and Qω | j in a 
sufficiently simple manner that formulas (15) can be preserved, as long as one adds a 
“symmetrization” condition (1); i.e., one interprets the right-hand side as one-half the sum 
of the quantity in question and its Hermitian conjugate. 
 First of all, by means of (13), we can put (15) into the form: 
 

(16)    δ *L = 
|

j
j

Q Q
Q x Qω ω

ω ω

δ δ δ
δ

∗ ∗
 ∂ ∂+   ∂ ∂ 

L L
, 

 
so, under our hypotheses, the variation derivative will reduce to: 
 

(17)    
Qω

δ
δ
L

 = 
|

j
jQ x Qω ω

 ∂ ∂ ∂−   ∂ ∂ ∂ 

L L
. 

 
 If we substitute the expression (16) into (14) and use (12) and (9) then we will obtain 
the invariance condition: 
 

 − , |
j

i ij
c Q

x Q Qω ω
ω ω

δ δ
δ δ

  ∂ +  ∂   
∫

L L ξi dw 

 (18) 
 

 + | , ,
| |

i
j j i k

i i i ij k
j j

Q c c
x Q Q Q xω ω ω

ω ω ω

δ ξδ ξ
δ

  ∂ ∂ ∂ ∂ − + +   ∂ ∂ ∂ ∂   
∫

L L L
L dw = 0. 

 
 If one considers a transformation ξ i that goes to zero on the boundary of the domain 
of integration then that will imply that the coefficient of ξ i in the first integral of (18) 
must be annulled identically: 

                                                
 (1) This “symmetrization” conventions applies to all of the following formulas.  However, recall that it 
does not concern the gravitational variables.  
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(19)    , |
j

i ij
c Q

x Q Qω ω
ω ω

δ δ
δ δ
 ∂ + ∂  

L L
 = 0 . 

 
In order for the second integral to be annulled for an arbitrary choice of integration 
domain and transformation ξ i, one will find that by annulling the coefficients of ξ i, 
along with their first and second derivatives, individually, one will get two new groups of 
independent identities: 

(20)    | ,
|

kj
j j i

i i i k
j

Q c
Q Q xω ω

ω ω

δδ
δ

∂∂− + +
∂ ∂

RL L
L  ≡ 0 

and 
(21)     jk kj

i i+R R ≡ 0, 

in which one has set: 

(22)     jk
iR  = ,

|

k
i

j

c
Q ω

ω

∂
∂
L

. 

 
 From the manner by which they were deduced, the fundamental identities (19), (20), 
(21) are covariant.  For the sake of clarity in the following calculations, it will be 
advantageous to make that covariance enter into them formally by introducing the 
covariant derivatives, instead of the partial derivatives Qω | j . 
 However, before we do that, we shall adopt the viewpoint of special relativity for the 
moment, in the name of orientation.  If we compare the identity (20) with formula (11) 
and set Qγ | j = 0 then we will see that this identity amounts to the calculation of j

i⋯T  by 

operations that depend upon the non-gravitational variables Qα , provided that one knows 
the tensor density jk

iR .  On the other hand, the expression (22) for the latter shows that it 

contains the gravitational variables explicitly only by way of the derivatives ∂L / ∂Qγ | j , 

which immediately revert to the ∂L / ∂Qα | j , since the Qγ | j enter in only by the 

intermediary of the covariant derivatives of the Qα .  The entire problem then comes 
down to eliminating the ∂L / ∂Qγ | j  from the jk

iR , and we shall see that this elimination is 

extremely easy.  Since the consideration of spinorial variables would demand 
supplementary developments (which are entirely parallel to the foregoing ones, 
moreover) in regard to the invariance of the Lagrange function under orthogonal 
transformations of the vierbeins, we shall first treat separately the case in which one is 
concerned with only tensorial variables, properly speaking, for the sake of clarity. 
 
 

§ 3.  Tensorial variables 
 

 We now distinguish between the variables Qα , which are purely tensorial, and which 
we shall collectively denote by Qτ , and the spinorial variables that we shall call Qσ .  We 
temporarily assume that all of the variables of the system considered are of the former 
type.  In that case, the expression for the covariant derivative Qτ | j , with our system of 
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notation, is obtained easily by observing that a parallel displacement of the point (x) will 
be represented formulas of the type (8), (9), (12) when one imposes the condition: 
 

i
i l
jljx

ξ ξ∂ + Γ
∂

 = 0 

 
upon the ξ i at that point, in which the ijlΓ  are the components of the affine connection 

[5].  The covariant derivative Qτ | j will then be defined to be the coefficient of ξ i in the 
corresponding expression for – δ *Qτ ; i.e.: 
 
(23)     Qτ || l = Qτ | l + ,

j i
i jlcτ Γ . 

 
If we describe the gravitational field with the help of the metric tensor then we will get, 
on the other hand, and with an analogous notation: 
 
(24)     Qγ || l = 0. 
 
 Finally, the tensorial densities that enter into the identities (19) and (20) by way of 
their partial derivatives will have the divergences: 
 

(25)   ,

||

j
i

j

c
Q ω

ω

δ
δ
 
 
 

L
 = , ,

j j k
i k jij

c c
x Q Qω ω

ω ω

δ δ
δ δ
 ∂ − Γ ∂  

L L
 

and 

(26)    ||
kj
i kR = 

kj
kj li
l kikx

∂ − Γ
∂
R

R , 

 
respectively.  In formula (26), one has taken into account the antisymmetric character  of 
in kj

iR  its upper indices, which is expressed by the identity (21). 

 Formulas (23), (25), (26), and (22) allow us to write the identities (20) and (19) in the 
covariant form: 

(27)    ,
j

ic
Q ω

ω

δ
δ
L

 ≡ || ||
|

j kj
i i i k

j

Q
Q ω

ω

δ∂ − −
∂
L

L R  

 

(28)    , ||

||

j
i i

j

c Q
Q Qω ω

ω ω

δ
δ
  ∂+  ∂ 

L L
 ≡ 0. 

 
 Formula (24) will give the desired expression for the energy-momentum tensor 
density by means of (11) and (24): 

(29)    j
i⋯T  ≡ || || ,

||

j kj j
i i i k i

j

Q c
Q Qτ τ

τ τ

δδ
δ

∂ − − −
∂
L L

L R . 
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In order to better emphasize the covariant form of this expression, we have written: 
 

||jQτ

∂
∂
L

 instead of 
| jQτ

∂
∂
L

. 

 
 As for (28), it will take on a simple, well-known, significance when one takes the 
field equation that the variables Qτ must satisfy into account.  In order to write down 
these equations, we shall define a set of independent variables Qτ  with the help of the Qτ, 

and in order to avoid any complication that might be due to the quantization of the 
variables, we shall assume that the Qτ  are linear, homogeneous functions of Qτ .  The 

field equations will then be: 

(30)     
Qτ

δ
δ
L

 = 0. 

 In addition, one will see that: 

(31)     ,
j
ic

Q τ
τ

δ
δ
L

 = 0 

and 

(32)     ||iQ
Q τ

τ

δ
δ
L

 = 0, 

 
by virtue of equations (30).  From (11) and (24), the identity (28) will then mean that: 
 
(33)     ||

j
i j⋯

T  = 0, 

 
by virtue of the field equations; this is the general-relativistic expression of the 
conservation of energy-momentum. 
 Now, observe that one can profit from (31) to simplify the definition (29) of the 
energy-momentum density without affecting the conservation theorem (33): Indeed, one 
can set: 

(34)     i
j⋯t  = || ||

||

j kj
i i i k

j

Q
Q τ

τ

δ∂ − −
∂
L

L R , 

 
instead of (29).  However, the symmetry condition (3) is not necessarily satisfied 
identically by t ij; that would only be a consequence of the field equations.  Upon setting: 

 

(35)      ijdω  = ( )1
, ,2

i kj j ki
k kc g c gω ω−  

 
in a general manner, from (3), and upon comparing (29) with (34), one can write: 
 

(36)     t 
ij – t ji = 2 ijd

Q τ
τ

δ
δ
L

. 
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 The antisymmetric tensor ijdω  that is defined by (36), and which will soon play an 

essential role, takes on a very simple meaning in the case of special relativity, for which 
we can attribute constant values lmgɺ  to the glm .  Indeed, from (8) and (9), one sees that an 

infinitesimal Lorentz transformation will correspond to the ξ i linearly and 
homogeneously: 
(37)     ξ i = i k

k xε ⋅ , 

with the orthogonality condition: 
 
(38)    εik + εki = 0 (in which εik = l

il kg ε ⋅ɺ ). 

In that way, one will have: 

(39)     Qωδɺ  = ij
jidωεɺ . 

 
 It now remains for us to expression the kj

iR  that enter into (29) or (34), and are 

defined by (22), as functions of only the ∂L / ∂Qτ || j .  One can achieve the elimination of 

the ∂L / ∂Qγ | j immediately when one observes that from (35) one will have: 

 
(40)     ijdγ  = 0 

 
for the components Qτ of the metric tensor.  Indeed, one concludes that the quantities: 
 

(41)   D
k; ij ≡ 1

2 ( )ki lj kj li
l lg g+R R  = 

||

ij

k

d
Q τ

τ

∂
∂
L

 

 
no longer depend explicitly upon the gravitational variables.  On the other hand, by virtue 
of the antisymmetry property (21), the ki

lR  can be expressed in terms of only the D
k; ij in 

the form of: 
(42)    ki

lR gli = D j; ki  − D i; jk + Dk; ij. 

 
 One should observe that the explicit form of the energy-momentum density that is 
given by (29) or (34), (41), (42) was obtained by using the general consequence of the 
invariance of the Lagrange function as expressed by the fundamental identities (20), (21), 
while the third identity (19) led to the conservation theorem (33).  Similarly, the 
extension of the preceding considerations to the case in which the Lagrange function 
contains spinorial variables must necessitate the use of identities that would result from 
the invariance of that function under orthogonal transformations of the vierbeins.  That is 
what we shall show in the next section. 
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§ 4.  Spinorial variables 
 

 We shall assume that the variables of the system under consideration are both 
tensorial, which will be denoted by Qτ , and spinorial, which will be called Qσ , while we 
take the vierbeins ( )

ih µ  to be the gravitational variables Qγ .  An infinitesimal orthogonal 

transformation of these vierbeins will be represented by: 
 
(43)    ( )

ih µδ  = ( ) ( )
( )id µ λν
λν ε   (ε(λν) + ε(νλ) = 0), 

 
in which the coefficients ( )

( )id µ
λν  are related to the ( ) jk

id µ  that were defined by the general 

formula (35) by the simple relations: 
 
(44)    ( )

( )id µ
λν  = ( ) ( ) ( )

( ) ( )
jk

j k ig g h h dρ σ µ
λρ να ; 

explicitly, one has: 

(45)   
( ) ( ) ( )1

2
( ) ( ) ( )1
( ) ( ) ( )2

[ ],

[ ],

jk k j j k
i i i

i i i

d h h

d g h g h

µ µ µ

µ µ α µ α
λν λ να ν λα

δ δ
δ δ

 = −
 = −

 

 
 The spinorial variables will submit to variations of the form: 
 

(46)   
( )

( )

( ) ( )

,

with

Q d

d d

λν
σ σ λν

σ λν σ νλ

δ ε =
 = −

 

 
under such a transformation. 
 If Qσ represents, in particular, the set Ψ of two spinors whose rank corresponds to an 
elementary particle of spin 1 / 2 then one will have [3]: 
 
(47)    d(σ)λν = − 1

8 (γ(λ) γ(ν) − γ(ν) γ(λ)) Qσ , 

 
in which the matrices γ(λ) satisfy the relations: 
 
(48)    γ(λ) γ(ν) + γ(ν) γ(λ) = − 2g(λν) . 
One has, in turn: 
(49)    dσ′ (λν) = 1

8 Qσ′ (γ(λ) γ(ν) − γ(ν) γ(λ)) 

 
for the adjoint variable Qσ′ ≡ Φ = Ψ†β (in which Ψ† is the Hermitian conjugate of Ψ and 
β−1 is a matrix that transforms the γ(λ) into their Hermitian conjugates). 
 The invariance of the Lagrange function under the transformations (43), (46) is 
expressed by the condition: 
 

( )
( )

|
i

i j

h Q dw
h Q

µ
σµ

σ

δ δδ δ
δ δ
  + 
  
∫

L L
 + ( )

( )
| |

ij
i j j

h Q dw
x h Q

µ
σµ

σ

δ δ
 ∂ ∂ ∂ + ∂ ∂ ∂  

∫
L L

 = 0, 
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and will give rise to two independent groups of identities: 
 

(50)   

( )
( ) ( )( )

( )
( ) ( )( )

| |

0,

0.

i
i

i
i j j

d d
h Q

d d
h Q

µ
λν σ λνµ

σ

µ
λν σ λνµ

σ

δ δ
δ δ
δ δ

δ δ

 + =


 + =


L L

L L
 

 
 From (44), one has: 

( ) ( ) ( )
( )

j k
ih h dλ ν µ

λν  = ( ) jk
id µ . 

 
If we likewise set (except for a sign difference whose meaning will emerge later on): 
 
(51)    ( ) ( )

( )
j kh h dλ ν

σ λν  = − ( )h jkdσ  

 
[the index (h) has been added in order to avoid any confusion with the quantity jkdσ  that 

was defined by (35)] then we can put the identities (50) into the equivalent form: 
 

(52)   

( ) ( )
( )

( ) ( )
( )
| |

0,

0.

jk h jk
i

i

lk h lk
i

i j j

d d
h Q

d d
h Q

µ
σµ

σ

µ
σµ

σ

δ δ
δ δ
δ δ

δ δ

 + =


 + =


L L

L L
 

 
 Thanks to (45) and the definition (7) of ji⋯T , the first identity in (52) will give us: 

 

(53)    T 
jk – T kj ≡ 2 ( )h jkd

Q σ
σ

δ
δ
L

. 

 
If we once more assume that the independent spinorial variables Qσ  are linear, 

homogeneous functions of the Qσ then we will see that we can write: 
 

(54)     ( )h jkd
Q σ

σ

δ
δ
L

 = 0, 

by virtue of the field equations: 

(55)     
Qσ

δ
δ
L

 = 0. 

 
Formula (53) then shows [3] that the energy-momentum tensor density T 

jk is once more 

symmetric in the indices j, k; if that is not true identically, then it will at least be a 
consequence of the field equations (55). 
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 Now, if we return to the identities (19) and (20) then, first of all, we can give them the 
following covariant form [which is analogous to (27), (28)]: 
 

(56)    

, ; ||
|

, ;

||

,

0,

j j kj
i j i i k

j

j
i j

j

c Q
Q Q

c Q
Q Q

ω ω
ω ω

ω ω
ω ω

δ δ
δ

δ δ
δ δ

∂ ≡ − − ∂


  + ≡   

L L
L R

L L
 

in which we have set: 
(57)     Qω ; l = Qω | l + ,

j i
i jlcω Γ  

 
for all of the variables, and we have taken (25), (26) into account, in addition.  As far as 
the purely tensorial variables are concerned, naturally, Qτ ; l is nothing but the covariant 
derivative Qτ || l that was defined by (23).  However, for spinor variables, the covariant 
derivative Qτ || l will differ from Qτ ; l by a term [3] that originates in the fact that a parallel 
displacement of the vierbeins is equivalent to an orthogonal transformation that affects 
the Qσ .  If parallel displacement is defined by a vector ξ i (that is stationary at the point 
considered) then, from (43), this equivalence will be expressed in the form: 
 

( ) ( )
( )idλν µ
λνξ  = − ( )

;
j

i jh µ ξ ; 

 
hence, one can infer the parameters ξ(λν) of the equivalent orthogonal transformation by 
means of (45): 

(58)    { }
( ) ( )

( ) ( ) ( ) ( ) ( )1
; ;2

,

with ;

j
j

i i
j i j i jh h h h

λν λν

λν λ ν ν λ

ξ ξ = Γ
 Γ = − −

 

 
it will then result that the covariant derivative of Qσ is: 
 
(59)     Qσ || l = Qσ ; l + dσ (λν) 

( )
l
λνΓ . 

 
 The first identity (50) will then give: 
 

( ) ( )
; ( )( ) l i l

l

h d
h Q

µ λν
σ λνµ

σ

δ δ
δ δ

+ ΓL L
 ≡ 0, 

so 
( )
; ;( ) l i i

l

h Q
h Q

µ
σµ

σ

δ δ
δ δ

+L L
 ≡ ||iQ

Q σ
σ

δ
δ
L

; 

 
likewise, if one starts with the second identity in (50) then one will get: 
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( )
; ;( )

| |
l i i

l j j

h Q
h Q

µ
σµ

σ

δ δ
δ δ

+L L
 ≡ ||

||
i

j

Q
Q σ

σ

δ
δ
L

 . 

 
If one substitutes these results in (56) then one will get: 
 

(60)   

, || ||
||

, ||

||

,

0,

j j kj
i i i i k

j

j
i i

j

c Q
Q Q

c Q
Q Q

ω α
ω α

ω α
ω α

δ δ
δ

δ
δ

∂ ≡ − − ∂


  ∂ + ≡  ∂ 

L L
L R

L L
 

 
in which, the symbol Qα encompasses all of the tensorial Qτ and spinorial Qσ variables.  
From (11), the first formula (60) can be written: 
 

(61)   j
i⋯T  ≡ || || ,

||

j kj j
i i i k i

j

Q c
Q Qα α

α α

δδ
δ

∂ − − −
∂
L L

L R  , 

 
which then provides a direct generalization of (29). 
 The field equations (30) and (55) have the consequence that if one takes (54) and 
(59), in particular, into account then: 
 

(62)   
,

||

0,

0,

j
i

i

c
Q

Q
Q

α
α

α
α

δ
δ
δ
δ

 =


 =


L

L
 

 
which will permit us to conclude the conservation theorem (33), as before.  Thanks to 
(62), one can further simply the definition (61) by setting the energy-momentum tensor 
density equal to: 

(63)   j
i⋯�t  ≡ || ||

||

j kj
i i i k

j

Q
Q α

α

δ∂ − −
∂
L

L R  . 

 
By virtue of (35) and (53), one will then have: 
 

(64)   t ji − t ij = 2 jis
Q α

α

δ
δ
L

, 

if one sets: 

(65)   
( )

,

,

ji ji

ji ji h ji

s d

s d d
τ τ

σ σ σ

 =
 = +
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and from (62) and (54), relation (64) will express the idea that the symmetry of the 
tensorial density t ji is a consequence of the field equations. 

 As for the tensorial density ||
kj
i kR , it will always be calculated from formula (42), but 

one will now have: 

D
k; ij = 

|

ij

k

d
Q ω

ω

∂
∂
L

, 

 
instead of (41), or furthermore, from the second identity in (52), and with the notation in 
(65): 

(66)     D
k; ij = 

||

ij

k

s
Q α

α

∂
∂
L

, 

 
which is a formula to which the gravitational variables will no longer contribute 
explicitly. 
 If one assumes the viewpoint of special relativity then one can immediately confirm 

that the ijsα  constitute the natural generalization of the ijdα
ɺ  that appear in formula (39) to 

the case in which there are spinorial variables.  In particular, one can set: 
 

( )
ih µɺ  = i

µδ , 

 
in which, the orthogonal transformation of the vierbeins will be identical to the spatio-
temporal Lorentz transformation that was defined (37).  If one takes (39), (46), and (51) 
into account then one will see that in this case the ijsα  that were given by (65) will reduce 

to the coefficients of the variation: 
(67)     Qαδɺ = ij

jisαεɺ , 

 
which (by reason of the choice of covariant tensorial components for the variables Qα) 
corresponds to the Lorentz transformation that is contragredient to the transformation of 
the spatio-temporal variables (37).  [It is this contragredient relationship that was at the 
root of the – sign that was introduced into formula (51)]. 
 
 

§ 5.  Summary and applications 
 

 Formulas (63), (42), (66) express the general result to which we will arrive for a 
system that is described by tensorial and spinorial variables Qα , and whose Lagrange 
function is assumed to contain the Qα and their first (covariant) derivatives Qα || j (in 
addition to certain supplementary restriction that would be necessitated by the 
quantization of the variables).  If we regroup these formulas then we will see that the 
energy-momentum tensor density of such a system can be calculated by starting with the 
Lagrange function – viz., the density L – with the aid of the formula: 
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(I)     j
i⋯�t  ≡ || ||

||

j kj
i i i k

j

Q
Q α

α

δ∂ − −
∂
L

L R   

by means of: 
(II)     kj li

l gR  = D j; ik – D i; kj + D k; ji, 

 

(III)    D
 k; ij ≡ 1

2 ( )ki lj kj li
l lg g−R R  = 

||

ij

k

s
Q α

α

∂
∂
L

, 

 
in which the ijsα  are certain very simple linear combinations of the Qα .  The components 

ji
t are symmetric in the indices by virtue of the field equations for the Qα , and these same 
equations will likewise imply the conservation theorem: 
 
(IV)     ||

j
i j⋯

�t  = 0. 

 
One will observe that, except for the term − j

iδL , the expression forj i⋯�t  will depend upon 

only the derivatives of the Lagrange function with respect to the derivatives of the 
variables Qα . 
 Since formulas (I)-(III) do not exhibit the manner by which the Lagrange function 
depends upon the gravitational variables explicitly, they are immediately adapted to the 
usual case in which one desires to calculate the expression for the energy-momentum 
tensor in the context of special relativity by starting with the “special” form (i.e., 
invariant under only the Lorentz group) of the Lagrange function. 
 In that case, the covariant derivatives will reduce to the corresponding partial 
derivatives, and the quantities ijsα  will take on an especially simple meaning: They are the 

coefficients that determine the variations: 
 
(V1)     Qαδɺ  = ij

jisα εɺ  

 
of the variables Qα under an infinitesimal Lorentz transformation: 
 

(V2)   

,

0 ,

, 1 1,2,3,

1 4,

0.

i i k
k

i il il
k lk

il li

x x

i l

g g i l

i l

δ ε

ε ε

ε ε

⋅

⋅

 =


≠
 = = + = = 
 − = =
 + =

ɺ

ɺ ɺ  

 
 By reason of the antisymmetry of kj

iR  in the indices k, j, the divergence of the term 

||
kj
i kR  that appears in the tensor density j

i⋯�t  can be written in a general manner: 
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(68)     ( )|| ||

kj
i k j
R = 1

2
kj h
h ijkRR , 

 
in which h

ijkR  is the Riemann-Christoffel tensor.  This expression will go to zero in the 

case of special relativity (as one sees immediately, moreover, since it will reduce to the 
second partial derivatives of the antisymmetric components).  In that case, one can then 
omit the divergence ||

kj
i kR  from the definition (I) of j

i⋯�t  without affecting the validity of 

the conservation theorem (IV).  Conversely, a special process of inquiry into the 
expression for j

i⋯�t  in special relativity that starts with simply the condition that the 

desired expression must satisfy equation (IV) by virtue of the field equation (IV) will lead 
only to the addition of the term ||

kj
i kR .  Meanwhile, if one omits it then the resulting 

expression for t ji will no longer possess the essential property of symmetry in the indices 

j, i (by virtue of the field equations, in general). 
 If one always remains in the context of special relativity then one will see that the 
term ||

kj
i kR  has no influence on the definition of the total energy-momentum vector of the 

system: 

(69)    Gi = − 4i dv∫ t    (dv = dx1 dx2 dx3). 

 
By contrast, it will  affect the expression for the total moment of momentum: 
 

(70)    Mij = − 4 4( )i j j ix x dv−∫ t t   (i, j = 1, 2, 3) 

 
in an essential manner.  Indeed, if one sets: 
 

(71)    P
α ≡ 

|4Qα

∂
∂
L

 

 
then the definition (69) (in which the – sign was chosen in order to conform to the usual 
conventions) will give (1): 

(72)    G = − grad Q dvα
α∫P  

for the total momentum, and: 

(73)    G4 = { }|4Q dvα
α −∫ P L  

for the total energy. 
 However, due to the presence of the divergence term ||

kj
i kR  in the form (I) of the 

energy-momentum tensor, the definition (70) will lead very naturally to a distinction 
between “orbital moment”: 

(74)    Mo = − ( grad )Q dvα
α∧∫ xP , 

 
                                                
 (1) One sets x4 = ct.  The expressions for G and M will then represent the corresponding physical 
quantities, but multiplied by c. 
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which corresponds directly to the momentum density that enters effectively into the 
expression (72) and an “intrinsic moment” or “spin”: 
 

(75)    ij
sM  = 

4 4( ) ( )k lj k li
i jl l

k k

g g
x x dv

x x

 ∂ ∂− ∂ ∂ 
∫

ɺ ɺɺ ɺR R
, 

 
which is due to the divergence term precisely.  Of course, this separation of the total 
moment of momentum into two terms: 
 
(76)    Mij = ij ij

o sM M+  

 
has a direct physical meaning only for physical agencies that are endowed with inertia so 
that one could attach a system of reference that is at rest with respect to it.  With the help 
of an integration by parts, the intrinsic moment (75) can be put into the simpler form: 
 

     ij
sM  = { }4 4j li i lj

l lg g dv−∫ ɺ ɺR R , 

or furthermore, from (III): 
 

(77)    ij
sM  = 2 ijs dvα

α∫ P . 

 
 A discussion of the passage to the Hamiltonian form and the quantization of the 
variables with the help of (71), (73) would go beyond the scope of the present article.  
We shall then content ourselves with several complementary remarks on those subjects, 
while confining ourselves to the “regular” case in which the formulas (71) that relate to 
the independent variable Qα do not give rise to identities between those variables and 

their canonically-conjugate momenta αP .  One can observe that if the independent 
variables Qα  are not homogeneous, linear combination of the Qα then the summations 

over all of the components Qα that enter into the formulas of the paragraph can be 
replaced with corresponding summations over the independent variables Qα .  If one then 

introduces suitable commutation relations between the Qα  and the α
P , while remaining 

in the “regular” case in which we have placed ourselves, then one will immediately 
recover the well-known connection between the total momentum operator and the group 
of translations in formula (72), and the analogous connection between the total moment 
of momentum and the rotation group in formula (76) [along with (74) and (77)].  One 
will then verify (with no difficulty, moreover) that the components of the orbital moment, 
on the one hand, and those of spin on the other will be related amongst themselves by 
commutation relations that are characteristic of the group of rotations, while each 
component of the orbital moment will commute with each component of the spin; these 
properties serve to justify the distinction between orbital moment and spin for physical 
agencies that have finite mass. 
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§ 6.  Examples 
 

 In conclusion, we shall treat, by way of examples, the case of elementary particles of 
spin 1 / 2 and then that of fields of spin 1, such the fields of vector mesons or the 
electromagnetic field. 
 

A. – Spin 12  

 
 With the notations that were introduced above in the occasion of formulas (47), (48), 
(49), we can take the Lagrange density function to be: 
 

(78)     L = − Re ||
j

j

c

i
γ µ Φ Ψ + Φ Ψ 

 

ℏ
, 

 
when we set γ i = h(ν) j γ(ν) and denote the real part of any quantity by Re.  The operator µ 
relates to the mass of the particle considered in the usual way.  In order for us to recover 
the usual representation, we choose β = γ 4 and introduce the current matrices: 
 
(79)     α j = γ 4γ j 
and the spin matrices: 
(80)     σ j = i γ kγ l   (j, k, l are permuted cyclically), 
 
while, from the choice of β, the γ j (j = 1, 2, 3) will be skew-Hermitian, while the matrices 
β, α j, σ j, and µ will be Hermitian. 
 The momenta that are conjugate to Ψ and Φ = Ψ† β are: 
 

(81)    PΨ = − 1

2

c

i

ℏ Φβ, PΦ = 
1

2

c

i

ℏ β Ψ. 

One will then get: 

      Gi = − { }|| ||i iΨ ΦΨ + Φ∫ P P  dv 

(82) = Re ||i

c

i
βΦ Ψ∫

ℏ
 dv 

  = †
ipΨ Ψ∫  dv, 

 
for the total momentum when one introduces the operator: 
 

(83)     p = 
c

i

ℏ
grad. 

 
Likewise, the total energy will become: 
 

  G4  = { }4 || ||4i ΦΨ + Φ −∫ P P L  dv 
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(84) = 
3

†

1

j
j

j

pα βµ
=

 
Ψ + Ψ 

 
∑∫  dv. 

 
 As for the moment of momentum, it will split into an orbital moment: 
 

(85)     M0 = †( )Ψ ∧ Ψ∫ x p  dv 

and spin: 

      ij
sM  = 2 { }ij ijs sΨ Ψ Φ Φ+∫ P P dv. 

 
From (47), (48), (49), (51), and (65), one will have: 
 
  2 ijsΨ  = 1

2 γ i γ j Ψ, 
 
  2 ijsΦ  = 1

2 Φγ j γ i, 
so 

      ij
sM  = 1

2 Re i jγ γΨ Ψ∫ P dv, 

or finally, with the notation in (80): 

(86)     Ms = †

2

c Ψ Ψ∫
ℏ σσσσ . 

 
 

B. – Spin 1. 
 

 We take the covariant components Qi of the quadri-vector potential to be the 
variables; i.e., the components of the vector potential U and the scalar potential with the 
sign inverted – V.  We introduce the field tensor: 
 

(87)     Fik = k i
i k

Q Q

x x

∂ ∂−
∂ ∂

, 

 
which represents two spatial vectors H and E that are defined by: 
 

(88)    
4

( , ,  are permuted cylically),

1,2,3,
i kl

i i

H F i k l

E F i

=
 = =

 

respectively. 
 We set the Lagrange density function equal to: 
 
  L  = − 1

4 Fik Fik − 1
2 κ2 Qi Qi 

(89) = − 1
2 (H2 – E2) − 1

2 κ2 (U2 – V2), 
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in which κ is, as one knows, a constant that relates to the mass of the particle that is 
associated with the field in question. 
 From (89), the momenta that are conjugate to the components of U are the 
corresponding components of – E, while the momenta that conjugate to V are identically 
zero.  It then results from this that the field equations that expresses the annulment of the 
variational derivative δL / δV will reduce to form that contains no temporal derivatives: 

 
(90)    div E + κ2 V = 0. 
 
The total energy is easily put into the form: 
 

(91)  G4 = 2 2 2 2 21
2 {( ) ( )} (div )dV V dvκ κ+ + + − +∫ ∫H E U V E V . 

 
 One knows that from the viewpoint of the quantization of the variables, one can take 
(U, − E) to be canonical variables, but that two essentially different cases will present 
themselves, according to whether κ is non-zero or zero.  In the former case, one must 
then consider equation (90) to be the definition of the operator V, and the last integral in 
(91) will be zero identically.  In the latter case (which is the case of electrodynamics), 
equation (90), when reduced to div E = 0, will be an “accessory condition,” by virtue of 
which, the last term of (91) will go to zero. 
 As for the total momentum and the orbital and intrinsic moments of momentum, they 
will take the following forms, which are independent of κ: 
 

(92)    G = 
3

1

grad i
i

i

E U dv
=
∑∫ , 

 

(93)    Mo = 
3

1

( grad) i
i

i

E U dv
=

∧∑∫ x , 

 

(94)    Ms = dv∧∫E U . 

 
Instead of (92), one can write: 
 

 G = rot ( grad) dv dv∧ +∫ ∫E U E U  

(95)  = divdv dv∧ −∫ ∫E H U E , 

 
which will reduce to the familiar expression for the Poynting vector for a pure 
electromagnetic field, by virtue of the accessory condition that div E = 0.  If one starts 
with (93) and (94) then one will likewise find the corresponding form of the total moment 
of momentum: 

(96) M = ( ) ( )divdv dv∧ ∧ − ∧∫ ∫x E H x U E . 
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 In order to establish this result in the case of an electromagnetic field, it is nonetheless 
necessary to return to the original form (75) for the term Ms .  In this case, one will see 
that, by virtue of the condition that div E = 0, the expression (96) will possess the 
property of gauge invariance precisely (1), while the separation into orbital moment and 
spin no will longer have any unambiguous meaning. 
 

* 
* * 

 
 
 The present work was dome (in April 1939) at the Princeton Institute for Advanced 
Studies, in the course of a study-voyage to the United States that was made possible 
thanks to a subsidy from the Belgian-American Educational Foundation. 
 

_____________ 
 

                                                
 (1) If we consider an electromagnetic field that interacts with a system of charges with density ρ then 
the accessory condition will become div E – ρ = 0.  The last terms on the right-hand side of (95) and (96) 
will then combine with the supplementary terms that relate to the momentum and the moment of 
momentum of the system of charges, respectively, in such a manner that the resulting expressions will 
possess gauge invariance precisely. 
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