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 The illustrious Prof. BIANCHI (*) has given the name of COMBESCURE 
transformation to a particular correspondence between the points of two curves, and he 
made some noteworthy applications to the search for the most general curve with 
constant flexion, to spherical helices, to the orthogonal trajectories of a simple infinitude 
of spheres, and to BERTRAND curves. 
 Now, that transformation and other analogous ones presents themselves 
spontaneously in the study of curves by the intrinsic route. 
 Let ρ and r be the radii of first and second curvature, resp., of a curve C at a point M, 
let s be the length of the arc that has M for its endpoint, when computed by starting from 
a fixed origin on C, let (x, y, z) be the Cartesian coordinates of a point M1 that moves 
along M with respect to the fundamental trihedron of C at M, namely, with respect to the 
tangent, the binormal, and the principal normal of C at M.  Now let (x + δx, y + δy, z + δz) 
be the coordinates of the point 1M ′  to which M1 moves when M passes to the infinitely-

close point M′ while moving along C.  One will then have the fundamental formulas (** ): 
 

(1)   
x

ds

δ
=

dx z

ds ρ
− + 1, 

y

ds

δ
=

dy z

ds r
− ,  

z

ds

δ
=

dz x y

ds rρ
+ + . 

 
 If α, β, γ are the direction cosines of a direction that moves with M then one will have 
analogous formulas: 
 

(1)   
ds

δα
=

d

ds

α γ
ρ

− ,  
ds

δβ
=

d z

ds r

γ − ,  
ds

δγ
=

d

ds r

γ α β
ρ

+ + . 

                                                
 (*) Cf., Lezioni di Geometria differenziale, 2nd ed., vol. I, pp. 40, et seq. 
 (** ) Cf., E. CESÀRO, Lezioni di Geometria intrinsica, pp. 124. 
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 Set δx = δy = δz = 0 in (1), so one will have the relations: 
 

dx

ds
 =

z

ρ
− 1, 

dy

ds
 =

z

r
, 

dz

ds
 = − x y

rρ
− , 

 
which are necessary and sufficient for the immobility of the point M1 . 
 The idea of annulling only two of the quantities δx, δy, δz suggests itself 
spontaneously. 
 For example, set δy = δz = 0, so the moving point M1 will describe a curve C1 that 
relates to C in such a way that the corresponding points M and M1 will have parallel 
tangents, and C1 will then be a curve that one can deduce from C by a COMBESCURE 
transformation. 
 Obviously, the binormals and the principal normals will also be parallel, and the 
infinitesimal angles of contingency and torsion ε and η will also be equal; it will then 
follow that: 

1

1

ρ
=

1s

ε
δ

=
1

ds

ds s

ε
δ

⋅ = 
1

1 ds

sρ δ
⋅ ,  

1

1

r
=

1s

η
δ

=
1

ds

ds s

η
δ

⋅ = 
1

1 ds

r sδ
⋅ , 

 
in which one gives the index 1 to the quantities that refer to C1, or: 
 

ρ1 = r f (s), r1 = r f (s), 
in which one sets: 

1s

ds

δ
= f (s). 

 
 It then follows that a COMBESCURE transformation leaves the ratio of the 
curvatures unaltered. 
 One cannot deduce that the rectifying lines at C and C1 are also parallel, because the 
inclination θ of the rectifying line at C to the tangent is defined by the formula (*): 
 

tan θ = − 
τ
ρ

. 

 Recall that: 

(3)     
dy

ds
=

z

r
, 

dz

ds
= − x y

rρ
−  

 
are the necessary and sufficient conditions for the point M1 (x, y, z) to describe a curve C1 
that is the COMBESCURE transform of C.  The tangent, binormal, principal normal, 
and rectifying line will then be parallel to the analogous lines of C and will have the 
intrinsic equations: 
(4)    ρ1 = ρ f (s), r1 = r f (s), δs1 = f (s) ds, 
 

                                                
 (*) Cf., E. CESÀRO, loc. cit., pp. 137.  
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in which: 

(5)     f (s) = 
x

ds

δ
 = 

dx z

ds ρ
−  + 1. 

 
 Now set δx = δz = 0 in (1) instead.  The moving point M1 then describes a curve C1 
that relates to C in such a way that the tangent to C1 at M1 will be parallel to the binormal 
of C at the corresponding point M.  We say that C1 is deduced from C by a 
transformation B or that C1 is a transform of C by B. 
 One can deduce the properties of the transform C1 directly by means of (1) and (2), 
but one can also deduce them immediately when one knows a remarkable theorem of 
BIANCHI ( *): 
 
 For any curve C, there exists another one C1 (which is defined up to a translation) 
that corresponds to C in arc length by equivalence.  The two curvatures and the 
directions of the tangents and binormals will be permuted by the transformation.  More 
precisely: If one chooses the positive sense of the tangent to C1 to be that of the binormal 
to C then the positive sense of the binormal to C1 will be that of the tangent to C, while 
the principal normals will be parallel, but have the opposite positive senses; one will then 
have: 

ρ1 = − r, r1 = − ρ. 
 
 Let B0 denote the particular, but fundamental, transformation B, while noting that all 
of the transforms of a curve by B can be deduced from each other by COMBESCURE 
transformation, so one will have: The most general transformation B is the product of B0 
and the most general COMBESCURE transformation (and vice versa). 
 Symbolically, if T is a COMBESCURE transformation then one will have: 
 

B = B0 ·  T = T B0 . 
 
 One recalls from the foregoing that: 
 

(6)    
dx

ds
= 

z

ρ
− 1,  

dz

ds
= − x y

rρ
−  

 
are the necessary and sufficient conditions for the point M1 (x, y, z) to describe a curve 
C1 that is the transform of C by B.  The tangent and binormal to C1 will be parallel to the 
binormal and tangent to C, resp. (and with equal positive senses), and the principal 
normal will be parallel to the principal normal to C (but with opposite positive senses), 
and one will have the intrinsic equations: 
 
(7)    ρ1 = − r f (s), r1 = − ρ f (s), δs1 = f (s) ds, 
in which: 

                                                
 (*) Loc. cit., vol. I, pp. 53.  
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(8)      f (s) = 
y

ds

δ
 = 

dy z

ds r
−  . 

 
 Finally, set δx = δy = 0 in (1).  The moving point M1 (x, y, z) will then describe a 
curve C1 that relates to C in such a way that the tangent at M1 will be parallel to the 
principal normal to C at the corresponding point M.  We say that C1 is deduced from C by 
a transformation N or that C1 is a transform of C by N. 
 If one applies (2) to the direction of the tangent to C1 – i.e., one takes α = 0, β = 0, γ = 
1 – then one will have: 

ds

δα
= − 1

ρ
, 

ds

δβ
= − 1

r
, 

ds

δγ
= 0, 

and if one then sets: 

δσ = 2 2 2δα δβ δγ+ + = 
2 2r

r

ρ
ρ

+
ds 

then: 

ξ = 
δα
δσ

= − 
2 2

r

rρ +
, η = 

δβ
δσ

= − 
2 2r

ρ
ρ +

, ζ = 
δγ
δσ

 = 0 

 
will be the direction cosines of the principal normal to C1 and therefore: 
 

λ = − 
2 2r

ρ
ρ +

, µ = 
2 2

r

rρ +
, v = 0 

 
will be those of the binormal, and the flexion will be: 
 

1

1

ρ
=

1s

δσ
δ

=
1

ds

s s

δσ
δ δ

⋅ = 
2 2

1

rds

s r

ρ
δ ρ

+
⋅ . 

 Set: 

tan θ = − r

ρ
, 

 
in which θ is the inclination of the rectifying line of C with respect to the tangent, and 
one will have: 
 ξ = − sin θ, η = cos θ, ζ = 0, 
 λ =    cos θ, µ = sin θ, ν = 0, 
 
so the binormal to C1 will be parallel to the rectifying line to C. 
 Finally, apply (2) to the direction λ, µ, ν, so one will have: 
 

ds

δλ
= − sin θ 

d

ds

θ
, 

ds

δµ
= cos θ 

d

ds

θ
, 

ds

δν
= 0, 

and then: 
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1

1

r
= 

2 2 2

1 1 1s s s

δλ δµ δν
δ δ δ
     

+ +     
     

 = 
1

ds d

s ds

θ
δ

⋅ . 

 Recall that: 

(9)     
dx

ds
= 

z

ρ
− 1, 

dy

ds
= 

z

r
 

 
are the necessary and sufficient conditions for the point M1 (x, y, z) to describe a curve 
C1 that is the transform of C by N.  The tangent and binormal to C1 are parallel to the 
principal normal and the rectifying line to C.  The intrinsic equations to C1 are: 
 

(10)   
1

( )f s

ρ
=

2 2r

r

ρ
ρ

+
, 

1

( )f s

r
= 

d

ds

θ
, δs1 = f (s) ds 

in which: 

(11)    f (s) =
z

ds

δ
= 

dz x y

ds rρ
+ + . 

 
 Any curve has an infinitude of transforms T, B, N, because one of the four functions 
x, y, z, f of s will be arbitrary in each transformation.  If one specializes one of those 
functions conveniently then one make some applications of the preceding results, but it is 
clear that those applications can go on indefinitely.  We shall omit the applications that 
Prof. BIANCHI made already and was the first to mention. 
 
 I. For x = 0, (6) will give z = ρ, y = − ρ dρ / ds, so M1 (x, y, z) will be a point on the 
axis of the osculating circle to C, and that axis will be tangent to C1 at M1 .  Therefore, if 
one keeps (7) and (8) in mind then one will have: 
 
 The axes of the osculating circles to a curve C will define a developable surface 
(polar developable to C) that is the envelope of its normal planes.  The edge of regression 
C1 (viz., the locus of centers of the osculating spheres to C) is a transform of C by B and 
has (7) for its intrinsic equation, or: 
 

− f (s) = 
d d

r
r ds ds

ρ ρ +  
 

. 

 
 ρ is constant if and only if y = 0.  In that case, M1 will have the coordinates (0, 0, ρ), 
and C1 is the locus of centers of the osculating circles to C; hence: 
 

f (s) = − 
r

ρ
,      ρ1 = ρ,      r r1 = ρ2. 

 
 One will then have the following theorem of BOUQUET that characterizes the 
twisted circles: 
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 The locus of centers of curvature of a twisted circle C is also a twisted circle C1 .  C 
and C1 are the loci of the centers of the osculating circles to each other and can be 
deduced from each other by a transformation B.  They have equal flexion, and the 
product of their torsions is equal to the square of their common flexion. 
 
 f (s) = 0 iff ρ1 = r1 = 0, and C1 will then reduce to a point; hence: 
 

2
1( )M M = x2 + y2 + z2 = ρ2 + 

2
d

r
ds

ρ 
 
 

, 

 

but if f (s) = 0 then ρ2 + 
2

d
r

ds

ρ 
 
 

 will be constant, so C will be a spherical curve.  One 

will then have the known theorem:  
d d

r
r ds ds

ρ ρ +  
 

= 0 is the necessary and sufficient 

condition for a curve to be traced on a sphere of radius 
2

2 d
r

ds

ρρ  +  
 

. 

 
 
 II. More generally, set x = c (constant).  From (6), one will then have: 
 

y = − 
d r

r c
ds

ρ
ρ

− , z = ρ, 

 
and the preceding theorem will generalize to the following one: 
 
 In the plane that goes through the axis of the osculating circle to a curve and is 
parallel to the rectifying plane, the line that is parallel to that axis and rigidly linked to it 
will generate a developable surface whose edge of regression C1 is the transform of the 
curve by B and has (7) for its intrinsic equation, in which: 
 

− f (s) = 
d d d r

r c
r ds ds ds

ρ ρ
ρ

  + +   
   

. 

 
 Those curves C1 are all transforms by T of the edge of regression to the polar 
developable to C.  They will be congruent to that edge of regression only when C is a 

cylindrical helix, and one will then have 
d r

ds ρ
 
 
 

= 0. 

 
 III. (6) are not satisfied for x = z = 0, which will be when the binormals to a curve do 
not define a developable surface. 
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 IV. We would like to invert problem I.  That is, we would like to find all of the curves 
that have a given curve C as the locus of centers of the osculating sphere; it would then 
be sufficient to set y = 0.  (6) will give: 
 

dx

ds
= 

z

ρ
− 1, 

dz

ds
 = − x

ρ
, 

 
and when one eliminates z from this: 
 

2

2

d x d dx x d

ds ds ds ds

ρ ρρ
ρ

+ ⋅ + + = 0, 

or: 
2

2

d x d
x

d d

ρ
ϕ ϕ

+ + = 0, 

in which one has set: 

ϕ = 
0

s ds

ρ∫ ; 

 
when one integrates this, it will follow that: 
 

(12)  
sin cos sin sin cos cos ,

cos sin cos sin sin cos ,

x c c ds ds

z c c ds ds

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

 ′= + − −


′= − − +

∫ ∫

∫ ∫
 

 
in which c and c′ are arbitrary constants. 
 (12) solves the proposed problem, and therefore, the following equivalent one, as 
well: Find all orthogonal trajectories to a simple infinitude of planes (viz., the osculating 
planes to C).  The problem that was solved before in a different way will then be solved 
by means of three quadratures. 
 The intrinsic equations of that trajectory are: 
 

ρ1 = z,  r1 = z
r

ρ
, δs1 =

z

ρ
ds . 

 
 V. Passing to the transformation T, set x = 0 in (3); it will result that: 
 

dy

ds
= 

z

r
, 

dz

ds
= − y

r
, 

and eliminating z will give: 
2

2

d y dr dy y
r

ds ds ds r
+ ⋅ + , 

or 
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2

2

d y

dψ
+ y = 0, 

in which one has set: 

(13)     ψ = 
0

s ds

r∫ ; 

integration will give: 

(14)    
cos sin ,

cos sin ,

y c c

z c c

ψ ψ
ψ ψ

′= +
 ′= −

 

 
in which c and c′ are arbitrary constants. 
 If one draws two normals to C through M that have inclinations ψ and π / 2 + ψ with 
respect to the principal normals, resp., then it will be clear that the point M1 (0, y, z) that 
is defined by (14) is that point on the normal plane to C that is at distances of c and c′ 
from those normals.  Now, if one keeps in mind that (13) is the necessary and sufficient 
condition for one of the normals and (therefore) the other one to generate a developable 
surface (*) then one can assert that: 
 
 A point on the normal plane to a curve C that is invariably linked with two mutually-
orthogonal normals will generate a curve C1 that is the transform of C by T when one of 
the two normals (and therefore the other one) generates a developable surface. 
 
 Now observe that the curves C1 are orthogonal trajectories to the normal planes to C, 
and one will find that (14) solves the following problem: Construct the orthogonal 
trajectories to a simple infinitude of planes when one knows one of them.  That problem 
is therefore solved by means of just one quadrature, namely, (13), while the general 
problem requires three quadratures (cf., IV). 
 Now let: 

2
1( )M M = x2 + y2 + z2 = c2 + c′2. 

 
It will then follow that: The orthogonal trajectories to a simple infinitude of planes are 
everywhere equidistant. 
 
 VI. Set z = 0, so (3) will give y = c (constant) and x = − (ρ / r) c, and therefore M1 (x, 
y, z) will be on the rectifying line to C at M.  One will then have CESÀRO’s theorem (** ): 
 
 The line that is parallel to the tangent to a curve C that is contained in the rectifying 
plane and is rigidly linked with its fundamental trihedron will generate a developable 
surface. 
 
 One can add that: 
 
 The edges of regression of C1 are transforms of C by T; their intrinsic equations are: 

                                                
 (*) CESÀRO, loc. cit., pp. 139.  
 (** ) Loc. cit., pp. 149.  
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s1 = s – 
r

ρ
c, ρ1 = 1

d
c

ds r

ρρ   −   
  

,  r1 = 1
d

r c
ds r

ρ  −   
  

, 

 
and have the rectifying developable in common with C. 
 A curve is geodetic on the rectifying developable, so C and C1 are geodetics of the 
common rectifying developable, and are inclined equally from its generators; hence, 

2

1c
r

ρ +  
 

. 

 
 Hence: If one starts from each point M of a geodetic C on a developable surface and 

transports the segment MM1 = 
2

1c
r

ρ +  
 

  along the corresponding generator then the 

locus of points M1 will be another geodetic that has the same inclination with respect to 
the generator. 
 
 If C is a cylindrical helix – i.e., if ρ / r is constant – then one will have: 
 

s1 = s + const.,  ρ1 = ρ,  r1 = r, 
 
and the following theorem will be obvious: A cylindrical helix can be slid along a 
cylinder in the sense of the generators and without deformation, and from that, one can 
maintain the preceding as a generalization. 
 
 VII. For y = ± ρ, (3) will give: 
 

z =
d

r
ds

ρ± , x =
d d

r
r ds ds

ρ ρρ   +   
  

∓ . 

 
 Now, as is easy to see, the point P ( ), /y z r d dsρ ρ= ± = ±  on the normal plane to C 

at M is nothing but the center of the osculating sphere (cf., I) (y = − r dρ / ds, z = ρ), 
when rotated around M through the angle  ± π / 2 in that plane.  If the parallel to the 
tangent at a point M of a curve C that is drawn through the center of the osculating 
sphere is rotated through an angle ± π / 2 around M then it will generate a developable 
surface when M moves along that curve. 
 If C is a spherical curve then it will result that (cf., I) x = 0, and therefore: 
 
 The center of a sphere that is rotated through a right angle around a point M on a 
curve that is traced on that sphere and in the plane normal to that curve will generate a 
transform T of the curve when M moves along the curve. 
 
 VIII. (9) will not be satisfied when x = y = 0; that is, when the principal normals to a 
curve do not form a developable surface. 
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 IX. It follows from (10) that 1 / r1 = 0 only when θ is constant, or when ρ / r is 
constant; hence: 
 
 Among the twisted curves, the cylindrical helices are characterized by the fact that all 
of their transforms by N are plane curves that are contained in planes that are 
perpendicular to the generators of the cylinder. 
 
 X. For y = 0, (9) gives z = 0, x = c – s, with c and arbitrary constant.  M1 (x, y, z) will 
then be a point on the tangent at M, and one will have MM1 = x = c – s, so the locus C1 of 
points M1 is a developable of C; hence: The developables of a curve are transforms of it 
by N. 
 More generally, for y = c′ (constant), (9) will give only z = 0, x = c – s; hence: 
 
 A point of a developable on a curve that is displaced through a constant segment c′ in 
the sense of the binormal at the corresponding point of the curve will generate a 
transform of the curve by N. 
 

 XI. Set x = 0 in (9), so one will have y = / r dsρ∫ , z = ρ.  The curve C1 that is 

described by the point M1 (x, y, z) that lies on the polar developable to C and is an 
orthogonal trajectory to its generators will be perpendicular to the axis of the osculating 
circle since it is parallel to the principal normal to C at M.  Therefore: 
 
 The principal normal to a curve that is displaced parallel to itself in the normal plane 

to y = / r dsρ∫  describes a developable surface whose edge of regression lies on the 

polar developable to the curve and does not meet the generators at a right angle. 
 

 The point P (0, /r dsρ∫ , ρ) on the polar axis to a curve is then such that the parallel 

to that axis on the principal normal and its polar axis will generate developable surfaces.  

However, the values y = / r dsρ∫ , r = ρ also satisfy (3) and give: 

x = − 
1d

ds
ds r r

ρ ρρ  + 
 

∫ , 

so the parallel to the tangent that is drawn through P will also generate a developable 
surface.  Therefore: 

 The parallels to the tangents, the binormals, and the principal normals to a curve that 

is drawn through a point in the normal plane at distances of ρ and / r dsρ∫ , resp., in the 

latter two lines will generate three developable surfaces whose edges of regression will 
be transforms of the curve by T, B, N, resp. 
 
 Torino, February 1905. 
  GUSTAVO SANNIA 


