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A sampling of the differential geometry of line complexes.

(By GUSTAVO SANNIA, inTorino)

Translated by D. H. Delphenich

Introduction

In the paper “Nuova esposizione della geometria infimtake delle congruenze
rettilinee” () and two successive noté, ( based the study of ray congruences upon two
qguadratic differential forms in two variables, one of ethrepresents the square of the
angle between two infinitely-close rays of the congceenvhile the other represents the
moment of the rays. In that way, | achieved the ¢oat was proposed by KUMMER
(®): Construct a theory of rectilinear congruences inl[gta the theory of surfaces that
was founded by GAUSS.

FIBBI (*) and FUBINI ¢) also used two quadratic differential forms to repreaaay
congruence in a space of constant curvatuwejever, nothing that was done along those
lines has been attempted for line complexes.

In this paper, | will give a first taste of that, whilgking all of the theory of those
guadratic forms that was used for congruences as its bsigll be ternary, since the
position of a ray in a complex can depend upon the vabdethree independent
parameters; however, the first form will necessasgyreducible, since it depends upon
only thedirectionsof the rays of the complex. There are at mefsof these directions,
since one can suppose that the first form has already feduced to contain no more
than two essential parameters. That hypothesis willoolsly produce no loss of
generality. Indeed, it will leave three inessentaigmeters in the first form, which runs
contrary to the nature of the geometric entity thatftrm represents (from the geometric
viewpoint).

In the course of my work, it often occurred to me tookersthe results that were
contained in the cited paper in thanali, it is assumed that they are known to the reader,
and the citations that refer to them will be precedethbéyetterA.

() Annali di Matematica, (3)5 (1909), 143.

() “Nuove formole utili per lo studio delle congruence rettie e Sull'inviluppata media di una
congruenze diretta,” Atti della R. Accademia delle S@ettizTorino44 and45 (1909-10).

() “Allgemeine Theorie der geradlinigen Strahlensystemegll€ Journab7 (1859).

() “ sistemi doppiamente infiniti di raggi negli spazi airvature costante,” Annali della R. Scuola
Normale Superiore di Pish(1895).

() “Il parallelismo di Clifford negli spazi ellipticipid., 9 (1900).
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From the sheer size of the subject, we must limis@ues in this first sampling to
explaining only the fundamental concepts of the methaldre go beyond the field of
general complexes, while omitting the properties tha specialized to particular
complexes. Above all, | hope that what | have tg wédl be sufficient to show the
efficacy of the new method, which has all of the adages that the so-calledtrinsic
methods present.

The complexes that will considered will be generlgelaraic or transcendental (but
real) ones, so all of the functions that will béraguced will be real functions of real
variables. In regard to those functions, we shall sage and for all, that they will be
assumed tdinite and continuous, along with all of the derivatives that ocaad will
also be limited to a suitable region of their domainxigtence.

In the course of work, the reader will encounter s&mawn geometric properties
that | did not believe would be conveniently omitted framsystematic exposition.
However, the entirely new ideas consist of the stddii@singularities of complexes and
consideration obi-singular rays, which can shed new light on the study of singidari
Moreover, the complexes that are defined by expligiressions in the coordinates of a
general line as functions of three independent parametéirbe studied for the first
time. In fact, up to now, only the complexes thatdened by one equation in the line
coordinates have been studied systematically (with abeegard to the algebraic
complexes) ).

Definitions.

1. Fix an arbitrary poinM along any line in space to be dsgin and fix a positive
sense. A line will then be specified by the coordinatg, z of the pointM and the
direction cosines, Y, Z of its positive sense with respect to three orthogGaatesian
axes. Therefore, in order to define@mplexor system ofo® rays analytically, it will
suffice to give:

XY,zZXY,Z

as functions of three independent paramaigvsw.
The rays of the complex that have a given directn Yo, Zo) correspond to the
solutions of the system:
X (U, v, w) =Xo, YU, v,w) =Yo, Z(u,v,w) =2,.

Now, these equations are not independent, since:

XE+Y+Z2= X2+Y2+ 22 =1,
so the Jacobian matrix:

() If we limit ourselves to the systematic treatmehtntwe shall cite KOENIGS, “Sur les propriétés
infinitesimales de I'éspace reglé,” Thése, 1882. ZINDLERiengeometrieBd. Il. JESSOPA treatise
on the line complexCambridge, 1903.
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X X 9X
QU v ow
oY Y 9Y
ou oV dw
0Z 9z 9Z
ou oV dw

will have the characteristic 0, 1, or 2. If the cloteaistic is 1 therX, Y, Z will be
reducible to functions of just one essential paramstethere will bex' directions for
the rays of the complex, and the complex will be cosegdoof lines that lie along a given
curve at infinity. If the characteristic is 0 th¥nY, Z will be constants, and the complex
will degenerate into an improper star.

We shall exclude these complexes from our considesa i.e., we shall suppose
that the preceding matrix has characteristic two.

It then follows thatX, Y, Z will be functions of only two essential parameterg, w
suppose that they have already been reduced to fundfidthese parameters, which we
denote by andv. On the contrary, y, zwill be functions of not only andv, but also a
third parametew.

We say that, v, w are the(internal) coordinateof the ray of the complex that they
specify.

Letu, v be essential parameters KyrY, Z, so the matrix:

0X dY 9Z

du Jdu du
0X 9Y 0Z

ov 0v 0v

will have characteristic two in all of a two-dimensiodalmain in the variables andyv,
so the square of its horizontatgidrato perrizzontal) will be essentially positive’):

XY (X ) X axX\’
25 =5 (=55 o @

In order for a complex to not degenerate into a congejenne must assume, in
addition, that for all values af v in the domain considered:

() Our treatment will demand those exclusions, but notusecthey can be condemnadriori, but
because the excluded complexes are of little interest. edwier, we are not lacking in examples of
analogous methods that present analogous exceptions: Télpihle surfaces are excluded from the
study of surfaces by means @auss’s spherical representatiorKUMMER’s method [oc. cit) for the
study of ray congruences does not consider the one®wéys have only® directions.

() The symbolY will always represent a sum of three terms thatdeduced from the first one by
changingx, X intoy, Y, and then inta, Z
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ox o0y o0z
ow’' ow’  ow
are not simultaneously zero.
If the functionsX, Y, Z assume the value&, Yo, Zo for two valuesu = up, V=V in
that domain then there will be' rays in the complex that have the directi¥g, (Yo, Zo)
and must pass through the points whose coordinates are:

X(Ug, U, W),  Y(Uo, Ug, W),  Z(Up, Ug, W),

wherew is arbitrary. Thereforehere exists cylinders in the complex

Thus, if Ko, Yo, Zo) is a direction that has been assigaegriori then there will be
cylinders in the complex whose generators have thattibn, and there will exist pairs
Uo, Vp Of values fo, v that satisfy the equations:

Xuv)=Xo, YU, V)=Yo, Z(u,Vv) =2,

only two of which will be independent.

For a fixed finite poinP (X, Yo, Zo) through which rays of the complex pass, it will be
possible to determine triples of real valuesdpw, w such that the following system of
two equations is satisfied:

XUuvw-x_ yuvw-y_ z2(uvw- g
X (u, V) Y(u V) AR

If there exists a solutiow, Vo, W of the system, and if not all of the second-order
minors of a certain functional matrix are zerotfarse values then the system will define
two of the variables as functions of the third ¢eey.,u andv as functions ofv in a
neighborhood oW, and such that fow = wp, one will haveu = up, v = V). In that sense,
one can say that if a ray of the complex passesitfir a finite poin® thenco® of them
will pass through it, in general)( which constitute a cone, namely, twmplex con¢hat
relates to the poir.

If one draws the rag' through the origirO of the Cartesian axes parallel to the ray
o(u, v, w) of the complex, and one intersects it with thbesp that ha® for its center
and a radius 1 then one will obtain the pdmt(X, Y, Z) that is thespherical imagef g.

If one variesg in the complex theg' will describe a star with cent€ an infinitude of
times, whileM “will describe the sphere or a region of it annitfide of times.

2. A system ofw? rays that are chosen from the ones in a complestitate a
congruenceof the complex. We shall always consider onlygroences that are defined
analytically by an equation:

f(uv,w=0

() From now on, when we say that a certain properegigfiedin genera) we intend that to mean that
it is verified provided that certain conditions that translate into equations betweendordinates w, w
are satisfied.
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between the coordinates v, w, wheref is a function that is finite and continuous in a
suitable domain, along with its first derivatives. Fumthere, suppose thats such that
the preceding equation will permit us to consider ohdghe variables as a (finite,
continuous, and differentiable) function of the othes.tw

For example, if it is possible to give the form:

w=¢ (U, V)

to the equation of the congruence (or a region oh@htone can assert that there @fe
distinct points at infinity of the rays of the congnae, and also that the spherical image
of the congruence will cover an entire region of ghieese whose center @ and whose
radius is 1. An example of that would beangruence wi.e., the equatiow = constant.

By contrast, if one can give the form:

u=g@(v), V= {(u)

to the equations of the congruence then there will heqtiglistinct points at infinity of
the rays of the congruence; i.e., the spherical intdgbe congruence will reduce to a
line. That congruence will elude the general treatmengaperA (as well as that of
KUMMER). With ZINDLER (loc. cit), we shall sayylindrical congruencevhen we
mean one that obviously can be generated by giving a consnmotion to a cylinder
whose rectilinear generatotisf(etta) stay rigid during the motion. Tlmngruences or
v (i.e., the equations = const. o = const.) are such congruences.

The congruencas v, andw are thecoordinate congruences the complexes.

Two congruences of the complex:

@ (u,v,w) =0, oY (u,v,w) =0

cut along auled surfacgor simply aruling) of the complex. I and are independent
of w then the ruling will be a cylinder (or system of cylirg)ethat is the intersection of
two cylindrical congruences. For example, thieng w, along which onlyw varies (i.e.,
with the equations = const.v = const.) is a cylinder.

Therulings uorv (i.e., along which only or v varies) are not cylinders.

The rulingsu, v, w are thecoordinate rulingsof the complex. Any ray of the
complex will pass through each system.

Finally, note that, by right of the hypotheses thatewmade,it is legitimate to
perform an arbitrary change of variables of the type:

u=uuv), Vv=v(Uuv), w=w(V),
with
6(u’,\/): 0 %:
o(u,v)  ow

01

but no others.
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Fundamental quadratic forms.
3. Consider two infinitely-close rays of the complex:
g(uv,w), ¢ (u+du v+dy,w+dw,

and suppose, first of all, thdti anddv are not simultaneously zero.
The angle betweeg andg' is measured by the distandg between their spherical
images:
XY, 2, X+dX Y+dY,Z+d2,

and is given by the formula:
ds?=dX?+dY?+dz2 2)

If one introduces the variablasv then one will have:
ds? =Edi + 2F du dv+ G dV/, (3)

in whichE, F, G are known functions af, v:

E_Z(auj’ - ou ov’ G Z(avj' )

By right of the hypotheses that were made in § 1, thetionsE and G are
essentially positive, and from (1), the functi&® — P will also be positive, and its
positive square root will always be denotedzy It will then follow that the binary
guadratic differential form (3) will be positive-definité/e call it thefirst fundamental
form of the complex.

Now, consider theninimum distance @betweerg andg’. Its direction cosines will
be given by the formuld)

(Eax— Faxjdu+( FOX_ G‘ij dv
ov oJu ov Jdu

cos dg; xX) =
Ay Ed +2F dudw Gd¥

(5)

in which, we agree to assume that the value of theahidipositive.
Under the passage frogrto g', the pointM (X, y, 2) that is the origin of will become
the point k + dx, y +dy, z+ d2) of g', so one will obviously have:
do=3 cos @g; X) dx;

it will then follow that themomeniu of g andg':

() Cf., BIANCHI, Lezioni di Geometria Differenzigleol. |, § 137.
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M =ds do
is expressed by:

et

FoX G—axjd (axdu+9‘dv+% dvxa
u u 0 0

6v 0 ou \ w

and also by:
- =D dif + 2D’ du dv+ D" dV? + 2M du dw+ 2N dv dwy (6)

in whichD, D', D", M, N (andrg) are known functions af, v, w that are defined by the
following formulas:

F 50X 0 Ex-0X0x

du du A ovou

D s oy, = F 379X 9 Ex-0X 0
oudu A<~ o9dvou 7)

o —ar, = Oy X Ox_F s 0X dx

A“—0duodu A dvou

pr=Cy X 0x_Fy oxox

ouov A ovov

2M—— 0X 0X _ ZG_XQ(
ou aw A ovow )

X 0x_ Ex-0X0x

ouow A<~ 9vow

We call the ternary quadratic differential form) {6esecond fundamental forof the
complex.

The two forms (3) and (6), from their geometrigrsficance, are independent, not
only of the choice of coordinatesv, w, but also of the choice of poim that will serve
as an origin oy, so changing that point © will not alter anything.

The inverse formulas follow from (7) and (8):

0X 0x _ ED-FD 0Xox_ ED- FD

== ——Er, = =~ —Fr,,

du du A Juov A 7)

90X 9x _ FD'-GD dXdx_ FDO- GD

=———— = Fr,, ——=————-0Cr,,

6v au A ovov A
a_x%: EN-FM a_x%: FN-GM (8)
ou ow A ’ ov ow A '
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4. Now, suppose thatu=dv = 0. The angles (3) betweerg andg' will then be
zero, if one ignores higher-order infinitesimals, areltitho rays can be considered to be
parallel. The moment =ds dowill also be zero, but the distande between them will
not be zero, in general. In that case, the calcuisitioat were made to obtain (6) will not
be valid. Nevertheless, they can also continue tealid in that case, since if one takes
du=dv= 0 then that will give= 0, as it should.

Fundamental theorems.

5. Formulas (4), (7), and (8), which define a complex ditaljy, permit one to
calculate the coefficients of the two fundamentaie (3) and (6) of the complex. We
now pose the opposite question: Given two forms of the {§) and (6), do there exist
complexes that admit them as first and second fundamfenims? How many are there?
How does one construct them?

First of all, observe that if (3) is to represerd finst fundamental form of a complex
then it must represent the square of the linear elepfetite sphere of radius 1, when
referred to a system of two curvilinear coordinatgsv]: For this, it is necessary and
sufficient that it be a positive-definite form, so:

=EG-F?>0,

and in addition it must have a curvature equal to :1i.€., that it is expressed by the
equivalence?:

S I e R
warala LRGSR £
ol a3 2oL o 0
LS

+

an
TR e

2
1 {
() BIANCHI, loc. cit, § 72.

0 2 12
oul 1| av]1 2 2
() BIANCHI, loc. cit, § 43, formula (17).

¢ Ibid., § 37, formula (IV).
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rs
in which the CHRISTOFFEL symbol% . } () are understood to have been formed

from the coefficients of the form (2).

It is known ) that if those conditions are satisfied then thercdedor the three
functionsX, Y, Z of u, v that satisfy (4) will depend upon the integration of &edéntial
equation of the RICATTI type.

Therefore, suppose that these functions are known,ttserd observe that if the
determinant:

X X

ou ov

¥ Y |- [EG- P =a (10)
ou ov

iz oz,

ou ov

is non-zero then it will possible to determine, andust pne way, three functiomss £, y
of u, v, wsuch that:

a2y = A
ou ov
oY
—+,3—V+VY A (11)
a—Z+,[>’—+ Z=C,
ou
in which A, B, C are given functions af, v, w.
Set:
N e 1
ou ou ou
and then multiply the resulting equations by:
x ovooz X dY oz
u’ ou’ du’ ov ' av’ ov

and upon summing them, one will have, from (4) and (7):

Ea+Fﬁ+gZx6x w—Em,

Fa+G,8+gZXax FDT_GD—FrO;

*) Ibid., § 43.
() Ibid., 88 43, 72.
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meanwhile, since:

it will follow by differentiation that:

Zx Zx—-o

so the preceding will give:

D D
a=—-rg, == —
A ° A==
Thus, set:
A= g=% =%
ov ov ov
and if one operates the same way then one will abtain
D" DI
a=—, =—|—+r,|.
A g ( A j
Finally, if one sets:
A= % ay C= E ,
ow’ S oow’ ow

and operates in the same way then, from (4) andai@e will find that:

Ea+F,[>’:2EN_FM, Fa+G,[>’:2FN_GM,
A A
from which, one will get:
N M
a=2—, =—2—.
A d A

Collecting these results, one will get the formulas

0x D 0X DoX
— -1, == =224 X,
au (A jau A ov
o _DoX (E I’ja—x+}/X (12)
N Adu \A 0
%:ZEG_X—ZMG_X+VX
ow A odu A oOv

with analogous formulas for, Y andz, Z. In them,rg is an arbitrary function af, v, w,
andy; y, y” are three functions that are to be determined.
Thus, form the integrability conditions of the ®m (12) and their analogues:
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5. 00 0 (o) 0(2x) 20 o2
oviou) odulov) owldu) oaulow) ow\ov) oaviow)’

with analogous expressionsyirandz.
The first one leads to the following resuft (

:h % =- (bﬂl J
4 A du’ 4 A v
and
Haleya)-
ou ovl A ’
where:
_ 2FD'-ED"-GD
EG- F?
and
6D 6D 12 l
D'+
%25 T {1} [ Zj {
oD" oD 22
- DI+ ",
S AN H
or

)

y
el
Bl )l

2
R F s P R
+2 —+ —
1A 1) A
The first of (12) gives:

i(%j:i(z_rja_x_ 5( jax ox
owlou) owl A °Jau awlAa)ov ~ ow

and the third one gives:

)

>|

|9

I>|D_

ov ou A 0u®  Qudv

ou\ ow ou oJu oJu

namely:
11 12
9 (axj 2i(ﬁj+z N_ptaM, poX
ou\ ow oul A 1A 1] A ou

() For the proof of this, sek, §§ 21, 22, 23.

d 2 2
a(axj 26( jax 26( jax ox L oNIEX X

11

(13)

(14)

(15)

(16)

17)

(17)

0%

ou’
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) GRS

by virtue of the identities'Y:

2

9°X |22 ax+ 226_X_le
o2 | 1 oau 2| av
Therefore, the second of (13) will become:

! 11 12
20 )22 (N) GHN, 2 lox
ow{ A Jul A 1] A 1A Ju

. zi(Mj_i(R}z 12 M_Z N |ox

oul A ) owl A 2 A v

N (ﬂ_ay —ZFN_ENJX -0,
ow oJu A

and by virtue of the identitie$)(
dlogA |11 N 12 alogA: 12 N 22
ou 1 2| ov 1 2|
it will be transformed into the other one:
0 (D’ j 20N 12) M 12
—|—-T, +2 —+2
owl A A 6u 1| A 1
L2m 1(2j_2 1M,
A odu owl A 1| A 2

. (ﬂ_ay _,FM —ENj

x

ow oJu A

() BIANCHI, loc. cit, § 72.
() BIANCHI, loc. cit, § 56.

12

(18)

(19)
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This equivalence and the two other analogous ones thabtaimed by changin

into Y or Z are linear and homogeneous in the coefﬁment%—ef %X X with non-zero
vV

derivatives, and therefore give:

12 12
y” la_D a_l’ E@_N+2{ }M.{-z{ }E, (20)

Aow ow Aodu 1A 2| A
11 1
6_D:26M_2 M-2 N, (21)
ow ou 1 2
dy 9y _,FM-EN (22)
ow du A

Analogously, one finds that the third of the conditi¢1®) demands that one have:

12 12
o 10D on, 20M _ 2{ }M_z{ }ﬁ, 23)

Aow ow A ov 2| A 2| A

" 22 22
ai:ZG—N—Z M -2 N, (24)
ow ov 1 2

W 0y _ ,FN-GN| (25)
ov ow A

(14), (15), (20), ..., (25) are necessary and sufficient tondifor the integrability
of (12): Suppose that they are satisfied, so (12) will giteple of functions, y, z of u,
v, w (up to an additive constant) by quadratures. These filnnegons collectively, along
with X, Y, Z, define a unique complex completely (8 1) that admitdahas (3) and (6)
as fundamental forms.

The given conditions can be simplified.

If one takes a functiorny of u, v, w arbitrarily then (14) will giveyand ). One will
then have two distinct expressions (20) and (23)yf6r which must then give equal
values fory”, so one must have:

12 12
R M -

If one takes one-half the sum of the two expressiong” then one will have, more
simply:

, (aM aNj _an, )

ov du) ow



Sannia — A sampling of the differential geometry of lioenplexes. 14

If one substitutes the values (14) and (27);gf, andy”into (22) and (25) then one
will have:

16l)112+2EN_FNI :i_l(a_M_a_Nj (28)
A ow A ou A\ av  au)]’

_16b211+2FN—GM :i_l(a_M_a_Nj_. (29)
A ow A Ov| A\ dv du)]

In summary: The unknown functiopsy’, andy” have the values (14) and (27), and
there are six relations that couple the coefficientsheftwo fundamental forms: viz.,
(15), (21), (24), (26), (28), and (29). However, one can giitnat the last two are
superfluous — i.e., they can be deduced from the other fadeed, the first of (17) will

give:
T - 2 () 0 (30 (2D ([14_[13)00 [ 1o0
ow  oviow/ odul ow 10w |[1 2/ Jow | 1] ow
so from (21), (24), and (26):

abm:i(a_Dj_aZM _0°N .2 11, 12 (a_M+a_Nj
ow oviow/) odudv dU 1 2 ov odu

lataraar o

3T 2

Now, one easily sees that this coincides with (28hd keeps (9 and the first of (19) in
mind.

One proves that (29) can be omitted in the same Mayertheless, (28) and (29) can
be useful, as well as the following:

210 (FEN-GM 0 FM-EN oH
AR R
A | du A ov A ow

which one deduces by differentiating (28) with respeat end (29) with respect to,
and then subtracting them, while bearing (15) in mind.
One can summarize the foregoing as the following foreddal theorem:

Suppose one is given two quadratic differential forms, one of which isoin tw
variables u and v, is definite, and has curvattie

ds? =E dif + 2F du dv+ G dV/, @)



Sannia — A sampling of the differential geometry of lioenplexes. 15

and one of which is in three variables u, v, w, and has the type:
- =D dif + 2D’du dv+ D”dV? + 2M du dw+ 2N dv dw B
In order for there to exist a complex that admits them as ¢ éind second

fundamental forms, respectively, it is necessary and suffidiantthe following four
relations exist between their coefficients:

Ea_D:a_M_ 11 M_ 1 N,
20w du 1 2
! 12 12
90" _M [ ON _, el o) AN, 0
ow o0v oOdu 1 2
EGL:G_N_ 22 M_ 22 N,
2 0w 0v 1 2
1 i(%}i(bl_uj —H. (I
Aloul A ovi A

in which Hhas the valu€15),and Q12 b1 have the value€l7) or (17).

The complex is unique (up to a spatial motion).

In order to construct it, it is enough to know the direction cosine$ X of one of its
generic lines as functions of u, v, and the coordinates x, y, z ohagidhat line as a
function of u, v, w: The first one is obtained by integrating a RIC&T@iation, while the
second is calculated by quadrature using the formulas:

ax_(g_rojax_ Da_x{%_%jx’

%_ A E Xav A Odu
%;Ra_x_(ﬂﬂoja_x_ By, 0% )y D)
ov A du A ov A 0v

ow “Aodu A dv

ox . NIX _MaX 1(a|v| aNj ar,
-2 + = —-— -2 X,
A\ 0v OJu) ow
and the analogous expressions iny, Y and z, Z will gias an arbitrary function of u, v,
W.

(@) and B might well be called théntrinsic equationsof the complex that they
specify. From now on, we will always suppose that apternis defined by its intrinsic
equations. All of the geometric elements that we evitounter will then be expressed in
terms of their coefficients and their derivatives, ang particular property of a complex
will be translated into one or more equivalences betwthe coefficients and their
derivatives that are distinct from the fundamentilti@ns (I) and (I1).
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Directionsin spatial rulings.
6. Consider two infinitely-close rays of the complex:
g(u, v, w), g (u+du v+dv, w+dw,

and suppose that one does not e dv= 0.

The planell that is determined bg and the direction of the minimum distante
betweeng andg' is called thecentral planeof g relative tog', and the poinQ at which
doencounterg is called thecentral pointof g relative tog'. There are central points and
planes ofy for any ruled surface that passes throggmdg’, andQ is a point of thdine
of strictionfor any such ruling. It is known that they areahnectedalongg (i.e., they
contact at every point af): The tangent plane that is common to the pQnis the
central plane, and at any other pointgot will be determined from the known law of
HAMILTON (%) on thedistribution of tangent planes:

tany = (31)

t
p )
in whicht is the abscissa of the point with the respect toctwral pointQ, ¢ is the
angle that the corresponding tangent plane makestiéticentral plan€l, andp is the
distributor parameter:

p=—c (32)

If p =0 theng andg' will meet at the central poir, the tangent plane will be
stationary alongy and will be the plangg that is perpendicular to the central plane
(except for the poinQ, at which it is indeterminate). The ruling that passesughg
andg' will then behave like a developable surfacg.at

In any case, the tangent plane to the point at infimifity, which is theasymptotic
planeto g relative tog', will be perpendicular to the central planep H 0 then it will be
the plangyg'.

The correspondence between the points and planes tbat is determined by
HAMILTON's law is a (CHASLES) projectivity. Ip = 0 then it will degenerate into the
singular point gg= Q and thesingular plane gg

7. The central plane @f relative tog' is specified by the fact that it passes throggh
and contains the direction do, whose direction cosines (5) are known. The distoib
parameterp (32) is measured by the ratio (with the signed changediheftwo
fundamental forms of the complex:

() This law is commonly attributed to CHASLES, but &ality, it was given for the first time by
HAMILTON, as prof. SEGRE observed in the note: “Moregke congruenze generali di rette,” Biblioteca
Matematica, 1907-8, pp. 321.
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__ Dd’+2Ddudw D df+2 Mdudw 2 Ndvd
p=- : (33)
Edu +2F dudw Gdf

Finally, in order to construct the central po@itit is enough to know its abscissa
with respect to the origiM (x, y, z) of g, which is @, 8§ 13):

> dxdX

S YaxE

Thus, if one introduces the variablesv, w and recalls formulas (2), (3),'}/and (8
then one will have:

r=

._, = (FD-ED)dv +(GD- ED) dudw( GD- FO) dv
0 A(EdU +2F dudw Gdf)

+2(FM —-EN) du+(GM- FN dvdw
A(EdU +2F dudw G df)

(34)

That formula will give precisely the distance- ro from the central poinQ to a
certain point ofj whose abscissa ig, and whose geometric significance we shall discuss
in what follows (§ 12).

8. It is easy to give a formula that will allow onedalculate the angle between the
two planes that pass throughand are the central planesgfelative to two infinitely-
close lines:

g (u+duy v+dv,w+dw), g'(u+adu v+, w+ w),
respectively.

Indeed, that angle is equal to the one that is defingdebglirections of the minimum
distancesiocand do fromgto g andg”, resp. Howeverdo anddo are orthogonal to the
corresponding spherical linear elemedts and d0”, respectively, and all four of them
are orthogonal tg, so the angle betweelw and do will be equal to the one betweds’
andds, so {):

cos Hi0: 50) = Edudu+ R dw v dd y+ Gdd v

JEdZ+2Fdudw GR)( B +2 B d ¥ G 3

(35)

In particular, the anglev between the central planes gfrelative to the ruling
coordinatess andv that pass througlpis given by the formula:

cosw= P sinw= L. (36)

Jee' NS

() BIANCHI, loc. cit, § 42.
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Furthermore: The anglé which is found between 0 and 36€hat the central plane
M of an arbitrary ruling that passes throggandg’ makes with that of the ruling that
passes througfpis given by the formulas:

cosezi(Edu+Fﬂlj, sinB:AGd—V (37)

JEU ds  ds JE ds’
We also note the inverse formulas:

du _ Acosd-Fsid  dv _E
ds AJE 7 ds A

sing. (37)

9. Now, suppose that one hdis=dv= 0. The rayg (u, v, w) andg’ (u, v, w + dw)
are then parallel (8 3), the central pldhef g relative tog' is the plangyg, and is also
the tangent plane at all points @fto all rulings that pass throughandg’, which are
rulings that behave like cylinders gt If the distributor parametgr is infinite then the
central pointQ will be indeterminate.

10. All of the curves in space that pass through etp@ have the tangent in
common with an infinitely-close poii, which one calls thedirection.

All of the rulings that pass through a ligeand an infinitely-close line have all of the
geometric elements that we recalled in 8§ 6 in commidh an infinitely-close ling'. By
analogy, one says that they hdkie direction of the spatial rulinqn common ag, and
that directiorpasses through g.

Only one direction in a spatial ruling tHaglongs to the rulingvill pass through any
ray of a ruled surface, in generad directions that belong to a congruence will pass
through any ray of a congruence, in general, @hdirections that belong to a complex
will pass through any ray of a complex.

Fix a direction in the spatial ruling that pastie®ugh a rayg of a complex and
belongs to the complexi.e., fix a lineg' that is infinitely-close t@ in the complex. One
will then know the central plan@ (and therefore the angthat it makes with central
plane of the rulingl that passes throug), the central poin® (and therefore its abscissa
r with respect to the poirl¥l that is the origin 0§), and the distributor parameter In
order to determine them, it is enough to apply foes (37), (33), and (34).

Conversely, if one knowg, r, andp then one will know the central plamé the
central pointQ, and in general, all of the geometric elements Wee pointed out in § 6
—i.e., one will know a direction of the spatialing that passes through

We then call the three numbeds, p thecoordinatesof the direction considered and
denote its direction byq r, p).

None of this is true whetu = dv = 0 — i.e., whemy andg' are parallel (88 3 and 9).
In that case, one says tltpandg' determine aylindrical singular directionthat passes
throughg.
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We then call a direction that is specified by twoident neighboring rays @nical
singular direction p = 0 for such a direction.

Congruencesin a complex.

11. A non-cylindrical congruence (8 2) is specified by two hinguadratic
differentials that are called tHest and second fundamental forro$ the congruence.
The first one represents the square of the angle of ibfinitely-close rays of the
congruence, while the second one represents the morhtmise two raysA, 88 2, 4,
and 21).

If one is given the equation of the congruence (8 2):

w=w (U, V) (38)

then the two forms will be obtained from the form®y @nd {B) of the complex by
replacingw anddw in them with the expression in (38) and:

dw= a—Wdu+a—de,
u ov

resp.
However, the form §) does not depend upam and dw, so: All non-cylindrical
complexes of the congruence have the first fundamental form in commolm,isvalso
the first fundamental forrfw) of the complex.
It then follows thatAn arbitrary non-cylindrical congruence of an assigned complex
is specified by its second fundamental form.

12. Therefore, a coordinate congruenges specified by its second fundamental
form:
D du’ + 2D ’du dv+ D" dV, (39)

which is obtained from4) by taking the value fow that is constant along the congruence
considered and takindw = 0.

The coefficients of the two forms) and (39) of the congrueneeare related by a
unique relation, namely, (1A § 21).

Formulas (33) and (34) become:

S (FD-ED") du? +(GD- ED) dudw( GD- FD) v
° A(Ed +2F dudw G df)

. (40)

__ Ddw+2D dudw D d¥

, 41
Ed/+2F dudw Gdf 41
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and together with (37), they give the coordinafes p of thew? directions of the spatial
ruling that passes through the rgfu, v, w) of the congruencev and belongs to the
congruence.

ro is the abscissa of tileean poinbf g in the congruence. (A, 8§ 14).

r can vary between two extreme values that correspotwiatdixed points ofg that
are calledimit points so the central poir of thew directions that pass throughand
belong to the congruenae cannot leave the segment that is found between thase tw
points.

p also admits an absolute maximpmand an absolute minimupa whose sum is the
mean parameter KiL6), and whose product is thbsolute parameter:

DD"-D"
K —— 42
EG-F? (42)
of the congruencw for g.
One finds two points — callddci — ong at which all of the rulings that pass through

g and belong to the congrueneewill contact. They are placed symmetrically with
respect to the mean point @fand their distance from that pointdis,/ — K . Therefore,

they are real and distinct, real and coincident, orptexaconjugate according to whether
one has:
K<, =,>0

for g, resp. g is then called &yperboli¢ parabolic, or ellipticray of the congruence,
respectively.

Without demanding anything further, we can assert thaf the formulas of papek
are integrally applicable to a congruencef the complex.

13. More generally: A congruence of the complex whose emuéat (38) is specified
by its second fundamental form:

(D+2M a—Wjduz{D% Ma—W+ Na—Wj dudw( D+2 Na—wj df, (43)
ou ov ou ov

and all of the formulas in papérwill be applicable to is long as one replaces BD,
D ”in those formulas with the coefficientq43).

14. In order to apply the preceding, we proposedek the surface whose normals
are rays of a given complexThat search was begun for the first time by MAL&SI
then reprised by TRANSON in 186%).(

One should observe that it is equivalentite search for the normal congruence of a
complex and that a congruence is normal only when itsmpeaameteH is zero A, 8
19). It is therefore enough to equate the nume@tthe expression (16) fdi to zero,

() Journal of the I'Ecole Polytechniquag" letter, pp. 195.
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in which one has substituted the coefficients of (43)late ofD, 2D’, D” in order to
obtainthe differential equation of the normal congruences of a complex:

2 (FN—GM‘;_W+2 EM —EN ‘Z_W + (2FD’—ED”-GD) = 0. (44)
u \%

It is linear in the first partial derivatives of theakimown functiorw of u, v, so: There
are always an infinitude of normal congruences in a compdxch depend upon an
arbitrary function).

Any solution of (44) contains an arbitrary constant tiedines a family oo normall
congruences of the complex such that one such congrualhgass through any ray of
the complex (or a region of it), in general. One ttaanefore say, with TRANSON, that:
Any complex can always be sliced imtbnormal congruenceg@nd in an infinitude of
ways).

If a normal congruence (38) of the complex is known, dmtefore, if its two
fundamental formsd) and (43) are known then in order to construct afeparallel
surfaces that are orthogonal to its rays, it willdm®ugh to apply the process that was
explained inA, § 27.

In conclusion, recall that DARBOUX, in two recenbtes {), has proved a
noteworthy theorem, which he announced at the end of 137G bne knows a first
family of surfaces that admit the lines of a complex for theimaés then one can
determine all of the other ones without integrating.

15. Some other noteworthy surfaces that KLER) fought are the ones whose
tangents to the asymptotes of a system are lines oéa gomplex.

The search for those surfaces is equivalent to theclsefor the parabolic
congruence®f the complexA, 8 17), which are characterized by annulling the absolute
parameterK. Therefore, if one equates the numerator of theesgimn (42) folK to
zero, after substituting the coefficients in (43) r2D’, D” then one will obtairthe
differential equation of the parabolic congruences of a complex:

2
(M a—W—Na—Wj +2(D'N - DM)a—W+2(D'|V| - D"M)a—w= DD"-D* (45)
ov ou ou ov

The requested surfaces are the focal surfaces (wititident sheets), and can be
constructed as was explaineddng 24 ).

() Comptes rendyd5 and 22 November 1909.
(®) Bulletin des Sciences Mathématiqu&’70, pp. 348.
() Mathematische Annalem. V.

(%) Other noteworthy congruences of a complex (that wesearched by COSSERAT) are isetropic
ones of RIBAUCOUR: We shall not occupy ourselves witém, since it can be shown (cf., ZINDLER,
loc. cit, page 195) that they do not exist in a generic complex.

~— N
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Ruled surfacesin a complex.

12. A ruled surface in a complex is determined by its fiag@ations:

@ (u,v,w) =0, Yuv,w) =0
or by its differential equations:
du _dv_ dw
U vV W

(in which, U, V, W are known functions af, v, w) and the knowledge of one of the rays
that pass through it.

Each of its rays will determine a direction of thetgpauling that belongs to the
complex, and its coordinated r, p will be obtained from (33), (34), and (37) upon
replacingdu, dv, dw with the proportional quantitidd, V, W. In particular, (33) permits
one to construct the central po@tof each ray and the line of striction of the ruling.

A ruling will be developable whem= 0, sothe differential equation of a developable
surface of the complex is:

D dif + 2D’du dv+ D”dV + 2M du dw+ 2N dv dw= 0. (46)

It is satisfied by the rulingv — i.e., by theo' cylinders of the complex. If one sets
=w, V) — i.e., if one equates the form (43) to zero — thenvalhdave, in particular, the
differential equation of the two systems ®of developables that are contained in the
congruence (38).

The edges of regression of the developables are daledurves of the complex
since they generate the rays of the complex as¢hgelope.

Consider one such curand the tangerg at one of its poinQ. The cone of the
complex that ha® for its vertex (8 1) will contaig as a generatof:he tangent plane to
the cone along g is the osculating plane to C at the poininQ@act,Q can be regarded as
the intersection of the tangegtto the curve with the successive tangents. The plane of
those two lines is the osculating plabeo the pointQ, and on the other hand, since it is
the plane of the two successive generators of the whnse vertex i€, it will be the
tangent plane to the cone alogng

Other facts about directions.

17. We call the rays of a complex that result wier N = O thebi-singular raysof
the complex. Unless stated to the contraig 25), they will be excluded from our
considerations.

Let g(u, v, w) be a ray of the complex. There will b€ directions of the spatial
ruling that belong to the complex and pass throgigéince the coordinated r, p of a
direction (8 10) depend upon the ratios of two of the quasti, dv, dw to the third
one. Therefore, a relation must exist between thosedinates.

In order to find it, set, for simplicity:
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— =U, — =V, — =W, (47)

and recall formulas (33) and (34):

-p=Du’+2D'u v+ D'V +2(Mu+ Ny) w,

- _ (FD-ED) +(GD- ED) yy+(GD- FD) §
=
A
+2(FM—EN)q;(GM— N Y,

r

If one eliminatesv; then one will obtain:

[EN-FMu+(FN-GM vi] p—A (M u +N v) (r—rp)
= (Du/ +2D'u v, + D'V¥)[(FM —EN u; + (GM — FN v{]
- [(FD — ED") uf+ (GD -ED”) uy v, + (GD’-FD” uj] (Muz + Nvp) .

However, the right-hand side can be written as:
[(D’M-DNu; + (D”M-D’'N) v4] (EW +2F uy+ GY),
(D'M-=DN u + (D”M—-D'N) v,
since from @) and (47), one will have:

EW+2Fuyvy+ Gy =1.

Therefore:
[[EN-FMu+ (FN-GM vi] p—A (M up + N vy)(r —rp)
=(D'M-=DNu+(D”"M—-=D’N) vy,

ie.:

[(FN-FM)du+( FN-GM) dy p-A( Mdu+ NJ¢ + (48)

=(D'M -DN) du+(D'M- DN) dy
and finally, from (37):
[(EN-FM)cosfd-AM sind Jp—- [(EN- FM)sind+A M co® (- )
(48)

=(D'M - DN)cosé?+% [(ED' - FD')M + (FD- ED )N]sing.

(48) or (48) is the relation that couples the coordinatgs, p of a generic direction
of the spatial ruling that passes through the rgy,g/, w) and belongs to the complex.
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The cylindrical singular directions are the exceptions to ttitsr them, in fact, one
hasdu=dv=0 (8 10), so (48) will vanish. If one prefers then cae say that (48 will
be replaced witlp =« (8 9) for them.

18. (48) will permit us to calculate one of the three coordis# r, p when one is
given the other two, at least, in general. Thereforgieneral, one direction of a spatial
ruling (that is not a cylindrical singular one) will pass through a ray ofdabmplex and
belong to the complex that is specified by the values of any twocobitdinates, which
can be given arbitrarily.

However, there are exceptional directions:

a) If one fixesfarbitrarily then one can also assign an arbitrary value to r (so that p
will then be specified) unless:
(FM-—ENdu+ (FN-GMdv=0, (49)
i.e.,:
(EN — FM cos@-AMsin@=0. (49

In the excluded case — i.e., wh2has the valu#, that is defined by the formula:

AM
cosf, = ,
JE(GM?-2F M N+ EN?)

. EN-FM
sing, = :
JE(GM?-2F M N+ EN?)

(50)

r can assume only the unique vaty¢hat is defined by:

. _ (FD'-GD)M?+(GD- ED) MN+( ED- FD N
e A(GMZ-2FMN + EN?)

, (51)

which would result from (48, while p remains completely arbitrary.

The angled, defines a planél; and the abscisga of a pointQ; of g (). They are
the central plane and central point, respectivelyt, dha common teo directions in the
spatial ruling that passes througk i.e., to the directionsd(, r1, p) with p arbitrary.

b) If one fixes@ arbitrarily then one can also assign an arbitrary value to p (so r is
then specified), unless one has:

() One observes that formulas (50), (51), and the foligwines (53) and (54) are always meaningful.
In fact, if EG — F? > 0 then the formula:
GM? - 2FMN +EN?,

which is quadratic itM andN, is essentially positive, and is therefore annulled &yhe rays for which
one hasM — N= 0, which we exclude expressly.
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M du+N dv=0, (52)
(EN-FM sin@+A M cosé@=0. (52

In the excluded case — i.e., whéhis given the valued that is defined by the
formula:

FM -EN

cosd, = ,

J E(GM? -2FMN+ EN?)

(53)
: AM

sing, = ,

J E(GM? -2FMN + EN?)

p can assume only the unique value:

D"M?-2D'MN + DN?

P1=- (54)

GM?-2FMN+ EN? '

which would result from (48, whiler remains completely arbitrary.
The angled defines a plan€l; of g: M} andp; are the central plane and distributor

parameter, respectively, that are commomtdlirections in the spatial ruling that passes
throughg — i.e., to the directions , r, p1) with r arbitrary.

c) If one is given p and r arbitrarily the@ will be specifiedup to18(), as long as
one does not have:

(55)

(EN- FM) p~A M(r-r,) = D'M - DN,
(FN-GM) p-AN(r-)=D'M-DN.

If one solves the system (55) then one will fihdtt
P = P r=ry,

in whichp; andr; have the values (54) and (51). If one attribtiese values tp andr
then (48) will be satisfied identically — i.e., for ar§/

Therefore, the poir®; of g and the numbaeg; are the central point and the distributor
parameter, respectively, that are commomtalirections of the spatial ruling that passes
throughr — i.e., the directions4 r1, p1), where@is arbitrary.

19. The preceding discussion leads one to distingtliske systems ok' special
directions:

(6,r,p),  (G,r,p), (61, p) (56)
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from among thew® directions of the spatial ruling that passes throughyaofathe
complex and belongs to the complex, and to considertaicgointQ;, along with two
particular plane$l; andIM; throughg.

It follows from (50) and (53) that:

6 -6 =90 (mod 180) ;

i.e.,the plane$1, and IN; are mutually perpendicular.

It then follows that the plane§; and I}, which are the central planes to the
directions of the first two systems (56), respectivalg also asymptotic planes of the
inverses of those systems. It also follows thatfifg two systems cannot have any
common direction, while the first and the third systdrasge the directiond,, ri, p1) in
common, and the second and third ones have the dire&ion,(p1) in common.

There is always a singular direction (8 10) in the 8ystem — viz., &, r1, 0). On the
contrary, no direction of the other two systems W@l singular at a generic ray of the
complex; however, all of the rays for whiph= 0 will be singular.

The rays for which one has = 0 are called thsingular raysof the complex.

It follows from § 18,a) that any planél that passes throughcan be associated with
any pointQ of g: They are the central plane and central point, resdgt of just one
direction in the spatial ruling that passes throggand belongs to the complex. An
exception is the single plam&;, which cannot be associated with the p&yat M, and
Q. determine, not one, but" directions, namely,&, r1, p).

In regard to the planél;, one can observe thitis the tangent plane along g to the

cone of the complex that has the vertex @hdeed,lN; is the asymptotic plane to any
direction of the systend, r1, p) and to the singular directiod( r1, 0), in particular, so
it will be the osculating plane & to the edge of regression for an arbitrary developable

of the complex that passes througtand have the directiord, r1, 0) atg; one will
deduce the statement from that when one takes intauaictbe observation that was
made at the end of § 16.

20. The relation (49 can be put into the much simpler form:
p=rtana-u, (57)

which was given for the first time by KOENIG®¢. cit), and in whicha is an angle
that varies with the direction that one considefsi)ew is a constant.

If one excludes the direction&i(ri, p) — i.e., if one suppose that (40) is not verified —
then one can given the desired form to (48) by taking:

A(M du+ N dy

tana = )
(EN- FM) du+( FN- GM) d\

(58)
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__A(Mdu+rNdy g-(DM- DN du-(B M- DN d

(EN - FM) du+( FN- GM) dv ’ (59)

and choose the poil that is the origin of (and therefore offp) in such a way that
remains constant — i.e., independentiwf dv. That will be achieved if one sets:

AMr,-(D'M -DN) EN-FM| _
ANT,—-(D'M-D'N) FN-GM|

. _ (GD'-FD') M? +(ED' - GD) MN+( FD- ED) N
0— .

60
A(GM?-2FMN+ EN%) (60)

If one substitutes this into (59) (in which itnew legitimate to sedu= 0 ordv= 0 to
begin with) then one will have:

= D'M?-2D'M N+ DN?

61
GM?-2FMN+ EN? (61)

i.e., from (54):
n=-p;. (61)

The value (60) that was found faris the distance from the mean point of the ray of
the congruence that passes through it to the pdihtthat is the origin of the ray (8 12);
however, it coincides — up to sign — with the ripand side of (51), which the distance
from theQ; to that mean point, so the origih that we established earlier is nothing but
the pointQ, . In order to represent the arbitrariness inahgin M of g, it is enough to
change intor — ryin (57).

On the other hand, by virtue of (3758) can be written:

(EN- FM)sind+AM co¥
(EN- FM)cosf-AM sing’

tana =

i.e., from (50):
tana = cot @—- 6).
In summary, we get that:

The coordinated, r, p of a direction of the spatial ruling that passesough a ray of
the complex and belongs to the complex are couptete relation:

p—Rn=(—n)cot(@-a). (62)

In order to prove this, we must exclude the dioet (@, r1, p). Nevertheless, (62)
can remain valid in that case, as well. Indeedyfer; and 8= & the right-hand side
will not have a well-defined value, so (62) wouldk give a well-defined value fqu if it
were illegitimately applied, and according to 8 48,that is exactly what must happen.
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The constantsd, ri, p: that appear in (62) are the coordinates one of thdse
directions.

21. The geometric elemenits;, M, &, pi that we encountered can be linked with an
important element that was introduced by KOENIGS.(cit)).

A direction of an arbitrary spatial ruling that pasgesugh a lineg will determine a
(CHASLES) projectivity between the points and planesgdfy virtue of (31), and
conversely.

The «? directions of a spatial ruling that pass through agayf a complex and
belong to the complex will then determine just as manyASEES projectivities ing.
One can show that they constitutaet and that it will beharmonicor involutorywith a
fixed projectivity ong that KOENIGS called thaormal projectivityof the lineg of the
complex. That will, in turn, determine a directiontleé spatial ruling that passes through
g: One can then prove that this direction@s,(r1, — p1), with our notation’).

It has M} for its central plane, and thu3; for its asymptotic plane, while it h&g

for its central point and g, [i.e., n (61)] for its distributor parameter. We then call
the normal asymptotic plandl;, the normal central plane, Qthe normal central point,

and — p = n, the normal (distributor) parameter of g.
Observe thathe direction( g, r1, — p1) that is specified by the normal projectivity

will belong to the complex only if g is a singular ray of the complexjtamtl then be a
singular ray. Indeed, it will havell; for its central plane, so in order for it to belong t

the complex, it must be included among the rays of yseem @, r1, — p1) (8 18,b);

that can happen only if p1 = p1 = O; i.e., ifg is a singular ray (8 19), and then the
direction in question will be singular (§ 10).

22. In order to give an intuitive picture of the behawdithe directions of a spatial
ruling that belongs to the complex and passes through@ we shall make a geometric
representation.

Let (6 r, p) be any of those directiong.is the angle that its central planemakes
with that of the rulingu that passes through r, and the abscissa of its central pl&he
with respect to the origiM of g — i.e., the foot of the minimum distande betweeng
and the infinitely-close rag that corresponds to the direction considered (88 6 and 10).

Starting withQ, we carry the segmer@®P = p in the direction ofdo and in an
established directior? The locus of point® for all of the «? directions that pass
throughg will be a surface&s. Conversely, any poir® of S will determine a direction in
the spatial ruling that passes throughnd belongs to the complex: viz., the one whose
central plane is the plarigg = I, whose central point is the foQ of the perpendicular

() For that, it is enough to compare (62) with the analofmusula of KOENIGS lpc. cit, page 59)
and to take into account the geometric significancaetbnstants that appear in it.
() For example, in the direction that is fixed by form@ndf § 3.
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that goes froni to g, and whose distributor parameter is the lemqtt the segmenP
(with the exception of any possible points of intensecof S with g).

We then calBthesurface of the directionsf g.

If we adopt cylindrical coordinates, assume thist the axis, that the origin gfis the
normal central poinQ;, and that the plane of the origin in the pencil of axas the
normal asymptotic pland; then:

$p=60-6, p=r-r, p (63)

will be the cylindrical coordinates fét, and (62) will give the equation:

p—pL=pcoty (64)

for the surface&s in cylindrical coordinates.

If one intersectsS with a plane that passes throughand has the equatiog =
constant then one will get a limawhose equation in Cartesian coordingiep is (64);
thereforeS is a ruled surface.

If one transforms the cylindrical coordinates into €sietn ones, Y, z by setting:

X=pcosgy, y=psing, z=4¢,

then one will see immediately th@tis a middle of the fourth-order ruled surface:

(¢ +Y) Y= xz+pry)*

23. If p1 # 0 —i.e., ifg is a singular ray of the complex — thewill meetg at a point
that varies withp and will traverse the entire lirge If one intersectS with the plane that
is perpendicular t@ at Q; and has the equatigm= 0 then one will get a circle that has
Q for its center ang; for its radius. Thereforéiwo plane directors of the ruling S are
the ray g and the circle that has g for its axig,fq its center, and gfor its radius.

Wheng = - 6 = 0, it will result thato =r — r; = 0, andp will remain arbitrary (8
18, a), so the special directiongi( r1, p) will have the points of the line perpendicular to
g at Q: and the planél; for their images o® Similarly, the directions{, r, p1) will

have all of the points of a line that is paralleftin the planell; at a distance; for their

images orf5, and the images of the directior® (1, p1) on S will be all of the points of
the aforementioned circle.

All of the points ofg belong toSand are the only ones for which one will have 0,
so (8 10)xhe singular directions have all of the points of g for their images.

Observation: One must exclude the cylindrical singular directionsmfrohe
preceding considerations (cf., the end of § 17). Nbetss, since one has= « for
them, one can say thtteir images on S are all points at infinity on S.

They are also the points at infinity of the coneosdnequation is:
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p=pcotg. (65)

That cone, whose vertex@, is the director cone for the rulirfg)

Singular rays.

24. The surfac& will reduce to that cone along a singular ray.

One can arrive at the consideration of singular rdys @omplex along other paths,
one of which is more consistent with the methodsitbém@ntial geometry. Leg be an
arbitrary ray of the complex, I& be one of its points, and consider two arbitrary rulings
of the complex that pass through The two rulings contact @t (and at any other point
of g), so they will have the direction of the spatiding at g in common. However, in
the contrary case one will have two distinct tangesuhgd a#, in general. Nevertheless,
is it legitimate to demand that there must exist agay the complex on which there
exists a poinA such thaall of the rulings of the complex that pass throggiontact it?

We begin by observing that if such a ray exists then, artiqular, all of the
developables of the complex that pass thragigiust contact a (excluding the ones for
which A is a singular point, and thus do not have a well-definadetat plane ap).
However, the tangent plane to a developable that palssmsghg will be stationary
along g and will be perpendicular to the central plane of smgular direction of the
spatial ruling that is determined by the developable. MedewAil of the singular
directions in the spatial ruling that passes throgighd belong to the complex must have
the same central plane.

Now, for a singular directiorp(= 0), (62) will become:

= p1=(r—r) cot (6 &),

which shows thaif one does not have g 0 thend (and therefore the central plane) will
vary withr. One must therefore necessarily have 0 — i.e.,g must be a singular ray of
the complex. The preceding equation then gives:

=6 +90=4 (mod 180)

and proves that the fixed central plane must be the plHn@nd therefore that the fixed

tangent plane must be the pldne.

Conversely, consider a singular yvith 4 for its normal asymptotic plane ad
for its normal central points, and consider an arhjtdarection in the spatial rulingd(r,
p) that belongs to the complex and passes thrgugimd whose central planelisand
whose central point iQ. The plandl; will be the tangent plane to all of the ruled
surfaces that pass througlalong the fixed directio(g, r, p) at a certain poin& that can
be determined frotl AMILTON'’s law (8§ 6):

ptanW =QA
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W is the angle between the two central pldieandll; —i.e.,.% = 8- 6 — so:
QA=ptan @- 6).
However, ifps = 0 then (62) will give:
p=(r—r) cot (6— &),

QA=r-n=QQ,

SO

and thereforéd = Q; . However,Q; is a fixed point ofy that does not depend upon the
fixed direction @, r, p). Thus, an arbitrary ruling of the complex that pagteoughg
will touch the plandl; at the poinQ; .

We conclude:

A characteristic property of a singular ray of a complex is that alth&f ruled
surfaces of the complex that pass through it will contact the same paie cfy. That
point will be the normal central point;Qand the common tangent plane will be the
normal asymptotic planB8; .

The pointQ; and the plandl; of a singular ray are called tlsngular point and
singular planeof the ray, respectively.
It follows from (8 12) that:

The singular point @is one of the two foci of the singular ray for all of the
congruences of the complexes that pass through it. Therefore, theudaaks of that
congruence will contact at{and have the plan@; for the common tangent plane there.

Bi-singular rays.

25. We now consider the bi-singular rays of the compleickv are characterized
analytically by the equality:
M=0,N=0, (66)
which we excluded in § 17.

Only « directions of a spatial ruling that belong to complex will pass through a bi-
singular ray.

Indeed, the right-hand sides of formulas (33), (34), and, (@hjch give the
coordinated, r, p of a direction, will depend upon only the ratio : dv at a bi-singular
ray, which is arbitrary.

In other words: The cited formulas coincide with (40), (4hd (37), which give the
coordinates of a direction that belongs to the congmienthat passes through (and
indeed any non-cylindrical congruence of the complex thaepdabsougly, any one of
which can be taken to be the congruenge Therefore:
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All of the non-cylindrical congruences of the complex that pass throughiaghies
ray g behave the same way atig the sense that they have all of the directiothef
spatial ruling in common aj.

Since a neighborhood of a bi-singular gagoincides with a neighborhood of a ray of
the congruence, everything that was said to be tréeirag8 5, 6, 7, 13, 14, 15, 16 will
be true for it. In particular:

All of the congruences that pass through g have the same fo@.@n g and the
same focal planeld; andll; (which can be real or imaginary, and distinct or cdiat).

The characteristic geometric property of singular tags was proved in § 24 will be
verified (in fact, doubly) for a bi-singular ray. Indeedy arbitrary ruling that passes
through such a ray will always belong to that congruericeomplexes, and will then
contact the ray at the two foQy andQ, of that congruence with tangent plamésand
Iy, resp.

Therefore:

The characteristic property of a bi-singular ray is that all of th#ings of the
complex that pass through it will contact at two fixed points of the ray.

Those two point€); and Q. are calledsingular pointsof the ray, and the relative
tangent planeBl; andll; are called theingular planef the ray.

The focal surfaces (with two sheets) of all of the congruenchs abmplex that pass
through a bi-singular ray contact at two singular points and have the two singular planes
of the ray for tangent planes there.

Like the foci on a ray of the congruent®e singular rays (and the focal planes) of a
bi-singular ray can be real and distinct, real and coincident, or complexagatg(*).

In the first case, one calls the bi-singular hgyperboli¢ in the second case, it is
parabolic and in the third, it iglliptic.

The analytical character that distinguishes the three cases is:
K <1 = ’ > 01

respectively, which is the analytical character thstimtjuishes the three cases when one
considers the ray of the congruencéhat that passes through it (cf., the end of § 12).
Finally, observe that for an arbitrary ray of thenpdex, K will represent the absolute
parameter of the congrueneethat passes through it (8 12), so it will be invariant under
any transformation of the just the variabigesv; however, it isnot invariant under the
more general transformations that we defined (cf., tdeoég 2).
However, the preceding results permit is to assatt th

1Y However, one notes thtte singular point and singular plane of a singular ray are alwayk rea
g p g p g y y
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The sign of K (and therefore the annulling of K) on a bi-singular ray is ianar
under all transformations of the variables u, v, w that were pointech@.2i

Loci of singular rays.

26. Aray is singular only whep; = 0 on it; i.e., from (54), when its coordinatey,
w annul the function:
o, v,wW)=D”"M?-2D’M N+ D N?, (67)

but do not annuM andN simultaneously. However, M =N = 0 then the ray will be bi-
singular, buto will also be zero then. We can then call all lné rays of the complex
whose coordinates, v, wsatisfy the equation:

D’M?-2D'MN+DN?=0 (68)

its singular rays i.e., both the singular rays, properly speaking, and#séngular ones.
When we wish to distinguish the former from the lattse will call the former the
ordinary singular rays.

In regard to the functiow;, we observe that it is finite and continuous, alonth s
derivatives, just like the functiori3, D, D” M, N that accompany it (which corrects the
explicit statement that was made in theroduction.

27. Do there exist singular rays?

In the theory of algebraic complexes, in which thereoiglistinction made between
real and imaginary, one has the following resuits (

Either all of the rays of the complex are singulanamne of them are. If one excludes
the limiting cases from this then in any complex theii exist «? singular rays that
form a congruence, namely, th&ngularity congruenceof the complex. As a
consequence, the singular points of the singular raysdosanface (or line) that is one of
the two focal sheets of the singularity congruence ahithwone calls theingularity
surfaceof the complex; the other sheet will be calledabeessory surface.

One notes that if one defines a complex analytichéy one can resolve which of the
three cases that were just enumerated is verified laygabraic process.

The handful of authors that addressed the transcemhd®mgplexes announced the
same results). Now, it seems to me that this is not legitimate

If the functionoreduces to a constaatthen according to whetheris zero or not,
one can assert that either all rays of the comafexsingular or none of them are, resp.
However,if ois an effective function or u, v, w (which is true, in genetfan one
cannot say that.

In fact, nothing gives one the right to assert thatetlegist triples of values af v, w
that annul the functiow, nor does one have any means of deciding whether oreg has

() Cf., e.g., ZINDLER]oc. cit.
() Cf., e.g., KOENIGSI¢c. cit); PICARD, Traité d’Analysevol. |, chap. X, no. 16.
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least oneand even if there is one then there cambef them, and that would give rise
to a congruence, but there can also bedqudsof them, or a finite number; they might or
might not vary continuously, and might be completelpantially isolated.

The rest of the results cease to be valid for Hmesalgebraic complexes if one
considers only the real rays (as we do here).

It would thus be vain to attempt a classification oftilamscendental complexes that
is based upon the existence or non-existence of singayer and their distribution
throughout the complex. One can only enumerate andyssome of the more
noteworthy of the possible cases, limited to convenjesitiall regions of the complex,
and that is what we shall do. However, a complatdysbf the singularities must be
performed only case-by-case for any individual compleXasscof complexes. What we
shall now say in general can serve as a useful guide.

28. It can happen thatreduces to a non-zero constant or that even ifatfigction
of u, v, wthen it still cannot be annulled'he complex will then have no singular rays.

However, it might be that is identically zero, sall rays of the complex are
singular. Such a complex is calledpecial One can further prove, by intuitive
considerations’}, thata special complex is composed of all tangents to a surface, or all
lines that meet a curve, or a curve that is locus of singular pointeeofays of the
complex.

We then note thate rays of a complex cannot all be bi-singulieg;, the functions
M, N cannot both be identically zeroln fact, forM = N = 0, (lll) of 8 5, and the
analogues foy andz, will give:

x__Xop ¥y __Yw,  oz__2Zd

ow  Aow’ ow Aow'’ ow  Adw’

However,ro is an arbitrary function aif, v, w, so it is legitimate to assume thiat= 0O; it
will then result that:

identically. If one prefers, it is impossible for themplex to not degenerate into a
congruence (8 1).

29. Now, if one excludes the two preceding limiting cases tluhat will remain is a
third hypothesis, namely, that there should exist at t@es triple of real values, v, W
of u, v, w that annuls the functiow — i.e., there exists a complex with at least one
singular ray ¢ (u, V', w).

One can make various hypotheses alaut

() We will only sketch the proof. One can find a rigg@roof for the first time in KLEINIgc. cit)
for algebraic complexes and in KOENIASB(, cit) for transcendental complexes.
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Let d be an ordinary singular rgyi.e., its coordinates do not annMl and N
simultaneously. It will not annul the first partidérivatives ofg, in general, then, so
equation (68) will define one of the variables/, w as a function of the other two (e.g.,
w as a function of, v in a neighborhood of the values Vv, such that fou=u',v=V,
one will havew = w).

Therefore:

If there exists an ordinary singular ray m the complex then there will generally
exist(*) a congruence that is composed of rays that are all singular and pass through g

One calls ita congruence of singularities the complex.
If all three derivatives ofrare annulled af' then there is nothing that we can assert.

30. Let d be bi-singular. Its coordinates satisfy the system:
M=0,N=0; (69)
however, in general, not all second-order minors ofuhetional matrix:

oM oM oM
U ov ow
ON 9N ON
ou ov dw

will be annulled; therefore, the system (69) will defime of the variables, v, w as
functions of the third (e.gu, v as functions o¥v in a certain interval that contaims, and
such that fomw = w, it will result thatu = u’, v=V).

Therefore:

In general, a ruled surface of a complex that is composed of nothing baghlssi
rays will pass through a bi-singular ray of that complex.

31l. We shall now see whether there also exist ordinamgutar rays in the
neighborhood of a bi-singular ray. The three first partial derivatives afare annulled
for it (which is easy to verify), so the analysiattiwvas carried out in 8 29 will no longer
be valid, and must be updated. We therefore distinguisk tlases:

a) d is elliptic (8 25). Therefore, one will hay¢ > 0 atg. However,K is a
continuous function, and one will then hake> 0, soDD" — D? > 0 @) in an entire
neighborhood of'. It then follows that the functioa, which is trinomial of degree two

() Cf., the final note in § 1.
(®) Recall that the denominatBG — F in the expression (42) fit is essentially positive (§ 3).
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in M andN, will keep a constant sign (which is necessarily commacD andD’) in this
neighborhood; one can therefore annul then only whah bBband N are annulled
simultaneously.

Therefore:

There exist no ordinary singular rays in the neighborhood of a bi-singular ray.

b) g is hyperbolic. One will haveK < 0 (i.e.,DD" — D’? < 0) atg/, and therefore in
an entire neighborhood gf, as well. It will then follow that in that neightfeod it will
be possible to decompose the trinonaahto the product of two linear binomials W
andN:

o=@ M+LN)(2M+ [ N),

whose coefficientsn, a», [, [ are real functions af, v, w, such that:
ma;=D", o+ mp=-2D B 3=D. (70)

There will be singular rays in the neighborhoodyoivhose coordinates annul one or
the other factor ofo. The first factor will be annulled a’, becauseM and N are
annulled, but its three first partial derivatives willtdme annulled, in general, so the
equation:

aM+BN=0

will define one of the variables, v, w as a finite and continuous function of the other
two, which will give rise to a congruen€® of singular rays that pass through The
same statement will apply to the other factor.

Therefore:

Two regions & C; of a congruence C that is composed of nothing singular rays will
pass through a hyperbolic, singular ray, in general.

C is called acongruence of singularitiesf the complex.

The two regions Cand C; in the neighborhood of gan have only bi-singular rays
in common.Indeed, if:

(13— af)* =4 OD" - D% >0 (71)

then the two linear factors afwill be distinct in the neighborhood gf, so they will be
annulled simultaneously only whéh=N = 0.

c) ¢ are paraboli¢ i.e., K= 0 atg’. There can then exist a neighborhoodyoin
which one constantly ha> 0 orK < 0. In such a case, the results that were stat@d in
or b), respectively, are valid. However, if no such negrhbod exists then one can say
nothing beyond what was said in § 30.
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32. In many cases, from the assumed existencenefsingular rayg’, we could
deduce the existence of an infinitude of other singular tfagtsform a congruence, or of
an infinitude of bi-singular rays that form a ruling, oothb things at once, in a
conveniently small neighborhood of the first oneorié then applies that to the new rays
that are obtained, and so on, then one @artinuethe congruence or ruling that was
constructed.

It might be that one exhausts all of the singulas i@ythe complex in that way. One
will then obtain a unique congruence of singularitiesjliag of bi-singular rays, or both
things at once. However, it might also be that soww singular ray is unattainable
(when starting withg'). It will then be the starting ray of a new congrwenc ruling of
singular rays, and so on.

Finally, there might besolatedsingular rays — i.e., ones in whose neighborhood there
exist no other singular rays.

Loci of singular points.

33. We have nothing to say about the existence of singqudants, because that
guestion is subordinate to the question of the existehstngular rays to which they
would belong.

In regard to their distribution in space, we examimertiore noteworthy cases.

Consider a congruence of singularit@®f the complex. The singular points of its
rays (which are generally ordinary singular ones) willfbei of those rays for any
congruence of the complex that passes through it kef.ehd of § 24), and therefore for
C, in particular. Therefore:

The locus of singular points of the ordinary singular rays of a congruence of
singularities is one of the two sheets of the focal surface abtiggruence.

Therefore, that she& will be called asingularity surfaceof the complex, while the
other oneS; will be anaccessory surface.Both of them are said to belative to the
congruence of singularities that is being considered. rotes that one or the other of
them can degenerate intosin@ularity or accessoryresp.)curve

Moreover, from the theorem at the end of § 24, orgethatthe envelope of the
singular planes of the ordinary singular rays of the congruence C coincithe te
singularity surface S.

From the same theorem, one also hastti@singularity surface;Ss the envelope of
the focal surfaces of all congruence of the complex that pass througdyshef C.

34. Now, consider @pecialcomplex. Any congruendg that is contained in it will
be a congruence of singularities and one of the twasloéehe focal surface & will
be a singularity surface. If one therefore considdrofathe congruences that are
contained in the complex, and each of them is coreid®o be a suitable sheet of the
focal surface, then one can assert that each of #iesds is the envelope of all the other



Sannia — A sampling of the differential geometry of lioenplexes. 38

ones. Obviously, that can happen only when all of teetshcoincide; i.e., the complex
is composed of the tangents to a surface. That praveneem that was stated in § 28.

35. If there is a bi-singular ray 'gin a congruence of singularities C then that ray
cannot be elliptic since there are no ordinary singular rays in a conmtpismall
neighborhood of an elliptic ray (§ 34),.

Therefore:The two singular point€); and Q, of g are certainly real(distinct or

coincident). Q; and Q, are the foci ofy in C, and one can then find one of them&n

and the other 08, . However, on the other hand, nothing will distinglosie point from
the other one, s@, and Q, both belong to Sas well as 5.

36. For those who find little satisfaction in such inductjowe prove that point
that moves on Shat traverses two convenient curves will pass through the pQhts

and Q;.
If g’ is parabolic ther®, and Q, will coincide, and our original assertion will be true.

Therefore, suppose thgtis hyperbolic, and recall (8§ 3k) that in a neighborhood of
g, the congruenc€ to which it belongs can be imagined to have been dividtedtwo
regionsC; andC; that intersect along, and whose equations are:

oM+ N=0, aM+ 5 N=0,
respectively.

Now, suppose that an ordinary singular gayoves in the regio; and tends t@/
across a ruling that composed of ordinary singular r&msequently, the singular point
Q: of g will move on the surface of singulariti€s, describing a curve and tending to a
limiting positionL; ong'.

The abscissa; of Q; ong is given by the formula (51). Howevaey,is constantly
contained in the regio;, soM and N are proportional tg3, and —ai, resp., and
formula (51) will become:

- (FD"-GD") 3’ -(GD- ED")Ba,+(ED- FDa?
—ro= .

r 2 2
A(GH +2FBa, + Eay)

(72)

One notes that in this formula is the abscissa of the mean pointgin the
congruencev that passes through

In the limit asg tends tog', that formula will give the abscissaof the pointL; of ¢’
that is the limit ofQ; . Therefore, if one supposes that the functiéns, G, D, D', D",
a1, [ in (72) have the values that they assumeayotien the right-hand of (72) is the
distanceQ, L, from the point_, of g' to the mean poin@, of g’ in the congruence that

passes through it.
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In order to simply, we specialize the internal coaatksu, v of the complex, and
suppose that it is such that the first fundamental fofrthe complex will assume the
isothermalform (4):

$2 = ) (d + dVA).
Therefore, take:
E=G=4, F=0,
so (72) will become:
QL =1 _ro= D@ =B+ (D" -D)af
A(a; +f3)

and, from (70), it will assume the even simpler form:

Zﬁl lﬁZ

QL ="

If one switches the indices 1 and 2 then one wiltigeformula:

! — 1:82 2:81
QL ==
which is the distance from the mean po@jt of g' to the pointL, to which the singular

point Q; of a singular rag tends when it moves in the congruefzeand tend tay'.
It then follows thatQ; L, = - Q; L,; i.e., that the pointk; andL, are symmetric with

respect toQ; .
Moreover, from (71) and then from (42), one will have:

(a,B8,-a,B)> _ DD"-D" _k
AN? oA

QL oYL, =-
SO

QL) =@QL)=-

That proves (8 12) that the poihtsandL, are the foci off in the congruencer that
passes through it, and therefore (8 25) coincidk thie singular point®, and Q, ofgd'.

37. With that, there should be no doubt about thelte®f § 35. In summary, one
has:

If a (not necessarily elliptic) bi-singular ray leglgs to a congruence of singularities
then it will be bi-tangent to the singularity suckg as well as the accessory surface that
relates to the congruence: In the contrary caseséhtwo surfaces will contact at the two
singular points of the ray.

() Which is always possible in an infinitude of ways.
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In addition:

The intersection of the tangent planes that are common to the two slwatabeswo
singular points of the ray is the ray itself.

That is because those tangent planes are the singulas méthe ray (8 25).

38. It can often happen that a congruence of singulsrititains an entire ruling of
bi-singular (non-elliptic) rays. The preceding resultsthen applicable to each of them.
Therefore:

If a congruence of singularities contain a ruling of bi-singular rays then the
singularity surface and the accessory surface relative to the congrwaiiceontact
along the points of a curve.

The consideration of bi-singular rays puts us into giwegimity with the noteworthy
theorem of VOSSY:

The singularity surface and the accessory surface of an algebraic co(8pEX)
contact along all points of a curve.

39. In general, in the neighborhood of a bi-singular, ellipéig g', there exists a
ruling of bi-singular rays that passes throgg8 30), and no other singular rays exist (8
31,a). The rays of that ruling are certainly ellipticainceK is positive org’, and since
it is continuous, it will keep its sign in the neighboodmfg'.

The locus of singular points of a ruling of rays that are all ellipticibgslar is a
pair of conjugate imaginary lines.

() “Ueber Complexe und Congruenzen,” Math. ABIf1876).
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CORRECTIONS TO PAPER.

reaQ, instead ofc
deletdocal
addthe focal planes that are perpendicular to it
deleteor asymptotic

12 12
read- { 1 } instead of‘{ 1}

readi (o— ), instead ofa—’o
ou ou

readi (o + m), iInstead ofa—’o
ov ov

Torino, 14 March 1910.



