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Introduction 
 

 In the paper “Nuova esposizione della geometria infinitesimale delle congruenze 
rettilinee” (1) and two successive notes (2), I based the study of ray congruences upon two 
quadratic differential forms in two variables, one of which represents the square of the 
angle between two infinitely-close rays of the congruence, while the other represents the 
moment of the rays.  In that way, I achieved the goal that was proposed by KUMMER 
(3): Construct a theory of rectilinear congruences in parallel to the theory of surfaces that 
was founded by GAUSS. 
 FIBBI (4) and FUBINI (5) also used two quadratic differential forms to represent a ray 
congruence in a space of constant curvature; however, nothing that was done along those 
lines has been attempted for line complexes. 
 In this paper, I will give a first taste of that, while taking all of the theory of those 
quadratic forms that was used for congruences as its basis.  It will be ternary, since the 
position of a ray in a complex can depend upon the values of three independent 
parameters; however, the first form will necessarily be reducible, since it depends upon 
only the directions of the rays of the complex.  There are at most ∞2 of these directions, 
since one can suppose that the first form has already been reduced to contain no more 
than two essential parameters.  That hypothesis will obviously produce no loss of 
generality.  Indeed, it will leave three inessential parameters in the first form, which runs 
contrary to the nature of the geometric entity that the form represents (from the geometric 
viewpoint). 
 In the course of my work, it often occurred to me to invoke the results that were 
contained in the cited paper in the Annali; it is assumed that they are known to the reader, 
and the citations that refer to them will be preceded by the letter A. 

                                                
 (1) Annali di Matematica, (3) 15 (1909), 143.  
 (2) “Nuove formole utili per lo studio delle congruence rettilinee e Sull’inviluppata media di una 
congruenze di retta,” Atti della R. Accademia delle Scienze di Torino 44 and 45 (1909-10). 
 (3) “Allgemeine Theorie der geradlinigen Strahlensysteme,” Crelles Journal 57 (1859).  
 (4) “I sistemi doppiamente infiniti di raggi negli spazi di curvature costante,” Annali della R. Scuola 
Normale Superiore di Pisa 8 (1895).  
 (5) “Il parallelismo di Clifford negli spazi elliptici, ibid., 9 (1900).  
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 From the sheer size of the subject, we must limit ourselves in this first sampling to 
explaining only the fundamental concepts of the method and not go beyond the field of 
general complexes, while omitting the properties that are specialized to particular 
complexes.  Above all, I hope that what I have to say will be sufficient to show the 
efficacy of the new method, which has all of the advantages that the so-called intrinsic 
methods present. 
 The complexes that will considered will be general, algebraic or transcendental (but 
real) ones, so all of the functions that will be introduced will be real functions of real 
variables.  In regard to those functions, we shall say, once and for all, that they will be 
assumed to finite and continuous, along with all of the derivatives that occur, and will 
also be limited to a suitable region of their domain of existence. 
 In the course of work, the reader will encounter some known geometric properties 
that I did not believe would be conveniently omitted from a systematic exposition.  
However, the entirely new ideas consist of the study of the singularities of complexes and 
consideration of bi-singular rays, which can shed new light on the study of singularities.  
Moreover, the complexes that are defined by explicit expressions in the coordinates of a 
general line as functions of three independent parameters will be studied for the first 
time.  In fact, up to now, only the complexes that are defined by one equation in the line 
coordinates have been studied systematically (with special regard to the algebraic 
complexes) (1). 
 
 

Definitions. 
 

 1.  Fix an arbitrary point M along any line in space to be its origin and fix a positive 
sense.  A line will then be specified by the coordinate x, y, z of the point M and the 
direction cosines X, Y, Z of its positive sense with respect to three orthogonal Cartesian 
axes.  Therefore, in order to define a complex or system of ∞3 rays analytically, it will 
suffice to give: 

x, y, z, X, Y, Z 
 
as functions of three independent parameters u, v, w. 
 The rays of the complex that have a given direction (X0, Y0, Z0) correspond to the 
solutions of the system: 
 

X (u, v, w) = X0 , Y (u, v, w) = Y0 , Z (u, v, w) = Z0 . 
 

 Now, these equations are not independent, since: 
 

X2 + Y2 + Z2 = 2 2 2
0 0 0X Y Z+ +  = 1, 

so the Jacobian matrix: 
 

                                                
 (1) If we limit ourselves to the systematic treatments then we shall cite KOENIGS, “Sur les propriétés 
infinitesimales de l’éspace reglé,” Thése, 1882.  ZINDLER, Liniengeometrie, Bd. II.  JESSOP, A treatise 
on the line complex, Cambridge, 1903. 
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X X X

u v w
Y Y Y

u v w
Z Z Z

u v w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 

 
will have the characteristic 0, 1, or 2.  If the characteristic is 1 then X, Y, Z will be 
reducible to functions of just one essential parameter, so there will be ∞1 directions for 
the rays of the complex, and the complex will be composed of lines that lie along a given 
curve at infinity.  If the characteristic is 0 then X, Y, Z will be constants, and the complex 
will degenerate into an improper star. 
 We shall exclude these complexes from our considerations (1); i.e., we shall suppose 
that the preceding matrix has characteristic two. 
 It then follows that X, Y, Z will be functions of only two essential parameters; we 
suppose that they have already been reduced to functions of those parameters, which we 
denote by u and v.  On the contrary, x, y, z will be functions of not only u and v, but also a 
third parameter w. 
 We say that u, v, w are the (internal) coordinates of the ray of the complex that they 
specify. 
 Let u, v be essential parameters for X, Y, Z, so the matrix: 
 

X Y Z

u u u
X Y Z

v v v

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 

 
will have characteristic two in all of a two-dimensional domain in the variables u and v, 
so the square of its horizontals (quadrato per orizzontali) will be essentially positive (2): 
 

2 2 2
X X X X

u v u v

∂ ∂ ∂ ∂     ⋅ −     ∂ ∂ ∂ ∂     
∑ ∑ ∑  > 0.   (1) 

 
 In order for a complex to not degenerate into a congruence, one must assume, in 
addition, that for all values of u, v in the domain considered: 
 

                                                
 (1) Our treatment will demand those exclusions, but not because they can be condemned a priori, but 
because the excluded complexes are of little interest.  Moreover, we are not lacking in examples of 
analogous methods that present analogous exceptions: The developable surfaces are excluded from the 
study of surfaces by means of Gauss’s spherical representation.  KUMMER’s method (loc. cit.) for the 
study of ray congruences does not consider the ones whose rays have only ∞1 directions. 
 (2) The symbol ∑ will always represent a sum of three terms that are deduced from the first one by 
changing x, X into y, Y, and then into z, Z.  
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x

w

∂
∂

, 
y

w

∂
∂

, 
z

w

∂
∂

 

are not simultaneously zero. 
 If the functions X, Y, Z assume the values X0, Y0, Z0 for two values u = u0, v = v0 in 
that domain then there will be ∞1 rays in the complex that have the direction (X0, Y0, Z0) 
and must pass through the points whose coordinates are: 
 

x(u0, u0, w), y(u0, u0, w), z(u0, u0, w), 
 

where w is arbitrary.  Therefore, there exist ∞2 cylinders in the complex. 
 Thus, if (X0, Y0, Z0) is a direction that has been assigned a priori then there will be 
cylinders in the complex whose generators have that direction, and there will exist pairs 
u0, v0 of values for u, v that satisfy the equations: 
 

X (u, v) = X0 , Y (u, v) = Y0 , Z (u, v) = Z0 , 
 

only two of which will be independent. 
 For a fixed finite point P (x0, y0, z0) through which rays of the complex pass, it will be 
possible to determine triples of real values for u, v, w such that the following system of 
two equations is satisfied: 
 

0( , , )

( , )

x u v w x

X u v

−
= 0( , , )

( , )

y u v w y

Y u v

−
= 0( , , )

( , )

z u v w z

Z u v

−
. 

 
 If there exists a solution u0, v0 , w0 of the system, and if not all of the second-order 
minors of a certain functional matrix are zero for those values then the system will define 
two of the variables as functions of the third one (e.g., u and v as functions of w in a 
neighborhood of w0, and such that for w = w0, one will have u = u0, v = v0).  In that sense, 
one can say that if a ray of the complex passes through a finite point P then ∞1 of them 
will pass through it, in general (1), which constitute a cone, namely, the complex cone that 
relates to the point P. 
 If one draws the ray g′ through the origin O of the Cartesian axes parallel to the ray 
g(u, v, w) of the complex, and one intersects it with the sphere that has O for its center 
and a radius 1 then one will obtain the point M′ (X, Y, Z) that is the spherical image of g.  
If one varies g in the complex then g′ will describe a star with center O an infinitude of 
times, while M′ will describe the sphere or a region of it an infinitude of times. 
 
 
 2. A system of ∞2 rays that are chosen from the ones in a complex constitute a 
congruence of the complex.  We shall always consider only congruences that are defined 
analytically by an equation: 

f (u, v, w) = 0 

                                                
 (1) From now on, when we say that a certain property is verified in general, we intend that to mean that 
it is verified provided that certain conditions that translate into equations between the coordinates u, v, w 
are satisfied.  
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between the coordinates u, v, w, where f is a function that is finite and continuous in a 
suitable domain, along with its first derivatives.  Furthermore, suppose that f is such that 
the preceding equation will permit us to consider one of the variables as a (finite, 
continuous, and differentiable) function of the other two. 
 For example, if it is possible to give the form: 
 

w = ϕ (u, v) 
 
to the equation of the congruence (or a region of it) then one can assert that there are ∞2 
distinct points at infinity of the rays of the congruence, and also that the spherical image 
of the congruence will cover an entire region of the sphere whose center is O and whose 
radius is 1.  An example of that would be a congruence w; i.e., the equation w = constant. 
 By contrast, if one can give the form: 
 

u = ϕ(v), v = ψ(u) 
 
to the equations of the congruence then there will be just ∞1 distinct points at infinity of 
the rays of the congruence; i.e., the spherical image of the congruence will reduce to a 
line.  That congruence will elude the general treatment of paper A (as well as that of 
KUMMER).  With ZINDLER (loc. cit.), we shall say cylindrical congruence when we 
mean one that obviously can be generated by giving a continuous motion to a cylinder 
whose rectilinear generators (infletta) stay rigid during the motion.  The congruences u or 
v (i.e., the equations u = const. or v = const.) are such congruences. 
 The congruences u, v, and w are the coordinate congruences of the complexes. 
 Two congruences of the complex: 
 

ϕ (u, v, w) = 0,  ϕψ (u, v, w) = 0 
 

cut along a ruled surface (or simply a ruling) of the complex.  If ϕ and ψ are independent 
of w then the ruling will be a cylinder (or system of cylinders) that is the intersection of 
two cylindrical congruences.  For example, the ruling w, along which only w varies (i.e., 
with the equations u = const., v = const.) is a cylinder. 
 The rulings u or v (i.e., along which only u or v varies) are not cylinders. 
 The rulings u, v, w are the coordinate rulings of the complex.  Any ray of the 
complex will pass through each system. 
 Finally, note that, by right of the hypotheses that were made, it is legitimate to 
perform an arbitrary change of variables of the type: 
 

u′ = u′ (u, v), v′ = v′ (u, v), w = w′ (u, v), 
with 

( , )

( , )

u v

u v

′ ′∂
∂

= 0, 
w

w

′∂
∂

= 0, 

but no others. 
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Fundamental quadratic forms. 
 

 3.  Consider two infinitely-close rays of the complex: 
 

g (u, v, w), g′ (u + du, v + dv, w + dw), 
 
and suppose, first of all, that du and dv are not simultaneously zero. 
 The angle between g and g′ is measured by the distance ds′ between their spherical 
images: 

(X, Y, Z), (X + dX, Y + dY, Z + dZ), 
 

and is given by the formula: 
ds′2 = dX 2 + dY 2 + dZ 2.     (2) 

 
 If one introduces the variables u, v then one will have: 
 

ds′2 = E du2 + 2F du dv + G dv2,    (3) 
 

in which E, F, G are known functions of u, v: 
 

E = 
2

X

u

∂ 
 ∂ 

∑ , F = 
X X

u v

∂ ∂
∂ ∂∑ , G = 

2
X

v

∂ 
 ∂ 

∑ .  (4) 

 
 By right of the hypotheses that were made in § 1, the functions E and G are 
essentially positive, and from (1), the function EG – F2 will also be positive, and its 
positive square root will always be denoted by ∆.  It will then follow that the binary 
quadratic differential form (3) will be positive-definite: We call it the first fundamental 
form of the complex. 
 Now, consider the minimum distance dσ between g and g′.  Its direction cosines will 
be given by the formula (1): 
 

cos (dσ, x) = 
2 22

X X X X
E F du F G dv

v u v u

E du F du dv G dv

∂ ∂ ∂ ∂   − + −   ∂ ∂ ∂ ∂   

∆ + +
, …  (5) 

 
in which, we agree to assume that the value of the radical is positive. 
 Under the passage from g to g′, the point M (x, y, z) that is the origin of g will become 
the point (x + dx, y + dy, z + dz) of g′, so one will obviously have: 
 

dσ = ∑ cos (dσ, x) dx; 
 

it will then follow that the moment µ of g and g′: 

                                                
 (1) Cf., BIANCHI, Lezioni di Geometria Differenziale, vol. I, § 137.  
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µ = ds′ dσ 
is expressed by: 
 

µ = 
1 X X X X

E F du F G dv
v u v u

 ∂ ∂ ∂ ∂    − + −    ∆ ∂ ∂ ∂ ∂    
∑

x x x
du dv dw

u v w

∂ ∂ ∂ + + ∂ ∂ ∂ 
, 

 
and also by: 

− µ = D du2 + 2D′ du dv + D″ dv2 + 2M du dw + 2N dv dw,  (6) 
 
in which D, D′, D″, M, N (and r0) are known functions of u, v, w that are defined by the 
following formulas: 

0

0

,

,

,

,

F X x E X x
D

u u v u
F X x E X x

D r
u u v u

G X x F X x
D r

u u v u
G X x F X x

D
u v v v

∂ ∂ ∂ ∂ = − ∆ ∂ ∂ ∆ ∂ ∂


∂ ∂ ∂ ∂ ′ + ∆ = −
∆ ∂ ∂ ∆ ∂ ∂
∂ ∂ ∂ ∂ ′ − ∆ = −
∆ ∂ ∂ ∆ ∂ ∂
∂ ∂ ∂ ∂
′′ = −

∆ ∂ ∂ ∆ ∂ ∂ 

∑ ∑

∑ ∑

∑ ∑

∑ ∑

  (7) 

 

2 ,

2 .

F X x E X x
M

u w v w
G X x E X x

N
u w v w

∂ ∂ ∂ ∂ = − ∆ ∂ ∂ ∆ ∂ ∂
∂ ∂ ∂ ∂ = −
∆ ∂ ∂ ∆ ∂ ∂ 

∑ ∑

∑ ∑
       (8) 

 
 We call the ternary quadratic differential form (6) the second fundamental form of the 
complex. 
 The two forms (3) and (6), from their geometric significance, are independent, not 
only of the choice of coordinates u, v, w, but also of the choice of point M that will serve 
as an origin on g, so changing that point to C will not alter anything. 
 The inverse formulas follow from (7) and (8): 
 

0 0

0 0

, ,

, ,

X x ED FD X x ED FD
Er Fr

u u u v
X x FD GD X x FD GD

Fr Gr
v u v v

′ ′′ ′∂ ∂ − ∂ ∂ − = − = − ∂ ∂ ∆ ∂ ∂ ∆
′ ′′ ′∂ ∂ − ∂ ∂ − = − = −
∂ ∂ ∆ ∂ ∂ ∆ 

∑ ∑

∑ ∑
  (7′) 

 
X x

u w

∂ ∂
∂ ∂

= 2 
EN FM−

∆
,  

X x

v w

∂ ∂
∂ ∂

= 2 
FN GM−

∆
.  (8′) 

 
 



Sannia – A sampling of the differential geometry of line complexes. 8 

 4. Now, suppose that du = dv = 0.  The angle ds′ (3) between g and g′ will then be 
zero, if one ignores higher-order infinitesimals, and the two rays can be considered to be 
parallel.  The moment µ = ds′ dσ will also be zero, but the distance dσ between them will 
not be zero, in general.  In that case, the calculations that were made to obtain (6) will not 
be valid.  Nevertheless, they can also continue to be valid in that case, since if one takes 
du = dv = 0 then that will give µ = 0, as it should. 
 

 
Fundamental theorems. 

 
 5.  Formulas (4), (7), and (8), which define a complex analytically, permit one to 
calculate the coefficients of the two fundamental forms (3) and (6) of the complex.  We 
now pose the opposite question: Given two forms of the type (3) and (6), do there exist 
complexes that admit them as first and second fundamental forms? How many are there?  
How does one construct them? 
 First of all, observe that if (3) is to represent the first fundamental form of a complex 
then it must represent the square of the linear element of the sphere of radius 1, when 
referred to a system of two curvilinear coordinates (u, v): For this, it is necessary and 
sufficient that it be a positive-definite form, so: 
 

∆2 = E G – F 2 > 0, 
 
and in addition it must have a curvature equal to + 1 (1); i.e., that it is expressed by the 
equivalence (2): 
 

1 1 2 1

2

F E G F E F E

u E v u v u v E u

 ∂ ∂ ∂ ∂ ∂ ∂ ∂    − + − −    ∆ ∂ ∆ ∂ ∆ ∂ ∂ ∆ ∂ ∆ ∂ ∆ ∂    
 = 1.  (9) 

 
 We also note the other equivalences (3): 
 

2
11 12 11 12 11 2 2 12 11 12

,
2 2 1 2 2 2 1 2 2

12 11 12 12 11 22
,

1 1 1 2 2 1

12 22 12 12

2 2 1 2

E
v u

F
u v

v u

              ∂ ∂− + + − − =              ∂ ∂              

         ∂ ∂− + − =         ∂ ∂         

     ∂ ∂− +     ∂ ∂     
2

11 22
,

2 1

2 2 12 22 12 22 11 12 2 2 12
,

1 1 2 2 1 1 2 1 1

F

G
u v









     − =          
              ∂ ∂− + + − − =               ∂ ∂                

  (9′) 

 
                                                
 (1) BIANCHI, loc. cit., § 72.  
 (2) BIANCHI, loc. cit., § 43, formula (17).  
 (3) Ibid., § 37, formula (IV). 
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in which the CHRISTOFFEL symbols 
r s

t

 
 
 

 (1) are understood to have been formed 

from the coefficients of the form (2). 
 It is known (2) that if those conditions are satisfied then the search for the three 
functions X, Y, Z of u, v that satisfy (4) will depend upon the integration of a differential 
equation of the RICATTI type. 
 Therefore, suppose that these functions are known, and then observe that if the 
determinant: 

2

X X
X

u v
Y Y

Y EG F
u v
Z Z

Z
u v

∂ ∂ 
∂ ∂


∂ ∂ = − = ∆ ∂ ∂ 
∂ ∂ 

∂ ∂ 

   (10) 

 
is non-zero then it will possible to determine, and in just one way, three functions α¸ β, γ 
of u, v, w such that: 

,

,

,

X X
X A

u v
Y Y

Y A
u v
Z Z

Z C
u v

α β γ

α β γ

α β γ

∂ ∂ + + = ∂ ∂


∂ ∂ + + = ∂ ∂ 
∂ ∂ + + = ∂ ∂ 

    (11) 

 
in which A, B, C are given functions of u, v, w. 
 Set: 

A = 
x

u

∂
∂

, B = 
y

u

∂
∂

, C = 
z

u

∂
∂

, 

 
and then multiply the resulting equations by: 
 

X

u

∂
∂

, 
Y

u

∂
∂

, 
Z

u

∂
∂

, or 
X

v

∂
∂

, 
Y

v

∂
∂

, 
Z

v

∂
∂

 

 
and upon summing them, one will have, from (4) and (7): 
 

 E α + F β + g 
X

X
u

∂
∂∑ = 

ED FD′ −
∆

− E r0 , 

 F α + G β + g 
X

X
v

∂
∂∑ = 

FD GD′ −
∆

− F r0 ; 

                                                
 (1) Ibid., § 43.  
 (2) Ibid., §§ 43, 72. 
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meanwhile, since: 

∑ X 2 = 1, 
it will follow by differentiation that: 
 

X
X

u

∂
∂∑ = 

X
X

v

∂
∂∑ = 0 

so the preceding will give: 

α = 
D′
∆

− r0 ,  β = − D

∆
. 

 Thus, set: 

A = 
x

v

∂
∂

, B = 
y

v

∂
∂

, C = 
z

v

∂
∂

, 

 
and if one operates the same way then one will obtain: 
 

α = 
D′′
∆

, β = − 0

D
r

′ + ∆ 
. 

 Finally, if one sets: 

A = 
x

w

∂
∂

, B = 
y

w

∂
∂

, C = 
z

w

∂
∂

, 

 
and operates in the same way then, from (4) and (8′), one will find that: 
 

Eα + Fβ = 2 
EN FM−

∆
, Fα + Gβ = 2 

FN GM−
∆

, 

 
from which, one will get: 

α = 2
N

∆
,  β = − 2 

M

∆
. 

 
 Collecting these results, one will get the formulas: 
 

0

0

,

,

2 2 ,

x D X D X
r X

u u v

x D X D X
r X

v u v

x N X M X
X

w u v

γ

γ

γ

′∂ ∂ ∂  = − − +  ∂ ∆ ∂ ∆ ∂  
′′ ′∂ ∂ ∂  ′= − + +  ∂ ∆ ∂ ∆ ∂  
∂ ∂ ∂ ′′= − + ∂ ∆ ∂ ∆ ∂ 

   (12) 

 
with analogous formulas for y, Y and z, Z.  In them, r0 is an arbitrary function of u, v, w, 
and γ, γ′, γ″ are three functions that are to be determined. 
 Thus, form the integrability conditions of the system (12) and their analogues: 
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x

v u

∂ ∂ 
 ∂ ∂ 

= 
x

u v

∂ ∂ 
 ∂ ∂ 

, 
x

w u

∂ ∂ 
 ∂ ∂ 

= 
x

u w

∂ ∂ 
 ∂ ∂ 

, 
x

w v

∂ ∂ 
 ∂ ∂ 

= 
x

v w

∂ ∂ 
 ∂ ∂ 

,   (13) 

 
with analogous expressions in y and z. 
 The first one leads to the following results (1): 
 

γ = 0111 rb

u

∂−
∆ ∂

,  γ′ = − 0121 rb

v

∂ + ∆ ∂ 
,   (14) 

and 

221 1121 b b

u v

 ∂ ∂   +    ∆ ∂ ∆ ∂ ∆    
= H,   (15) 

where: 

H = 
2

2FD ED GD

EG F

′ ′′− −
−

     (16) 

and 

112

221

1 2 11 1 2 11
,

1 1 2 2

2 2 2 2 1 2 1 2
,

1 2 1 2

D D
b D D D

v u

D D
b D D D

u v

 ′        ∂ ∂ ′ ′′= − − + − +         ∂ ∂          


 ′′ ′        ∂ ∂ ′ ′′= − + + − +         ∂ ∂          

 (17) 

or 

112

121

2 2 1 2 11
2 ,

2 2 2

2 2 1 2 11
2 2 .

1 1 1

b D D D D D

v u

b D D D D D

u v

′ ′ ′′     ∂ ∂   = − + − +         ∆ ∂ ∆ ∂ ∆ ∆ ∆ ∆          


′′ ′ ′ ′′     ∂ ∂      = − + − + +           ∆ ∂ ∆ ∂ ∆ ∆ ∆ ∆           

  (17′) 

 
 The first of (12) gives: 
 

x

w u

∂ ∂ 
 ∂ ∂ 

 = 0

D X D X
r X

w u w v w

γ′∂ ∂ ∂ ∂ ∂   − − +   ∂ ∆ ∂ ∂ ∆ ∂ ∂   
 

 
and the third one gives: 
 

x

u w

∂ ∂ 
 ∂ ∂ 

 = 2 2
N X M X

X
u u u v u

γ ′′∂ ∂ ∂ ∂ ∂   − +   ∂ ∆ ∂ ∂ ∆ ∂ ∂   
 + 

2 2

22 2
N X X X

u u v u
γ∂ ∂ ∂′′− +

∆ ∂ ∂ ∂ ∂
, 

 
namely: 

x

u w

∂ ∂ 
 ∂ ∂ 

 = 
11 1 2

2 2 2
1 1

N N M X

u u
γ

    ∂ ∂  ′′+ − +     ∂ ∆ ∆ ∆ ∂      
 

                                                
 (1) For the proof of this, see A, §§ 21, 22, 23.  
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+ 
11 1 2

2
2 1

M N M X FM EN
X

u v u

γ  ′′   ∂ ∂ ∂ −   − + − + +       ∂ ∆ ∆ ∆ ∂ ∂ ∆       
, 

 
by virtue of the identities (1): 
 

2

2

2

2

2

11 11
,

1 2

1 2 1 2
,

1 2

2 2 2 2
.

1 2

X X X
EX

u u v

X X X
FX

u v u v

X X X
GX

v u v

   ∂ ∂ ∂= + −    ∂ ∂ ∂    
   ∂ ∂ ∂ = + −    ∂ ∂ ∂ ∂    
   ∂ ∂ ∂
= + −   ∂ ∂ ∂     

   (18) 

 
Therefore, the second of (13) will become: 
 

0

11 1 2
2 2 2

1 1

D N N M X
r

w u u
γ

 ′    ∂ ∂ ∂    ′′− − − + −       ∂ ∆ ∂ ∆ ∆ ∆ ∂        
 

+ 
1 2 11

2 2 2
2 2

M D M N X

u w v

    ∂ ∂ ∂   − + −       ∂ ∆ ∂ ∆ ∆ ∆ ∂        
 

+ 2
FN EN

X
w u

γ γ ′′∂ ∂ − − − ∂ ∂ ∆ 
 = 0, 

 
and by virtue of the identities (2): 
 

log

u

∂ ∆
∂

= 
11 12

1 2

   
+   

   
, 

log

v

∂ ∆
∂

= 
12 2 2

1 2

   
+   

   
,   (19) 

 
it will be transformed into the other one: 
 

0

1 2 1 22
2 2

1 1

D N M N
r X

w u
γ

 ′    ∂ ∂  ′′− − + + −     ∂ ∆ ∆ ∂ ∆ ∆      
 

+ 
11 112

2 2
1 2

M D M N X

u w v

    ∂ ∂ ∂ − − −     ∆ ∂ ∂ ∆ ∆ ∆ ∂      
 

+ 2
FM EN

X
w u

γ γ ′′∂ ∂ − − − ∂ ∂ ∆ 
. 

 

                                                
 (1) BIANCHI, loc. cit., § 72.  
 (2) BIANCHI, loc. cit., § 56.  
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 This equivalence and the two other analogous ones that are obtained by changing X 

into Y or Z are linear and homogeneous in the coefficients of 
X

u

∂
∂

, 
X

v

∂
∂

, X with non-zero 

derivatives, and therefore give: 
 

γ″ = 0
1 2 1 21 2

2 2
1 2

rD N M N

w w u

′    ∂∂ ∂− − + +   ∆ ∂ ∂ ∆ ∂ ∆ ∆   
,  (20) 

 
D

w

∂
∂

=
11 11

2 2 2
1 2

M
M N

u

   ∂ − −   ∂    
,     (21) 

 

w u

γ γ ′′∂ ∂−
∂ ∂

= 2 
FM EN−

∆
.    (22) 

 
Analogously, one finds that the third of the conditions (13) demands that one have: 
 

γ ″ = − 0
1 2 1 21 2

2 2
2 2

rD M M N

w w v

′    ∂∂ ∂− + − −   ∆ ∂ ∂ ∆ ∂ ∆ ∆   
,  (23) 

 
D

w

′′∂
∂

 = 
2 2 2 2

2 2 2
1 2

N
M N

v

   ∂ − −   ∂    
,    (24) 

 

v w

γ γ′′ ′∂ ∂−
∂ ∂

= 2
FN GN−

∆
.    (25) 

 
 (14), (15), (20), …, (25) are necessary and sufficient conditions for the integrability 
of (12): Suppose that they are satisfied, so (12) will give a triple of functions x, y¸ z of u, 
v, w (up to an additive constant) by quadratures.  These three functions collectively, along 
with X, Y, Z, define a unique complex completely (§ 1) that admits the forms (3) and (6) 
as fundamental forms. 
 The given conditions can be simplified. 
 If one takes a function r0 of u, v, w arbitrarily then (14) will give γ and γ′.  One will 
then have two distinct expressions (20) and (23) for γ ″, which must then give equal 
values for γ ″, so one must have: 
 

D

w

′∂
∂

 = 
1 2 1 2

2 2
1 2

M N
M N

v u

   ∂ ∂+ − −   ∂ ∂    
.   (26) 

 
 If one takes one-half the sum of the two expressions for γ ″ then one will have, more 
simply: 

γ ″ = 01 rM N

v u w

∂∂ ∂ − − ∆ ∂ ∂ ∂ 
.     (27) 
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 If one substitutes the values (14) and (27) of γ, γ′, and γ″ into (22) and (25) then one 
will have: 

1121
2

b EN FM

w

∂ −+
∆ ∂ ∆

 = 
1 M N

u v u

∂  ∂ ∂  −  ∂ ∆ ∂ ∂  
,  (28) 

 

− 2111
2

b FN GM

w

∂ −+
∆ ∂ ∆

 = 
1 M N

v v u

∂  ∂ ∂  −  ∂ ∆ ∂ ∂  
.     (29) 

 
 In summary: The unknown functions γ, γ′, and γ″  have the values (14) and (27), and 
there are six relations that couple the coefficients of the two fundamental forms: viz., 
(15), (21), (24), (26), (28), and (29).  However, one can prove that the last two are 
superfluous – i.e., they can be deduced from the other four.  Indeed, the first of (17) will 
give: 

112b

w

∂
∂

 = 
1 2 11 1 2 11

1 1 2 1

D D D D D

v w u w w w w

 ′ ′ ′′       ∂ ∂ ∂ ∂ ∂ ∂ ∂   − − + − +           ∂ ∂ ∂ ∂ ∂ ∂ ∂            
, 

 
so from (21), (24), and (26): 
 

 112b

w

∂
∂

= 
2 2

2

D M N

v w u v u

∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂ ∂ 
 + 2 

11 1 2

1 2

M N

v u

     ∂ ∂ + +      ∂ ∂     
 

   + 2 
1 2 11 1 2 1 2 11 2 2

1 1 1 2 2 1
M

u v

          ∂ ∂− + −          ∂ ∂          
 

   + 2 
2

1 2 11 1 2 11 11 1 2 1 2 11 2 2

1 2 1 2 1 2 2 2 2
N

u v

               ∂ ∂− + − + −               ∂ ∂                

. 

 
Now, one easily sees that this coincides with (28) if one keeps (9′) and the first of (19) in 
mind. 
 One proves that (29) can be omitted in the same way.  Nevertheless, (28) and (29) can 
be useful, as well as the following: 
 

2 FN GM FM EN

u v

 ∂ − ∂ −    +    ∆ ∂ ∆ ∂ ∆    
 = 

H

w

∂
∂

,  (30) 

 
which one deduces by differentiating (28) with respect to u and (29) with respect to v, 
and then subtracting them, while bearing (15) in mind. 
 One can summarize the foregoing as the following fundamental theorem: 
 
 Suppose one is given two quadratic differential forms, one of which is in two 
variables u and v, is definite, and has curvature +1: 
 

ds′2 = E du2 + 2F du dv + G dv2,    (α) 
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and one of which is in three variables u, v, w, and has the type: 
 

− µ = D du2 + 2D′ du dv + D″ dv2 + 2M du dw + 2N dv dw.  (β) 
 
 In order for there to exist a complex that admits them as its first and second 
fundamental forms, respectively, it is necessary and sufficient that the following four 
relations exist between their coefficients: 
 

11 111
,

1 22

1 2 1 2
2 2 ,

1 2

2 2 2 21
,

1 22

D M
M N

w u

D M N
M N

w v u

D N
M N

w v

   ∂ ∂= − −    ∂ ∂     
′    ∂ ∂ ∂ = + − −    ∂ ∂ ∂     
′′    ∂ ∂
= − −   ∂ ∂     

  (I) 

 

221 1121 b b

u v

 ∂ ∂   +    ∆ ∂ ∆ ∂ ∆    
= H,    (II) 

 
in which H has the value (15), and b112, b221 have the values (17) or (17′). 
 The complex is unique (up to a spatial motion). 
 In order to construct it, it is enough to know the direction cosines X, Y, Z of one of its 
generic lines as functions of u, v, and the coordinates x, y, z of a point of that line as a 
function of u, v, w: The first one is obtained by integrating a RICATTI equation, while the 
second is calculated by quadrature using the formulas: 
 

0112
0

0221
0

0

,

,

1
2 2 ,

rbx D X D X
r X

u u v u

rbx D X D X
r X

v u v v

rx N X M X M N
X

w u v v u w

′ ∂∂ ∂ ∂   = − − + −    ∂ ∆ ∂ ∆ ∂ ∆ ∂    
′′ ′ ∂∂ ∂ ∂   = − + − +    ∂ ∆ ∂ ∆ ∂ ∆ ∂    
∂∂ ∂ ∂  ∂ ∂  = − + − −   ∂ ∆ ∂ ∆ ∂ ∆ ∂ ∂ ∂    

  (III) 

 
and the analogous expressions in y, Y and z, Z will give r0 as an arbitrary function of u, v, 
w. 
 
 (α) and (β) might well be called the intrinsic equations of the complex that they 
specify.  From now on, we will always suppose that a complex is defined by its intrinsic 
equations.  All of the geometric elements that we will encounter will then be expressed in 
terms of their coefficients and their derivatives, and any particular property of a complex 
will be translated into one or more equivalences between the coefficients and their 
derivatives that are distinct from the fundamental relations (I) and (II). 
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Directions in spatial rulings. 
 

 6.  Consider two infinitely-close rays of the complex: 
 

g(u, v, w), g′ (u + du, v + dv, w + dw), 
 
and suppose that one does not have du = dv = 0. 
 The plane Π that is determined by g and the direction of the minimum distance dσ 
between g and g′ is called the central plane of g relative to g′, and the point Q at which 
dσ encounters g is called the central point of g relative to g′.  There are central points and 
planes of g for any ruled surface that passes through g and g′, and Q is a point of the line 
of striction for any such ruling.  It is known that they are all connected along g (i.e., they 
contact at every point of g): The tangent plane that is common to the point Q is the 
central plane, and at any other point of g it will be determined from the known law of 
HAMILTON ( 1) on the distribution of tangent planes: 
 

tan ψ = 
t

p
,     (31) 

   
in which t is the abscissa of the point with the respect to the central point Q, ψ is the 
angle that the corresponding tangent plane makes with the central plane Π, and p is the 
distributor parameter: 

p = 
d

ds

σ
.     (32) 

 
 If p = 0 then g and g′ will meet at the central point Q, the tangent plane will be 
stationary along g and will be the plane gg′ that is perpendicular to the central plane 
(except for the point Q, at which it is indeterminate).  The ruling that passes through g 
and g′ will then behave like a developable surface at g. 
 In any case, the tangent plane to the point at infinity of g, which is the asymptotic 
plane to g relative to g′, will be perpendicular to the central plane.  If p = 0 then it will be 
the plane gg′. 
 The correspondence between the points and planes of g that is determined by 
HAMILTON’s law is a (CHASLES) projectivity.  If p = 0 then it will degenerate into the 
singular point gg′ ≡ Q and the singular plane gg′. 
 
 
 7.  The central plane of g relative to g′ is specified by the fact that it passes through g 
and contains the direction of dσ, whose direction cosines (5) are known.  The distributor 
parameter p (32) is measured by the ratio (with the signed changed) of the two 
fundamental forms of the complex: 

                                                
 (1) This law is commonly attributed to CHASLES, but in reality, it was given for the first time by 
HAMILTON, as prof. SEGRE observed in the note: “Monge e le congruenze generali di rette,” Biblioteca 
Matematica, 1907-8, pp. 321. 
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p = − 
2 2

2 2

2 2 2

2

D du D du dv D dv M du dw N dv dw

E du F du dv G dv

′ ′′+ + + +
+ +

.  (33) 

 
 Finally, in order to construct the central point Q, it is enough to know its abscissa r 
with respect to the origin M (x, y, z) of g, which is (A, § 13): 
 

r = − 
2

dx dX

dX
∑
∑

. 

 
Thus, if one introduces the variables u, v, w and recalls formulas (2), (3), (7′), and (8′) 
then one will have: 
 

2 2

0 2 2

2 2

( ) ( ) ( )

( 2 )

( ) ( )
2 .

( 2 )

FD ED du GD ED du dv GD FD dv
r r

E du F du dv G dv

FM EN du GM FN dv
dw

E du F du dv G dv

′ ′′ ′ ′′ − + − + −− = ∆ + + 


− + − +
∆ + + 

  (34) 

 
 That formula will give precisely the distance r – r0 from the central point Q to a 
certain point of g whose abscissa is r0, and whose geometric significance we shall discuss 
in what follows (§ 12). 
 
 
 8.  It is easy to give a formula that will allow one to calculate the angle between the 
two planes that pass through g and are the central planes of g relative to two infinitely-
close lines: 

g′ (u + du, v + dv, w + dw), g″ (u + δu, v + δv, w + δw), 
respectively. 
 Indeed, that angle is equal to the one that is defined by the directions of the minimum 
distances dσ and δσ from g to g′ and g″, resp.  However, dσ and δσ are orthogonal to the 
corresponding spherical linear elements dσ′ and δσ′, respectively, and all four of them 
are orthogonal to g, so the angle between dσ and δσ will be equal to the one between ds′ 
and δs′, so (1): 

cos (dσ, δσ) = 
2 2 2 2

( )

( 2 )( 2 )

E du u F du v dv u G dv v

E du F du dv G dv E u F u v G v

δ δ δ δ
δ δ δ δ

+ + +
+ + + +

. (35) 

 
 In particular, the angle ω between the central planes of g relative to the ruling 
coordinates u and v that pass through g is given by the formula: 
 

cos ω = 
F

EG
, sin ω = 

EG

∆
.   (36) 

                                                
 (1) BIANCHI, loc. cit., § 42.  
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 Furthermore: The angle θ, which is found between 0 and 360o, that the central plane 
Π of an arbitrary ruling that passes through g and g′ makes with that of the ruling u that 
passes through g is given by the formulas: 
 

cos θ = 
1 du dv

E F
ds dsE

 + ′ ′ 
,  sin θ = 

dv

dsE

∆ ⋅
′
.  (37) 

 
 We also note the inverse formulas: 
 

du

ds′
 = 

cos sinF

E

θ θ∆ −
∆

, 
dv

ds′
 = sin

E θ
∆

.   (37′) 

 
 
 9.  Now, suppose that one has du = dv = 0.  The rays g (u, v, w) and g′ (u, v, w + dw) 
are then parallel (§ 3), the central plane Π of g relative to g′ is the plane gg′, and is also 
the tangent plane at all points of g to all rulings that pass through g and g′, which are 
rulings that behave like cylinders at g.  If the distributor parameter p is infinite then the 
central point Q will be indeterminate. 
 
 
 10.  All of the curves in space that pass through a point P have the tangent o in 
common with an infinitely-close point P′, which one calls their direction. 
 All of the rulings that pass through a line g and an infinitely-close line have all of the 
geometric elements that we recalled in § 6 in common with an infinitely-close line g′.  By 
analogy, one says that they have the direction of the spatial ruling in common at g, and 
that direction passes through g. 
 Only one direction in a spatial ruling that belongs to the ruling will pass through any 
ray of a ruled surface, in general, ∞1 directions that belong to a congruence will pass 
through any ray of a congruence, in general, and ∞2 directions that belong to a complex 
will pass through any ray of a complex. 
 Fix a direction in the spatial ruling that passes through a ray g of a complex and 
belongs to the complex − i.e., fix a line g′ that is infinitely-close to g in the complex.  One 
will then know the central plane Π (and therefore the angle θ that it makes with central 
plane of the ruling u that passes through g), the central point Q (and therefore its abscissa 
r with respect to the point M that is the origin of g), and the distributor parameter p.  In 
order to determine them, it is enough to apply formulas (37), (33), and (34). 
 Conversely, if one knows θ, r, and p then one will know the central plane Π, the 
central point Q, and in general, all of the geometric elements that were pointed out in § 6 
– i.e., one will know a direction of the spatial ruling that passes through g. 
 We then call the three numbers θ, r, p the coordinates of the direction considered and 
denote its direction by (θ, r, p). 
 None of this is true when du = dv = 0 – i.e., when g and g′ are parallel (§§ 3 and 9).  
In that case, one says that g and g′ determine a cylindrical singular direction that passes 
through g. 
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 We then call a direction that is specified by two incident neighboring rays a conical 
singular direction; p = 0 for such a direction. 
 
 

Congruences in a complex. 
 

 11.  A non-cylindrical congruence (§ 2) is specified by two binary quadratic 
differentials that are called the first and second fundamental forms of the congruence.  
The first one represents the square of the angle of two infinitely-close rays of the 
congruence, while the second one represents the moment of those two rays (A, §§ 2, 4, 
and 21). 
 If one is given the equation of the congruence (§ 2): 
 

w = w (u, v)     (38) 
 
then the two forms will be obtained from the forms (α) and (β) of the complex by 
replacing w and dw in them with the expression in (38) and: 
 

dw = 
w w

du dv
u v

∂ ∂+
∂ ∂

, 

resp. 
 However, the form (α) does not depend upon w and dw, so: All non-cylindrical 
complexes of the congruence have the first fundamental form in common, which is also 
the first fundamental form (α) of the complex. 
 It then follows that: An arbitrary non-cylindrical congruence of an assigned complex 
is specified by its second fundamental form. 
 
 
 12.  Therefore, a coordinate congruence w is specified by its second fundamental 
form: 

D du2 + 2D′ du dv + D″ dv2,    (39) 
 
which is obtained from (β) by taking the value for w that is constant along the congruence 
considered and taking dw = 0. 
 The coefficients of the two forms (α) and (39) of the congruence w are related by a 
unique relation, namely, (II) (A, § 21). 
 Formulas (33) and (34) become: 
 

r – r0 = 
2 2

2 2

( ) ( ) ( )

( 2 )

FD ED du GD ED du dv GD FD dv

E du F du dv G dv

′ ′′ ′ ′′− + − + −
∆ + +

, (40) 

 

p = − 
2 2

2 2

2

2

D du D du dv D dv

E du F du dv G dv

′ ′′+ +
+ +

,   (41) 
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and together with (37), they give the coordinates θ, r, p of the ∞1 directions of the spatial 
ruling that passes through the ray g(u, v, w) of the congruence w and belongs to the 
congruence. 
 r0 is the abscissa of the mean point of g in the congruence w.  (A, § 14). 
 r can vary between two extreme values that correspond to two fixed points of g that 
are called limit points, so the central point Q of the ∞1 directions that pass through g and 
belong to the congruence w cannot leave the segment that is found between those two 
points. 
 p also admits an absolute maximum p1 and an absolute minimum p2 whose sum is the 
mean parameter H (16), and whose product is the absolute parameter: 
 

K = 
2

2

DD D

EG F

′′ ′−
−

     (42) 

of the congruence w for g. 
 One finds two points – called foci – on g at which all of the rulings that pass through 
g and belong to the congruence w will contact.  They are placed symmetrically with 

respect to the mean point of g, and their distance from that point is ± K− .  Therefore, 

they are real and distinct, real and coincident, or complex-conjugate according to whether 
one has: 

K <, = , > 0 
 
for g, resp.  g is then called a hyperbolic, parabolic, or elliptic ray of the congruence w, 
respectively. 
 Without demanding anything further, we can assert that all of the formulas of paper A 
are integrally applicable to a congruence w of the complex. 
 
 
 13.  More generally: A congruence of the complex whose equation is (38) is specified 
by its second fundamental form: 
 

2 22 2
w w w w

D M du D M N du dv D N dv
u v u v

∂ ∂ ∂ ∂     ′ ′′+ + + + + +     ∂ ∂ ∂ ∂     
, (43) 

 
and all of the formulas in paper A will be applicable to it as long as one replaces D, 2D′, 
D″ in those formulas with the coefficients in (43). 
 
 
 14.  In order to apply the preceding, we propose to seek the surface whose normals 
are rays of a given complex.  That search was begun for the first time by MALUS and 
then reprised by TRANSON in 1861 (1). 
 One should observe that it is equivalent to the search for the normal congruence of a 
complex, and that a congruence is normal only when its mean parameter H is zero (A, § 
19).  It is therefore enough to equate the numerator of the expression (16) for H to zero, 

                                                
 (1) Journal of the l’École Polytechnique, 38th letter, pp. 195.  
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in which one has substituted the coefficients of (43) in place of D, 2D′, D″, in order to 
obtain the differential equation of the normal congruences of a complex: 
 

2 (FN – GM)
w

u

∂
∂

+ 2 (FM – EN) 
w

v

∂
∂

 + (2FD′ – ED″ − GD) = 0.  (44) 

 
 It is linear in the first partial derivatives of the unknown function w of u, v, so: There 
are always an infinitude of normal congruences in a complex (which depend upon an 
arbitrary function). 
 Any solution of (44) contains an arbitrary constant that defines a family of ∞1 normal 
congruences of the complex such that one such congruence will pass through any ray of 
the complex (or a region of it), in general.  One can therefore say, with TRANSON, that: 
Any complex can always be sliced into ∞1 normal congruences (and in an infinitude of 
ways). 
 If a normal congruence (38) of the complex is known, and therefore, if its two 
fundamental forms (α) and (43) are known then in order to construct the ∞1 parallel 
surfaces that are orthogonal to its rays, it will be enough to apply the process that was 
explained in A, § 27. 
 In conclusion, recall that DARBOUX, in two recent notes (1), has proved a 
noteworthy theorem, which he announced at the end of 1870 (2): If one knows a first 
family of surfaces that admit the lines of a complex for their normals then one can 
determine all of the other ones without integrating. 
 
 
 15.  Some other noteworthy surfaces that KLEIN (3) sought are the ones whose 
tangents to the asymptotes of a system are lines of a given complex. 
 The search for those surfaces is equivalent to the search for the parabolic 
congruences of the complex (A, § 17), which are characterized by annulling the absolute 
parameter K.  Therefore, if one equates the numerator of the expression (42) for K to 
zero, after substituting the coefficients in (43) for D, 2D′, D″, then one will obtain the 
differential equation of the parabolic congruences of a complex: 
 

2

2( ) 2( )
w w w w

M N D N DM D M D M
v u u v

∂ ∂ ∂ ∂  ′ ′ ′′− + − + − ∂ ∂ ∂ ∂ 
= D D″ – D′2. (45) 

 
 The requested surfaces are the focal surfaces (with coincident sheets), and can be 
constructed as was explained in A, § 24 (4). 
 
 

                                                
 (1) Comptes rendus, 15 and 22 November 1909.  
 (2) Bulletin des Sciences Mathématiques, 1870, pp. 348.  
 (3) Mathematische Annalen, v. V.  
 (4) Other noteworthy congruences of a complex (that were researched by COSSERAT) are the isotropic 
ones of RIBAUCOUR: We shall not occupy ourselves with them, since it can be shown (cf., ZINDLER, 
loc. cit., page 195) that they do not exist in a generic complex. 
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Ruled surfaces in a complex. 
 

 12.  A ruled surface in a complex is determined by its finite equations: 
 

ϕ (u, v, w) = 0,  ψ (u, v, w) = 0 
 
or by its differential equations: 

du

U
 = 

dv

V
= 

dw

W
 

 
(in which, U, V, W are known functions of u, v, w) and the knowledge of one of the rays 
that pass through it. 
 Each of its rays will determine a direction of the spatial ruling that belongs to the 
complex, and its coordinates θ, r, p will be obtained from (33), (34), and (37) upon 
replacing du, dv, dw with the proportional quantities U, V, W.  In particular, (33) permits 
one to construct the central point Q of each ray and the line of striction of the ruling. 
 A ruling will be developable when p = 0, so the differential equation of a developable 
surface of the complex is: 
 

D du2 + 2D′ du dv + D″ dv2 + 2M du dw + 2N dv dw = 0.  (46) 
 
 It is satisfied by the ruling w – i.e., by the ∞1 cylinders of the complex.  If one sets w 
= w(u, v) – i.e., if one equates the form (43) to zero – then one will have, in particular, the 
differential equation of the two systems of ∞1 developables that are contained in the 
congruence (38). 
 The edges of regression of the developables are called the curves of the complex, 
since they generate the rays of the complex as their envelope. 
 Consider one such curve C and the tangent g at one of its point Q.  The cone of the 
complex that has Q for its vertex (§ 1) will contain g as a generator: The tangent plane to 
the cone along g is the osculating plane to C at the point Q.  In fact, Q can be regarded as 
the intersection of the tangent g to the curve with the successive tangents.  The plane of 
those two lines is the osculating plane C to the point Q, and on the other hand, since it is 
the plane of the two successive generators of the cone whose vertex is Q, it will be the 
tangent plane to the cone along g. 
 
 

Other facts about directions. 
 

 17.  We call the rays of a complex that result when M = N = 0 the bi-singular rays of 
the complex.  Unless stated to the contrary (§ 25), they will be excluded from our 
considerations. 
 Let g(u, v, w) be a ray of the complex.  There will be ∞2 directions of the spatial 
ruling that belong to the complex and pass through g, since the coordinates θ, r, p of a 
direction (§ 10) depend upon the ratios of two of the quantities du, dv, dw to the third 
one.  Therefore, a relation must exist between those coordinates. 
 In order to find it, set, for simplicity: 
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du

ds′
 = u1, 

dv

ds′
 = v1, 

dw

ds′
 = w1,    (47) 

 
and recall formulas (33) and (34): 
 
       − p = 2 2

1 1 1 1 1 1 12 2( )Du D u v D v Mu Nv w′ ′′+ + + + , 

 

   r – r0 = 
2 2
1 1 1 1( ) ( ) ( )FD ED u GD ED u v GD FD v′ ′′ ′′− + − + −

∆
 

    + 2 1 1
1

( ) ( )FM EN u GM FN v
w

− + −
∆

. 

 
If one eliminates w1 then one will obtain: 
 

[(EN – FM) u1 + (FN – GM) v1] p – ∆ (M u1 + N v1) (r – r0) 
= 2 2

1 1 1 1( 2 )Du D u v D v′ ′′+ + [(FM – EN) u1 + (GM – FN) v1] 

− [(FD – ED′ ) 2
1u + (GD − ED″) u1 v1 + (GD′ – FD″) 2

2u ] (Mu1 + Nv1) . 

 
However, the right-hand side can be written as: 
 

[(D′ M – DN) u1 + (D″ M – D′ N) v1] 2 2
1 1 1 1( 2 )Eu F u v G v+ + , 

i.e.: 
(D′ M – DN) u1 + (D″ M – D′ N) v1 , 

 
since from (α) and (47), one will have: 
 

2 2
1 1 1 12Eu F u v G v+ +  = 1 . 

Therefore: 
[(EN – FM) u1 + (FN – GM) v1] p – ∆ (M u1 + N v1)(r – r0) 

= (D′ M – DN) u1 + (D″ M – D′ N) v1 , 
i.e.: 

0[( ) ( ) ] ( )( )

( ) ( ) ,

FN FM du FN GM dv p M du N dv r r

D M DN du D M D N dv

− + − − ∆ + − 
′ ′′ ′= − + − 

 (48) 

and finally, from (37): 
 

0[( ) cos sin ] [( )sin cos ]( )

1
( )cos [( ) ( ) ]sin .

EN FM M p EN FM M r r

D M DN ED FD M FD ED N

θ θ θ θ

θ θ

− − ∆ − − + ∆ − 

′′ ′′ ′ ′= − + − + − ∆ 

     (48′) 

 
 (48) or (48′) is the relation that couples the coordinates θ, r, p of a generic direction 
of the spatial ruling that passes through the ray g (u, v, w) and belongs to the complex. 
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 The cylindrical singular directions are the exceptions to this.  For them, in fact, one 
has du = dv = 0 (§ 10), so (48) will vanish.  If one prefers then one can say that (48′) will 
be replaced with p = ∞ (§ 9) for them. 
 
 
 18.  (48′) will permit us to calculate one of the three coordinates θ, r, p when one is 
given the other two, at least, in general.  Therefore: In general, one direction of a spatial 
ruling (that is not a cylindrical singular one) will pass through a ray of the complex and 
belong to the complex that is specified by the values of any two of its coordinates, which 
can be given arbitrarily. 
 However, there are exceptional directions: 
 
 a) If one fixes θ arbitrarily then one can also assign an arbitrary value to r (so that p 
will then be specified) unless: 

(FM – EN) du + (FN – GM) dv = 0,   (49) 
i.e.,: 

(EN – FM) cos θ – ∆ M sin θ = 0.   (49′) 
 
 In the excluded case – i.e., when θ has the value θ1 that is defined by the formula: 
 

1 2 2

1 2 2

cos ,
( 2 )

sin ,
( 2 )

M

E GM F M N EN

EN FM

E GM F M N EN

θ

θ

∆ = − + 
− =
− + 

  (50) 

 
r can assume only the unique value r1 that is defined by: 
 

r1 – r0 = 
2 2

2 2

( ) ( ) ( )

( 2 )

FD GD M GD ED MN ED FD N

GM FMN EN

′′ ′ ′′ ′− + − + −
∆ − +

, (51) 

 
which would result from (48′), while p remains completely arbitrary. 
 The angle θ1 defines a plane Π1 and the abscissa r1 of a point Q1 of g (1).  They are 
the central plane and central point, respectively, that are common to ∞1 directions in the 
spatial ruling that passes through g – i.e., to the directions (θ1, r1, p) with p arbitrary. 
 
 b) If one fixes θ arbitrarily then one can also assign an arbitrary value to p (so r is 
then specified), unless one has: 

                                                
 (1) One observes that formulas (50), (51), and the following ones (53) and (54) are always meaningful.  
In fact, if EG – F 2 > 0 then the formula: 

GM 2 – 2FMN + EN 2, 
 
which is quadratic in M and N, is essentially positive, and is therefore annulled only for the rays for which 
one has M – N = 0, which we exclude expressly. 
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M du + N dv = 0,            (52) 
i.e.: 

(EN – FM) sin θ + ∆ M cos θ = 0.    (52′) 
 
 In the excluded case – i.e., when θ is given the value 1θ ′  that is defined by the 

formula: 

1 2 2

1 2 2

cos ,
( 2 )

sin ,
( 2 )

FM EN

E GM FMN EN

M

E GM FMN EN

θ

θ

− ′ = − + 
∆ ′ =
− + 

   (53) 

 
p can assume only the unique value: 
 

p1 = − 
2 2

2 2

2

2

D M D MN DN

GM FMN EN

′′ ′− +
− +

,    (54) 

 
which would result from (48′), while r remains completely arbitrary. 
 The angle 1θ ′  defines a plane 1′Π  of g: 1′Π  and p1 are the central plane and distributor 

parameter, respectively, that are common to ∞1 directions in the spatial ruling that passes 
through g – i.e., to the directions (1θ ′ , r, p1) with r arbitrary. 

 
 c) If one is given p and r arbitrarily then θ will be specified (up to 180o), as long as 
one does not have: 

0

0

( ) ( ) ,

( ) ( ) .

EN FM p M r r D M DN

FN GM p N r r D M D N

′− − ∆ − = − 
′′ ′− − ∆ − = − 

  (55) 

 
 If one solves the system (55) then one will find that: 
 

p = p1,  r = r1, 
 
in which p1 and r1 have the values (54) and (51).  If one attributes those values to p and r 
then (48′) will be satisfied identically – i.e., for any θ. 
 Therefore, the point Q1 of g and the number p1 are the central point and the distributor 
parameter, respectively, that are common to ∞1 directions of the spatial ruling that passes 
through r – i.e., the directions (θ, r1, p1), where θ is arbitrary. 
 
 
 19. The preceding discussion leads one to distinguish three systems of ∞1 special 
directions: 

(θ1, r1, p), ( 1θ ′ , r, p1), (θ, r1, p1),   (56) 
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from among the ∞1 directions of the spatial ruling that passes through a ray of the 
complex and belongs to the complex, and to consider a certain point Q1, along with two 
particular planes Π1 and 1′Π  through g. 

 It follows from (50) and (53) that: 
 

θ1 − 1θ ′  ≡ 90o (mod 180o) ; 

 
i.e., the planes Π1 and 1′Π  are mutually perpendicular. 

 It then follows that the planes Π1 and 1′Π , which are the central planes to the 

directions of the first two systems (56), respectively, are also asymptotic planes of the 
inverses of those systems.  It also follows that the first two systems cannot have any 
common direction, while the first and the third systems have the direction (θ1, r1, p1) in 
common, and the second and third ones have the direction (1θ ′ , r1, p1) in common. 

 There is always a singular direction (§ 10) in the first system – viz., (θ1, r1, 0).  On the 
contrary, no direction of the other two systems will be singular at a generic ray of the 
complex; however, all of the rays for which p1 = 0 will be singular. 
 The rays for which one has p1 = 0 are called the singular rays of the complex. 
 It follows from § 18, a) that any plane Π that passes through g can be associated with 
any point Q of g: They are the central plane and central point, respectively, of just one 
direction in the spatial ruling that passes through g and belongs to the complex.  An 
exception is the single plane Π1, which cannot be associated with the point Q1.  Π1 and 
Q1 determine, not one, but ∞1 directions, namely, (θ1, r1, p). 
 In regard to the plane 1′Π , one can observe that it is the tangent plane along g to the 

cone of the complex that has the vertex Q1.  Indeed, 1′Π  is the asymptotic plane to any 

direction of the system (θ1, r1, p) and to the singular direction (θ1, r1, 0), in particular, so 
it will be the osculating plane at Q1 to the edge of regression for an arbitrary developable 
of the complex that passes through g and have the direction (θ1, r1, 0) at g; one will 
deduce the statement from that when one takes into account the observation that was 
made at the end of § 16. 
 
 
 20.  The relation (48′) can be put into the much simpler form: 
 

p = r tan α − u,     (57) 
 
which was given for the first time by KOENIGS (loc. cit.), and in which α is an angle 
that varies with the direction that one considers, while u is a constant. 
 If one excludes the directions (θ1, r1, p) – i.e., if one suppose that (40) is not verified – 
then one can given the desired form to (48) by taking: 
 

tan α = 
( )

( ) ( )

M du N dv

EN FM du FN GM dv

∆ +
− + −

,   (58) 
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n = 0( ) ( ) ( )

( ) ( )

M du N dv r D M DN du D M D N dv

EN FM du FN GM dv

′ ′′ ′∆ + − − − −
− + −

,   (59) 

 
and choose the point M that is the origin of g (and therefore of r0) in such a way that n 
remains constant – i.e., independent of du : dv.  That will be achieved if one sets: 
 

0

0

( )

( )

M r D M DN EN FM

N r D M D N FN GM

′∆ − − −
′′ ′∆ − − −

 = 0, 

i.e.: 

r0 = 
2 2

2 2

( ) ( ) ( )

( 2 )

GD FD M ED GD MN FD ED N

GM FMN EN

′ ′′ ′′ ′− + − + −
∆ − +

.  (60) 

 
 If one substitutes this into (59) (in which it is now legitimate to set du = 0 or dv = 0 to 
begin with) then one will have: 
 

n = 
2 2

2 2

2

2

D M D M N D N

GM FMN EN

′′ ′− +
− +

,    (61) 

i.e., from (54): 
n = − p1 .      (61′) 

 
 The value (60) that was found for r0 is the distance from the mean point of the ray of 
the congruence w that passes through it to the point M that is the origin of the ray (§ 12); 
however, it coincides – up to sign – with the right-hand side of (51), which the distance 
from the Q1 to that mean point, so the origin M that we established earlier is nothing but 
the point Q1 .  In order to represent the arbitrariness in the origin M of g, it is enough to 
change r into r – r0 in (57). 
 On the other hand, by virtue of (37′), (58) can be written: 
 

tan α = 
( )sin cos

( )cos sin

EN FM M

EN FM M

θ θ
θ θ

− + ∆
− − ∆

; 

i.e., from (50): 
tan α = cot (θ – θ1). 

 In summary, we get that: 
 
 The coordinates θ, r, p of a direction of the spatial ruling that passes through a ray of 
the complex and belongs to the complex are coupled by the relation: 
 

p – p1 = (r – r1) cot (θ – θ1).    (62) 
 

 In order to prove this, we must exclude the directions (θ1, r1, p).  Nevertheless, (62) 
can remain valid in that case, as well.  Indeed, for r = r1 and θ = θ1 the right-hand side 
will not have a well-defined value, so (62) would not give a well-defined value for p if it 
were illegitimately applied, and according to § 18, a), that is exactly what must happen. 
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 The constants θ1, r1, p1 that appear in (62) are the coordinates one of those ∞1 
directions. 
 
 
 21.  The geometric elements Π1, 1′Π , θ1, p1 that we encountered can be linked with an 

important element that was introduced by KOENIGS (loc. cit.). 
 A direction of an arbitrary spatial ruling that passes through a line g will determine a 
(CHASLES) projectivity between the points and planes of g by virtue of (31), and 
conversely. 
 The ∞2 directions of a spatial ruling that pass through a ray g of a complex and 
belong to the complex will then determine just as many CHASLES projectivities in g.  
One can show that they constitute a net, and that it will be harmonic or involutory with a 
fixed projectivity on g that KOENIGS called the normal projectivity of the line g of the 
complex.  That will, in turn, determine a direction of the spatial ruling that passes through 
g: One can then prove that this direction is (1θ ′ , r1, − p1), with our notation (1). 

 It has 1′Π  for its central plane, and thus, Π1 for its asymptotic plane, while it has Q1 

for its central point and – p1 [i.e., n (61′)] for its distributor parameter.  We then call Π1 
the normal asymptotic plane, 1′Π , the normal central plane, Q1, the normal central point, 

and – p1 = n, the normal (distributor) parameter of g. 
 Observe that the direction ( 1θ ′ , r1, − p1) that is specified by the normal projectivity 

will belong to the complex only if g is a singular ray of the complex, and it will then be a 
singular ray.  Indeed, it will have 1′Π  for its central plane, so in order for it to belong to 

the complex, it must be included among the rays of the system ( 1θ ′ , r1, − p1) (§ 18, b); 

that can happen only if – p1 = p1 = 0; i.e., if g is a singular ray (§ 19), and then the 
direction in question will be singular (§ 10). 
 
 
 22.  In order to give an intuitive picture of the behavior of the directions of a spatial 
ruling that belongs to the complex and passes through a ray g, we shall make a geometric 
representation. 
 Let (θ, r, p) be any of those directions: θ is the angle that its central plane Π makes 
with that of the ruling u that passes through g, r, and the abscissa of its central plane Q 
with respect to the origin M of g – i.e., the foot of the minimum distance dσ between g 
and the infinitely-close ray g′ that corresponds to the direction considered (§§ 6 and 10). 
 Starting with Q, we carry the segment QP = p in the direction of dσ and in an 
established direction (2).  The locus of points P for all of the ∞2 directions that pass 
through g will be a surface S.  Conversely, any point P of S will determine a direction in 
the spatial ruling that passes through g and belongs to the complex: viz., the one whose 
central plane is the plane Pg ≡ Π, whose central point is the foot Q of the perpendicular 

                                                
 (1) For that, it is enough to compare (62) with the analogous formula of KOENIGS (loc. cit., page 59) 
and to take into account the geometric significance of the constants that appear in it.  
 (2) For example, in the direction that is fixed by formula (5) of § 3.  
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that goes from P to g, and whose distributor parameter is the length p of the segment QP  
(with the exception of any possible points of intersection of S with g). 
 We then call S the surface of the directions of g. 
 If we adopt cylindrical coordinates, assume that g is the axis, that the origin of g is the 
normal central point Q1, and that the plane of the origin in the pencil of axes g is the 
normal asymptotic plane Π1 then: 
 

ϕ = θ – θ1 , ρ = r – r1, p    (63) 
 
will be the cylindrical coordinates for P, and (62) will give the equation: 
 

p – p1 = ρ cot ϕ     (64) 
 
for the surface S in cylindrical coordinates. 
 If one intersects S with a plane that passes through g and has the equation ϕ = 
constant then one will get a line s whose equation in Cartesian coordinates p, ρ is (64); 
therefore, S is a ruled surface. 
 If one transforms the cylindrical coordinates into Cartesian ones x, y, z by setting: 
 

x = p cos ϕ, y = p sin ϕ, z = ϕ, 
 
then one will see immediately that S is a middle of the fourth-order ruled surface: 
 

(x2 + y2) y2 = (x z + p1 y)2. 
 
 
 23.  If p1 ≠ 0 – i.e., if g is a singular ray of the complex – then s will meet g at a point 
that varies with ϕ and will traverse the entire line g.  If one intersects S with the plane that 
is perpendicular to g at Q1 and has the equation ρ = 0 then one will get a circle that has 
Q1 for its center and p1 for its radius.  Therefore: Two plane directors of the ruling S are 
the ray g and the circle that has g for its axis, Q1 for its center, and p1 for its radius. 
 When ϕ = θ – θ1 = 0, it will result that ρ = r – r1 = 0, and p will remain arbitrary (§ 
18, a), so the special directions (θ1, r1, p) will have the points of the line perpendicular to 
g at Q1 and the plane Π1 for their images on S.  Similarly, the directions (1θ ′ , r, p1) will 

have all of the points of a line that is parallel to g in the plane 1′Π  at a distance p1 for their 

images on S, and the images of the directions (θ, r1, p1) on S will be all of the points of 
the aforementioned circle. 
 All of the points of g belong to S and are the only ones for which one will have p = 0, 
so (§ 10) the singular directions have all of the points of g for their images. 
 
 Observation:  One must exclude the cylindrical singular directions from the 
preceding considerations (cf., the end of § 17).  Nevertheless, since one has p = ∞ for 
them, one can say that their images on S are all points at infinity on S. 
 They are also the points at infinity of the cone whose equation is: 
 



Sannia – A sampling of the differential geometry of line complexes. 30 

p = ρ cot ϕ.     (65) 
 
 That cone, whose vertex is Q1, is the director cone for the ruling S. 
 
 

Singular rays. 
 

 24.  The surface S will reduce to that cone along a singular ray. 
 One can arrive at the consideration of singular rays of a complex along other paths, 
one of which is more consistent with the methods of differential geometry.  Let g be an 
arbitrary ray of the complex, let A be one of its points, and consider two arbitrary rulings 
of the complex that pass through g.  The two rulings contact at A (and at any other point 
of g), so they will have the direction of the spatial ruling at g in common.  However, in 
the contrary case one will have two distinct tangent planes at A, in general.  Nevertheless, 
is it legitimate to demand that there must exist a ray g in the complex on which there 
exists a point A such that all of the rulings of the complex that pass through g contact it? 
 We begin by observing that if such a ray exists then, in particular, all of the 
developables of the complex that pass through g must contact at A (excluding the ones for 
which A is a singular point, and thus do not have a well-defined tangent plane at A).  
However, the tangent plane to a developable that passes through g will be stationary 
along g and will be perpendicular to the central plane of the singular direction of the 
spatial ruling that is determined by the developable.  Meanwhile: All of the singular 
directions in the spatial ruling that passes through g and belong to the complex must have 
the same central plane. 
 Now, for a singular direction (p = 0), (62) will become: 
 

− p1 = (r – r1) cot (θ – θ1), 
 
which shows that if one does not have p1 = 0 then θ (and therefore the central plane) will 
vary with r.  One must therefore necessarily have p1 = 0 – i.e., g must be a singular ray of 
the complex.  The preceding equation then gives: 
 

θ ≡ θ1 + 90o ≡ 1θ ′  (mod 180o) 

 
and proves that the fixed central plane must be the plane 1′Π , and therefore that the fixed 

tangent plane must be the plane Π1 . 
 Conversely, consider a singular ray g with Π1 for its normal asymptotic plane and Q1 
for its normal central points, and consider an arbitrary direction in the spatial ruling (θ, r, 
p) that belongs to the complex and passes through g, and whose central plane is Π and 
whose central point is Q.  The plane Π1 will be the tangent plane to all of the ruled 
surfaces that pass through g along the fixed direction (θ, r, p) at a certain point A that can 
be determined from HAMILTON’s law (§ 6): 
 

p tan Ψ = Q A. 
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Ψ is the angle between the two central planes Π and Π1 – i.e., Ψ = θ – θ1 – so: 
 

Q A = p tan (θ – θ1). 
 
However, if p1 = 0 then (62) will give: 
 

p = (r – r1) cot (θ – θ1), 
so 

Q A = r – r1 = Q Q1, 
 
and therefore A ≡ Q1 .  However, Q1 is a fixed point of g that does not depend upon the 
fixed direction (θ, r, p).  Thus, an arbitrary ruling of the complex that passes through g 
will touch the plane Π1 at the point Q1 . 
 We conclude: 
 
 A characteristic property of a singular ray of a complex is that all of the ruled 
surfaces of the complex that pass through it will contact the same point of the ray.  That 
point will be the normal central point Q1, and the common tangent plane will be the 
normal asymptotic plane Π1 . 
 
 The point Q1 and the plane Π1 of a singular ray are called the singular point and 
singular plane of the ray, respectively. 
 It follows from (§ 12) that: 
 
 The singular point Q1 is one of the two foci of the singular ray for all of the 
congruences of the complexes that pass through it.  Therefore, the focal surfaces of that 
congruence will contact at Q1 and have the plane Π1 for the common tangent plane there. 
 
  

Bi-singular rays. 
 

 25.  We now consider the bi-singular rays of the complex, which are characterized 
analytically by the equality: 

M = 0, N = 0,     (66) 
which we excluded in § 17. 
 
 Only ∞1 directions of a spatial ruling that belong to complex will pass through a bi-
singular ray. 
 
 Indeed, the right-hand sides of formulas (33), (34), and (37), which give the 
coordinates θ, r, p of a direction, will depend upon only the ratio du : dv at a bi-singular 
ray, which is arbitrary. 
 In other words: The cited formulas coincide with (40), (41), and (37), which give the 
coordinates of a direction that belongs to the congruence w that passes through g (and 
indeed any non-cylindrical congruence of the complex that passes through g, any one of 
which can be taken to be the congruence w).  Therefore: 
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 All of the non-cylindrical congruences of the complex that pass through a bi-singular 
ray g behave the same way at g, in the sense that they have all of the direction of the 
spatial ruling in common at g. 
 
 Since a neighborhood of a bi-singular ray g coincides with a neighborhood of a ray of 
the congruence, everything that was said to be true at A in §§ 5, 6, 7, 13, 14, 15, 16 will 
be true for it.  In particular: 
 
 All of the congruences that pass through g have the same foci Q1, Q2 on g and the 
same focal planes Π1 and Π2 (which can be real or imaginary, and distinct or coincident). 
 
 The characteristic geometric property of singular rays that was proved in § 24 will be 
verified (in fact, doubly) for a bi-singular ray.  Indeed, an arbitrary ruling that passes 
through such a ray will always belong to that congruence of complexes, and will then 
contact the ray at the two foci Q1 and Q2 of that congruence with tangent planes Π1 and 
Π2, resp. 
 Therefore: 
 
 The characteristic property of a bi-singular ray is that all of the rulings of the 
complex that pass through it will contact at two fixed points of the ray. 
 
 Those two points Q1 and Q2 are called singular points of the ray, and the relative 
tangent planes Π1 and Π2 are called the singular planes of the ray. 
 
 The focal surfaces (with two sheets) of all of the congruences of the complex that pass 
through a bi-singular ray contact at two singular points and have the two singular planes 
of the ray for tangent planes there. 
 
 Like the foci on a ray of the congruence, the singular rays (and the focal planes) of a 
bi-singular ray can be real and distinct, real and coincident, or complex-conjugate (1). 
 In the first case, one calls the bi-singular ray hyperbolic, in the second case, it is 
parabolic, and in the third, it is elliptic. 
  
 The analytical character that distinguishes the three cases is: 
 

K <, = , > 0, 
 
respectively, which is the analytical character that distinguishes the three cases when one 
considers the ray of the congruence w that that passes through it (cf., the end of § 12). 
 Finally, observe that for an arbitrary ray of the complex, K will represent the absolute 
parameter of the congruence w that passes through it (§ 12), so it will be invariant under 
any transformation of the just the variables u, v; however, it is not invariant under the 
more general transformations that we defined (cf., the end of § 2). 
 However, the preceding results permit is to assert that: 

                                                
 (1) However, one notes that the singular point and singular plane of a singular ray are always real. 
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 The sign of K (and therefore the annulling of K) on a bi-singular ray is invariant 
under all transformations of the variables u, v, w that were pointed out in § 2. 
 
 

Loci of singular rays. 
 

 26.  A ray is singular only when p1 = 0 on it; i.e., from (54), when its coordinates u, v, 
w annul the function: 

σ (u, v, w) = D″ M 2 – 2D′ M N + D N 2,   (67) 
 
but do not annul M and N simultaneously.  However, if M = N = 0 then the ray will be bi-
singular, but σ will also be zero then.  We can then call all of the rays of the complex 
whose coordinates u, v, w satisfy the equation: 
 

D″ M 2 – 2D′ M N + D N 2 = 0   (68) 
 
its singular rays; i.e., both the singular rays, properly speaking, and the bi-singular ones.  
When we wish to distinguish the former from the latter, we will call the former the 
ordinary singular rays. 
 In regard to the function σ, we observe that it is finite and continuous, along with its 
derivatives, just like the functions D, D′, D″, M, N that accompany it (which corrects the 
explicit statement that was made in the Introduction). 
 
 
 27.  Do there exist singular rays? 
 In the theory of algebraic complexes, in which there is no distinction made between 
real and imaginary, one has the following results (1): 
 Either all of the rays of the complex are singular or none of them are.  If one excludes 
the limiting cases from this then in any complex there will exist ∞2 singular rays that 
form a congruence, namely, the singularity congruence of the complex.  As a 
consequence, the singular points of the singular rays form a surface (or line) that is one of 
the two focal sheets of the singularity congruence and which one calls the singularity 
surface of the complex; the other sheet will be called the accessory surface. 
 One notes that if one defines a complex analytically then one can resolve which of the 
three cases that were just enumerated is verified by an algebraic process. 
 The handful of authors that addressed the transcendental complexes announced the 
same results (2).  Now, it seems to me that this is not legitimate. 
 If the function σ reduces to a constant c then according to whether c is zero or not, 
one can assert that either all rays of the complex are singular or none of them are, resp.  
However, if σ is an effective function or u, v, w (which is true, in general) then one 
cannot say that. 
 In fact, nothing gives one the right to assert that there exist triples of values of u, v, w 
that annul the function σ, nor does one have any means of deciding whether one has at 

                                                
 (1) Cf., e.g., ZINDLER, loc. cit.  
 (2) Cf., e.g., KOENIGS (loc. cit.); PICARD, Traité d’Analyse, vol. I, chap. XI, no. 16.  
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least one, and even if there is one then there can be ∞2 of them, and that would give rise 
to a congruence, but there can also be just ∞1 of them, or a finite number; they might or 
might not vary continuously, and might be completely or partially isolated. 
 The rest of the results cease to be valid for the same algebraic complexes if one 
considers only the real rays (as we do here). 
 It would thus be vain to attempt a classification of the transcendental complexes that 
is based upon the existence or non-existence of singular rays and their distribution 
throughout the complex.  One can only enumerate and study some of the more 
noteworthy of the possible cases, limited to conveniently-small regions of the complex, 
and that is what we shall do.  However, a complete study of the singularities must be 
performed only case-by-case for any individual complex or class of complexes.  What we 
shall now say in general can serve as a useful guide. 
 
 
 28.  It can happen that σ reduces to a non-zero constant or that even if it is a function 
of u, v, w then it still cannot be annulled.  The complex will then have no singular rays. 
 However, it might be that σ is identically zero, so all rays of the complex are 
singular.  Such a complex is called special.  One can further prove, by intuitive 
considerations (1), that a special complex is composed of all tangents to a surface, or all 
lines that meet a curve, or a curve that is locus of singular points of the rays of the 
complex. 
 We then note that the rays of a complex cannot all be bi-singular; i.e., the functions 
M, N cannot both be identically zero.  In fact, for M = N = 0, (III) of § 5, and the 
analogues for y and z, will give: 
 

x

w

∂
∂

 = − 0rX

w

∂
∆ ∂

, 
y

w

∂
∂

 = − 0rY

w

∂
∆ ∂

, 
z

w

∂
∂

 = − 0rZ

w

∂
∆ ∂

. 

 
However, r0 is an arbitrary function of u, v, w, so it is legitimate to assume that r0 = 0; it 
will then result that: 

x

w

∂
∂

 = 
y

w

∂
∂

 = 
z

w

∂
∂

 = 0, 

 
identically.  If one prefers, it is impossible for the complex to not degenerate into a 
congruence (§ 1). 
 
 
 29.  Now, if one excludes the two preceding limiting cases then what will remain is a 
third hypothesis, namely, that there should exist at least one triple of real values u′, v′, w′ 
of u, v, w that annuls the function σ – i.e., there exists a complex with at least one 
singular ray g′ (u′, v′, w′). 
 One can make various hypotheses about g′: 

                                                
 (1) We will only sketch the proof.  One can find a rigorous proof for the first time in KLEIN (loc. cit.) 
for algebraic complexes and in KOENIGS (loc. cit.) for transcendental complexes. 
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 Let g′ be an ordinary singular ray; i.e., its coordinates do not annul M and N 
simultaneously.  It will not annul the first partial derivatives of σ, in general, then, so 
equation (68) will define one of the variables u, v, w as a function of the other two (e.g., 
w as a function of u, v in a neighborhood of the values u′, v′, such that for u = u′, v = v′, 
one will have w = w′). 
 Therefore: 
 
 If there exists an ordinary singular ray g′ in the complex then there will generally 
exist (1) a congruence that is composed of rays that are all singular and pass through g′. 
 
 One calls it a congruence of singularities of the complex. 
 If all three derivatives of σ are annulled at g′ then there is nothing that we can assert. 
 
 
 30.  Let g′ be bi-singular.  Its coordinates satisfy the system: 
 

M = 0, N = 0;      (69) 
 
however, in general, not all second-order minors of the functional matrix: 
 

M M M

u v w
N N N

u v w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 

 
will be annulled; therefore, the system (69) will define two of the variables u, v, w as 
functions of the third (e.g., u, v as functions of w in a certain interval that contains w′, and 
such that for w = w′, it will result that u = u′, v = v′). 
 Therefore: 
 
 In general, a ruled surface of a complex that is composed of nothing but bi-singular 
rays will pass through a bi-singular ray of that complex. 
 
 
 31.  We shall now see whether there also exist ordinary singular rays in the 
neighborhood of a bi-singular ray g′.  The three first partial derivatives of σ are annulled 
for it (which is easy to verify), so the analysis that was carried out in § 29 will no longer 
be valid, and must be updated.  We therefore distinguish three cases: 
 
 a) g′ is elliptic (§ 25).  Therefore, one will have K > 0 at g′.  However, K is a 
continuous function, and one will then have K > 0, so DD″ – D′2 > 0 (2) in an entire 
neighborhood of g′.  It then follows that the function σ, which is trinomial of degree two 

                                                
 (1) Cf., the final note in § 1.  
 (2) Recall that the denominator EG – F2 in the expression (42) for K is essentially positive (§ 3).  
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in M and N, will keep a constant sign (which is necessarily common to D and D′) in this 
neighborhood; one can therefore annul then only when both M and N are annulled 
simultaneously. 
 Therefore: 
 
 There exist no ordinary singular rays in the neighborhood of a bi-singular ray. 
 
 b) g′ is hyperbolic.  One will have K < 0 (i.e., DD″ – D′ 2 < 0) at g′, and therefore in 
an entire neighborhood of g′, as well.  It will then follow that in that neighborhood it will 
be possible to decompose the trinomial σ into the product of two linear binomials in M 
and N: 

σ = (α1 M + β1 N) (α2 M + β2 N), 
 

whose coefficients α1, α2, β1, β2 are real functions of u, v, w, such that: 
 

α1α2 = D″, α1β2 + α2β1 = − 2D′,  β1 β2 = D.  (70) 
 
 There will be singular rays in the neighborhood of g′ whose coordinates annul one or 
the other factor of σ.  The first factor will be annulled at g′, because M and N are 
annulled, but its three first partial derivatives will not be annulled, in general, so the 
equation: 

α1 M + β1 N = 0 
 
will define one of the variables u, v, w as a finite and continuous function of the other 
two, which will give rise to a congruence C1 of singular rays that pass through g′.  The 
same statement will apply to the other factor. 
 Therefore: 
 
 Two regions C1, C2 of a congruence C that is composed of nothing singular rays will 
pass through a hyperbolic, singular ray, in general. 
 
 C is called a congruence of singularities of the complex. 
 
 The two regions C1 and C2 in the neighborhood of g′ can have only bi-singular rays 
in common.  Indeed, if: 

(α1β2 − α2β1)
2 = 4 (DD″ – D′ 2) > 0    (71) 

 
then the two linear factors of σ will be distinct in the neighborhood of g′, so they will be 
annulled simultaneously only when M = N = 0. 
 
 c) g′ are parabolic, i.e., K= 0 at g′.  There can then exist a neighborhood of g′ in 
which one constantly has K > 0 or K < 0.  In such a case, the results that were stated in a) 
or b), respectively, are valid.  However, if no such neighborhood exists then one can say 
nothing beyond what was said in § 30. 
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 32.  In many cases, from the assumed existence of one singular ray g′, we could 
deduce the existence of an infinitude of other singular rays that form a congruence, or of 
an infinitude of bi-singular rays that form a ruling, or both things at once, in a 
conveniently small neighborhood of the first one.  If one then applies that to the new rays 
that are obtained, and so on, then one can continue the congruence or ruling that was 
constructed. 
 It might be that one exhausts all of the singular rays of the complex in that way.  One 
will then obtain a unique congruence of singularities, a ruling of bi-singular rays, or both 
things at once.  However, it might also be that some new singular ray is unattainable 
(when starting with g′).  It will then be the starting ray of a new congruence or ruling of 
singular rays, and so on. 
 Finally, there might be isolated singular rays – i.e., ones in whose neighborhood there 
exist no other singular rays. 
 
 

Loci of singular points. 
 

 33.  We have nothing to say about the existence of singular points, because that 
question is subordinate to the question of the existence of singular rays to which they 
would belong. 
 In regard to their distribution in space, we examine the more noteworthy cases. 
 Consider a congruence of singularities C of the complex.  The singular points of its 
rays (which are generally ordinary singular ones) will be foci of those rays for any 
congruence of the complex that passes through it (cf., the end of § 24), and therefore for 
C, in particular.  Therefore: 
 
 The locus of singular points of the ordinary singular rays of a congruence of 
singularities is one of the two sheets of the focal surface of the congruence. 
 
 Therefore, that sheet S1 will be called a singularity surface of the complex, while the 
other one S2 will be an accessory surface.  Both of them are said to be relative to the 
congruence of singularities that is being considered.  One notes that one or the other of 
them can degenerate into a (singularity or accessory, resp.) curve. 
 Moreover, from the theorem at the end of § 24, one has that the envelope of the 
singular planes of the ordinary singular rays of the congruence C coincide with the 
singularity surface S1 . 
 From the same theorem, one also has that the singularity surface S1 is the envelope of 
the focal surfaces of all congruence of the complex that pass through the rays of C. 
 
 
 34.  Now, consider a special complex.  Any congruence C that is contained in it will 
be a congruence of singularities and one of the two sheets of the focal surface of C will 
be a singularity surface.  If one therefore considers all of the congruences that are 
contained in the complex, and each of them is considered to be a suitable sheet of the 
focal surface, then one can assert that each of those sheets is the envelope of all the other 
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ones.  Obviously, that can happen only when all of the sheets coincide; i.e., the complex 
is composed of the tangents to a surface.  That proves a theorem that was stated in § 28. 
 
 
 35.  If there is a bi-singular ray g′ in a congruence of singularities C then that ray 
cannot be elliptic, since there are no ordinary singular rays in a conveniently small 
neighborhood of an elliptic ray (§ 31, a). 
 Therefore: The two singular points 1Q′  and 2Q′  of g′ are certainly real (distinct or 

coincident).  1Q′  and 2Q′  are the foci of g′ in C, and one can then find one of them on S1 

and the other on S2 .  However, on the other hand, nothing will distinguish one point from 
the other one, so 1Q′  and 2Q′  both belong to S1, as well as S2 . 

 
 
 36.  For those who find little satisfaction in such inductions, we prove that a point 
that moves on S1 that traverses two convenient curves will pass through the points 1Q′  
and 2Q′ . 
 If g′ is parabolic then 1Q′  and 2Q′  will coincide, and our original assertion will be true. 

 Therefore, suppose that g′ is hyperbolic, and recall (§ 31, b) that in a neighborhood of 
g′, the congruence C to which it belongs can be imagined to have been divided into two 
regions C1 and C2 that intersect along g′, and whose equations are: 
 

α1 M + β1 N = 0, α2 M + β2 N = 0, 
respectively. 
 Now, suppose that an ordinary singular ray g moves in the region C1 and tends to g′ 
across a ruling that composed of ordinary singular rays.  Consequently, the singular point 
Q1 of g will move on the surface of singularities S1, describing a curve and tending to a 
limiting position L1 on g′. 
 The abscissa r1 of Q1 on g is given by the formula (51).  However, g is constantly 
contained in the region C1, so M and N are proportional to β1, and – α1, resp., and 
formula (51) will become: 
 

r1 – r0 = 
2 2

1 1 1 1
2 2

1 1 1 1

( ) ( ) ( )

( 2 )

FD GD GD ED ED FD

G F E

β β α α
β β α α

′′ ′ ′′ ′− − − + −
∆ + +

. (72) 

 
 One notes that in this formula r0 is the abscissa of the mean point of g in the 
congruence w that passes through g. 
 In the limit as g tends to g′, that formula will give the abscissa r1 of the point L1 of g′ 
that is the limit of Q1 .  Therefore, if one supposes that the functions E, F, G, D, D′, D″, 
α1, β1 in (72) have the values that they assume on g′ then the right-hand of (72) is the 
distance 0 1Q L′  from the point L1 of g′ to the mean point 0Q′  of g′ in the congruence w that 

passes through it. 
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 In order to simply, we specialize the internal coordinates u, v of the complex, and 
suppose that it is such that the first fundamental form of the complex will assume the 
isothermal form (1): 

ds′2 = λ (du2 + dv2). 
 Therefore, take: 

E = G = λ, F = 0, 
so (72) will become: 

0 1Q L′  = r1 – r0 = 
2 2
1 1 1 1

2 2
1 1

( ) ( )

( )

D D Dα β α β
α β

′ ′′ ′− + −
∆ +

, 

 
and, from (70), it will assume the even simpler form: 
 

0 1Q L′  = 2 1 1 2

2

α β α β−
∆

. 

 
 If one switches the indices 1 and 2 then one will get the formula: 
 

0 2Q L′  = 1 2 2 1

2

α β α β−
∆

, 

 
which is the distance from the mean point 0Q′  of g′ to the point L2 to which the singular 

point Q1 of a singular ray g tends when it moves in the congruence C2 and tend to g′. 
 It then follows that 0 1Q L′  = − 0 2Q L′ ; i.e., that the points L1 and L2 are symmetric with 

respect to 0Q′ . 
 Moreover, from (71) and then from (42), one will have: 
 

0 1Q L′  ⋅⋅⋅⋅ 0 2Q L′  = − 
2

1 2 2 1
2

( )

4

α β α β−
∆

 = 
2

2

DD D′′ ′−
∆

 = K, 

so 
2

0 1( )Q L′  = 2
0 2( )Q L′  = − K. 

 
 That proves (§ 12) that the points L1 and L2 are the foci of g′ in the congruence w that 
passes through it, and therefore (§ 25) coincide with the singular points 1Q′  and 2Q′  of g′. 
 
 
 37.  With that, there should be no doubt about the results of § 35.  In summary, one 
has: 
 If a (not necessarily elliptic) bi-singular ray belongs to a congruence of singularities 
then it will be bi-tangent to the singularity surface, as well as the accessory surface that 
relates to the congruence: In the contrary case, those two surfaces will contact at the two 
singular points of the ray. 

                                                
 (1) Which is always possible in an infinitude of ways.  
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 In addition: 
 
 The intersection of the tangent planes that are common to the two surfaces at the two 
singular points of the ray is the ray itself. 
 
That is because those tangent planes are the singular planes of the ray (§ 25). 
 
 
 38.  It can often happen that a congruence of singularities contains an entire ruling of 
bi-singular (non-elliptic) rays.  The preceding results are then applicable to each of them.  
Therefore: 
 
 If a congruence of singularities contain a ruling of bi-singular rays then the 
singularity surface and the accessory surface relative to the congruence will contact 
along the points of a curve. 
 
 The consideration of bi-singular rays puts us into close proximity with the noteworthy 
theorem of VOSS (1): 
 
 The singularity surface and the accessory surface of an algebraic complex (§ 27) 
contact along all points of a curve. 
 
 
 39.  In general, in the neighborhood of a bi-singular, elliptic ray g′, there exists a 
ruling of bi-singular rays that passes through g′ (§ 30), and no other singular rays exist (§ 
31, a).  The rays of that ruling are certainly elliptical since K is positive on g′, and since 
it is continuous, it will keep its sign in the neighborhood of g′. 
 
 The locus of singular points of a ruling of rays that are all elliptic bi-singular is a 
pair of conjugate imaginary lines. 
 

__________ 
 
 

                                                
 (1) “Ueber Complexe und Congruenzen,” Math. Ann. 9 (1876).  
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CORRECTIONS TO PAPER A. 
 

Page 3 line 8 read Q, instead of G 
 “ 10 “ 19 delete focal 
 “ 10 “ 20 add the focal planes that are perpendicular to it 
 “ 16 “ 12 delete or asymptotic 

 “ 24 “ 12 read − 
1 2

1

 
 
 

, instead of + 
1 2

1

 
 
 

 

 “ 34 “ 12 read 
u

∂
∂

(ρ – ρ0), instead of 
u

ρ∂
∂

 

 “ 34 “ 1 read 
v

∂
∂

(ρ + ρ0), instead of 
v

ρ∂
∂
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