“Deformazioni infinitesime delle curve inestenditalicorrispondenza per orthogonalita di elementi,” Rend.
Circ. Mat. Palerm@1 (1906), 229-256.

Infinitesimal deformations of inextensible curves ad
correspondence by orthogonality of elements

Note byGustavo Sannia(Turin)

Session on 12 November 1905

Translated by D. H. Delphenich

l. Infinitesimal deformation.

1. In a preceding note)( | addressed those curv@éthat could be referred, point-by-
point, to an assigned cur@in such a way that the tangent@dat each point would be
parallel to the tangent or binormal or principal norneaCtat the corresponding point.
The first case is called the COMBESCURENnsformof C, which was defined by Prof.
BIANCHI (7); the other ones are called titransform and N-transform of ,C
respectively.

Now, that transformation (along with an infinitudeodier ones) enters into the study
of infinitesimal deformations of curvesyhen they are considered to be flexible, but
inextensible filaments.

Dr. A. PERNA {7), and then Dr. F. FOAT have already addressed the
infinitesimal deformations dtexibleand extensibleurves, more generally.

Here, | shall limit myself to inextensible curvesarder to construct a theory that is
entirely analogous to that of infinitesimal deformatiofsurfaces that are considered to
be flexible and inextensible membranes, which are alpoitant.

2. First of all, recall that i, y, z are the Cartesian coordinates of a pdihtvith
respect to the tangent, the binormal, and the principahal, resp., to a curv€ at a

() “Trasformazione di COMBESCURE ed altre analoghe peturve storte” [These Rendicon®(
(1905), 83-92.]

(") Lezioni di Geometria differenzial@™ ed., vol. I, pp. 40.

(") “Sulle deformazioni infinitesime delle curve,” Gioreati Matematiche di BATTAGLINI36
(1898), 286-299.

("  “Sulle deformazioni infinitesime delle curve” [Publister the R. Accademia delle Scienze Fis. e

Mat. in Napoli 1901].
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point M then the variationgXx, Jdy, oz of those *coordinates wheM passes to the
infinitely-close point taC are given by the formulas){(

(1) ox_dx_z . dy_dy z ., dz_dz x, y
ds ds r ds ds p r

in which p andr are the radii of first and second curvatureCoat M, ands is the arc
length ofC, which terminates a¥i when one measures by starting from a fixed origin
alongC.

If a, B, yare the direction cosines of a direction that mavitls M then the following
analogous formulas will be in force:

2) T =Ty, LB Vag =TT Z4E

Those formulas are fundamental to the study of skewesury thanstrinsic method.

In particular, if one takesx = dy = oz = 0 in (1) then one will have the immobility
condition for the pointx, y, 2), and if one take®a = 36 = dy= 0 in (2) then one will
have the immobility condition for the directioaq, (5, )).

3. In order to perform an infinitesimal deformation, thenp® must be subjected to
a displacemen¥iM “whose components with respect to the fundamenkaidiron ofC at
M are denoted by u, £v, £w, whereu, v, w are three functions afthat are arbitrary, for
now, and¢ is an infinitesimal constarfor which one neglects powers higher than the
first.

Call the deformed curv€’, which is the locus of pointdl’;, ands’, p’ r“are the arc
lengths and radii of curvature Mdt’, resp.

The necessary and sufficient condition for u, v,tovdefine an infinitesimal
deformation of the inextensible curve C is that:

(3) —-==0.

1 _1 dm n 1 1 n dl
(4) — =——&—, — =—=—&l =,
P p ds r r r p ds

and the direction cosines of the tangent, binorraad] principal normal at Mare:

() E.CESAROLezioni di Geometria intrinsecap. 124.
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3
a=1, b=¢n, c=—€&m,

a=-&m, £=1, y=¢€l,

A=€em, H=-¢&l, v=1,

in which I, m, n are three functions of s that are defined by formulas

———=n, _+_+_:—m,
ds r ds p r

5) dv w_ dw u v

) dn,1,my
ds p r

Indeed, if one applies the fundamental formulas (IheégoointM whose coordinates
are:

then one will have:

OX _ du w oy _ (dv wj o0z [(dw u v
—=1+|—-], — =& ——1, — =& —+—+—,
os ds p os ds r os

ds p r
from which:
1N\2 2 2 2
(082 (23)
0s 0s os os ds p
it will then follow that (3) is necessary and sugiat for one to havés =ds From (5),
one will then have:
- 9X - : b:ﬂzen, C:E:—gn.
os os os

If one applies (2) to the directioa, (b, c) then one will have:

ds )

2 2
i’z: (5—6‘;) :Z(aaj :%—Zi(d_rn__nj’
P oS 0s P p\ds

r

p' ds” “lds r

da_ _m ob (dn mj I oc 1 (dm nj
—=&—, =¢ +—|=—6—, —==—-¢ —
ds P ds p

So:

and therefore:

It then follows that:
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A= ,0'5—6} = p’@: Em, etc,

and thema, S, yare easily calculated, because if one supposes that:

a
a
A

T R T
N X o
1
H

then one will have:
a=uc-vb, p=va-Ac, g=Ab-yua

o2z (&) =)

Finally:

because when one applies (2) to the directmi3( ), ( .

second-order infinitesimals; therefore:

2 2
&rj and (%} will prove to be

OBSERVATION. — The kinematical significance of tHeee functiond, m, n is
easily found. The direction cosines (1, 0, 0) of the tande C at M after the
deformation will become (15 n, — £ m), so the components of the rotation of the tangent

will be the minors:

0 0 1 0 1 O
=0, - =&£m, =&n
EN —&EM 1 —-€m 1 &n
to the matrix:
1 O 0
1 en -em|’

when taken with convenient signs. Hence:

The rotation of the tangent has zero components with respect to that tangent and
componentg m, £ n with respect to the binormal and principal normal, resp.

One finds, analogously, that:

The components of the rotation of the binormal ark 0, £ n, and those of the
rotation of the principal normal arel, £m,0.
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4. Let us consider some particular deformations.

a) First of all, it is obvious thahe deformations that do not alter the curvature are
rigid motions since that already results directly from the preggdormulas. Indeed, it
follows from (4) that in order to haye= p’, r =r', it is necessary and sufficient that one
must have:

d_rn—_n: 0’ ﬂ—ﬂ: 0.
ds r ds p

Now this, along with (3), (5), and (6) expresses the ifdgahat the line with
coordinatesl(m, n, u, v, w) is a fixed line. Therefore, the infinitesimal defotioa will
be an infinitesimal rigid motion, which can be consédkeito be the resultant of an
infinitesimal rotation around that line and an infiniteal translation that is parallel to
that line.

b) Foru=0, (3) will give onlyw = 0, whilev will remain arbitrary, so:

In order for an infinitesimal deformation of a cerio subject each point to a
displacement that is normal to the curve, it is essary and sufficient that the
displacement, which is otherwise arbitrary, shotdkle place along the binormal to the
curve.

¢) Forv =0, one will havev = p (du/d9), with u arbitrary, but noO, so:

There always exists an infinitesimal deformatiarnvibich any point is displaced in a
given direction in the osculating plane, but naittbf the principal normal.

d) Forw=0, one will havea = constant, and will remain arbitrary, so:

There always exists an infinitesimal deformatiarnvibich any point is displaced in a
given direction in the rectifying plane; the prdjen of the displacement onto the
tangent is constant.

€) In particular, forv = 0, one has that:

Any curve will admit an infinitesimal deformatioor fwhich any point is displaced
along the tangent and that displacement will bestamnt.

For the deformed curve, one will have:

1_1_
P p ds r'r ds
hence:

() CESARO,loc. cit, pp. 124 and 125.
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Under this deformation, the curves with constant flexion (skeves)rwill keep their
flexion unaltered, and the curves with constant torsion will keep tiisiions unaltered.

The only curves with constant flexion and torsion — namely, the circyladrical
helices — admit infinitesimal deformations into themselves.

f) It follows from the preceding that the displacemeanh take place along the
tangent along the binormal, but not along the principaiab

More generally, we wonder whether displacement eke tplace along a given
direction ¢, n, {) that is rigidly linked with the fundamental trihedron
It is enough to determing v, win such a way that:

@) Y=Y -Woh  inwhich  p=Jul+v+w.

If & n, {are constant then (3) will become:

d
e8P _,P_p,
ds p

and give:

{ ds
8 =k 2| =
(8) p eXp(gjpj

if {# 0, withk and arbitrary constant. Therefore:

There exists an infinitesimal deformation for whanhy point is displaced along a
direction (¢, n, {) that is arbitrarily rigidly linked with the fundaemtal trihedron, but
which is not normal to the curve and is defined®)yand(8).

Theorenb) is true for a normal direction.

g) One wishes thaf andC’should lie on the same cylinder whose generators have a
given direction — viz., the curv€ cannot escape from the cylinder upon which it is
assumed to be traced.

If the fixed direction of the generators is given to §ex {) then it will be necessary
and sufficient that the generator, the displacemect tlae tangent at each poMtof the
curve should be coplanar, and therefore it is necessad sufficient that one should
have:

nw-{v=0.

One then notes that in order to have an effectif@ramtion, one must not have:

:ﬂl
¢

A k=
<
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because in that case pifis the common value of those ratios then one wilkltp / ds =
0 — namelyp = 0 — if one takeg =u/p, {=w/ pin the first of the three immobility
conditions for the directioné( 1, ), and one takes (3) into account.

h) The curveC is spherical, and one desires that it should deform wutitlkaving the
sphere upon which it is traced.

The normal planes to a spherical curve will coincida point — namely, the center of
the sphere. If one letg( o, o) be the coordinates of that fixed point then one halle:

%—i+l:0 dy —izo d_zo+é+_>6 =0
r

0
ds p ds r ds

but obviouslyxo = 0, so it will result that:

dp 0 d( dpj
=P =r—, —+—|r—|=0,
2=p Yo ds r ds\ ds

and the last one is known to be the necessary andisufficondition for a curve to be
spherical.

If one wishes that the deformed cur@é should lie on that sphere then it will be
necessary and sufficient that one should have:

(Xo— €U+ Yo— V) + B — W = X+ V2 + Z,

namely:
XoU+YyoV+zow=0,
or
do
VIi—/—=pW.
ds p

If uis given arbitrarily then (3) will determing and the preceding will determinge
namely:
W= p% , V= Bﬂ )
ds rdo

If the spherical curv€ is (circular) planar then 1r/will be zero, and therefore as
well, sop will be constant. From (5), (6))=n =0, so from the second of (4), L'~ 0;
hencethat deformation will preserve circles.

Il. — Correspondence by equivalent arc lengths.

5. — The functiong, v, w define an infinitesimal deformation &€ — namely, one that
satisfies (3) — and one considers the curve that i®tus lof the pointsu( v, w).
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From (1), the square of its elementary arc:

00% = AF + OF + W

will be given by the formula:

2 2 2 2
(7) o0 = %—lv+1 +(E/—_V\ﬁ + £W+_U+_

o’ \ds p ds r ds p

namely, from (3):

oo? (dv wjz du u W

=l | ——— | ] ==+ .
0s’ ds r ds o r

Now, the right-hand side will not change when oce@acesy, v, w with —u, —v, —w.
Therefore:

If u, v, w satisfieg3) —i.e., it defines an infinitesimal deformation of the a@ —
then the two curves that are the loci of the pofats, w), (—u, —v, —w) will correspond
with equivalence of their arc lengths.

Conversely:

If one establishes a correspondence with equival@h@rc lengths between the point
of two curves then the curve C that is the locuthefmidpoints of the conjugates to the
corresponding points will admit an infinitesimalfdamation for which any point will be
displaced in the direction of that conjugate.

That is because if one is givanm ¢, w), (—u, —v, —w) as the coordinates of the two
corresponding points of the two curves with respedhe fundamental trihnedron of the
curveC at the midpoint of the line segment that linksséhgoints then (7) will give the
elementary arc length of one of the curves, antiypothesis, that of the other curve, as
well, and therefore it must not change when on&aoesu, v, w with —u, —v, —w. Now,
that will happen only when (3) is satisfied, anéréfore only when, v, w define an
infinitesimal deformation o€.

The study of infinitesimal deformations then takesan initial well-defined aspect.

lll. — Correspondence by orthogonality of elements.

6. — Draw a vecto©OM; with componentsi, v, w from a fixed pointO (X, Y2, ) and
consider the curv€; that is the locus of poidl; that have the coordinates:

X1=X2+U, Yyi=Ya2tYV, =2 +W
From (1), one has:
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ox _dx  du_z+w . _(du_w), Ox
ds ds ds p

%_ %+ﬂl— Zz+ w = (dV_le_}_%
ds ds ds r ’
9z _dz dw x+u, y+v_ (dw u_ v + 9%
ds ds ds p r ds p r) ds
namely, from (3), (5), and immobility conditions fdwet pointO:

(8) %:O %:n %:

ds ds ds

-m

If one letsdx; = 0 then the tangent ©,; at M; will be orthogonal to the tangent @
atM, so:

If one draws vectors from any pointt@at are equal to the displacements that the
points M of a curve C experience under an infimited deformation then the curve C
that is the locus of the extremes Mill correspond to C with orthogonality of the
elements.

Conversely:

If C and G are two curves that correspond with orthogonalityetements, and O is a
fixed point then each of them will admit an infisimal deformations under which each
of its points will displace in the direction of tihay that goes from the point O to the
corresponding point of the other one.

One easily proves this by inverting the preceding argumkrdeed, ifx,, y», > are

the coordinates dD with respect to the fundamental trihedrorCt@t a pointM, andx,,
yi1, z1 are those of the corresponding pdvhtof C then one will have, by hypothesis:

X _dK_ X, _,

ds ds p
namely:

du, dx_wrz o

ds ds p '

in which one sets:
X1 —Xo = U, Yi—=Y2 =YV, L —2=W.

However, from the first of the immobility conditiofr O:
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d_xz—ﬁ+ 1=0,
ds p
o)
du w_

ds p
and therefora, v, w will define an infinitesimal deformation for the cer&€ under which
each poinM will displace parallel t®©M; .

7. — The problem of the infinitesimal deformations ofuave C will then take on a
second well-defined aspecOne studies the curves that correspond to C with
orthogonality of elementsr what amounts to the same thioge studies the curves that
are loci of the point whose coordinates satisfy the first ofttteetimmobility conditions.

Set:

(9) n=fsing, -m=f coség,

so from the fundamental formulas (1), (8) can betamigs:

(10) d_Xl—i +1=0,
ds p
(11) fsing=M_2  foosp=9a X, Y
ds r ds p r

The first of these expresses the orthogonality ¢mmibetween the elements of the
two curvesC and C;, and the second one defines the functibfs and @ (s) whose
geometric significance follows immediately.

There is an infinitude of curveS; : One will get one when one assigns the two
coordinatesq, y1 of the pointM; arbitrarily and determines the third oneby means of
(20). (11) will then determineand 8, and when one calculates the arc length, curvature,
etc. of the curve, one can verify that:

(12) s =fds

the two curvatures are given by the formulas:

(13) RISy 1)
) p
f PK sin9%+ 00539E ok ) sin@
(14) - ds ds _
r, cos 8+ p’k? o
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and the direction cosines of the tangent, the binormal, and the principal nareal

a =0, b =sing, G = sirg,
cos @ sind cog
(15) a,=0, p=Rtcz = LSV 0
f p f yo
A= p, C00 y7, =Py cosd v,=-Pig sing
il f 0 ) 1 f ) 1 f )
in which:
(16) K= a9 1
s r

It then follows that:

f is the ratio of the two corresponding elementarny lengths, andlis the angle that
the tangent to Cmakes with the principal normal to C.

In order to prove these formulas, first obsena thfollows from (8) and (9) that:

2 2 2
() = () () () e
ds ds ds ds
and therefore (12). If one then divides (8) by)(tt&n one will have:

a; =0, bﬁ%:sina clz—an:cosa

If one applies (2) to the directioa( by, ¢1) then one will have:

5_81:_@ ﬁ:KCOSQ ﬁ:—/(sina

ds o ds ds

in which « is defined by (16). It will then follow that:

(@)@ =8 )

and then (13). One will then have:

oa, _ ,01@:_&00529,

A =
YRGS Tt as .t p
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and one calculateg; and 1, analogously; one can then calculae, £, ) from the
formulas:

m=Cith—b v, Li=asn—Ci A, yi=biAi—aita.

The torsion 1 f; can be calculated directly by applying (2) to the direc{m, £, 1)

and recalling that:
2 2
1 aa. 1 aa.
el rla)

However, after some laborious calculation, one wadlve a formula of a complicated
nature that does not allow one to recognize thatgsemplifications to which it is
susceptible.

Nonetheless, the torsion can be calculated rapullyen the reciprocity of the
correspondence that intercedes betw€eand C;, which permits one to switch the
guantities that relate © with the ones that relate @ in the preceding formulas.

Therefore, if6; is the angle that the tangent@amakes with the principal normal to
Cithen one will have, from (16), that:

_9%_1
and from the first of (15):
Py =sing, inwhich  f,=—,
f, f

becauser/ 2 — fis the angle that the binormal @makes with the tangent ©; it then
follow that:

(17) 1_296 _ o6 fsing
==
n o os o3, p
Now:
(18) cCoOs = =- &ﬁe’
f p

so when one differentiates this with respec to

_sina%-_ 11(&@},
&5

fdsl f p
However:
(29) Siné=m = % K,
SO

%, _ 1 d(p o)
0s pk ds\ f p
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and if one substitutes this in (19) then:

finally, from (13):

1: 1 Gd—[ cosd } sing
r

Jeog@+p?) pf’

from which (14) will follow easily.

8. — As we have observed already, in order to olataiarveC,, it is enough to assign
the two functions, y:1 arbitrarily and then determire from (10).

We shall now seek to put some semblance of ontietthis great multitude of curves;
that will make the links that it has with the cu@etand out more distinctly.

Suppose thax; is fixed, and therefore,, but leavey; arbitrary. The infinitude of
curves that corresponds to the infinitude of fuomesiy; is all of the curves of a ruled
surface that is generated by the parallels to therimal toC atM that goes through the
point P (x; or z;) of the osculating plane.

In order to fix one or more particular curveshiatt ruled surface, one can assign one
of the two auxiliary functionfand g, instead of the functioy .

In particular, if one take@= 77/ 2 in (11),et seq. in 87 thenone will have all of the
elements:

(20) v = - {L%j,
p ds
s =fds in which f:%_ﬁ,
ds r

pm=—fr, rn=-~1p,
=0, b1:0, =0, ad=0, ,31:0, 14:0, /]1:0, ,Ul:O, nmn=-1

for a curve whose tangents are the generators of the ruled surfecer(e parallel to the
binormals to C) whose binormals are parallel to the tangents to C, and \whoseal
normals are parallel to the principal normals to C (but with oppositetpessenses)in
summationOne has a B-transform of C.

Therefore:
The infinitude of ruled surfaces that were defined just now and spamnel to the

infinitude of functions xare developable and have the B-transforms of C for their edges
of regression.
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We shall call thenthe B-developables of the curvef@r brevity.

The normal to 8-developable along a generator, being parallel to the bindonaé
edge of regression, is parallel to the tangents touhe € at the corresponding points,
Sso:

Any B-developable of a curve is the envelope of a simple infinitydangfs that are
parallel to the normal planes to the curfat a distance;).

It follows that it is the polar developable of thehogonal trajectories to those planes,
which are COMBESCURE transforms @f therefore:

The B-developables of a curve are the polar developables GFGMMBESCURE
transforms.

(10) will not be altered if one adds an arbitrary coridtar, So:

If one gives an arbitrary translation to the rectilinear generator &-developable of
a curve that is parallel to the tangents to the curve then that wit omare general a B-
developable.

9. —If & is the angle that the principal normal@p makes with the tangent @then
it will also be the angle that the principal normaldpmakes with the normal to thg
developable that it lies on, and therefode (

N:COSHl G:Sinel, T:ﬁ:i,
101 101 % rl
namely, from (17), (18), (19):
N:_COSQ’ c=2 TzsmH’
pf f pf

will be the normal curvature, geodetic curvaturedathe geodetic torsion, resp., of the
curve G on the B-developable on which it lies.

Lines of curvature on a surface are the ones w8tio geodetic torsion, so onBa
developable they will be the curves for whi@hk= 0, and therefore they will have their
tangents parallel to the principal normalstoHence:

The lines of curvature of a-8evelopable to a curve — i.e., the orthogonal tiees
to the generators — are N-transforms of the curver one of them:

() CESARO,loc. cit, pp. 152.
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(21) yi = j’%ds +K,

in which k is an arbitrary constant,

o5 =fds in which f:d—21+—+_M,
"

f_ /1 1 f_ d( pj
—= —2+—2, —= —| arctan— |,
yoX p-r r, ds r
a; =0, b, =0, c =0,
r
= ;0 2’ A= 2,2 n=0
p-+r p-+r
A =- [ : == o , Wn=0
p2+r2 p2+r2

The geodetics of a surface are the lines of zeonlgtic curvature, she geodetics on
a B-developable of a curve are the curves for wiich has:

K= %—E: 0.
s r
For an arbitrary geodetic, one will have:
g= gds, T,
r
1 . X .
22 = ——| zsin@+ |—=sind dst+ A|,
(22) V= Se[zl | p j
in which rand A are arbitrary constants:
_ . . _d . X
o5 =fds in which —d—s(yl sinf+z cos@+;cos€,

SO

Sy =Yy1Sin@+z cosf+ j% cosdds;
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f _ cosg i:_sinel

P L p

a =0, by =sing, C1 = COS6,
a =0, [ = cosé, K =-sing,
A]_:—l, /,11:0, V]_:O.

It then follows that:

Gis the angle that the tangent t@ @akes with the principal normal to C and is just
the angle between their binormals; the principal normal to C is paralléié¢ tangent to
C.

Therefore:

Any curve is an N-transform of all the geodetics to all of itkeRBelopables.

The preceding formulas are easily proved.
y1 is obtained by integrating the linear differeneguation:

(%_ij cosé@= (d—zl+é+—xj siné@
ds r ds p r

that results from eliminatinfgfrom (11).
Sety; = é 7 and determing from the condition:

coseﬂ—SI—ne =0,
ds
namely:
7 - 1819 4= tanadq
n r
which gives:
1
n=—:7::
co

so the preceding equation will become:

%: ﬁzl.}.sing[d_zl.}.ﬁj’

ds r ds p
namely:
dé_d . X
—2=—(zsin@)+-sind,
ds ds(Zl ) P

SO
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E=27,sin6+ j% sinGds+A:

the expression that was written far= ¢ 77 will then follow immediately.
It will then result from (11) that:

f= (%—ij sing+ [d_zl+ﬁ+—xj cosé,
ds r ds p r

namely:

f= i(yl sin@+ z cos6H) +ﬁc056?,
ds Yo

and therefore:

sl:jf ds=y;sinf+z cos€+jﬁcos€ds
Yo,

Ultimately, the remaining formulas are obtained imragdy from (13), (14) when
one then setg = 0.

Applications.

10. — The generality of the preceding results permits onanéke numerous
applications that are specialized by suitable choicékeofrbitrary functiorx; . | shall
confine myself to the simplest ones.

First setx; = 0. It results from (10) that = o, so the correspondirgrdevelopable is
the polar developable to the curve C that is theedope of its normal planes, and is also
the locus of the axes of the osculating circles.

The theorems of 88 and9 specialize as follows:

The edge of regression of the polar developabla turve is a B-transform of the
curve. For it:
e

X1 = 0, =- ,
! n ds

Z1=p0,

do_p
=—-r——|~=ds,
. ds J.r
d( dp 0° d( dpj
=p+r—|r— |, rn=—+p—|r——|.
pP=p ds{ ds) T 'Ods ds

The lines of curvature, which are orthogonal tragees of the generators, are N-
transforms of the curve, and for them:
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_ _(P _
r

& =fds  inwhich  f= %+1(j£ds+ kj,
r

ds r
L i2+_12 , L i(arctan’c—)j,
yoX p-r r, ds r

in which k is an arbitrary constant.
Any curve is the N-transform of all the geodeticgsopolar developable, for which:

xp =0, ylzi(A+psin69, z=p,
cosd

1 .
=—(p+Asinb),
cosd (0 9
in which:
ds 1 . do
=|—+r, f= A+ psin@+r cog— |,
I r r cos 6’( p dsj

in which A andr are arbitrary constants.

Suppose thab is constant, so the first theorem will give ongedl-known “bouquet”
of skew circles ).

From the same theorem, one will hawe/ ri =1 / p, soit is only for the cylindrical
helix that the edge of regression of the polar tpable will be a cylindrical helix.In
that case, the torsion of the lines of curvaturi ve zero, which would result from the
second theorem, and one will then have the knoeoréim ():

The only developables with lines of curvature tratall plane are the ones that have
a cylindrical helix for their edge of regression.

From the presence of two arbitrary constantand A, the geodetics are doubly-
infinite in number.

For A = 0, one has the ones whose tangents are suppuytde curveC — namely,
the evoluteof the curveC; for it:

_ _ P
23 = ptan@, =,
(23) Yi=p0 St 0O

() BIANCHI, loc. cit, v. |, pp. 34, or CESARQ0C. cit., pp. 145.
(") BIANCHI, loc. cit, v. II, pp. 255.
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From the presence of the constanbne has that:

All of the evolutes of a curve are obtained from one of them byngtiés tangents
through the same angle around the curve.

When one passes from an evolute to another geodeticatrasgonds to the same
value ofr, y; will increase byA / cosé, soA will be the distance between their tangents.
If one takes into account that any geodetic is thewealf eitherC or another trajectory
that is orthogonal to the normal planesCofwhich are, in fact, infinite) and that the polar
developable to a generic curve is a generic developabldtiadast result can be stated
in the form:

If one gives all of the tangents to a geodetic on a developable suHacsame
translation that lies in the tangent planes to the surface then its enwsilbpgain be a
geodetic.

Otherwise, letg = / 2 — @ be the inclination of a geodetic with respect to the
rectilinear generator of the polar developable:

If one draws the segment/Asin ¢ from each point of a geodetic on a developable
surfaces, where A is a constant, apds the inclination of the geodetic with respect to
the generator, then the locus of the endpoints will be another geodetics timadined
equally with respect to the generators.

The fusion of the third-to-last and the second-to-laesbtems implies another:

All of the geodetics on a developable surface can be obtained from just threan
by giving the same arbitrary motion with respect to a trajectbay ts orthogonal to its
tangents to its tangents in the tangent plane to the surface.

From the second of (23), one will then have:

The orthogonal trajectory to a simple infinitude of planes can be imagined to be
generated by the points of just as many flexible, inextensible filanteat were
originally wrapped on the geodetic of the developable that is the enwldipese plane
and are then unwrapped while always keeping them tense.

11. - More generally, suppose thatis a constant. (10) will once again giie= p,
Sso:

Not only will the axis of the osculating circle to a curve generateeldpable
surfaces, but also all of the lines g that are parallel to it, codiin the planez and
drawn through the axis and parallel to the tangent.

For the edge of regression of any of those developahless(8 8):
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ylz_p[ﬁﬂ_pj,
p ds

Suppose that is fixed andx; is variable, so that equation and the othermrep are
those of the line that goes through the ceEOaH% ,pj of the osculating sphere (first
theorem in 810) and inclined with respect to the tangentkis) through an anglg such

that tany = —r / p; however, that is also the inclina;[ion of the ganer of the rectifying
developable of the curv@ with respect to the tangeny,(so:

For each point of a curve, the locus of pointsvitiich the generators g of the above
developable touch the corresponding edges of regress the line p through the center
of the osculating sphere and parallel to the getwraf the rectifying developable.

It follows that the edges of regression of theedepables that are generated by the
line g are traced on the ruled surface that is genelatdte linep. We then propose to
look for the envelope of the planasvhose equation & = p. We must differentiate that
equation with respect tg, while taking into account the fact that the psiatf the
characteristic of the plamesatisfy the three immobility conditions, and intmaular:

d_21+é+_>{:0_

ds p r
One then has:

ﬁ+£+d_'0:0

o r ds

which is the equation of a plane that cuts the@laalong the characteristic. However,
that line is precisely the linp that was defined above, so the lipewill generate a
developable surface.

Hence:

The edges of regression of the developables thatganerated by the line g are
traced on the developable surface that is the epeebf planes p that are the loci of the
line p. On that surface, they are geodetics amdrtieet the generators at the angie2
— J, because their principal normals, being paratiethie principal normals t€ (8 8),
are normals to the developable.

12. — Setx; = h — 5 with h constant, so one will havag = 0 from (10), and if one
takes into account the fact that the curve thaheaslocus of point® (h — s 0, 0) is a
evolvent ofC then one will have:

() CESARO,loc. cit, pp. 137.
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If one draws lines through the points of the evolvent of a curve thatsa#el to the
binormals to the corresponding points of the curve than one will have aofdaiéd
surface.

If one makes the same assumptions as in ®gq.in 88 then one will have all of
the elements of the edge of regression. In particate will have:

r r

yi=-—x=-—(h-9.
p p

If one variesh, and therx;, then the preceding equation will be that of the f@og
line of C in the rectifying plane, so:

The edges of regression of the developables that just defined lie on the rectifying
developable of the curve and are geodetics on it.

If one makes the same assumptions as in €&19eq. then one will have all of the
elements of the lines of curvature. Hox 0, one will have the evolvents of the curve;
hence:

The evolvents of a curve are N-transforms of itd @S intrinsic equations are
obtained by eliminating s from:

Sl = '[h;sds i: —“p2+r2 E: Li arctan’L_)
’ r(h—s) ' h-sd r)
P o) (h-s) n S

IV. — Curves whose tangents are orthogonal to the binormal to anleér curve.

13.— The formulas of the theorem irv&re true for any curve that corresponds to the
curve C by orthogonality of elements, namely, for everyveuwhose points have
coordinates that satisfy the first (10) of the éhmamobility conditions.

By virtue of an elegant theorem of BIANCHI, thofemulas will take on great
importance, because suitable changes of the symbadle theorem will permit one to
write the analogous formulas ftre study of curves;Ghat are generated by the points
M (X1, V1, 1) whose coordinates satisfy the second:

(24) MH_a_,
ds r

of the three immobility conditions, namely, theveu€; whose tangents are orthogonal
to the binormals to another C.
BIANCHI's theorem is the following one){

() BIANCHI, loc. cit, v. I, pp. 53.
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For any curve C, there exists another oné(@hich is defined up to a translation)
that corresponds to C with equivalence arc lengths. The two cursaaacedirections of
the tangent and binormal are permuted by the transformation.

More precisely:

If one chooses the positive direction of the tangents to C to be tlneg binbrmal to
C’then the positive direction of the binormal tov@ll be that of the tangent to C, while
that of the principal normals will be parallel, but with the oppositessgeone will then
have:

p'=-r, r=-p.

The importance of the theorem comes from this:thl#ishes a law of duality under
which, when one is given any relation that links therdgation of the fundamental
trihedron and the curvatures of a cu@seto the fundamental trihedron and the curvatures
of a curveC, one can immediately deduce another one by applyingatine selation to
the curvesC; andC".

Now, if a curveC; has its tangents orthogonal to the binormaltthen it will
correspond by orthogonality to the elementsCdf and therefore the formulas of the
theorem in & will be applicable to it as long as one changes:

p into -r, r into -p, 6 into 71-6

and changes the signsaf }, vi .
Therefore:

The elementary arc length and the curvatures of a cunvevidse tangents are
orthogonal to the binormals of C are given by the formulas:

. dé@ do
rksind—+ co¥)— (k :
ds ds ( )+ sind

cos @+rk? r

F=tds L= [0S0
o r

f_
rl

resp., and the direction cosines of the tangempipnal, and principal normal are given
by the formulas:

a; =sing, b, =0, C1 = COS6,
l:—&&sze, ﬁlzﬁ/(, M:&EBWIQCOSQ,
for f f
A1 :—% K Cosé, L= —%g, V= %K [kin &,

in which:
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do 1
K== —+=.

ds p

The ratio f of the elementary arc lengths of the two curves and the Anight the
tangents to €make with the principal normal of C are obtained from the formulas:

(25) fSingzd—Xl—i+l, fcosg:d_zi.f-ﬁ
ds p ds p r

Indeed, it is enough to observe that:

sin 9:611:%: 1%, 0059:01:1_,
os, fds f ds

and to take into account the fundamental formulgswhen they are applied ta;( yi,
z).

14.— There is an infinitude of curv&y, because one can assign the functiang;
arbitrarily and then determire from (24).

Suppose that has been assigned, and tagrbut leavex; arbitrary.

The infinitude of curves that correspond to thinitude of functionsx; cover an
entire ruled surface that is generated by the taisgeC atM that go through the poilt
(0, y1, ) of the normal plane.

In order to fix one or more curves of the ruledfate, one can assign one of the two
functionsf and g, along withx; . In particular, if one take@ = 77/ 2 in the preceding
formulas therone will get all of the elements:

(26) xlz—p(d—zl+—xj,
ds r

& =fds  inwhich f= %_i +1,

=1, b1:0, =0, =0, ,31:1, }/izo, /]1:0, ,Ul:]., =1,

of a curve whose tangents are the generators of rhled surface and is a
COMBESCUREtransform of C.

Therefore: Those ruled surfaces are developables and h@@VBESCURE
transforms of C for their edges of regressions.

For brevity, we shall call thethe T-developables of C.
As in 88, one proves that:
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Any T-developable of a curve is the envelope of a simple infinitudangspihat are
parallel to the osculating planes to the cufe¢ a distancg;).

The T-developables of a curve are the polar developables of its Beinmans

If one gives an arbitrary translation to the rectilinear generator dtdevelopable of

a curve that is parallel to the binormal to the curve then it willeonwre generate a T-
developable.

With a change of notation, one will have fror ghat:

The normal curvature, geodetic curvature, and geodetic torsion of a cyreeaCT-
developable are:

_cosf cG=-X T:_sme

fr ' f fr

N =
resp.

The lines of curvature, which are orthogonal tragtes to the generators, are
obtained for@d = 0;they are N-transforms of the curve C.

The formulas (21)et seq.that were established in9&are still valid.
It is then easy to show that:

For a geodetic, one has:

ds 1 . Y, .
27 6=|— +71 Xy = ——| zsin@+ || 22 sin@- cod |ds+ A,
(27) J,o ! cose{z1 J( r j }

in which rand A are arbitrary constants:
1 =X Sin @+ 2z cosf+ j(ﬁcong, sirgjds, f _ cost 1_siné
r yo) r r r
in which:

f= d—(xl sin@+ z cosH + %cos@+ siné,
S

=0, b1:Sin€,

C; = cosé,
a1 =— Ccosé6, £=0, W =sing,
A]_:O, /,11:—1, V]_:O.

It follows that: The principal normal to the geodetic is paralleltb® binormal to the
curve C.

Indeed, the geodetics are the lines with zero godurvature, so they will be the
curves for whichk = 0, and (27) will follow from that.
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If one eliminatesf from (25) then one will get the following linear diféetial
equation for the determination xif :

[d_xl_i+1j cos@= (d—zl+ﬁ+—xj8in€.
ds p ds p r

If one setsq = &/ cos@, as in 89, then this will become:

g_zlcose + coséd= ( Zl Mjsme

ds Yo ds r
namely:
de_d (zzsing + = i sin g coso,
ds ds r

which will imply & and theng .
Also from (25), one will have:

f = [dxl Zl+1j sm6’+[Zl >g Mjcose

ds p ds p r
:dis(xlsin€+zlcos@+%cos€+sin6’,

Finally, s; is obtained by integratings; = f ds and the remaining formulas will be
deduced immediately from those 018 by settingx = 0.

Applications.
15.— Lety; =k (constant). From (24), one will hage= 0, and the correspondiiig
developable will be described by a line of theifgictg plane toC atM that is parallel to

the tangent and at a distance&kofOne will then have APPELL'’s theorem:

The lines of the rectifying plane of a curve thag parallel to the tangent and rigidly
linked with it generate developable surfaces.

If one setsys = k, z = 0 in (26), et seqg. then one will have thathe edges of

regression of those developables &@@MBESCUREtransforms of the curve, and for
them:

x1:—£k, sl:s—kﬁ, o= pl1l- kd('oj, ri=r|l1- ki(ﬁj.
r r ds ds

It is clear from the expression ferthat:
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The difference between the arc lengths of the curve C and one dbtbmentioned
edges, or more generally, between any two of its edges of regresdiotwo
corresponding points is equal to the distance between the normal planes gidhmse

16. — In particular, fokk = 0, one has the developable of the tangents to the Cur
Takingy: = 0,z = 0 in the formulas of 883 and14, one studies the noteworthy curves
on a developable surface with a given edge of regressiere, | shall confine myself to
some curves that have not been considered up to now.

As for plane curves, we call the locus of feet & gerpendiculars that go from a
point to the tangents of a skew curve pleelal curveor pedalwith respect to that curve.

If one is givenx, y, z as the coordinates of a fixed poitwith respect to the
fundamental trinedron of the cur@at a pointM then the pedal curve & with respect
to C will be the curveC,, which is the locus of pointd; (X, 0, 0).

As is obvious, and as would result from the observatian the coordinates dfl;
satisfy (24), moreover, the pedal curve of a point wvadpect to a curve has tangents that
are orthogonal to the binormals of that curve, and &ls® contained in its osculating
plane. The fundamental formulas oi8are then applicable to it.

Setx; =x, 1 =0,z = 0, so (25) will give:

fsinB:% + 1, fcos@zl,
ds

but from the immobility of the poirfe:

%—_Z+ 1= O,
ds p
SO
f sin 6?:5, fcosezl.
P P
Therefore:

The elements of the pedal curve of a poirfk,R, 2) with respect to a curve C are
given by the formulas of theorem ®fL3, in which f and@ are the functions that are
defined by the formulas:

(28) tang= %, =272
X P

The tangent t&; is contained in the osculating planeG@tM and makes an angi

with the principal normal t&€. However, it follows from the first of (28) thé&is also

the angle that the projectidd of MP onto the osculating plane © makes with the
tangent, so:
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The tangent to the pedal curve at a pointénd the projection of the ray MP onto
the osculating plane to C at M are inclined equally with respect tetineipal normal
and the tangent to C, respectively.

It then follows that:

The normals to the pedal curve at Bhd the projection of MP onto the osculating
plane to C at M are anti-parallel with respect to the tangent to K2.at

Hence:

The normals to the pedal curve that are contained in the osculating planeattats
the midpoint of the projection of a segment MP on the osculating,phadetherefore:
The normal plane to the pedal curve at a pointiMersects MP at its midpoint and the
principal normal to C at the projection of P onto that line.

A simple inspection of the figure will imply that:

The distance between two corresponding points M andfithe curve and the pedal
curve is the proportional mean of the segments that the tangents and tla plame to
the pedal curve cut out on the principal normal to the curve.

Recalling the direction cosines of the binormal andptfirecipal normal to the pedal
curve (813), one has that the equations of the osculating platiére rectifying plane of
the pedal curve are:

cosd

- (X=X kcosO-Y +Zksin@=0,

respectively. Hence, the pieces that this plame @ut on the binormal to the curCeare
—xcog 8/t k, x r k, whose product is ¥ cos 6, so:

In absolute value, the projection of MMnto p is the proportional mean of the
segments that the osculating plane and the rectfplane at M on the pedal curve cut
out from the binormal to the curve at M

17. — Some particulaif-developables of the curve are the cones that bir@ned
when one draws the parallels to the tangents ofdinae that go through a fixed point —
viz., the direction cone of the tangents to the curve.

Indeed, ifx;, y1, zz are the coordinates of a fixed poiBtthen the immobility
conditions will be true:
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(28) %—i+l:0’ %—izo, £+1+_M:O,

ds p ds r ds p r
the second of which is nothing but (24), and it is alsisfed by the coordinates:

X1 =X+, Y1, 1
of any other point of the cone.

The study of the curves of one such cone is equivalethiet study of the curves of a
cone that refers to a curve with tangents that arallphto the rectilinear generators of
the cone, i.e., to that thing that is intrinsic toyothlat cone, where one usually refers that
study to a particular curve on that cone.

The general results of 88 and14 are valid for those curves.

The functiong and@for any curve on the cone are obtained from the faasaul

(29) fsinezﬂ, fcos@zi,
ds P

which are deduced from (25) by applying it to the pMat(x + t, y1, z1) and taking (28)
into account.

The lines of curvature, or the orthogonal trajectories to the generatotke cone,
are obtained by drawing a constant segment t along the generators upon starting from
the vertex, and one obtains their intrinsic equations by eliminating s from

2
S]_:t'[d_s, i:p—ﬂ, izﬁi(arctanﬁ)j
P yo) tr rr tds T

Indeed, one will havé& = 0 for the lines of curvature of Bdevelopable, so from
(29):

t
t=constant and f=—;
P

if one substitutes this in (21¢t seq. then one will get the formulas that were written
down.

One will have that 1v; = 0 only wheno/ r is constant, s will also be constant
then — i.e., the lines of curvature will be circleence:

A characteristic property of a cylindrical helix lsat the director cone of its tangents
is circular.

The geodetics on a cone are obtained by startinpeawertex and measuring out the
segment £ A/ cos@g, in which:
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with A andr arbitrary constants; their intrinsic equations are obtained by eliminasing
from:

Ar Ar
30 =Atang, =, R=—":
(30) . p pcos 8 17 psinfcodd

The inclination of a geodetic with respect to tleaerators isp = 77/ 2 -6,

Indeed, for the geodetics offadevelopable of the curvg, one must set = 1—%
= 0, from which, one get8by a quadrature. In addition to (29), one has:
g: d—stan f=tan@ddg,
t p

from which,t = A/ cos@, with A an arbitrary constant. Hence:

= Esin 0+ icosez E(t sin ) :Aitanez
ds P ds ds

A
pcos 8’

SO
sl:jfds =Atané

Finally, ;. andr; are deduced from the general formulas @8%y settingk = 0 andf
=A/pcog 6
If one letst = A/ sin g then it will follow that:

If one develops the cone onto the plane then dadegecs will rectify.

It also follows thatA is the distance from the vertex of the cone to tamgent to a
geodetic, so:

The vertex of a cone is equidistant from all ofthreents to one of its geodeticg.:
The pedal curve of the vertex of a cone with resfmeone of its geodetics is a spherical
curve.

If one sets; = Atan &= A cot ¢ then one will have that:
The length of the arc of a geodetic on a coneasdistance from the endpoint of the
arc to the projection of the vertex of the coneodhie tangent at that extremee.: The

pedal curve to the vertex of a cone with respeoin® of its geodetics is an evolvent of it.

It follows easily from (30) that:
sn=Ap.
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Conversely, it follows from that relation that tpeint (— s;, A, 0) satisfies the three
immobility conditions with respect to the cur@, namely, that the rectifying planes of
C; coincide at a point — i.e., they envelop a cone on w@icis a geodetic (because any
curve is geodetic on its rectifying developable). Therefore:

A characteristic property of the geodetics of a cone is that thesions vary like the
product of the flexion with the arc length.

If one supposes tha&is constant then one will get a helix on the co@ne easily
finds that:

The arc length and curvatures of a helix on a cone that meets the gesextian
angle of@are given by the formulas:

,ozsin¢g I
o=t f_ |1, simg f__ ds\ o) cosp
sind’  p, o pr r’+p’sin’¢ ro’

in which:

f= t , t:hexp[cot¢jd—sj,
psing Y

and h is a constant.

Indeed, (29) gives:

%: d—stane,

Yo,

from which the value that was written down fawill follow when one lets the inclination
of the helix with respect to its generatorsgoe 77/ 2 —6. Therefore, from (29) itself and
the preceding, one will have:

fzﬂsin6?+icos€: t -,
ds Yo psing
from which:
1 (tds 1 t
=| f ds= = dt= :
. J sin6’J yo, sinHJ. sing

Finally, ;. andr; are obtained from the general formulas df38vhen one sets:

-9, —=0, K=

i do 1
2 ds o

One can write:
t =hexp (ocot¢),
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in which ois the arc length of the spherical index of the genextthe cone, so:
If one develops a cone onto the plane then its helices will become hogargpirals.
It follows from the expression fa that:

The arc length of a helix on a cone (as it is for a geodetic) is ¢qubhe segment of
the tangent that goes through the endpoint of the arc and is found between that endpoint
and the projection of the vertex of the cone onto its tangentThe pedal curve of the
vertex of a cone with respect to one of its helices is ong evolvents.

To conclude, consider the curve on the cone that ot@nskiort = — 2x — i.e., the
curve that is the locus of points X, Y1, z1) —which is the curve that is described by the
image of a light point P that is fixed with respect to a moving mivar, the normal
plane toC).

The elements of that curve are given by the genemaluias of 813 if one sets:

tan &= Zl_'o, f:%\/x2+(zl—,0)2

X
in them.

Those values dfand @will be deduced from (29) if one sdts — x and takes the first
of (28) into account.

V. — Plane curves.

18.— None of the preceding results will cease todd&ln the case of a plane curve
C; the formulas will also become somewhat simplecesone will have 17 = 0 then.

TheB-developables are cylinders, and Thdevelopables are planes that are parallel
to the plane of the curve.

19. — One will get much simpler and much more intengstesults when one
considers only those infinitesimal deformationsvidiich the curve is not in its plane.

If we would like to apply all of the preceding wéts without leaving the plane of the
curvethen we would have to suppose that:

1
F:O’ v=0, y=y1 =y, =0.

In order to perform an infinitesimal deformatiothe generic pointM will be
subjected to a displacement whose components aree w along the tangent and the
normal to the curv€ at M.

The theorem in 8 becomes:
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The necessary and sufficient condition for the functions u, w to definératesimal
deformation of the curve C is that:

(31) du_w_

ds p

The intrinsic equation of the deformed curva<C

(32) pr=predl,
ds
in which:
(33) —m= W, Y
ds p

Each element of the curve will submit to a transtatvhose components agal, £V,
and a rotation of momemtm.

For the particular deformations that were considerég4, one will have:
a) The deformations that do not alter the curvaturéhefcurve are rigid motions.

That should be obvious, but it will also result directigm the preceding formulas.
Indeed,p’= ponly whenm is constant; with that hypothesis, if one sets:

4 W 4 u
X'=— —, y = —
m m
then (31) and (33) will become:
%—l-{-lzo’ ﬂ-{-izo’
ds p ds p

resp.
Now, these express) the fact that the poink(y’) is immobile, so:

The deformation is not an infinitesimal rotationndathe point(x’ y’) is the
instantaneous center of rotation.

b) There exists no infinitesimal deformation for whiahy point is displaced
normally to the curve.

c) There always exists an infinitesimal deformationvibich any point is displaced
in a given direction in the plane, but is not notrathe curve.

() CESARO,loc. cit, pp. 20.
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d) There exists an infinitesimal deformation for which any point is displateng
the tangent to the curve and the displacement is constant.

The circles are preserved by that deformation; the circles ase #ie only plane
curves that admit infinitesimal deformations into themselves.

20.— If one is given a fixed poir® and one draws a vect@M; that is equal to the
displacemenMM ’"thatM experiences under an infinitesimal deformation of the cGrve
then the curve&; that is the locus of pointd; will correspond taC with orthogonality of
elements, and conversely, as i8.8 The problem of the infinitesimal deformations then
takes on one initial aspect: One studies the curve whasts pb (X1, z) satisfy the first
of the two immobility conditions:

(34) & _Z,q-0
ds p

If one sets 17 =0,y; = 0in (11) then one will have:

(35) 6=0, gz 92, %
and the theorem of 8will become:

The elementary arc length and the curvature of me\&; that corresponds to C by
orthogonality of elements are given by the formulas

(36) o =fds o=fp
resp.

Forx; =0, (34) and (35) will gives = p, f =dp/ ds so:
The arc length and the radius of curvature of thelate of a curve are:

SR PL= ,OM,
ds
resp.
One will also have; = p for x = k (a constant), and the corresponding curve will be a
curve that igarallel to the evolute o€.
Forx; = h — s with a constant, (34) will giveg; = 0, and the curv€; will be an

evolvent ofC. From (35) and (36), one will have that:

The arc length and the curvature of an evolvera cfirve are:

h-s
sl:j—ds, m=h-s
yo,

resp.
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21.— Passing on to &3, et seq.all of the curves in the plane have tangents that are
orthogonal to the binormals to,G.e., the coordinates«q( z) of the pointM; are not
constrained by any rule. The theorem df3ecomes:

If x; and z are two functions that are given arbitrarily then the arc length and the
curvature of the curve QGhat is the locus of pointsiMx; , y1) are given by the formulas:

(36) 5 = j f ds,

resp., in which f and are given by the formulas:

fsinB:d—Xl—i+ 1, fcos@zd_z%i;
ds p ds r

@is the inclination of the tangent to C with resjpecthe normal to C.
These are the formulas for the study of the gederieti by the intrinsic methogl).

22.— From 813, one has thahe arc length and the curvature of the pedal cuova
point P(X, 2) in a plane with respect to a curve are given byrfalas(36),in which:

tan@= E, f= X—+Z;
X Y
otherwise, they will be given by the formulas:
t t?
= | —ds, =
= J P A 2t - pcodd
in which t= / x>+ 2> = MP.
Indeedx =t sing, z=t cosg, so:
%:—1+£€, f:i,etc_
ds P t P

The tangent to the pedal curve at &hd the ray MP are inclined equally with respect
to the normal and the tangent to C at M, respettivelherefore, the ray MP and the
normal to the pedal curve are anti-parallel witrspect to the tangent to C at M.

The normal to the pedal curve at bisects the segment MP.

() CESARO,loc. cit, pp. 22.
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