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Foreword

The present book is an attempt to interest a broaddée of younger mathematicians
in line geometry. It should not serve as a more €8 ®mplete summary of the old and
new results in line geometry, but only a selectionhef topics that promise to attract
some lasting interest due to their simple and “intuitiv@fitent. The main emphasis shall
reside in the geometric content, not in the analytioals; that viewpoint will serve
especially for the comparison of models that are coctsd from discrete lines.

As the title of the book suggests, it will be essdgtiarojective questions that are
treated. This restriction was necessary in orderotoemceed the scope of the book;
however, it is also factually based, since metric ig®metry finds its most natural
representation in terms of entirely different anabjttools (viz., Study’s dual vectors).

The larger part of the book relates to differential l@®metry; the part on algebraic
line geometry will present only the must essential basicepts, and some examples that
are occasionally interspersed throughout (e.g., third-degrieel surface, third and
fourth-order space curves, quadratic system of lines, camgplef lines, etc). The
projective differential geometry of curves and surfagiisbe employed in the treatment
of torses and parabolic systems of lines, since linedotwates are better adapted to that
problem than point and plane coordinates. In that s¢heebook is an extension of
volume 22 of this collection, in which E. Salkowski has entsd the differential
geometry of curves and surfaces.

The analytical tools are the same ones that W. Bkas@pplied to Lie’s sphere
geometry in volume 3 of hiBifferentialgeometrigBerlin, 1929), which was revised by
G. Thomsen. One will find many of the theorems ofedéntial line geometry that will
be treated in what follows in that content-rich bdbk way of analogy with sphere
geometry). The same is true fBeometria proiettiva differenzialef G. Fubini-E.Cech
(Bologna, 1926), which one might do better to read in thadh version (Paris, 1931).

The applications to mechanics (e.g., frameworks, 8alleorem of screws, stress
distributions in membranes) take up a relatively sizapkce. Many problems will be
dealt with in them, and in the theory of infinitesinsatface bending, that are first posed
in their metric formulation, but will nevertheless rkably lead to projective aspects.
Unfortunately, questions of integral geometry must begubsser.

| would like to thank Herren Dr. O. Baier and Prof. DrLense, as well as Herrn Dr.
Lennertz, for their friendly assistance in the caingc and for many worthwhile
suggested improvements.
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Introduction

If one employs a line as the basic element of dpge@metry in place of the point or
the plane following the process &f Pliicker (1801-1868) then one can speakliné
geometry(). We will be concerned with that kind of geometry hena/e will thus
mainly investigate the relationships that remain pregsewwler the group of projective
maps, which implieprojective line geometry. All considerations will relate to real
three-dimensional projective space — i.e., to the spa€&aiclidian geometry, when it is
extended by the imaginary structures of projective geomeinalytically, we will then
be dealing with the development tbe invariant theory of projective transformations in
line coordinatesin a manner that is similar to the way that one pissére motion
invariants in Cartesian point coordinates in elementarlytace geometry.

After we have learned about the necessary basic corafegdtgebraicline geometry,
we will turn todifferential projective line geometry. We will then successivelytttha
differential geometry of 1, 2, and 3-parameter sets rodsliamilies, systems, and
complexes of linesesp.) in the space of lines, which depends upon four pagesngtst
as one examines 1 and 2-parameter point-sets (viz.,scangesurfaces) in a point space
that depends upon three parameters in point geometryill Bewshown in that way that
the projective differential geometry of curves and surfasdsbe handled at the same
time.

As S. Lie has remarked, line geometry is closely connected witkcangtry that
employs the sphere as the basic element. Whoewaldwash to learn about this very
intriguing  relationship  could confer, e.g.,W. Blaschke-G. Thomsen:
Differentialgeometrie 11(Berlin, 1929) %).

Before we take up our line-geometric investigations, \mall ssummarize the
necessary basic notions of analytic geometry andlifferential geometry of curves and
surfaces (or at least, the main terms) in the first paragraphs. In addition, in order to
simplify the analytical tools, we shall assume oaweé for all that:

All functions will be assumed to be regular; i.e., they can be dewvklopmnvergent
power series in the domains in question of the independent variables.

() Let some of the following older presentations of ®metry be mentioned:
G. Koenigs La géométrie reglée et ses applicatioRaris, 1895.
K. Zindler : Liniengeometrie I, llLeipzig, 1902, 1906.
F. Klein: Volume 1 of hisGesammelte AbhandlungeBerlin, 1921.

Metric differential line geometry is treated by eWy.,Blaschke Differentialgeometrie,IBerlin, 1930;
one finds many details about projective differentiaé lgeometry irFubini-Cecht Geometria proiettiva
differenziale Bologna, 1926 (or better yet, Paris, 1931) amd Blaschke and G. Thomsen:
Differentialgeometrie 11l Berlin, 1929.

Among the large number of individual papers on the sybgais mention:

G. Sannia Ann. di mat. (3)L7 (1910).
G. Thomsen:Math. Zeit. (1924) and Hamburger Abhandlungen (1925).
W. Haack: Monatshefte fir Math. u. Phy86 (1929);44 (1936); Math. Zeit33 (1931);35 (1932);

40 (1935);41 (1936).

The algebraic questions were treatedEbyA. Weissin the sense dE. Study in Einfiihrung in die
Lineiengeometrie und Kinematikeipzig-Berlin, 1935.

(®) Cf., also,L. Bieberbach: Einfiihrung in die héhere Geometrieeipzig-Berlin, 1933.



2 Introduction

8 1. Basic features of analytic geometry.

1. Vectors. Rectangular point and plane coordinates. We start with three-
dimensionaEuclidian spacend assume that the concept ekatoris known, as well as
the laws of vector addition and subtraction. We Isthahote vectors by large German
symbols and scalar quantities by small Latin oneX. | neans the absolute value (i.e.,

the “length”) of the vectok.

Linear dependency of vectors:

nvectors¥?, X2, ..., X" are calledinearly dependenivhen at least one equatiof: (
X' +aX’+ ... +a,X"=0

exists, without all coefficients; having to vanish.

2 (3, resp.) vectors are linearly dependent if and onlgelfy are parallel to a line
(plane, resp.); this is the case especially wherobtige vectors is the null vector.

More than three vectors will always be linearly dejss.

Rectangular point coordinates:

A rectangular coordinate system is established by i@alipoint O and three pair-
wise perpendicular vectoss, ¢, 2 (viz., basis vectorsof the same length that define a

right-handed system The rectangular point coordinatgs x,, X3 of the pointP are
defined by decomposing the position vector OP along the three linearly-independent
basis vectors:

X =xE + %8 + X3 ¢,
Product definitions:

Inner product (scalar!):
XY =x1y1+ X Y2 + X y3 =X,
in particular:
XX =xpa +Xe X+ Xaxa = | X A
Outer product (vector!):
¢t ¢? ¢?
XXYP=1x X% X|=-"PYxX.
yl y2 y3

The vectorsk, 9), X x ) define a right-hand system.

() We sometimes employ upper indices 1, 2,n.and sometimes lower ones. The basis for that will
first be given when we introduce the concept of a tef&a0).
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Determinant product (scalar!):
X% X
<X,,3>=X@*3)=DEB*X)=3XxV)=|% Y. %
4 %4 4

when <X, 2), 3> > 0 (< 0, resp.), the vectos§ 2), 3 will define a right-handed (left-
handed, resp.) system.

Identities:
(XxY)x3=X3)YP-®3) X;
(1)
(X x9) (3x%) =(X3) VT - (X3) (D3).

Vanishing products:

xX3=0: The vectors, Q) are perpendicular.
Xx9=0: Thevectorx

are linearly dependent.
<X%,9,3>=0: Thevector& 9 3

Rectangular plane coordinates:
The equation of a plane that does not go thradghn be brought into the form:

WX +1=0.

The uniquely-determined vect@p is perpendicular to the plane. Tieetangular plane
coordinatesw!, w?, w* are defined by the decomposition &if along &', ¢ ¢°. The
plane coordinates of a plane that includes the gaint

WX =0

are determined only up to an arbitrary proportionality fac® is any altitude vector
over the plane.

2. Projective point and plane coordinates. Euclidian space is extended to
projective spacdy the addition of the imaginary elements: From now “ontersect”
shall mean “intersect,” as well as “be parallel,” andrfe” shall mean “cone” with a real
vertex, as well as “cylinder.” We will assume thae thefinition of homogeneous
projective point coordinates andplane coordinates Wi = 1, 2, 3, 4) in terms of double
ratios from the coordinate tetrahedron by means ohit point and aunit plane are
known. The united position of a point and a plane is expddsg.
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in which the summation sigE is implied. We agree, once and for all, that:
i=1

Any index that appears twice in a product — once above and once below — is to be
summed over.

If the imaginary plane is taken to be the plane O then the ratios / x4 (W / w/,
resp.) ( =1, 2, 3) will beaffine coordinates.In addition, if the three coordinate axes 41,
42, 43 (Fig. 2) are pair-wise perpendicular and the unit mtatérmines equal units of
length on them then the affine coordinate system wécglize to aectangularone. In
that case, we shall call the andw* (k = 1, 2, 3, 49homogeneous affine (homogeneous
rectangular, resp.) coordinates.

In what follows, we shall call the point with theopective coordinateg; “the point
x,” for brevity, and the plane with the coordinatés“the planew.” The double ratiod
of four pointsp, g, r, Sis given by:

_ (pr)(as)
2 d = H 1 H = 1
2) (p.a. 1,9 an(ps
with:

(pr) =pi rk— P« ri, @9 =g sS«— S etc.

3. Projective maps. One distinguishes betweai collinear andb) correlative or
dual projective mapsd) collineationsandb) correlations resp.]. They are given by:

(3a) %= apxt . aix, = X,
(3b) W =B+ ... +8" % = B,

resp., in projective point (plane, resp.) coordsatwith non-vanishing coefficient
determinantsr (5, resp.).
Any linear form in thex will be transformed into a linear form in the [W*, resp.]

under (3a) [(B), resp.]. As a result, the pointof a planew will go to the pointsx of a
planew (the planesi through a pointk, resp.). One can prescribe that:
W = WX
under collineations, as well as correlations, draoh tobtain:
WX = afW %, (W% = B*X %, resp.)

upon substituting that into &B[(3b), resp.]. One will get the representations:



§ 1. Basic features of analytic geometry 5

(4a) W= gl + .+ MW = o'W
or
(4b) W= B5% + ...+ B%, = prx,

which are equivalent to (3a), [(3b), resp.], by identifying toefficients ot on both
sides of the equation. There is an invertible one-®eammrespondence:

undera): point - point, plane~ plane,
underb): point - plane, plane- point,
undera) andb): line « line; the united position of points, lines, and planes remai
preserved.

There is precisely one collineation (correlation, resp.) that trams$ five points, no
four of which lie in a plane, into five other points of that kinde(fptanes, no four of
which go through a point).

The so-calledundamental theorem of projective geométjystates that:

Any map of projective space that takes points to points and rectiliegqaesces of
points to rectilinear sequences of points in an invertible, one-to-onespmndence is a
collineation.

Under any collineation, there is at least one poiat will correspond to itself and at
least one plane that will correspond to itself (v&fixed point, fixed planeresp.). In
general {) there exist four fixed points and four fixed planes tefine the vertices and
faces of a tetrahedron.

Special projective maps:

a) Affinity: One setsx; = a7 = a; = 0in (3a). The imaginary plang = 0 is a
fixed plane; parallelism will remain preserved.

- 0 i zk :
b) Polarity: One sets3* = {1 for {I ) in (3b), W =x (i =1, 2, 3, 4). By
| =

choosing homogeneous, rectangular coordinates, any yuiiit be associated with the
plane w that arises by reflecting the polar plane of the printth respect to the unit
sphere aroun@® throughO.

Equations (3a) and (4a) can be regardecbasdinate transformationsye will often
make use of that reinterpretation.

(Y One can find the proof in, e.§\. Blaschke-G. ThomsenDifferentialgeometrie 111 § 50.
() Cf.,, R. Baldus “Klassification der ebenen und raumlichen Kollineatin,” Miinchener Berichte,
1928.
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4. Point-pairs, curves, and second-order curvesPoint-pairs, curvesandsecond-
order surfacewill be defined in 1, 2, and 3-dimensional projective speesp., by:

c*x % =0,

with realc®. Letr = 1 be the rank of the coefficient matrix'f|||. The fornc® x % can
always be transformed into a quadratic form:

Cll(x)Z + .. +Cl‘r(x)2
with preciselyr coefficients¢™ =+ 1. The number of positive coefficieng" in this,
along with the number of negative ones, and thus, ifferehces (viz., thesignaturg
will be invariant under real coordinate transformationig.{ the theorem of inertia for

guadratic form.

Projective classification of point-pairs:

. s= 0: two points,
' S= £2: no point (i.e., two "imaginary" poinjs
r=1: s= 1. doubly-counted point.

Projective classification of second-order curves (i.e., congections):

f=3 = x1: ellipse, hyperbola, parabo
' s= +3: "null"second - order curve

. s= 0: line-pairs,
' S= x2: single point (i.e., "imaginary line - pg),

r=1: s= 1: doubly-counted line.
Projective classification of second-order surfaces:

s= 0: ruled surfaces (rectilinear hyperba@nd paraboloid

s= * 2: oval surfaces (ellipsoid, non - rectdiar hyperboloid
and paraboloid),

s= =4 "null"second -order surface,

+1: cone,
+3: single point (="null" cone

_‘
1
w
—
w um
1
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f= o s= 0: plane-pair,
' s= x2: single line (= "imaginary" plane - paj

r=1 s= 1: doubly-counted plane.

For the sake of brevity, from now on, we shall rééethe ruled surfacas=4,s=0
ashyperboloids per se; the conic sections witk 3 and the second-order surfaces with
< 4 shall be calledingular.

8 2. Basic features of the theory of curves and surfaces.

5. Curves and strips. Let acurvebe given with the parametric representatibs
X(u). Thearc-length s= g(u) (i.e., thenatural parameter is characterized by the fact
thatX'X' = 1, in which the prime means the derivativeds

Any non-singular point of the curve (i.&} x X" # 0) is associated with a right-hand
system of unit vectors, §, B:

Tangent: T=X,
Principal normal: $, which is perpendicular to the plang&9},
Binormal: B, which is parallel in the same sense to the veXtorX".

The plane that is spanned Byand$ (with the normal vectok’ x X") is called the
osculating plane.

The main problem in the metric theory of curves cossidtthe presentation and
geometric interpretation of the invariants of motiortted vectorsx’, X", X"', etc., up to

derivatives of higher-order. For that, one starts witndifferential equationgviz., the
Frenet formulay which expres&’, &', B’ as linear combinations &, $, 9B; merely

two functions of enter in as coefficients, which one calls thevatureandtorsion

Fundamental theorem of the theory of curves:A curve is established uniquely, up

to a motion, by being given the curvatufe) ke 0 and torsion ) as arbitrary functions
of the arc-length §).

A strip is the structure that is dual to a curve, and thus, garaneter set of planes.
The strips that are dual to planar curves consistseotdimtact planes of a cone or the
planes of a pencil; the strips that are dual to nonaplaarves will be generated by the
osculating planes of a non-planar curve, and will htnee tangent surfaces to these
curves as enveloping surfaces. We briefly call the lofebe enveloping cone (the lines
of the enveloping tangent surface, resp.)g@eeratorsof the strip. The tangent surfaces

() One must make a suitable convention regarding timeasig.
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(cones, resp.) are are also calliselopable surfaceshey are the only surfaces that can
be rolled into a plane.

6. Surfaces. Let asurfacebe given in the parametric representatibr X(u', u?).
Two families of curves in the surface in a certain regull define anet of curvesvhen
two curves of that family do not meet, but two curveditierent families have precisely
one point of intersection (which is not a point ohtaxt) in common. We assume that
the parameter curves = const.,u’ = const. define a net of curves. One then has
X, xX , #0, and every point of the surface is associated witbdhtact plane:

N-X,X,,X,>=0

that is spanned by ,and X ,. X is the position vector of the point of the surface, and

9) is the position vector of an arbitrary point of thetzwt plane, while the symbols

andu® mean partial differentiation.
A curveX = X(u'(t), ui(t)) on the surface will be established wy= u'(t), u? = U%(t),

and a direction of advance will be established by ttie ta: u® (in which the dot means
differentiation with respect tt), and therefore, a tangent to the surface, as wite
tangents to the surface that are given by the quadratic@guat

autut+ 28 Gl +y PP =0 (B? - ay> 0)
will be harmonically separated by every pair I, Il afgants that is given by:
(5) au; G+ B+ i ) +yr = 0.

In particular, the tangent-pair:
au'ut+y =0

is harmonic to the tangent-pai = 0 | u? # 0 andu; # 0 | U7 = O of the parameter

curvesu® = const.u? = const.

The contact planes of the surface along a curga the surface define a strip (viz., a
contact strip, which we will assume does not degenerate to a fixethcbplane. One
calls the generators of the contact strip sheface tangents that are conjugate the
tangents to the contact curxe

A net of curves is called eonjugate netwhen the generators of the contact strip
along one family of curves are tangents to the faoifilgurves, and conversely. In other
words:The tangents to the one family of curves alongraeck of the other family define
a cone or the tangent surface to a cup(€ig. 1, on the right). A conjugate net of curves
is given by:

(6) Loy g+ My i + i 0+ N = 0,
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with
(7) L=<X,X,X,,> M=<X,X,X,.> N=<X,X,X,.>.

In particular, the parameter net is characterizedh amnjugate net byl = 0. For
developable surfaces (nb), any family of curves will be conjugate to the generators,
while in all other cases there will exist precisely damily of curves that is conjugate to
any family of curves.

Figure 1.

A contact strip is called principal tangent stripand its contact curve, @rincipal
tangent curvewhen the generators of the strip coincide with the tasgenthe contact
curve. In order for that to be true, it is necessamy sufficient that the osculating planes
of the contact curve should be, at the same timgacbplanes to the surface. We call
the tangents to the principal tangent curvesptiecipal tangentgo the surface. A line
that lies on the surface will always be a principabtnt curve.

A net of curves is called principal tangent netvhen the curves of the two families
are principal tangent curves. The principal tangent cuovassurface are given by:

(8) L't +2M U'iP+ NUWU = 0.

The parameter curve net is characterized as the prirtaipgent net by =M =0. A
non-planar surface withN —M? < 0 (= 0, > 0, resp.) contains 2 (1, 0, resp.) families of
principal tangent curves (viznegatively curvesdevelopable and positively-curved
surfacesresp.) For negative curvature, the principal tangentgies through a point of
the surface will be harmonically separated by any paioojugate tangents.

One observes that the concepts of conjugate surfacentaray®d principal tangents
arecollinearly invariant as well azorrelatively invariant.

Just like the theory of curves, the theory of surfaise®ased upordifferential
equations. Here, two kinds of differences will appear:
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1. It is not possible to replace the parametiérs® with geometrically-distinguished
“natural parameters” that would be analogous to the agthe in the theory of curves.

2. The coefficients in the differential equations ao¢ independent of each other,
but are coupled by certaintegrability conditions. We shall content ourselves now with
these brief remarks, since will have to come back & ahalogous situation in line
geometry more thoroughly later on.

7. Models. In order to make things more intuitive, we shall regaaths of line
segmentsas discrete-geometric models of curves asctangle netycurve nets) on
surfaces, which are composed of planar or non-plactanmgles as on a chessboard (Fig.
1, on the left).

Analogous concepts:

Discrete geometry Differential geometry
path of line segments curve
plane through two successive segments osculating plane

rectangle nets (i.e., two families of line| nets of curves (i.e., two families of curves)
segment paths)

rectangle nets with planar vertices: conjugate nets of curves:

The lines of the one family of line-segmenthe tangents to one family of curves along
paths cut the second family at a fixed paiat curve of the second family define a cone
or intersect successively (Fig. 1, left). or a tangent surface (Fig. 1, right).

rectangle nets with planar quadrilaterals: principal tangent nets:

The four segments that emanate from| dine osculating planes of the curves are, at
(internal) node lie in the same plane. the same time, contact planes of the
surface.
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Basic concepts of algebraic line geometry.

8 3. Line coordinates.

8. Definition of line coordinates. A line is determined by two distinct pointsx
with the homogeneous point coordinakesx (i = 1, 2, 3, 4). We define the six not-all-
vanishinghomogeneous projective line coordinatds

opL =X %= % X, O =X%X% =X %, OP =XX~=X X,
9)
Ops =X %= X X, OPs =X X—XX%, 0P =X %= %X

from the matrix ) ||x, X || of rank 2. o # 0 is an arbitrary proportionality factor in this.
One will get the identity:

(10) PrpPa+pP2pPs+Pps =0

from the Laplace development of the determinar) ( x, X, x, X | = O of the sub-
determinants of the first two rows.

The six homogeneous line coordinates are not indepenfleath other then, but are
coupled by the auxiliary condition (10). That correspormighe fact the lines in
projective space define a 4-parameter set.

Homogeneous line coordinates will remain unchanged whemati@lies thex (x ,

resp.) by an arbitrary numbgr # 0 (0" # 0O, resp.) or when one replaces the pomts
with any two distinct pointg, y’of the line. It will then follow from:

Yi =ax+px,

aa

%0,
BB

Y, =a’x +6'%, with d= ‘

that:
Y Y~ Y Y=d(X % — % X).

Line coordinates of the edges of the coordinate tetrahedron In Fig. 2, the
verticesw = 0 of the coordinate tetrahedron are denoted, tijose of the coordinate
plane that is opposite to the vertewill have the equatiorx, = 0. The edges of the
tetrahedron will each have five vanishing line coordinates;sixth non-vanishing line
coordinate is given in the figure.

() Line coordinates were introduced JhyPliicker.
() The matrix (determinant, resp.) whose rows are tbedimates of the points v, ... will be denoted

by XY, ... | (XY, ... |, resp.).
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1
Figure 2.

9. Arrow coordinates. We interpret thex and x, as homogeneous rectangular
coordinates. Ik, X' are real points (i.exs # 0, x;, # 0) with the position vector¥, X'
(Fig. 3) then, from (9), one will have:

ap, 0P, 0P,
gp,, 0ps, 0P

Figure 3.

Equation (10) will then go to the condition for perpendicity:
(11) BP = 0.

We refer to the perpendicular vector-piir B (BB = 0,P # 0) as ararrow (viz., a
real arron) and the six rectangular coordinatesdf ¢ as (inhomogeneousjrrow

coordinates. An oriented, real point-pai, X determines the arro9g, ¢ uniquely; two
oriented point-pairs determine the same arrow if and ibtihey lie on the same line and
can be made to coincide with each other by displanemény arrow3, ‘B can be

represented by oriented point-pairx’:

B = vectorxx ,
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— = altitude vector fron® to the linexxX.

PRy

(See Fig. 3) Sinc® is independent of, proportional arrow§s, B ando B, o’P will

produce point-pairs on the same line, and conversely.

For an imaginary line, from (9), one will hape= p, = p3 = 0; p4, ps, Ps Will then be
the coordinates of a vectdp that that is perpendicular to the parallel planes$ ¢foa
through the imaginary line. Thus, an imaginary line wi# established by any
“imaginary arrow B = 0, P # 0; two imaginary arrows will determine the same

imaginary line if and only if their vector® are proportional.

10. Establishing a line by line coordinatesin no.8, we showed that:

A given (real or imaginary) line determines a sextuple of line coatds p that do
not all vanish and satisfy equatiqd0O) uniquely, up to an arbitrary proportionality
factor gz 0 ().

We shall now prove the converse:

Any sextuple of numbers, phat do not all vanish and satisfy equati@D) will
determine a line with the line coordinatesymiquely.

Proof: From no9, we first interpret thg, as arrow coordinates. A redB# 0) or

imaginary line {8 = 0) is then established uniquely $y(‘B¢ = 0). We can then once

more regard thg, as projective line coordinates relative to an arbitremgrdinate
tetrahedron.

11. Representation of line coordinates by plane coordinatedA line will also be
determined by two planes, w that contain it and have the homogeneous projective
coordinatesv, W' (i = 1, 2, 3, 4). The line coordinates that were define®)ircén be
expressed as follows by the plane coordinates/' :

opr=Ww?3-wWw? op=ww'-ww? ogp=ww?-ww?
(12)
op=ww-ww  ops=wiwi-w 3w ops=wiwi-w W

Once moreg’# 0 is an arbitrary proportionality factor.

() We shall denote the indices of the point and planedauates, which run from 1 to 4, by Latin
characters and the indices of the line and complexdowties (no21), which run from 1 to 6, by Greek
ones.
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Proof: The fact that the right-hand sides of equati®hsuid (12) are proportional to
each other follows from the equations of united positgbmhe pointsx, X on the line
with the planesv, w through the line:

(13) wWx=w xX=w'x=w'x=0.

Proof of that: We interpret the coordinates rectangulayl no. 9 and distinguish
three cases:

a) Real line, not througl: We can assume thatx' are real points, and, W are
planes that do not go throu@h When one goes from X' to new pointg, y' (cf., no.8)
or fromw, w to new planey, V', the right-hand side of (9) [(12), resp.] will change b
only a common factor. Equations (13) will then read:

WX+1=WX'+1=WX+1=0X"+1=0
in vector notation (cf., ndl). It follows from this that:

W (X' -X) =20 (X' -X) =X Q0 -2W) =X (W - 2W) =0,
SO
X -X=A1WxW, X' xX=v@ -W).

From (1), when one substitutes the first of these @nginto the second one, one will
get:
VD - W) =AXx (W xW)=-1(20X) W' + A (W'X) W=1(0 -20),

sov = A i.e., the 2x 3 coordinates o' — X, X x X' and20 x 20', 20" — 20 will be
proportional to each other.

b) Real lines througlD: Due to the fact that' = w* = 0, the fourth terms in
equations (13) will vanish, and one will straightaway get:

X1 1% i Xs = WwW3—ww?) W w—wtwd)  wrw?-wwl) .

In addition:
XXX T X% X = (4% = %) 1 (6% = %) 1 (X%, = %, %),

S0 the expressions fg, p., ps in (9) and (12) will be proportional to each other. Fna
Pa=pPs=ps=0in (9), sinceq : X% : X=X : X, : X;, and in (12), since/* = w*.

c) Imaginary line: Sinces = x; = 0, the proof is dual to that bf.
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12. Provisional concept of a six-vector.We combine the six line coordinatps
into thesix-vectorp, and likewise combine the sextuple of numbeéns, + 1 g, that is

defined by the line coordinateg, q, into the six-vectod p + 1/ q.
Furthermore, we define tisealar productoy:

Pg=P1Ga +P205+ P30 T PaCt +Ps G2 + Pe Oz ;
in particular:
pp =2 (1 Pa + P2 Ps + Pz Pe).

One then has the rules of calculation:

ptq=q+p, pgqg =qp,
Ap+q)=Ap+Aq, p(q+rt) =pg+pr.

For the six-vectop that is defined by the line coordinaf®s one has:

pp =0.

Later (no.15), we will generalize the concept of six-vector that ma&ve introduced
provisionally here, and learn about tiagular six-vectors §p = 0), as well as thaon-

singular six-vectors gp # 0); we denote thaull six-vectorby 0. The linear dependency
of six-vectors is defined just as it is for ordinargtes (no.1).

Seven six-vectors are always linearly-dependent; any six-vgotan be a linear

combination of six linearly-independent six-vectdrs", ..., p"".

Proof: The six homogeneous linear equations fodtlleat are summarized by:

Apt + Ap" + L+ Ap =0

always possess non-trivial systems of solutionsp',If.., p*' are linearly-independent

then one must hav& # 0, andp*" will then take the from of a linear combination of the
| VI

P, ap.
The contents of nal0 can now be reformulated when one speaks of singular six
vectors, instead of coordinate sextupkesy singular six-vectop # 0 determines a line.

Two singular six-vectorg # 0, q # 0 determine the same line if and only if they are
linearly dependent.We will call the line whose line coordinates define #ix-vectorp
“the linep,” for brevity.

Upon establishing a rectangular coordinate systemQnave shall also denote the
six-vector that is defined B, ¢ with:
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p={B|P}

13. United position of lines, points, and planes.

Line p and point z
The linep contains the poirt if and only if the four equations are satisfied:

0=* —21P4 —22P5 —Z3 Ps,

0=2z1p4 ¥ —p3tz3p2,
(14)

O0=2zps +z1p3 ¥ = Z3p,

O=zps —ap2+tz2pr *

Proof: The four coordinates of the plane that goesutiirahe three points x', z are
proportional to the four three-rowed determinants ofntlagrix ||x, X', z|| . They will all
be zero if and only if the plane is undetermined; ifez lies in the linexx. (14) follows
by setting the four determinants equal to zero and subsgituti{®).

The coefficient matrix of the system of equations b4y has rank 2.

Line p and planew:

Dual to (14), in order for the ling and the planav to be in united position, it is
necessary and sufficient that:

0=* —wp - wp -wps,
0= W4p1 - sze + V\Fps,
(15)
0=wp, +wWps * —wpy,
0= W4p3 - V\Ilp5 + V\/2p4 *
The coefficient of this system of equations\#ragain has rank 2.
Line p and line g:

Two distinct lineg, g will cut if and only if:

(16) pg=0
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is fulfilled.

Proof: Letx, X' (y, y’ resp.) be two points on the lipgq, resp.), sox X,y,y | =0
is necessary and sufficient for the intersectiop ahdq. (16) follows by developing the

determinant in the two-rowed sub-determinants of thetfirs rows.
From (14), one finds that thmint of intersection »f the two liney, q is:

(A7) X1:X2:X3:Xg
= (06 Ps —0s Ps) : (04 Ps — s P4) - (05 P2 —Ca Ps) = (G2 Pa + G2 Ps + O3 Pe),

and from (15), one finds tleonnecting plane wf those lines:

(18) whw:ww
= (s P2—02Ps) : (AL P3—03P1) : (G2 P1—01 P2) - (GaPr+ s P2 + Cs P3) -

Other formulas will be obtained when one permutes wéices 1, 2, 3, 4 of the
coordinate tetrahedron in any fashion and then renumberns,t, g, corresponding to
Fig. 2. It can happen that (17) or (18) is undetermined, andvdhihen be forced to
employ one of the other formulas.

Pencil of lines, bundle of lines, line field:

Two independent singular six-vectgrgy with:

pg=0

determine two intersecting lines, and thereforpemacil of lines. All of the lines of the
pencil are determined by all of the six-vectdig + A2q (except ford; = A, = 0), as one

can confirm by reverting to point coordinates. The linedamon:

(Azp + A2q) (A1p +A2q) = O
is fulfilled for any Ay, A>.
Three linearly-independent singular six-vectars, v with:

qu=tp=pqg=0

determine three mutually-intersecting lines that do ntmtrigeto a pencil, and thus, either
three lines of déundle of linesor three lines of déine field; bundles and fields will be
switched under correlative transformations (cf.,3)o.All of the lines of a bundle (field,
resp.) will be given bylip + A2 q +43t (except ford; = A, = A3 = 0).
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8§ 4. Projective maps.

14. Mapping equations in line coordinates.We would now like to represent the
projective maps that were given in point and plane cooehnat(3a, b) in terms of line

coordinates. To that end, we replace &hex, (W, W, resp.) in the right-hand side of:
op=%%-X%,  (op=WW>-WW?, resp.), etc.

with x, x. by means of (3a) [(3b), resp.], and thus obtain linearddomthep,, from (9),
thus:
(19) Bo= VoPi Vot o+ VoPs = V5P, ou=12,..,6).

The coefficient determinany does not vanish, since conversely the lines will be

transformed uniquely under a projective map.
The 36 coefficientg/;, are not independent of each other, but are determineceby th

16 coefficientsa of (3a) |3 of (3b), resp.]:
Defining law for the coefficients y; in terms of the a [B", resp.] under a:

a) Collinear map:

Vi= aay —ajay, o L= glal —alal, e
1=~ - - - - f= — - - - -
(20a) =T T 7T i=- - - - -
¢ =ajai —afag - d=aial-akl -
1=~ - - - - A - - - _
1=~ - - - - A= - - - - -
b) Correlative map:
Vi= BEB* =BBE = fUBM - BUBH . .
Vi=- - - - - .= - - - - -
(2%) 1/13: _22 33 ) 230 32 - y : _13 42 ) 12 43 S
W= BEB7 BB Vi= R -BRBN ...
V== - - - - A - - - -
V== - - - - yo= - - - - -

The expressions that are suggested by ellipses follow tihenones to the left of them
when one permutes the lower (first, resp.) index throaigl2, 3 cyclically. The
expressions that are suggested by hyphens follow from #® avove them when one
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cyclically permutes the upper (second, resp.) index through 3,(while keeping the
index 4 fixed).

Special projective maps (cf., no. 3):

a) Affinity: It follows froma; = a; = a; =0thaty, = y> = y; =0 (0=1, 2, 3), so
the p,, p,, P, will be linear forms in only th@s, p2, p3 . As a result, the real lines will
be mapped to real lines in a one-to-one correspondence.

b) Polarity: The fact thatw =x (i = 1, 2, 3, 4) implies that:

P = P4, P,=Ps, P; = Pes, P, =P, Ps= P2, Ps =Ps.

From the interpretation of the, as rectangular arrow coordinates (@), the
transformation will consists of the permutation o tvectors3, B ; since PP = 0,
corresponding real lines will then be perpendicularaicheother.

15. Ultimate concept of a six-vector.In no. 12, we introduced the singular six-
vectors as sextuples of line coordinates. We now defioeg generally:

Any sextuple of numberg fhat transforms by19) under projective maps defines a
six-vectorp.

As in no.12, we distinguistsingular six-vectors withpp = 0 andnon-singularsix-

vectors withpp # 0. We will append the geometric interpretation of the-singular six-
vector in § 6.
Since line coordinates will transform into line cooedes under (19), the fact that

= 0 must always imply thaip = 0. It follows from this that:
(21) pp =kpp

for the projective transformations of arbitrary (igngular and non-singular) six-vectors.
In this, k # 0 is a constant that is independenp @&nd is determined by the coefficients

¥, : sincepp and pp are quadratic forms in the, , they can then differ by only a
constant factor. From (21), we get that the scaladymtoof any two six-vectors is:

(22) pq = kpg;

If one then replacgswith p + Aq in p then one will get:
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PP+ A%45+2Apq =k (pp + A qq + 24 pq),
from which, (22) will follow immediately, since:
pp =kpp,  Gq=kaq.

Equation (21) is not only a necessary, but also a siriticcondition for projective
maps:

A linear transformation(19) with a non-vanishing coefficient determinaptwill
always yield a projective map whéal) is fulfilled for all six-vectors; the requirement
(21) is thus equivalent to the conditio(®)a)and(20b).

Proof: LetT be any transformation (19) that fulfills (21) and theguality y# 0. We
must show thal represents either a collineation or a correlatiomaps a line to a line
in a one-to-one correspondence, and since (22) follows (&1), intersecting lines will
map to other such lines. The linear dependence (independesgg,of six-vectors will
remain preserved. However, every pencil of lines mudtdresformed invertibly into
eithera) a pencil of lines ob) a line field.

Figure 4.

We next prove the:

Lemma: If one pencil x is mapped to a pengilunder a transformatioff then every
pencily will again correspond to another pendil.

One sees this as follows: Let the three lipds line xy), g, © through the poink be
linearly-independent, and likewise for the three lipes § that go through a pointthat
is different fromx, of which,e should cut the ling, andf should cut the line (Fig. 4).
The linesp, q, t that are transforms und&rwill then likewise be linearly-independent,
and by assumption, they will go through the point In addition, p, &, f must be
linearly-independent lines of a field or a pencil thatifferent from X. Since?, f must
not go throughx, but must cut the ling (%, resp.),p, ¢, f cannot lie in a plane. As a
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resultp, ¢, f are lines of a penciy, so the penciy will be transformed into the pencil

y.
Now, two cases are possible for the given transbonT:

a) A pencilx is mapped to a pencit: From the lemma, every pencil (point, resp.)
will then go to a pencil (point, resp.), and from thenrthieorem of projective geometry
(cf., no.3), the given maf will be a collineation.

b) A pencilx is mapped to a plane fieM: The resulting transformatidR = UT, in
which T is the given map, and is any correlation, will then transform the pencihto a
pencil again, so from), it will be a collineation. As a result, the giverapT = U™'R
(U™ = the correlative map that is inverseltpwill be a correlation.

16. Classification of projective maps.One can distinguish four kinds of projective
maps according to the sign of the determinant (2 and the sign of the constdnt 0O
in (21):

a) a) k>0,y>0, p) k<O0,y<0, Db) a) k>0,y<0, a) k<O0,y>0.
The maps jpare collinear, while the mapsg lare correlative.

Proof:a) Any collineation can be converted into eith®@rthe identityl or £) the
reflectionSin a plane by a continuous change of the coefficigfitsand withouty or k

vanishing (hence, while preserving the signg/@ndk). One sees this as follows: A
collineation is given by associating the52points 1, 2, 3, 4, 5 ard, 2, 3, 4, 5, no four
of which lie in a plane. One can take 1, 2, 3 dpd2, 3 to imaginary points by a
continuous change in projective space without any four powotgng into a plane, and
thus take the given collineation to a affinity. We ndwnk of that affinity as being
established by the association of two real tetrahéddf®s. We then bringA into
coincidence withA (the mirror imageA' of A with respect to a plane, resp.) by a
continuous, non-degenerate, affine distortion amdrdginuous motion. In that way, the
affinity will go to the identity (reflection in alane).

We must then calculateand yfor the maps:

1 X =X (1=1,2,3,4) and S: X =—X1, X =X (i=2,3,4).

Forl, one gets:
p g 0=1,2,..,6),

2
1
Q
>

SO

for S one gets:
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f_)l:—ﬁ'pl, pz =ﬁp2, [33=ﬁp3, [34 :d—pu p5:_0-p5’ p6:_é-p6’

SO
k=-6°<0, y=-28°<0.

b) The resulting mafR = PD of a correlationD and a polarityP (cf., no.3) is a
collineation. FoiP, one has:

SO

Froma), for R, one will have either:

kr>0, k>0 or kr <0, o<0.
Since:
kr=kpko, K=},
it will follow that:
ke >0,6<0 or ko <0, >0.

We call the projective maps witkh > O principal projectivities(y > 0: principal
collineations y < 0: principal correlation3. The projective mapa) £) andb) p) are
obtained from the principal projectivities by adding deefon. For that reason, there is
no essential restriction if we agree that:

We now understand projective maps to mean principal projectivitedasvely (k>
0).

The principal projectivities define a subgroup of the projective maps, hed t
principal collineations define a subgroup of the principal projectivities.

Proof: For the mag = BA that results from two principal projectivities, sinee= kg
Cka, it will follow from ka > 0,ks > O that one also h&s > 0. For principal collineations,
one likewise shows that > 0 for resultant maps ang > 0 for inverse maps.

17. Representation of principal projectivities by unity trangormations. The y;

are established only up to an arbitrary proportionalitytofaa by representing a
projective map as in (19). If one replaces fjewith 7 Oy7 then the constant? Ck will

enter in place ok. As a result, a principal projectivitk & 0) can always be represented
by a linear transformation (19) that is normalized by:

(23) pp =pp, hence also  pg=pq
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by means ofr = 1 / \/? We call the transformations, thus-normalizedity
transformations.

Unity transformations define a group. We will essentially reducestilngdy of line
geometry to the investigation of this group in a manner that is sitoildre way that one
bases metric geometry in rectangular point coordinates on the group of orthogonal
transformations.

Relations are true for the coefficient matrix of atymiansformation that are similar
to the ones that are true for an orthogonal matrix:

A given6x6 matrix H 4 H of rank 6 is the coefficient matrix of a unity transformation
if and only if the equations:

1 forp-o=%3
(24) Vit VEVe 2V5Ve TVaVi tVeVa+ 1% 3:{ 0 for p-o # +3
are fulfilled.

Proof: It follows from (19) and (23) that:

P10s+P20s+P3Qds + P41+ Ps G2+ Ps Oz = Pq
=pd = PO+ RG+ RO+ R R TRHC
=WVt Vys tYaYe YVt VYt VY Po Qo

one obtains (24) by identifying the coefficientsopfy, in the first and last expressions.
The conditions (24) can be interpreted geometricalfplbsvs:

The 6x6 coefficientsy?”, ..., y¢ can be regarded as the line coordinates of the six
edgegy” of a tetrahedron; the line coordinates of the pairs of skew tetrahedgds are

partially normalized by'g" =g"g" =¢"g" = 1.

The relations (24) immediately yield tlselution to the mapping equatio(9) for
thep,:

(25) K Po= yfis pl + ygig pz + ygi3b3+ y€i3b4+ ypzi 3~p5+ y[;,t 3~p(

for arbitrary projective maps)( for unity transformations, one séts 1. One then gets
the coefficients of the unity transformation thatnigerse to a unity transformation (19)

when one switches the rows and columns of the coerﬁiiahatrix” 4 H and replaces the

p, owith px 3, o+ 3. By applying (24) to the inverse transformation (25),ilit tven
follow that:

() One computes the right-hand side with the use of (24).
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The necessary and sufficient conditi¢24) are equivalent to the requirements that:

1 forp-o=%3

26 A5+ 3+ v+ i -
(26) Vo¥o ¥ Volo + VoV o * Voo * VYo * Vol { 0 forp-o#+3

which follow from(24) by switching the rows and columns in the coefficient matrix.

8 5. Projective force transformation and projective kinematidransformation.

We interrupt our geometric investigations here darapplication to the statics and
kinematics of rigid bodieg).

18. Static and kinematical interpretation of arrows. In thestaticsof rigid bodies,
the real arrows$f # 0, PP = 0) that were introduced in nd.can be interpreted as
forces (eal force3, while the imaginary arrows){ = 0, 8 # 0) can be interpreted as
force couplesifnaginary forces The vectof3 gives magnitude and direction to the real
force, while the vecto} gives the moment of the real force relative to thgim O (the
moment of the force-couple, resp.); the8Zoordinates ofg, P are line coordinates of

the (real or imaginary, resgihe of actionof the force.
In thekinematicsof rigid bodies, we interpret the real arrow asrtftational velocity
(real rotationg, and the imaginary arrow as the translational vBlo¢imaginary

rotation). P gives the magnitude and sense of the rotational veloshile B gives
that of translational velocity of the poi@tthat is caused by the rotation (f¢r= 0, the
translational velocity, per se, resp.). The reabfimary, resp.yotational axishas the
2x3 coordinates op3, P as line coordinates.

We call the 23 coordinates of3, 3 force coordinategrotation coordinatesresp.),
and we once more combine them into an (inhomogeneousgsiarp. Two linearly-

dependent six-vectors now Yyield forces (rotations, resfil) the same line of action
(rotational axis).

For several forces (rotations, resp.) on a rigid baxhe has the necessary and
sufficient conditions for static (kinematic, respguilibrium:

S$=0, P =0

These two equations can be combined using the notationeéstiars into:

(27) Sp =0.

() Cf., on this,Enz. der math. Wiss {Vpp. 128.et seq. furthermoreR. Sauer: “Proj. Satze in der
Statik des starren Korpers,” Math. Ariri0(1934).
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The sums are extended over all effective forces (cotsitiresp.).

19. Projective force transformations and projective kinematichtransformations.
The static (kinematic, resp.) interpretation of the-vactor p will associate forces

(rotations, resp.) with forces (rotations, resp.) ima-to-one correspondence by way of
equations (19) with constant coefficients that satisfy condition (21). We refer to that

association as projective force transformation (kinematic transformation, resjthas
the following properties:

A) The line of action (rotational axis) will be transformed projectively
B) The equilibrium conditions remain preserved; i.e., every equilibsystem goes
to an equilibrium system, and every non-equilibrium system goes to ajuidibreim

system Statement A) follows immediately from nb4. One gets the proof of B) from
(19) and (27); then, from:

> pY = 0=1,2...,6),
k=1
one will obtain from (19):
z ~g‘) = yéz p+ ...+ V;Z p¥ =0 (p=1,2,...,6).
k=1

The upper indek and the summations refer to thgiven forces (rotations, resp.)
Special projective force transformations (cf., no. 14):

a) Affine transformations: The lines of action are mapped affinely; the reatder
always go to real forces again.

Special cases:

1. Change of units for force:p = rp. The lines of action remain fixed, while all
vectors, P are multiplied by the same constant

2. Motion transformations: All lines of action and all vectofB, 8 are subjected

to the same transformation. The motion transfoonat can also be interpreted as
coordinate transformations of the forces.

b) Polar force transformations: The lines of action are polar transformed. The
forces of a pencil are then mapped to forces in a platie eonservation of the
equilibrium conditions. One can employ that map to the solution of the lprab of



26 Chapter I: Basic concepts of algebraic line geometry.

spatial graphical statics for forces with fixed points of application bytcoctsons in the
polar plane of the point of application as the reference plane.

The same thing can be said for any arbitrary correl&tnge transformation; e.g., the
following map that was given Hy. v. Mises(%):

P =Ps, P, = P2 P; = Ps, P, = Pa, Ps = Ps, Ps = Pe,

which transforms the forcg that acts at the origi® into the forcep in the x;x,-plane

(viz., the base plane). In Fig. 5, the given force #Htas atO is drawn with a bold line.
The image vectors arises from the base plane vexftdhe given force by parallel
translation, while the projection of the given fora®ithe 3-axis is the moment vector of
the image force with respect @

Figure 5.

20. Application to frameworks. We shall now give an application of the projective
force transformations to the theory of frameworks.

A framework (°) consists of rigid connecting pieces, which are idedl as
weightless, that can rotate arbitrarily about the sgdeendpoints of the line segments)
with no reaction forces. The framework is caltggbmetrically indeterminatehen it is
not rigid, taken as a whole (e.g., the framework tloatsists of the twelve edges of a
cube). A framework that is rigid as a whole is catiledmetrically determinateshen it
would be geometrically indeterminate if one omitted anytofine segments (e.g., the
framework that consists of the twelve edges of an hechon), and it is called
geometrically over-determineathen at least one line segment can be omitted without
becoming indeterminate (e.g., the framework with the ed§em ctahedron + one
diagonal). If external forces act upon the nodes thessstorces will be produced in the
line segments, and indeed the stress forces at the etddpdirvery segment will be
equal and opposite. It is necessary and sufficienhBeguilibrium of a framework that
the equilibrium equation (27) are fulfilled at every nodethe external and stress forces

(™) R.v. Mises: “Graph. Statik raumlicher Kraftesysteme,” ZeitMath. u. Phys. (1916). One will
find a collinear force transformation WM. Prager: “Formé&nderungen von Raumfachwerken,” Zeit. f.
Math. u. Phys7 (1927).

() Cf., e.g.Enz. der math. Wiss. {\pp. 385gt seq.
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that act at the node. In particular, the system >aéreal forces must satisfy the
equilibrium conditions. The equilibrium conditions Whie preserved under projective
force transformations, so equal and opposite forceslioe avill go to other such forces.

If one maps the stresses and external forces that act upon a given trkmeva
collinear force transformation then any equilibrium state of a fraarkwill again imply
an equilibrium state for any collinear framework.

One refers to a framework with the structure of a ngetocally-determinate
framework as astatically-exceptional frameworkvhen the following condition is
fulfilled: It can be converted into a system of extériorces that satisfy the equilibrium
conditions in such a way that no equilibrium can catmeut in the framework by means
of finite stress forces. As a trivial example of ageptional framework, let us mention
the edge framework of a tetrahedron that has been cadlap® a plane; external forces
whose lines of action do not lie in that plane caneog¢dpilibrated by finite stress forces.
One has the following theorem for exceptional framéssor

Any framework that is collinear to an exceptional framework will aghe
exceptional.

Proof: The geometric determinacy of a framework depends umdp the
arrangement of the rods, so it will be collinearlyanant. Furthermore, a collinear force
transformation will take a force system that cannoédpailibrated by finite stress forces
to another such force system in the collinear framework

The theorem that was just proved might seem surpngiren one does not start with
projective force transformations, since one will tlieoognize the affine invariance of
the exceptional frameworks, but not the collinear invenga

8 6. Linear complex.

21. Definition of a linear complex. We refer to a three-parameter set of lines that is
given by:
yprtasprtasPpztapatapst+aps=0

as alinear complexwhen not all coefficienta, vanish. Under the linear transformation
(19) of the line coordinatgs,, it follows from:

APt ... t&@P=a,p +... +4n

that thea, will transform under projective maps just as the line dmatesp, transform
under (25); they then define a six-vectgand the equation of the linear complex can be
written more briefly as:

(28) ap=0 (@ is not the null vector?).
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Any singular or non-singular six-vector determinesngdr complex, and linearly-
dependent six-vectors represent the same complex;a oenplex is then established
by the a, as itshomogeneous, complex coordinate$Ve call the complex with the
coordinates, thecomplexa, for brevity.

From (16), asingular compleXaa = 0) consists of the totality of lines that intersect
the linea; the linea is called theaxis of the singular complex. Due to (21), a singular

complex will go to another singular complex under anygative map.

Lines (linear complexes, resp.) shall be calieearly-dependenivhen their six-
vectors are linearly-dependent. One will then have:

A linear complexa is determined uniquely by five linearly-independent lines that
belong to it. From (28), one will then have, in fact, five lineamyglependent
homogeneous equations for e

One can map the set of all linear complexes to pbimts of five-dimensional
projective spacein a one-to-one correspondence when one reinterpretsathas
homogeneous projective point coordinates. The pointsctiraéspond to the singular
complexes will then define the non-singular second-orderrbypace:

past+tapas+tagas=0.

22. Null system. Reciprocal lineslIn this and the next number, we shall exclude the
singular complexes.
If one replaces thg, in (28) with the expressions that are given (9) thenwitl get:

(29) 8 (X X=X %) . ta (X %=X %) + ... =0.

In that way, any fixed point will be correlatively assigned to a linear equation & xh,
and thus a plane. The planev will contain the poink, since (29) will be fulfilled for
= X . The correlatiox - w is called anull systen(cf., no.40), wherex is anull point
andw is anull plane. From (29), any line of the complexthat goes through the null

point x will lie in the null planew, and conversely, any line in the plawethat goes
through the poink will be a line of the complex. Thus:

The lines of the complexthat go through a point x (and lie in a plane w) define a
pencil in the null plane w (whose vertex is the null point x).

Two linesp, q, are calledeciprocal with respect to the non-singular comptewhen
the relation exists:
(30) a=Ap+uq.
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For every linep that does not belong to the comptef.e., ap # 0), there is precisely
one reciprocal lingg; it does not belong to the complexeither (aq # 0), andis skew to

p (viz., pg # 0).
Proof: It follows from:
0=4£qq=(@—Ap) (a—Ap)=aa—2lap,
sinceq is determined only up to a factor, that:

q=2 (ap) a— (aa) p, with u=ﬁ,

and furthermore:
aq = (ap) (aa) 20, pq =2 @p) (ap) #0.

(30) cannot be fulfilled by any ling of the complex (i.e.,ap = 0), since it would follow
from qq = O thataa = O, contrary to assumption.

From (30),ar = pr = 0 always hagr = 0 as a consequence. ThatAy linet of the
complexa that meets one of two reciprocal lingsy will intersect the other oneFor that
reason, all complex lines through a podrdf the linep must cut the ling; i.e., the plane
{xq} will be the null plane of the null point. We can then characterize the reciprocal
linesp, g geometrically as follows:

If aline p that does not belong to the comptegoes through the point x then the null
planes w will define a pencil whose axigisThe sequence of pointg is perspective to
the pencil of planegn).

23.  Non-singular linear complex in rectangular coordinates. We go to
homogeneous, rectangular coordinates by a cooeditnabsformation (19), and set (no.
9):

P = vector P | p2 | p3), 2 = vector & |az | ag),

B = vector Ps | ps | pe), 2 = vector 4| as | a).
Equation (28), (29) can then be written as follows:
(28) AP +AP =0, (29) AR —X)+A (X xX)=0.

Since we have excluded singular compleX@g, # 0, from which it will follow that(
# 0, in particular. Under the coordinate transfaiora
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X=T+9

(viz., parallel translation of the coordinate systethg, six-vectora = {2 | A} will be
transformed intd = {B | B}. We show:

The displacement vect& can be chosen in such a way that the vec®y® are

linearly-dependent; i.e., parallel to the same line.
Proof: Under the displacemekit= % +9), (29) will go to:

0=2A(Y - +A(T+Y)x (T+V)} = BV -) +B(Y x),
with
B =2, B=A+AXT;

so, from nol, one will have:
AExY)+A P xT)=<A T, Y -A>=RAxT) (VY -).

The requirement:
B =pB (so A +AxT=pA)
will give:

‘Z:M+0’Q[, p:%;ﬁo
AA

under external (inner, resp.) multiplication®¥yin whichois arbitrary.
The vector equatiof = (o) establishes a line uniquely, which we will call the
axis of the complex (null system, resgdn the old coordinates,is established by:

(31) s={A[BxA  with B = 22
A2A

2 gives the direction of the axis, af#l is the altitude vector fror® to the axis of the
complex.
(31)is also true for the axes of singular complef@s 21); sinceA2( = 0,5 is then

the altitude vector from® to the lines = a (no.9).

Normal form for a null system:

We refer the null system to a rectangular coordirtetem whose three axes
coincide with the axes of the complex. The fact:tha

B -X)+BExX), with B=0|0p, B=0]|0b
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will then imply that the equation of the null systesn

(32) b(X % - % %)+ x% %39 =0.

(32) can be interpreted as the equation of the normak pth the helix that goes
through the poink:

y1 =1 cosbu, Y2 =1 sinbuy, y3 = bu, Va = 1.
One then has:

Any non-singular linear complex determines a screw around & l{a., the axis of

the complex) with the constant ratio:bb (b # 0, b # 0) of the rotational and
translational velocities. Any point thus corresgerto the helix that goes through the
point as the null plane to the normal plane.

The right-hand screws are characterizedbby > 0, while the left-hand screws are

characterized byb < 0 (Fig. 6).

P

Left screw Right screw
Figure 6.

Reciprocal real linep, q will project to parallel lines in the image plan@der any
projection that is parallel to the axis

Proof: From (30)8 =A B + 4 9O; sinceB =0 | 0 ], it follows from this that:

Pr:pP=01:02.

One observes that the concepts that were developédis number are not of a
projective nature. In particular, the axesof non-singular complexes will correspond

only for special projective maps; e.g., motions egftections.
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Application to the Cremona plane(*):

Let two polyhedrdl;, M, with planar faces be given in space that corresponddo e
other in the null system (29). Any vertaxddge) off1; (I, resp.) is associated with a
face (planam-vertex) ofl, (4, resp.). Corresponding edgesldf, N, are reciprocal
lines, and thus project as parallel lines under a papatgdction off14, I, that is parallel
to the complex axis. The parallel outlimeg ®, of 4, - in the image plane are called
reciprocal figures(Cremona,bid.): Any line segment ab; corresponds to a parallel
segment ofb, , and conversely; the planar n-edge that emanates from a poibt of
corresponds to a closed polygondm, and converselyFig. 13 gives an example of this.
(X) and {Y) are reciprocal figures in it, if one regards thenplasar structures; parallel
line segments that are associated with each other acdedewith the same symbols.
Reciprocal figures are employed in graphical statics @sakcalledCremona planethe
one figure will be interpreted as a framework, while abiger one is the associatiace
plane

8§ 7. Invariants ofn six-vectors.

Here, we summarize thévariant-theoretic theoremgq?) that will define the
analytical foundations for all of the investigationattfollow.

24. Semi-invariants, complete invariants, and sign invariants.As we agreed in
no. 16, we shall restrict ourselves to the principal proyaoés k > 0). Any linear
transformation (19) that represents a principal projeégtican be regarded as the
resultant of aunity transformation(no. 17), which is characterized dy= 1, and a so-
calledrenormalization:

P, =0Pp (s#z0).

A function®(p', p", ..., p") of the coordinatep, of n six-vectors is calledemi-invariant
when one has:
(33) @', p", P =0 FE P ")

for all unity transformations. If (33) remains fuléitl, in addition, by all renormalizations
for which the normalization factow for each of the six-vectons, p", ..., p" can be

chosen arbitrarily then one will call the functigncompletely invariant. We refer to
signs of semi-invariants that remain invariant under atlommalizations assign
invariants.

If one represents geometric structures by means of gi@meous six-vectors then the
projective-invariant relations will be given by compléeteariants and sign invariants; we
will give examples of them in 8§ 9. By contrast, if onermalizes the six-vectors
inhomogeneously in such a way that they remain normalinddr unity transformations

() L. Cremona: Les figures réciproques en statique graphideeris, 1885.
(®) Cf.,W. BlaschkeandG. Thomsen: Differentialgeometrie 1| § 10.
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then the semi-invariants already produce the projectivariant properties. We will
treat families of lines, systems of lines, and linenptexes in that way in the later
chapters.

If n six-vectorg', p", ..., p" are given then:

A) All scalar products'p,
B) All coefficients of possible linear combinations:

p"=0M + ...+ 0"
will be semi-invariant.

Proof. A) follows from (23), and one confirms B) byted calculation. From:
py = Jlmp'p+ ..+ apy,
(19) will imply, after multiplying byy? and summing ovep from 1 to 6:
Py =P+ ... + R,

We will see that all invariants will revert to type$ @nd B).

25. Semi-invariants ofn = 6 linearly-independent six-vectors.

2x6 linearly-independent six-vectops, ..., p"' andp', ..., " can be taken to each
other by a unity transformation if and only if:

pipk — ﬁiﬁk
is fulfilled for all i, k = I, ..., VI. As a result, the scalar produgty* define a complete
system of semi-invariants pf ..., p"'; i.e., all semi-invariants of thg', ..., p"' can be

expressed in terms of the scalar prodyds.

Proof: There is precisely one transformation:

o = VoP
that takes the', ...,p" to ', ..., p"'. For any fixedo (r = 1, ..., VI), the six unknowns
V. - ¥y can, in fact, be determined uniquely by the six linear intyemeous

equations:
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P, = Vo, B, =VoPy. - B, = VIR,

since the determinant of the system of equatighs.|., p*' | ¢) does not vanish, due to

\ VI

. Since thep', ..., p
determinant of theyZ is not zero, either.

The transformation thus-found is a unity transfororatFrom nol12, any six-vector

q can, in fact, be a linear combinationpdf..., p*":

the linear independence gf ..., p are linearly independent, the

q=ap + ..+ &7

since thed, ..., & are semi-invariant, from n@4, one will also have:

qg=ap+..+&p"
then, and finally:
6 - :
qq = ) 3aPP = D> 3app" =qa.
ik=1

26. Discriminant of n six-vectors We shall call the semi-invariant expression:

('p") (0'p") - (Fp"

(0"p") (") - (0"p")
which we will also write an(p', ..., p"), for brevity, thediscriminantof p', ..., p"; Dy is
a symmetric determinant. For the sake of whabted, we shall provide some lemmas

regarding the discriminant3, :

1. One necessarily has, Ofor n linearly-dependent six-vectas§ ..., p".

Proof: One obtains a systemrolinear homogeneous equations in théhat do not
all vanish from:

ap' + .. +gqp" =0

by scalar-multiplying this by', ..., p"; one must then haw@, = 0 for the determinarid,
of the system of equations.

2. Six six-vectors', ..., p" fuffill the identity:

A | v, ...,p”" | means the determinant of the&oordinate of', ...,p"" .
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('p") - ('p")
(34) Dg = :_|p| ”.’pVI |2
V') - ("p")

in which|p', ..., p¥' | means the determinant of the6 coordinates of', ..., p".

Proof: It follows from a double application of thaultiplication law for determinants
that:

000100

000010 O -
000001 _ (pp) - (pp")

VI I VI = oo oo oo
100000Dpwwplupwupl - o
010000 ("p) - p)
001000

3. Letp!, ..., p"andq', ..., " ben linearly-independent six-vectors, and let each
be a linear combination of thpg ..., p™

(35) qd=0p +..+Jp (=12 ..n).
We further set:

to abbreviate. One then ha$he quadratic forms™A; A« and d¢° 14 1 are equivalent —
i.e., they can go to each other by a non-singular (real) linear transfioom namely:

(36) A=du+...+0"u .
Proof: By substituting (36), one will get:

pik Ai A= pik drdf,ur,us = qrs,ur,us,
since, from (35), one has:

qu: 5Irp|5:pk — drd(s pik.

From the fundamental theorems on equivalent qtiadoams, which we can assume
to be known from algebrd)( and which we have already mentioned in 4¢to some
extent), one will now get:

() Cf., e.g.0. Perron, Algebra | volume 8 in this collection, 1932, pps. 116 to 122.
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The discriminants Rp', ..., ") and Dy(q', ..., q") have the same rank. Th® in
(35), and thus, the linearly-independent six-vectgts..., ¢", can be chosen in such a
way that & 14 1 reduces to the pure quadratic form:

q ()’ + ... +q" ()%

in which the r coefficients'care equal tat 1. The number of positive and negatiVeim
this cannot change under any real non-singular linear transformation (the lawrtitine
for quadratic forms; cf., nod). For r = n, the discriminants fgp', ..., p") and D(q', ...,

") will have the same signs.

4. The discriminant Bp', ..., p'¥) of six linearly-independent six-vectors has rank r
= 6. The form § A A« can be transformed into the pure quadratic form:

() + (1)° + (18)* — (taa)* — (ws)” — (do)?
(viz., three plus signs and three minus signs!).

Proof: r = 6 follows from (34). Since every six-vectpiis a linear combination of
thep', ..., p", we can set, e.g.:

J2q' =1]0]0]|1]0]|0, \J2¢"=0]1|0|0O|1]0, 24" =0]0|1]0]0]1,
J2q¥=1|0]0t1]0]0, J2¢q"=0]|1|0]041|0, /2¢" =0]0|1|0]0HL,
from which, the assertion follows, since:

qlql :qIIIqIII :_qIVqIV :_qVqV :_qVIqVI — 1; cli qk: 0 G¢ k)

As a consequence of Theorem 1 and Theorem 4, we megjp@tially:Six six-vectors
are linearly dependent if and only if the discriminagtvanishes.

27. Semi-invariants ofn arbitrary six-vectors.

Semi-invariants of & 6linearly-independent six-vectors:

Letp', ..., p"andp', ...,p" (n < 6) be given, linearly-independent six-vectors whose

scalar products agree. By adding suitabesix-vectorsp™?, ..., pV' and p™*, ...,p",

one will obtain X6 six-vectors, for which:

() We leave the proof of the existence of this six-wettidhe reader.
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pi pk — ﬁiﬁk

is fulfilled for all i, k from | to VI. From no.25 there will then exist a unity
transformation that takeg, ...,p" andp*, ...,p"", and one will have the theorem:

The theorem that was proved in i2b for n = 6 is also true for2xn linearly-
independent unit vectoys, ..., p"and p*, ...,p" for n< 6.

Semi-invariants ofn arbitrary six-vectors:

Let n six-vectors be given, and lek n be the greatest possible number of linearly-
independent six-vectors that are included in them. We thememater linearly-
independent six-vectors Ipy, ..., p" and obtain linear combinations:

p" =M + ...+ M’ (m=r+1,..n

for the remaining six-vectors. Th& fix the p™ in terms of the?, ..., p" uniquely, and
from no.24, they will be semi-invariant. As a result, one wile:

The2 x n six-vectorg?!, ..., p" and p*, ...,p", each of which have linear dependency
relations, can be taken to each other by a unity transformation if andfonly

A) The scalar products of the linearly-independent six-vegtrs.., p" (7, ....p")
coincide

B) The coefficients of the linear combinations of the linearly-independenéstors
pt ...,p"and ™, ...,p" coincide

The scalar products iA) and the coefficients iB) will then define a complete system of

semi-invariants of the?, ..., p".

28. Complete invariants and sign invariants ofn arbitrary six-vectors. The
complete invariants are the semi-invariants that dehange under renormalizations:

p=oy, . p=0"
(no.24). The scalar products transform as:
(37) pp* =o'o*p'p (not summed!)

under a renormalization.
Moreover, it follows from a linear combination:
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pT=op' + ...+ ",
after a renormalization, that:

iﬁm :ifjl + +_nﬁn
o™ ot oo
and one will then have:
(38) o= %5,3‘ (not summed!)

for the transformation of the coefficients. Thispiras the following prescription for the

definition of complete invariants and sign invariants given six-vectors', ..., p™

One combines the substitution formu(&3), (38)that were given in na27 for the
semi-invariantsA) and B). The expression®(p', ..., p") = ®(p', ...,p") that remain

after eliminating theg' will be complete invariants. At the same time, the process of
elimination will produce sign invariant®, namely, the signs of the expression that are
only multiplied by powers af* under renormalizatiort).

One has the following theorem for the invariagtsandQ that are obtained in that
way:

n six-vectorsp', ...,p" can be taken to n six-vectops, ..., p" by a principal
projectivity, and thus, intagp', ..., o"p", with suitably-choserno’ # 0, by a unity
transformation if and only if the complete invariadtsand sign invariant£ in the p'
and p' coincide.

Proof: By the agreement of the complete invariahtand the sign invariant®,

the o' are determined to be real from (37) and (38). Fron2rcthere will then exist a
unity transformation that takes tipe to thec'yp'.

The prescription for determining projective invariantstthieas given in this
paragraph will be carried out for some simple exampl&s9.

8 8. Manifolds of linear complexes.

29. Notations. We shall call the complex manifold:

a=Aalt+ ... +Ad

() It is not necessary that the sign invariants shdial independent of each other and the complete
invariants.
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that is spanned by< 6 linearly-independent complexe$ ..., a", when we excludé!;
=A=...=A4=0:
A pencil of complexes forr =2,
A bundle of complexes “
A bush of complexes ¢
A forest of complexes “

I n
O s w

—_— =

Forr = 6, one will get theotality of all complexe§).

Under the mapping of complexes to five-dimensionajgatore space (no2l), the
pencils of complexes will correspond to lines, the besdif complexes, to planes, etc.
Two complexes, b, whose six-vectors fulfill the equation:

ab=0

shall be callecconjugate. For example, two singular complexes with intersecaxes
will be conjugate, as well as a non-singular complend a singular complex whose

axis belongs to the complex From (22), projective maps will always transform
conjugate complexes into conjugate ones.

All complexes that are conjugate to a complex will define a fardtthe complexes
that are conjugate to all complexes of a pencil (bundle, bush, respdetfitie a bush
(bundle, pencil, resp.). Precisely one complex is conjugate t@m@plexes of a forest.
The following then correspond as conjugates:

individual complex- forest, pencil- bush, bundle- bundle.

Proof: The complexels that are conjugate to the manifolgh* + ... + 4, a" are given
by:

All solutions of this system of linear equations of rank by, ..., bs can be expressed as
linear combinations of (6 H independent solutions.

30. Classification of the pencils.The singular complexesthat are contained in the
pencilA1a' +4.0" are given by:

(39) cc = AJ_A]_(CLICLI) + ZAlﬂz(ala”) + AZAZ(C‘”C‘”) =0.

() One will find a thorough synthetic treatment of lineamplexes and their linear manifolds in e.g.,
Th. Reye Geometrie der Lage ILeipzig, 1923.
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If one interprets thdi, A, as the homogeneous projective point coordinates of ahlare t
the complexes of the pencil will be mapped to pointsthait line in a one-to-one
correspondence. In particular, the singular complé3@pwill correspond to the point-
pair:

(39) a' Ay + 28, + @M= 0

in the image line, in which one has s&t“ = a¥. We can then derive the following

projectively-invariant classification of the pencils of complekesn the projective
classification (no4) of point-pairs, in whiclr means the rank of the discriminad(a',

a"), andsis the signature of the quadratic foaffiAy:

s=0: hyperbolic 2|
a) r=2: y.p _ pencilswith singular complexes.
s=+2: elliptic 0
b) r=1: parabolic pencil with one singular complex.
c) r=0: singular pencil with nothing but singular complexes; their axes will define

a pencil of lines.

The two axes of the singular complexes of a hyperhudiacil are skew, since singular
complexes with intersecting axes would imply that 0, which would then be a singular
pencil.

Any pencil of complexes can be represented in terms of the bagieres
(40) a=1]|0|0ph]0]0, a"=0]1|0]|04:]0,
after a suitable coordinate transformation, in which:

m=-n,= t1,

a) T
/71 _/72 —il,

b) m=x1, n,=0, C) m=n,=0.

Proof: From no.26, paragraph 3, one can always give linearly-independerdrline
combinations:
CL*I = 5llal +5;all, a*ll = 512CL| +522Cl”,
for which:

A

_ LA _ HoHl
aa =20, aa =27 aa =0.

Since the six-vectors”, a™' have only these three scalar products as semi-invariants,

from no.27, there will exist a unity transformation that will také (a™', resp.)to 1| 0| 0
|7.10]10(0|1]0]|0%]|O,resp.)
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31. Axes of a pencil of complexes. CylindroidWe shall now determine the axes
of the complex of a penciha' + A2a" and recall that the axes of non-singular complexes

are invariant under only special projectivities, and inipalgr, motions and reflections:
We employ a rectangular coordinate system whose acomtides with the complex

axiss' of a', and whose axis 3 cuts both complex a®es" perpendicularly (Fig. 7).
One can then set:

qd = {Ql' | §[|} and o' = {Q[u | gl”}
with

2A' =1]0]0, 2" = cosB| sing| 0,

A'=p|0]0, A'=0|71]0.

Figure 7.

From (31)2', 2" establish the direction of the complex axes, and:

Q[II xglll
Q[IIQ[II

A x Q!
B = A'

=0, ®B'= =0|0|rcosB-osinf

are the altitude vectors fro@ to the complex axes; in order ft#" to be perpendicular
to the complex axis", and therefore parallel to the coordinate axis23,must be
perpendicular to the coordinate axis 3. Likewise, the @awisan arbitrary complex =
Ara +Aa" = {€ | €} with:

C =AU +4A" = A1 + Ay cosB| A sing | O,
@ = /]lgll +/]2§l" :/]1,0'*' /]20'|/]2 T | 0,

will be established by the direction vectband the altitude vector:

_Ex€ _ (A +A,C0SBNT - A0+ Ag W, cosB
B=——=0|0{ : -
¢e (A, +A,COSBY + (, SinB §

We normalize the homogeneous parameters0, A, # 0 by:
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(M1 + A2 cosP)? + (A sinf)? = 1,
and set:
A1+ A2 cosf = cosg, A2sinB=sing.
We will then get:
¢ =cosg |sing |0,

B=0|0WA(r—psinp + A2(rcosB-oasinP .
There are four cases to distinguish now (cf., 38
1. B=0; (rcosB—-osinB?+ (r—psinpP?# 0.
The complex axes definepancil of parallels.
2. B#0; (rcosf—osinB?+ (r—psinB?*=0.
The complex axes defirgencil of lines with vertex O
3. B=0; (rcosfB—osinf?+ (r—psinB?=0.
All complexes have the same axis.
4. B£0; (rcosf—osinf?+ (r—psinf?z0;
hence, one will also havd){
(oc—pcospP?+ (r—psinB? 0.
The Ansatz:
MMz (T—psinP + AZ(rcosf—osinf) =c+hsin 2@ — ¢o)
will be satisfied by:

{(r=psinB?+ (oc—pcosP? #0, tan P, = m, c=hsin 24, .

= — :
sin” g r—psing

One can arrange that= ¢, = 0 by rotating and translating the coordinateesys and
finally have:
¢C=cosg|sing|0, B=0|0hsin2p.

The complex axes will then generate the third-ostleface:

(™) 1t would follow from (@—pcosf)? + (r—psinf?=0thatp: o: r=1: cosB: sinB, and thus, also
thatrcosf—osin=0.
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%5 = hsin 26 = 2h sin ¢ cosg = 2h %2

X, X +%

in homogeneous, rectangular coordinates, or:
(41) (X2 +X0) X3 = 2h X1 X2 X3 (h#0),

which one calls aylindroid. We will get more closely acquainted with this surfacte
no.67 (cf., Fig. 18).

32. Classification of the bushesThe classification of the bushgs' + ... + 16"

can be reduced to the classification of the pencils ofptexas Aia' + A" that are

conjugate to the bushes: We appeal to the special repraserfgd) for the conjugate
pencil, and can represent the bush in terms of the basiplexes:

' =-1|0]|0f, |0|C 6" =0[-1]0|0f, |C

(42) 1] \Y)
6" =0]0[0[0]0]|1, 6" =0]0]1]0]0]O0.

In fact, these' are linearly independent and fulfill the conjugacy requéem“e’ = 0.
If r is the rank of the discriminaBy, (b', 6", 6", 6") of the bush then one will get the

projective-invariant classificationf the bushes that are conjugate to the pencils that were
summarized in na30 on the basis of (42):

D,>0:h boli b) r=3: parabolic bush
a) D, yper 0|c} bush ) T pa ic bu

@r=4: o _
B) D, <0: elliptic c) r=2: singular bush

From paragraph 3 of n@6, these case distinctions will also be true whes r@presents
the bush by any four linearly-independent complexes
The lines that are common to all complexes ofatimghzab' + ... +ub" are the axes

of the singular complexes of the conjugate pentits + A.a". Therefore, a bush has
either:

2
a) { @ 0} common lines,

)

b) One common line,

¢) One common pencil of lines.



44 Chapter I: Basic concepts of algebraic line geometry.

33. Linear systems of lines.The axes of all singular complexeshat are contained
in znb' + ... +ub" define a set of lines that we shall refer to disear system of lines
(M. It consists of the lines that are common ta@athplexes of the conjugate pentib
+ A2a". In particular, all line® of the system of lines will cut the axes of the siagul
complexc that are contained in the conjugate pencil; these aikbencalled thefocal

lines of the system of lines. Since four linearly-independiaetar complexes establish a
bush uniquely, one will have:

A system of lines is determined uniquely by four linearly-indeperioherst that
belong to it.

We shall distinguisthyperbolic, elliptic, parabolic, and singular systems of lines
according to the type of bughb' + ... + 46" The following theorem will then be true:

A hyperbolic system of lines has any skew lines as focal lines andtgafsthe
common lines of intersection of these two focal lines; the fotd lo not belong to the
system of lines.

A singular system of lines possesses a pencil of lines (weméane w) of focal lines
and decomposes into the bundle of lines x and the line field w.

The proof follows immediately from n30:

A parabolic system of lines possesses a single focal line and cafssstfamily of
line pencils (vertex x, plane w). The vertices x are the poihthe focal lines, and the
planes w are the planes through the focal lines; the focal line is thelf a line of the
system of lines. The sequence of points x and the pencil of plaarespnojectively-
related.

Proof: We represent the conjugate pencil of complee's+ Aza" in terms of the
basic complexes (4). One then hasa' # 0, a"a" = 0 anda'a" = 0. a" is then a line of
the non-singular complex, and the linesg of the linear system of linesp = a"p = 0 are
the lines ofa' that cut the fixed complex lin€'. From no.22, however, the lines of the
complexa' that go through a fixed poimtof a" will lie in a planew througha", and the
sequence of pointswill be proportional to the pencil of planes

Any elliptical system of lines can be transformed projectively & rotationally-
symmetric system of lines. It arises in the following Wwaytwo parallel planes, & be
mapped to each other congruently by common altitudes. If one twists the glane
with respect to each other about one of those altitudes then the bundlelkélpaf the
connecting line between corresponding poiatg will be twisted into a rotationally-

() In the literature, one also often finds the teray‘net.”
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symmetric system of lines; in addition, the imaginary linesarfd & will belong to the
system of lines.

Proof: From the special Ansatz (40), one will get:
Pr+Ps=0, p2+ps=0

for an elliptic system. With consideration given ke tfact thatpp = 0, the parametric
representation (parameters u):

pL=u, p=0, ps=1, pi=-u, ps=-U, pg=@U)+ )
will follow from this, in which only the lines = x4 = 0 with the line coordinates 0 |0 | O |
0| 0| 1 remains excluded. One gets the points of intensexdtthe linep of the system

of lines with:

the planes = 0: X, = U Xo = — U, X3 =1,

the planex, = 0: X, = U Xo= U X3 =1
from (14). We transform the coordinate tetrahedron byogegtive map in the manner
that is suggested by Fig. 8: 1, 2 are imaginary points, 34rpepdicular to the plane
(124) and the plane (123), 14 is perpendicular to 24, and therefore 13 will be
perpendicular to 23. In addition, the unit point wi#l in the middle plane that is parallel
to eande, as well as in the angle-bisecting plane of (134) and (2B4$ equations; =
U % =—u', X = 1, andx, = U}, xo = U% x3 = 1 will then represent a congruence map of
the parallel planes for which the points 4 and 3 wilfespond to each other.

20
4 6]
L,
2
1,
Figure 8.

In algebraic geometrya system of lines is said to haseler n(class n resp.) whem
lines go through every non-special pointlies lie in every non-special plane, resp.), in
the algebraic sense. The linear systems of linesatieatreated here are then of order 1
and class 1; every point that does not lie on a famaldnd every plane that does not go
through a focal lines is incident with precisely one lafethe system, which one can
obtain by linear operations.
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34. Classification of bundles. The singular complexasthat are contained in the
bundlel; a' + Az a" + A3 a" are given by:

(43) cc = i AA (@ d=0.

ik=1

We interpret thel; as homogeneous point coordinates in a plane and map tipdezem
of the bundle to the points of that plane invertibly. particular, the singular complexes
(43) then correspond to the points of the second-order:curve

(43%) a*AiA=0
in the image plane, in which we have once more'$etda' a*. By the same argument as

in no. 30, we then get the followingrojective-invariant classification of the complex
bundles

a) s=+1, a) s=0,

a) r:3:{ﬁ) s:i3,} b) r=2: {’8) sziz,}’ c r=1, d r=0.

In this,r means the rank of the discrimind(d', a", a", o), ands is the signature

of the quadratic forra™ i A.
Moreover, one shows, in analogy to B86.

Any complex bundle can be represented in terms of the basic complexes:
(44) da'=1|0|0]|0]0, a"=0|1]0|0#2]0, da"=0]0]|21]|0]|0ss,
after a suitable coordinate transformation, in which theatisfy the conditions:

a) n,,n,.n, are partly +1, partly

2 _ 2 _ 2 _
) (m) =) =0n)"=1 { B) n,=n,=n,==1,

a) n,=-n,=41,
b) 75=0 {
° B) n,=n,=+1,
C) m=x1, m=m=0, d) Mm=m=n=0.

Two conjugate complex bundldsa' + A, a" + A3 a" and 4 b + 16 6" + 15 6"

always belong to the same type.

Proof: The complex bundle that is conjugate to (44)bearepresented in terms of the
basic complexes:
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(45) b'=-1|0]0fu|0|O, 6"=0|-1]0|0}2]0, 6" =0]0F1]0]|0}s,

from which, the statement will follow immediately.

35. Quadrics. The axes of the singular complexes (43) that are icmatan the
bundle of complexesd; a' + A2 a" + Az a" define a set of lines to which we shall give the
name ofquadric (). A quadric is determined uniquely by three linearly-independent

lines. The lines of the quadric are invertibly related to the@fsof a second-order curve.
For the various types of complex bundles, the aswmt@uadric will contain:

) a) A one-parameter family of skew line
£) no lines ("null quadric"),

a) Two pencils of lines with one commomds, but with different vertice
b) and different planes (i.erossed pencils of lines),
£) oneline,

¢) One pencil of lines.

d) All complexes of the complex bundle are singulagirt axes define a bundle of
lines (dually: a planar line field).

These properties of quadrics are implied immediatelsnfthe discussion of second-
order curves (43 whose coefficients are assigned according to (44): Ghé¢he
rectilinear point sequences that belong to the second-oudee (43) will correspond to
a pencil of lines on the quadric, and conversely. Whereckiinear point sequences can
be split off from the second-order curve (42iny two lines of the quadric will be skew:;
along with two intersecting lines, all lines of the pénhat they determine will then
belong to the quadric.

From no.24, two conjugate complex bundles will provide two conjugate qosaf
the same type. Any line of the one quadric will intersat lines of the conjugate
quadric. That will imply the followingjeometric relations for conjugate quadrics:

a) a) Since:
pp =p'p' =p"p" =0; p'p" £ 0, p"p %0, pp' # 0,

any three skew lings, p’, p" will have a non-vanishing discriminabt (p, p’, p"). From

Theorem 1 of no26, they will then be linearly-independent, and as altethey will
determine a quadric .

() The name should express the idea that the set ofiirgegen by the quadratic equation (4B the
Ai.
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All common linesq that meep, p', p” will define the quadric Il that is conjugate to a
quadric I; all common lines that meet any three lineg’, q" of the quadric 1l will
generate the quadric | and thus cut all remaining linelseofiiadric Il (Fig. 9).

Figure 9. Figure 10.

The lines of the quadric | (ll, resp.) cut the linestled quadric Il (I, resp.) along
projective sequences of points; the point sequences rhatua out of the lines of the
quadric 1l along two lines of the quadric | — e.g., alpng’ — will then be perspective to

the pencil of planes through any third line of the quadric I.

b) a): | consists of the pencils of lineg {w} and {X' | w}, while Il consists of the
pencils of lines X |w} and {x' |w} (Fig. 10).

p): | and Il degenerate into the same lines.
¢): | and Il degenerate into the same pencil of lines.

One confirms the statemerifsandc) by juxtaposing (44) and (45).

The surface that is spanned by two conjugate quaa)icd is ahyperboloid(cf., no.
4); correspondingly, we can the bundle and the quadjjcg) hyperboloidaJ as well as
any four lines of a quadrm), a).

8 9. Simplest projective invariants of linear complexes anstraight lines.

36. Winding sense of a non-singular complex; three skewmés. A non-singular
complexa yieldsaa # 0 as its only semi-invariant, and therefore, from2®&) the sign of

aa is the single sign invariant, but not a complete inverigAs a result, all complexes
with aa > 0, and likewise all complexes witta < 0, will transform into each other by a

principal projectivity. We shall call complexes with sitove (negative, resp.) sign
invariantspositively-wound (negatively-wounieksp.).
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Complexes that are wound the same way will determine screwshe/ifame screw
1
sense(").

Proof: From no23, two complexes' anda" can be takento 0 | ®'|| 0|0 [p' and 0

| 0 |b" | 0] 0|b" by motion transformations. Since motions are spemimicipal
projectivities, one can represent them by unity transitions, and then hawea' = 2

b'b', a"a" = 2"b"; however, from no23, the sign ofbb characterizes the screw sense.

All non-singular complexes of a parabolic penciéavound the same; one can then
classify the parabolic line systems into positimeund and negatively-wound ones in a
manner that is invariant under principal projecties.

Proof: A parabolic pencil of complex can always besgiby:

c=Ad +Aa"
with
da =dd" =0, a'a"£0.
Since:
cc = ()2 a'a",

cc will have the same sign a8a", for any value ofl, # 0.

Two non-singular non-conjugate complexgeld the three non-vanishing scalar
productsa' a* as the complete system of semi-invariants. Fronptéscription of no28,

we set:

i'a' =d'ddd, i'd" = dFfdd", d"d" =AAdd".
One will obtain the single complete invariant:

(al al)(all all ) _ (al al)(all all )
(al all )2 (al all )2

Let us skip over the geometric interpretation of this,cilis not very simple.
Two skew lineg', p" will yield either a sign invariant or a complete invatia

Three skew lineg', p", p" are (cf., no35) always linearly-independent. From .
and no28, one will obtain the three non-vanishing semi-invasaht* with i  k, and the
sign of " p"™) ®" p") (' p") will be the only sign invariant, while there will b® n

complete invariants.We shall call triples of lines with the same sigmariants equal-
wound.

() Whether a screw is right-wound or left-wound will depepdn the coordinate system.
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Two triples of linesp', p", p" and ¢', 4", ¢" from two conjugate hyperboloidal

quadrics are unequal, so two triples of lines of the same hyperboloidal qusitirioe
equal-wound; the six six-vectass q* are linearly-independent.

Proof: From (34), one has:

DG(pI, pll, pIII, ql, qll, C[III) =4 GJII pIII) (pIII pl) (pl pll) (qll C[III) (qlll ql) (ql III)
] ]
F.

=—1p, 0" ", q,q", g

The middle expression is non-zero, but the right-haqpitesssion can be negative; as a
result, " p") " p) @' p") and ¢" ") @" ') @' ") will have unequal signs.

37. Four linearly-independent skew lines. Four lineay-dependent lines. From
no. 33, four linearly-independent skew ling$ ..., p' are contained in a hyperbolic,

elliptic, or parabolic line system, and have:

a) 2
a) { ) , b) One common line of intersection.

B) 0
When one eliminates thé from the six equations:
(P'P) = 3 (v'p") (not summed?)

from no. 28, the six non-vanishing semi-invariant$® with i # k will lead to the two
complete invariants:

I III ﬂV GZ I IV )(pll Ijll
(pl IV )(pll I ) I II )(plll ﬂV

G1, G, are calledGrassmannian double ratiasf the quadruple of lines. They can be
interpreted geometrically for the hyperbolic tysefallows:
1f X, ..., XV (X, ...,xV, resp.) are the points of intersection of thedigle ..., p' with

the common line of intersectiap (4", resp.) then between the double ratios:

d= (XI Il III IV) d’= X’IX'II X;III X;IV)

and the Grassmannian double ratios, the relations:

(46) G =dd’, i =1+dd’-(d+d")
G,
will exist.
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Proof: We taked, X' (x', x"

tetrahedron, and then have:

, resp.) to be the vertices 1, 2, 3, 4 of the coordinate

X"=1|p|0]0, xV=1|r]0|0, xX"=0|0|1p', xV=0]|0|1F resp.)

for the coordinates of the remaining points.
This implies the line coordinates:

p'=0]0]0]0]|1]0, p'=0|1]0]0]0]0,
p”':,0'|,0,0'|0|_,0|1|01 p'V:r'|rr'|0|—T|1|0,
and from (2):
d:£, d'zﬁ,,
T 4

moreover, and the assertion follows by a brief calooh.
The relations will become symmetric when one enplitwe six double ratios of the

quadruple of pointg x' X" XV, namely:

d 1
d; =d, dy = ds=——, ds=—, ds=1-d,
1 2 "= 10 5= 3 5

and the corresponding values for e ..., d;. One then gets:

Goda =@ o, AR o (1268
(14)(23) (12)(34) (13)(42)

(47)
Gy = d,d, = U2 o ¢ - LD G = d,d. = 424
(12)(34) (13)(43) (14)(23)

In this, the bracketsk) are abbreviations fqf p~
In the next chapter, the complete invariant:

D4(p|,p" ,plll ’ﬂV )
48 | =
(49) EG A BB ¥ OB S P

will also play a role; one obtains the geometriteripretation from (47) by a simple
calculation:

(49) | = (G]_G4)2/3 + (6265)2/3 + (G3GG)2/3— 2{(6166)2/3 + (GZG4)2/3 + (G3GS)2/3}.
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The first three products contain the two double ratias &he coupled by the substitution
o= di while the last three contain the two that are coupitial the substitutio®d= 1

—d.
From no.32, one has:

>0 hyperbolic
| < =0 in the parabolic ; case;
<0 elliptic

the numerator of is thenD,4 (no0.32), while the denominator dfis always positive.

Four linearly-independent, skew ling's ..., p'" are hyperboloidal; i.e., they are taken
from a hyperboloidal quadric. From n@85, three skew lines always determine a
hyperboloidal quadric.

From no.35, any lineq of the quadric that is conjugate gegquadric will cut the four

linesyp', ..., p" in four pointsX, ..., XV with the constant double ratib= (x' x' x" x).

For this double ratio, it will follow from (46), witd = d’, that:

_ L e ) - )@ Y )
9 5 TP
Four lines of a pencil of lineagre always linearly-dependent. For that double @it
the four lineg', p", p" = pp' + rp", p"V = p'p' + r'p", one will get:

(51) d=2
r’p
Proof: One takeg', p" to be the sides 14, 24 of the coordinate tetratredio the four
linesp', ..., p" will cut the side 12 at the points whose coordisadreq |x; = 1|0, O |
1,p|5,p" | T'. From (2), the double ratio of these four poistgiven by (51).

8 10. Force screws and motion screws.

We conclude Chapter | with soraplications to the mechanics of rigid bod{&s
and thus link them to 8 5. Asin 8 5, we will as®&ua rectangular coordinate system.

38. Static and kinematic interpretation of six-vectors. One can interpret the six-
vectora = {2 | 2} with the coordinates,, as aforce screw(motion screwresp.) in the
statics (kinematics, resp.) of rigid bodies; thg are then inhomogeneouscrew

() Cf.,Enzykl. der math. Wiss 1\Mpp. 128gt seq.
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coordinates. The force screw is the totality of the real forge= {2 | O} with the force
vector2l = a; | & | az and the line of action through the origty along with the
imaginary force; = {0 | 2 }; i.e., the force-pair with the moment vect@r. The motion
screwa is composed of the real rotatipr= {2 | 0} with the rotation vecto®l and the
rotational axis througlD, along with the imaginary rotatiog = {0 | 2}; i.e., the
displacement velocity2l . If the six-vector is singular ¢a = 0, so 0 ) then, from

no. 18, the force screw (motion screw, resp.) will spez@lio asingular screw;i.e., a
real or imaginary force (rotation, resp.) whose liieaction (rotational axis, resp.) is
given by the singular six-vectar i.e., the line coordinates,.

The conditions of equilibrium(27) are then true for real (imaginary, resp.) forces
(rotations, resp.), as well as for a force screw (@mosicrew, resp.) that acts upon a given
rigid body. From (27), all forces screws (motion Beseresp.)t, ..., a" of a rigid body
can always be combined into a single screw o' + ... + a"; every “infinitesimal

motion” of a rigid body is an “infinitesimal screw.”
The projective force (kinematical, resp.) transfoiorathat was treated in 8 5 can
also be applied with no changes to non-singular forceigm resp.) screws.

39. Various decompositions of a screw.We shall now translate some of the
theorems on linear complexes that we derived befoce tim theory of screws. For
brevity, in each case we shall thus speak of only fare#ion, resp.) screws.

1. It follows from no23that:

Any non-singular motion screw= {2 | 2} can be decomposed in a unique way into

a rotational velocity and a displacement velocityt tisaparallel to the rotational axis.
The complex axis [cf., (31)], which we shall now call thecrew axis is the rotational

axis, while2( is the rotational velocity, an%;%ﬁl Is the displacement velocity.

2. It follows from no22 that:

Any non-singular force screw can be decomposed into two forces with skew lines
of action (viz., aorce cros} in infinitely many ways. The lines of action aexiprocal
lines in the null system that is given by The force cross is determined uniquely when
one gives an arbitrary line that does not belonthéocomplexx as one of the two lines

of action.
Theorem 2 is a generalization of Theorem 1, sincd@heorem 1, the real rotational
axiss and the imaginary rotational axis of the displaeatrwelocity are reciprocal with

respect tau.
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3. It follows from no.37 that:

If four forcesp', ..., p'" with skew lines of action are in equilibrium then times of

action will be hyperboloidal.
Under an arbitrary variation of the coefficierts A,, the axes of all screwka' + A,

a" will define:
1. A pencil of parallels, wheal, a" have parallel axes.
2. A pencil of lines with a real vertex, wheh a" have intersecting axes, and the

ratios of their rotational and translational vel@sticoincide.
3. Asingle line, whenr', a" have the same axis.

4. A cylindroid in all remaining cases.

Thus,A1a' + A2 a" will be the resultant of the screvtsa', A2 a"; A1a' has the same axis as
the screwa', but Ai-times the intensity (i.e.d:-times the rotational and translational
velocity).

40. Conjugate screws. The scalar product of two six-vectors has a simple
mechanical meanind: = ab is the work that is done by the force screwpb, resp.)

during the motion screw (a, resp.).

Proof: From no38, if one decomposes the force screwnto the forcep = {2 | O}
(line of action througl®) and the force-couple = {0 | 2}, and further decomposes the
motion screwb into the real rotationr = {$ | 0} (rotational axis throug®) and the
imaginary rotatiorv = {0 |8} then

real rotationu

0
_ ¢ will equal the work that is done by the fogceuring thes o,
AB imag. rotatiorn

} will equal the work that is done by the force-coupleduring the

real rotationu
imag. rotatior’

hence, the total work dohe= AB +AB = ab.
The lines of the non-singular complexare given byia = ab = 0. It follows from the
foregoing theorem that:

The rotational axes of all rotationis under which the work done £ ab by a given
non-singular force screwvanishes are the lines of the linear complex
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Due to this connection, one calls the complex Ima@slinesand the correlation (29),
anull system

Two screwsa, b with vanishing workab = O are calledonjugate screwssince the
complexesa, b are conjugate, from n@9. From the principle of virtual work, a rigid
body will remain at rest under the influence of a faaceewa if and only if the work that
is done bya under the motion screw vanishes for all admissible motions of the rigid
body; i.e., whem is conjugate to all admissible motion screws.

One says that a rigid body has 6 degrees of freedomvhen the admissible motion
screws are linear combinations mfinearly-independent motion screw§ ..., b", and
thus define am-dimensional{) linear manifoldsb' + ...+ 14, b,

The force screws under whose influence a body with n degrees of freedams at

rest define &6 —n)-dimensional manifoldiza' + ...+ Ayi—n a”' ™ the complex manifolds

b+ .+ 6" andAd + ..+ Ay o' are conjugate(®). The interpretation of
conjugate screws as force screws and motion screws is interchangeable.

A fixed-axis rotatable body will serve as an examptenfe 1: The motion screws are
the rotations around the fixed axis. A body that rotatesind a fixed poinD is an
example forn = 3: The motion screws are the rotations whose ootakiaxis goes
through O; the force screws can be composed of three forcesevhnes of action
contain the poinO and do no lie in a plane.

8 11. Unsteady frameworks and rectangle nets.

41. Collinear invariance of the unsteady framework.In no.20, we distinguished
between geometrically-undetermined, determined, and overndeed frameworks.
Among the frameworks whose structure is determined geaakyrithere are ones that
are indeed rigid under finite wrinkles, but still adigtrtain “infinitesimal” €) wrinkles;
i.e., one can give small shifts of the nodes:

X' =x+eX

[X, (X", resp.) = position vector of the original (shiftedsp@ node], in such a way that
for the lengths of the rods:

'=1+&4{.}

() The corresponding complex manifodb' + ...+ 4, b" is only @ — 1)-dimensional, since the

complex coordinates are homogeneous.
() R.S. Ball Theory of Screwdublin, 1876.
() In this paragraph, we shall speak of “infinitesimations,” instead of velocities.
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ase - 0. One calls such a frameworkgaometrically-exceptional framework an
unsteady frameworklt can be shown that the unsteady frameworks aithe same time,
statically-exceptional frameworks (n®0), and conversely; this is easy to confirm in the
trivial example (tetrahedral linkage that has collapséa & plane) that was given in no.
20. However, we would like to prove a theorem that ¥easid byH. Liebmann (%)
without referring to that fact:

Any framework that is collinear to an unsteady framework is again unsteady

Y

L P
a_A~_b
Figure 11.

Proof: One can characterize the “infinitesimal mdtioh any rod of an unsteady
framework with rods that are rigid to orderunder an infinitesimal wrinkling by a
motion screwy. That motion screw is determined up to an arbitrarytmdail rotation
around the rod as its rotational axis. The relativeionadf any two rods, b with the
common nodeP (Fig. 11) will then be given by, —y, . Now, the condition that the

relative motion is a rotation with a rotational aigtt goes througR is characteristic of
the unsteadiness, so:

p=Da—Mo

will be a singular six-vector, and the lipewill contain the pointP. This requirement
will be invariant when the motion screw and the singular six-vectors of the rods
undergo the same linear transformation (19) with constafficients ), that satisfy the
conditions (20a) (viz., a collinear kinematic transfation; cf., no.38, conclusion).

42. Face-rigid, unsteady rectangle nets)( A rectangle net(cf., no.7) is
composed of planar or non-planar rectangles that wange like the field of a
chessboard (Fig. 12). Any vertex that does not lie inbthendary is the vertex of a
quadrilateral.  We shall call rectangle nets with nahibut planar rectangles
(quadrilaterals, respface-planar(vertex-planay resp.). We exclude rectangle nets that
are both face-planar and vertex-planar. Moreover, siatements will relate to only
vertices that do not lie on the boundary.

() H. Liebmann: “Ausnahmefachwerkes, etc.,” Miinchner Bericls@ (1920); cf., moreoverW.
Blaschke “Wackelige Achtflache,” Math. Zei6 (1920).

() For this and the following numbers, dR, Sauer: “Proj. Kinematik, etc.” Monatshefte fir Math.
und Phys43 (1936).
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A rectangle net can be completely rigid or flexibléiler keeping the individual
rectangles rigid. However, there are digoe-rigid, unsteady, rectangle ndtgat admit
no finite wrinkling while keeping the individual rectanglegyid, but probably
infinitesimal wrinkling, in analogy with unsteady framesks.

Figure 12.

Characterizing the face-rigid, unsteady, rectangle nets:

Under an infinitesimal wrinkling of a face-rigid, unstgadectangle net, every
rectanglei( k) will experience an infinitesimal motion, which weresent by the motion
screw:

vk = {Dix | Dy }-

Therefore, it is necessary and sufficient that glative motion of two rectangles with a
common side should a rotation around that side. Onehatso

(52) Di+1k — Dik = Ok ik  Yik+1 ~ Dik = Ok Pik

then, in whichgik (b, resp.) are singular six-vectors that determine theneomsides of

the rectangles(k), (i + 1,K) [(i, K), (i, k + 1), resp.] (Fig. 12). In ordinary vectors, it will
follow from (52) that:

Di+1k — Vik = Pk ik » Dikr1 — YDik = Gk Pik»
(53) )

@Hl,k _@ik: P Qi @i,kﬂ _@ik: Oik ;’Bik ,
with

Qiink =0, P ;’Bik =0.

If one denotes the position vector of the vertites., 4 of the rectangle, k) by X!
(h=1, ..., 4) then the shift of a vertxvill be given by:

(54) ii;( = @ik-*_ @ik X %iill;
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in this, 9, gives the displacement of the entire rectanglk){ andik x X gives the

displacement of the vertdxthat is provoked by the rotatiofi (rotational axis through
O). It follows from (54) that:

(55) X5~ X = Dt Vi x (X - X3).
Consequences:

Just as the given face-rigid, unsteady rectangl@das given by the position vectors
X!, the position vector®)i, 2, , Xi. will produce three more rectangle new, ((Y),

(X); we assume that they do not degenerate. Due torkenktic meaning dfyx and
2., we shall refer to the rectangle net) ([(Y), resp.] as therotational crack
(displacement cragkresp.] and the rectangle-paiv),( (Y) collectively as thescrew

crack One obtains some theorems from equations (52) to (55):

1. Relations betweer(X) and (Y) (cf., Fig. 13):

Every edge ofX) corresponds to a parallel edge 9, every rectangle (quadrilateral,
resp.) of K) is associated with a quadrilateral (rectangle, resp(Y). We have already
encountered this kind of association with the Cremdeuags for plane figures (n@3).

Figure 13.

2. Relations betweer{X) and (X) [(Y) and (Y), resp]:

Every edge ofX) [(Y), resp.] corresponds to a perpendicular edgéd>of [(Y),
resp.]. From (55), the four edges of a quadrilatera¥pf(), resp.] with the verte®)i

(%", resp.) correspond to four lines {X) [(Y), resp.] that are perpendicular 2
ik

(XP, resp.) as the sides of a rectangle. For that redsemectangle netéX) and (Y)
will be planar.



§ 11. Unsteady frameworks and rectangle nets. 59

3. Collinear invariance.

Any rectangle net that is collinear to face-rigid, teagly rectangle neiXj is also
face-rigid, unsteady. The screw crack, ((Y) of (X) implies a screw crack in the
rectangle net that is collinear t§)(when one map maps the screws= {Di | 9, } by a

collinear kinematic transformation.
Proof: The conditions (52) are invariant under collineaematic transformations.

4. Interchangeability of the screw crackgX), (X) and (Y), (Y).

With the rectangle nei{, the rectangle nety] is also face-rigid and unsteady. Just
as ), (Y) is a screw crack o), (X), (X) will be a screw crack ofY].

Proof: We combine the position vectdeé and X!, of corresponding vertices oX)
and (X) into a six-vector:
ne = {5 | X3}

and associate it with the rectangle &) that corresponds to the verteX| of the

rectangle netX), from Theorem 1. For two neighboring vertices X, (one then has,
with the use of (55), e.qg.:

(56) e~ e = { (G = X5) 1 Duex (X5 -X5) 1

The six-vectorr’ —r; is then singular and represents the line of the reletangg {¥) that

is, from Theorem 1, associated with the connecting IfitbeoverticesX; and X2 as a

parallel. As a result, (56) characterizes the ungtead of ) just as (52) characterized
the unsteadiness oX).

Static reinterpretation:

We interpret the six-vectorg as force screws, and thus interpret the differences
- pik andnix+1 — pik as forces and consider the edges of the rectangleXhes (strings

under tension that are knotted together at the net poifiis net of strings will then be
in equilibrium without the addition of external forcekem one makes the string tensions
proportional to corresponding rectangle sidesydf (

43. Vertex-rigid, unsteady, rectangle nets. From now on, it will not be the
individual rectangles that remain rigid, but the quadnédse let any two rectangles with
a common side rotate around it without slipping. Thearggle net is then either
completely rigid orvertex-rigid unsteadyi.e., infinitesimal wrinkles with quadrilaterals
that remain rigid are possibl8 (

() It can be shown that finite wrinkles are impossibla irertex-rigid rectangle net.
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The characterization of face-rigid, unsteady rectamgis (no.42) can be carried
over by analogy to the vertex-rigid, unsteady red@angts, with the difference that here
the screwg) are not associated with the rectangles, but withgtrerilaterals ofX).
As a result, the rectangles (quadrilaterals, respX)odvill always, in turn, correspond to
rectangles (quadrilaterals, resp.) in the rectangle (dts (Y), (X). Moreover,

Theorems 1-4 of no42 are also validmutatis mutandisfor the vertex-rigid, unsteady
rectangle nets.

Figure 14.

The vertex-rigid, unsteady rectangle nets (in contrastthe face-rigid, unsteady
rectangle nets) are always planar. Plane rectan@le§ and () that correspond to each
other will have anti-parallel sides and diagonals inseénese that is characterized by Fig.
14 (the arrows denote parallelism).

Proof: The shift in the vertex 3 is determined by estlaibigs the quadrilateral ofX|
with the vertex 1 in two ways, either by rotating the gilat@ral 2 (rotational axis 12) or
by rotating the quadrilateral 4 (rotational axis 14). Fat tkason, one has:

(57) 0 -9h x (X -xH = Q' -PH x (x°*-x).

Since corresponding sides & (and {) are parallel, in addition, the vecten$ —9)*, x2
—x* @ -9 x°-x* resp.) are linearly dependent, and the planarityeféatangles

1234 and 2'3'4" will follow from (57). If one now makes'4d = 14 by a similarity
transformation of the rectangle n&f @nd joins the rectangles 1234 arid'34', as in
Fig. 15 then, from (57), the triangles'31and 341 will be equal as faces, so the
diagonals 13 and'Z will be parallel. One proves the parallelism of degonals 24 and
1'3" in the same way.

Figure 15.
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44. Correlative, unsteady rectangle nets.A planar rectangle net will be mapped
into another planar rectangle net by a correlatioe;glanar rectangles will transform
into non-planar quadrilaterals, and conversely. Thealitions (52) that characterize the
unsteadiness are correlative, as well as collineariamntar However, the screws that
are associated with the rectangles are transformecklatvely into screws of the
quadrilaterals, or conversely. From @@, the conditions of face-rigid unsteadiness and
vertex-rigid unsteadiness are then switched, and ohgetil

The rectangle nets that are correlative to a pla&e-figid (vertex-rigid, resp.),
unsteady rectangle net are again planar, but vergek{face-rigid, resp.) and unsteady.

That theorem is also true, in particular, for theapty (no.14). In that casey = {2 |

2} will be transformed into §)|2)}; i.e., the screw crackYj, (Y) goes to(Y), (Y), so

the rotational crack and displacement crack are svdtche
Finally, let us prove the following theorem:

If (X) and (Y) are vertex-rigid unsteady (hence, also face-planar) teéh and (Y)
will be vertex-planar. The connecting lines between correspondinges&ttand 1' of
(X) and (Y) lie in the planes of the two planar quadrilaterals with the verticesd 1'.

Proof: From (54), the vecta¥ -2) (hence, the connecting line'L1s perpendicular
to 9). From (55), the four quadrilateral sid&$ - X', etc., that emanate from the vertex
1 will also be perpendicular 8. Thus, the quadrilateral 1 will be planar and the lirfe 11
will lie in its plane. The proof for the quadrilatefalis analogous.

There are rectangle nets that are face-rigid, adgtér one wrinkle and vertex-rigid,
unsteady for another wrinkle. The diagonals of daregle net that is defined by the
generators of a hyperboloid produce such a face-rigid, dsawefertex-rigid, unsteady
net; we shall leave the proof of that to the reader.
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Families of lines

§ 12. Definition of a family of lines.

45. Parametric representation. A family of linesis given by:
p=p(u);

I.e., the line coordinatgs, are regular functions of the parameten a domairu, < u <
Ue . Due to the homogeneity of line coordinates, theveotorp(u) is determined only up

to an arbitrary functiorm(u) # O as a factor. One can generate families of lineadh a
way that one lays a line through every point of a gmenve.

d d?
The derivatives% ( FZ)” ,etc., res% transform like thep, (0= 1, ..., 6) under
u u

o o dp d’p
projective maps (19), and thus define six-vec 9 F,etc., resp,. We denote the
u (du

derivatives by dots and demand that for every lonat in the domain of definition:

p, p are linearly independent; in particular, eith@ror p will therefore be a null
vector.

This yields the followingnap of the family of lines onto the points of aagmline:
Everyu' in the domairu, < u < ue can be assigned a finite sub-domain for which the
values ofu are associated with the linp&u) in a one-to-one correspondencée (The

lines of the family of lines will then be mappedthe points of an image line segment in
a one-to-one correspondencelby & (£ = abscissa of an image line) in the sub-domain.
One obtains the identities:

(58) pp=0, pp =0, pp+pp =0, pp+3pp =0, etc.,
from p(u) p(u) = 0 by repeated differentiation.

46. Ruled families and torses. A family of lines is called auled family (torse
resp.) when the requiremepp # 0 (pp = 0, resp.) is fulfilled for all values of From §

7, this distinction is projectively invariant. \Wclude discrete lines withp = 0. We

() For a sufficiently small absolute value difthe six-vectors(u), p(u + &) = p(u) + dp(u) + ... will
be linearly independent, so they will determine distimes.
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have already encountered special ruled families in36dn the form of hyperboloidal
guadrics.
For torses, since:

pp=pp =pp =0, p#Zop,

the singular six-vectons, p represent two intersecting lines. The point of inteisa x

is called thepoint of regressionand the connecting plang is called theplane of
regressionof the linep of the torse.

Classification of the torses:

1. The torses withpp = 0 and linearly-dependent) p, p, p are pencils of lines

(fixed point of regression x vertex of the pencil, fixed plane of regressior plane of
the pencil).

Proof: If the torse is a pencil of lines then any thireesp(u), p(u + &), p(u + 2¢) will
be linearly dependent. The linear dependency(af, p(u), p(u) will follow upon
developing these expressions in powers. o€onversely, if:

A1(u) p(u) + Ax(u) p(u) + A3(u) p(u) =0 (and thus, als@p =0)

is given then all of the derivativas™(u) with m > 1 can be represented as linear
combinations op(u), p(u) by repeated differentiation of this identity, aa&la resultp(u

+ &) can also be represented in that way for all \&loks, sop(u + &) will provide a
pencil of lines.

2. The torses withpp = Oand linearly-independemt, p, p are:

a) The tangent families of plane curves, which arentb&led curves of regression
(point of regression x vertex of a curve, plane of regressiorwlane of the curve)

b) The family of generators of a cone, which is thealled a cone of regression
(fixed point of regression x vertex of a cone, plane of regressior=wontact plane of
the cone).

Proof:

a) Let the tangent family of a planar curve be givéMe take the plane of the curve
to be the planey = 0 and then have, = p, = ps = 0, sop™ p™ = 0 for any arbitrarily

() Due to (58), the linear-dependencypofp, p will have p™ p™ = 0 as a consequence for every
arbitrarily-highm™ derivativep™.
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high derivativep™. One will reach an analogous conclusion for the getimg family of
a cone.

D Let atorse be given withp = 0 and linearly-independept p, p. With the help
of the identities (58), one obtains, from (34):

As a result,p, p, b, p, a, b will be linearly dependent, and sinae b are entirely
arbitrary six-vectorsy, p, p, p will also be linearly independent, in their own rigliy

repeated differentiation of:
Ap +Bp +Cp + Dfi =0,

one can then obtain any arbitrarily-high derivativep(6'¥ as a linear combination ¢fu),
p(u), p(u), and therefore obtai(u + &) for all values of, as well. Any linep(u + &) of
the torse will then cut the three fixed lings), p(u), p(u), which will then span the line
field w (line bundlex, resp.), since:

pp =pp =pp = pp = pp =0.

All lines of the torse will then lie in the fixedgme of regressiow (go through the fixed
point of regressior, resp.).

)) For the connecting ling of the curve pointg(u) andx(u + &), one has:
g = AU) p(u) + W) pU)=Ap + pp + {Ap+H(A+ D P+ + ...
Due to the linear independencepofp, p, ase - 0, one will get:
A=A+ =pu=0, thus, g=pp:
i.e., the lineg of the torse will be the tangents to the curvesgfession.
3. The torses withpp # 0 are the tangent families of non-planar curves, Wwiian

then be called curves of regression (point of regi@ x= point of curve, plane of
regression w= osculating plane).

Proof:

a) Let the tangent family to a non-planar curve beeig If X(u) is the position
vector of a point of the curve then one will have:
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p={X| xx1}, p={¥|xx3}, b= {F| xxX+xxH,
SO.

pp =0, pp=2<x,X,X> £0;
<X%,X,X >=0 s characteristic of plane curves.

P Let a torse be given witlhp # 0. The points of regression generate a space
curve, since otherwis@p = 0 would follow from ®), which would be contrary to
assumption.

)) The connecting ling of the curve pointg(u) andx(u + &) satisfies the conditions:

gp(u) = gp(u) =gp(u+ & =gp(u+¢=0.

As £ - 0, one will get:
gh=gp =gp=gp =0.

Since the discriminarD4(p, p, p, p) has rank = 3, these equations determine only the
single six-vectorg = p (no. 32); the linesp are then the tangents of the curve that is

generated by, and from 2), that curve will not be planar.
Dually, this likewise implies that the plamedefines a strip whose generators are the
linesp; the planesv are then the osculating planes of the curve of reigress

In what follows, we shall always assume that # O for the study of torses; i.e.,

pencils of lines, tangent families of plane curves, and the generatintiefaofi cones
will remain excluded from consideration.

The surfaces that are spanned by a family of lines (falady, resp.) are calletine
surfaces (ruled surfaces, resp.)The surfaces that are generated by torses are the
developable surfacdg0.5).

47. Models with discrete lines;e-models, torsal models. In order to make the
differential-geometric relationships more intuitivele compare themodels for line
families that are defined bydiscrete lineg®, p', ..., p"™

a) &models(Fig. 16):

The lines of the model are chosen from the givenlyawh lines, namely:
p°=pU), p' =pUu+ 8, .., p" =pu+ (n-1)9).
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v

Figure 16.

€is a small number in this. Under the passage to thedimiO, all lines of thes-model
will converge to the fixed ling®, and the properties of temodel that are given by the

six-vectorsp?, p', p", etc., will go to the corresponding differential-geornaeproperties

of the line family that are representableghyp, p, etc. Thes-models depend upon the
choice of parametar, under a substitution = u(t), the family of lines will give are-

model with other lines.
Two successive lings, p' of thee-model yield the scalar product:

pOp =p(U) p(u+=—1pp —1£ph — 4 & B+ 4pF) + ...

with the use of the identities (58).
The coefficient o&? is non-zero for ruled families; the coefficienfssband&® vanish
for torses, while the coefficient &t will be equal t02—14jjjj, and thus, non-zero.

The intersection conditiofL6) will then be fulfilled fop® andp' under the passage to
the limit ¢ - O for torses in higher order, as well as ruled famsli Occasionally, one
appeals to the vague way of saying this that tdkedorm: “Neighboring lines are skew

for ruled families, while they will intersect foortses.”

Figure 17.
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For a sufficiently smallg, the first non-vanishing term of the power series will
outweigh the entire series that follows it. Cons@tjyeif £ is not too large then any two
successive lines of aamodel will always be skew.

b) Torsal models(Fig. 17). In order to make the differential-geometriquerties of
the torses more intuitive, we will often employ sdlexh “torsal” models instead of
models. The lines of the torsal model will not besghofrom the given family of lines,
but will be arbitrary, up to the following coupling requirertgen

Any two successive lines shall intersect, while noelseccessive lines shall have a
common point or lie in a plane (Fig. 17).

§ 13. Contact structures.

In a similar way to how we introduced tangents and latog planes in the theory of
curves (no5), we would now like to defineontact structure$or a given family of lines,

namely, quadrics, linear systems of lines, and the Iia, are determined hy, p, b,
etc., for a fixed value af.

48. Tangent systems and contact correlationdVe start from pencils of complexes
Aip + A2p. The linest that are common to all of the complexes of this peae

determined by:
tp =0, tp =0,

and define a linear system of lines (88) that we would like to call tangent system.

Ruled families: Since pp # 0, the discriminanD,(p,p) will have rankr = 1. For
that reason, the tangent system is parabolic38oand can be decomposed into a series
of pencils of lines; the verticgsof the pencils lie op, while the planes of the pencil
will intersect inp. The pointsy are projectively-related to the plangs(contact
correlation). Sincetp = 0,t (p + £p) = 0, the lineg of the tangent system will be the
tangents, and therefore the plamex the contact planes of the ruled surface alotigat

is spanned by the ruled family.

For pp > 0 (< O, resp.), the tangent system is positively-wlo{negatively-wound,
resp.) (no.36); this distinction is invariant under parameter substitgtiand principal
projectivities. We agree that:

In what follows, it shall always be assumed that> 0.

This implies no essential restriction, since oneaamvert the given ruled family with
pp < 0 into one withpp > 0 by a reflection.
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Torses: Dy(p,p) has rank = 0. The tangent system is singular; it decomposes into

the line field of the plane of regressienand the bundle of lines with the point of
regressiorx as its vertex. The developable surface has the fixadaigpianew alongp.

49. Osculating quadrics. Principal tangents. We start with the bundle of
complexestip + Ap + Asp (Y). The axes of the singular complexes that are aweddn

the bundle of complexes define a quadric that we shdltiee first osculating quadric
We refer to the conjugate quadric as $keond osculating quadridt consists of line§
that are common to all complexes of the bundllig + A,p + A3p. The linesh are
contained in the tangent system and fulfill the requinetst

(59) bp=bp =bp =0.

Ruled families: Ds(p,p, p) has rank = 3. From no35, the two osculating quadrics
are hyperboloidal}j, and thus span a hyperboloid (viz., dseulating hyperboloid

The linesh of the second osculating quadric are principal tangents of the ruled
surface.

Proof: The linesy are principal tangents to the osculating hyperboloigée thus
have only to show that the given ruled surface anas$ieealating hyperboloid coincide in
the principal tangents along We assume that the first osculating quadric that is

associated withp(0) is:
2

. ) uc ..
p =p0) + UP(0)+?P(O):

for u= 0, one then has:
p=p, p=p, p=p.

However, the principal tangents alop() are determined by(0),»(0),p(0): The ruled
surface is represented by:
_PxF

o +Vv*P.

The first and second derivatives ¥fwith respect tas andv are established by, p, p,

and thus, from (8), the principal tangents.
A ruled surface has two families of principal tangcurves:

() On the linear independencemfp , i, cf., no.54
(® The bundle of complexek p + A,p + A;p cannot be of typa) A (no.34); there would then exist
no quadric for ones of typ® £), butp is a line of the quadric.
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1. The lineg of the ruled family.

2. The integral curves of the direction field thatestablished by the principal
tangentd) to the ruled surface.

The lines of the ruled family will be cut from the second fanfilyriacipal tangent
curves along projective sequences of points.

Proof: Letd(u) be the double ratio of the point of intersection of fwer principal
tangent curves of the second family with the lip@g of the ruled family. Since these

principal tangent curves contact the lifgsand the lined) cut the lines of the first

osculating quadric along the projective sequences of p@ints35), d(u)= 0, sod =
const.

Torses: Ds(p,p,p) has rank = 1. The osculating quadrics are of typgno. 35)

and both of them degenerate into a pencil of lines vishptoint of regressior as its
vertex and the plane of regresswias the plane of the pencil.

50. Osculating system. Nodal tangentsWe consider the bush of complexks +

.+ Ap (9. The linear system of lines that is defined by thesaoithe singular
complex of the bush is called theculating system

Ruled families: D4(p,p,p,p) has rankr = 4 orr = 3. We then have the case
distinction (no.32):
=4 { D, >0: hyperbolic
D, <0: elliptic osculating system.
r=3: parabolic

We then speak dfyperbolic, elliptic, or parabolic ruled familiesThe focal lines of the
osculating system — i.e., lines that cut all lioéshe osculating system — are determined
by:

(60) tp=tp =tp =tp =0,

and shall be calledodal tangent$ of the ruled family. From (59), the nodal tangent
will be special principal tangents.

A hyperbolic (elliptic, parabolic, resp.) ruled fdynhas2 (0, 1, resp.hodal tangents
for any linep. In the first case, th2 nodal tangents are mutually skew (cf., 88).
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Torses: D4(p,p,p,p) has rank = 3. The osculating system is parabolic, so it will
have onlyone focal line (nodal tangent). That nodal tangent is life p itself; the
conditions (60) will be fulfilled by = p, since the identities that follow fropp = pp =0
by repeated differentiation.

51. Nodal families of a ruled family. Here, we shall speak of only hyperbolic and
parabolic ruled families, and introduce the followingrisr

Nodal point = point of intersection of the linewith the nodal tangent.

Nodal family = families of lines of the nodal tangents.
Nodal curves = geometric locus of the nodal points.

If a nodal curve is rectilinear then the associatedgbhéamily will degenerate into
that line.

If a nodal family does not degenerate into a line then it will nevea barse, but
always a ruled family.

Proof: For a non-rectlinear node, one lag ot (). Now if ¢ = 0 were true then

A1t + Ao would be a pencil of lines, and from (60) and the equatimasfollow from
(60), namely:
Ep =€p = Ep =0,

any line of this pencil would cut all lines of the firsscolating quadric. That is
impossible, since osculating quadrics are hyperboloidal.

If the ruled family 1l is the nodal family of the ruled familjném the ruled family |
will also be the nodal family of the ruled family II.

Proof: It follows from (60) that:
tp =kp =Etp = Ep =0.
If a ruled family is parabolic then one will have:

(61) tp =0,
along with(60).

() We exclude discrete points with= ot.
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Proof. For a parabolic osculating system, the nodajetairt itself belongs to the

be linearly-independent (n&4), so:

t=Ap+Bp +Cp +Dp.
Since the nodal tangents do not belong to the first asoglquadricD # 0, and:
et =

0= e(Ap+---+(C+D)ji+ Dp) = t5,

o=
o=

Conversely, one has:

If (61)is true identically for u, along witf60), then theruled family will be parabolic
or the nodal curve that is associated witwill be rectilinear.

Proof: It follows from (60) and (61) that:
pb=pt =pt =pt =0 and pk =pt =pt =pEt=0.

Thus, eithert = ot (rectilinear nodal curve) or the bush of complexgs+ ...+ AP
will be conjugate to the pencil of complexag + 1» ¢, and thus parabolic, like them.

52. Osculating complex. Projective and parameter invariance dhe contact
structure. We consider the forest of complex&p + ...+ Asp, under the assumption

that p,p, ...,p are linearly independent, and refer to the conjugate emps the

osculating complex. It contains the axes of all singular complexes #na contained in
the forest of complexes and satisfies the conditions

(62) ps=ps =..=ps =0,

All of the contact structures that were introduced his {paragraph are not only
projectively invariant, but also invariant under paramstéstitutions:

du

(63) u=u(d), with —
du

#0

and renormalizations:
(64) p=ou)p, ocz0.
In fact, it will follow from:
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dp .. .y du
— = (op+0p)—
du (p+ap) du

that the pencil of complexeﬁﬁﬁ)lz% Is identical with the pencil of complexdsp +
u

Ap, and the same thing will be true for the bundle of demgsAip + Ap+Ap, etc.

53. Explanation for the model. We make the contact structures more intuitive by
the followingcomparison with the-model(Fig. 16):

&model Family of lines

System of lines with the focal Iin$§, p' Tangent system

Quadric with the skew lineg’, p', p" and| First and second osculating quadric.

the conjugate quadric of the lines that meet
it.

Lines that meet four successive lindsp', | Nodal tangents
1 ]
PP

System of lines with the ling®, p', p", p"'. | Osculating system

Line complex with the lineg’, p', ...,p". | Osculating complex

Under passage to the limit » O, the line structures of the model will converge to the
contact structures of the family of lines.

If one extends the-model by the addition of the lines that meet any foucesssive
lines of the model (dashed lines in Fig. 16) then one halle the following further
analogy with ruled families with non-rectilinear nodafves:
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Family of lines

Any four successive lines of intersecti
will cut one line of the mode; i.e., th
relationship between the model lines

P

g

oihe relationship between ruled families
1@nd nodal families is reciprocal (ral).
ind

the lines of intersection is reciprocal.

The properties of the contact structures of torsddoetiome clearer (cf., nd7) by a

comparison of the torsal mod€lBig. 17):

Torsal model

Torse

The lines of the model envelope a nc
planar segmented path.

b-he lines of the torse are tangents to a non-
planar curve (curve of regression).

Point of intersectiox (connecting plangv,
resp.) of successive lines.

Points (osculating planes, resp.) of the
curve of regression.

Line system with successive lines as fo
lines: breaks down into the plameand the
bundle of lines with vertex (Fig. 17) in
the line field.

cahngent system: breaks down into the

plane of regression and the bundle of lines
with the point of regression as its vertex in
the line field.

54. Families of lines with fixed contact structures.In no.46, we showed:

p,p,p are linearly independent for all

One likewise proves:

u if and only the line family is a perfidines.

p,p,p,p (p,p, ..., p orp,p, ...,p, resp.) are linearly independent for all u if and

only if the families of lines is a quadric (contained in a linear syé lines, contained
in a linear complex of lines, resp.). That quadric (that systermes,|that complex of
lines, resp.) is then the first osculating quadric (osculating sysbeoylating complex,

resp.) for lines of the family of lines.

For ruled families the linear independence pfp,p follows from the first of the
aforementioned theorems. We further deduce that:
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p,p,p,p are linearly independent. Therefore, quadrics will be excluded fuotiher
consideration, from now onAll of the contact structures that were introducedhis
paragraph will then be determined uniquely, with the exceptibrihe osculating
complexes; they are established uniquely when ..., p" are also linearly independent.

Fortorses the linear independent pfp, ..., p follows from:

Ds(p.p, ... »") = (pp)° % 0.

All contact structures, up to the osculating complexedusively, are established
uniquely now.

8 14. Invariants of a family of lines.

55. Reduction to semi-invariants. The projective differential geometry of the
families of lines that we would now like to develop atiee the projective-invariant
properties “in the neighborhood” of a lipeof the family of lines, in which, as agreed
(no. 16), we restrict ourselves to the principal projectigtig > 0). Analytically, this
meansWe have to ascertain the complete invariabtand the sign invariants of the six-
vectorsp, p,p, etc., up to arbitrarily-high derivatives, using the prescriptiongaf. In

no. 24, each of the given discrete six-vectors could be pligtd by an arbitrary
renormalization factor; here, one can renormalize= op with the arbitrary function

o(u) and then have = op+op, etc. Equations (37), (38) are altered correspondingly.
The invariants thus-determined are, in general, stilependent of the choice of

parametein. However, since we seek geometric properties of timdliés of lines that

are not qualified by a special choiceupfve now come to the additional requirement:

The complete invariantsb and sign invariants shall remain unchanged under
arbitrary parameter substitution®3); one must then have:

dp d’p dp d’p
q) H ) yeo . :q) ) y Jooe .
(p du’ duv j [p du’ ot

Now, instead of next defining semi-invariants and compietariants, as well as sign
invariants (and from them, parameter-invariant expresgi@ssin 8 7, we shall embark
upon the following preferable path:

1. A distinguished parameter= s(u) is defined that is a complete invariant and is
invariant under the parameter substitutions (63), analogotiset motion-invariant arc-
length in the metric theory of curves. Based upon thalogy, we call the parameter
thearc-length we will denote derivatives with respectsby primes; e.gp’' =dp / ds
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2. The six-vectorp, and therefore the derivativgs, p”, etc., as well, will be

inhomogeneously normalized such a way that the normalized six-vector is semi-
invariant; i.e., it will remain normalized under any uritgnsformation (nol7).

3. Since, from 1 and 2, parameter substitutions and ratfiaations no longer come
into question, merely the semi-invariants of the six-wecp, p’, p”, etc., will be

determined.

56. Fundamental system and differential equations.The determination of the
semi-invariants of, p’, p", etc., to which our problem has been reduced in58p.
proceeds as follows:

A) We define the scalar products of the largest-possibigatn < 6 of the linearly-
independent six-vectogs p', ..., p" ™.

B) We determine the coefficients' of the linear combination:

pn: 5(;1p + 5lnpy + +5nn_lp(n—l).
From no.26, all semi-invariants o, p', ..., p™ can be expressed in terms of the scalar
products ofd) and the coefficient®" of B). However, one even has, moreover:

All semi-invariants ofp, p’, ..., p™ (m arbitrarily large) are functions of the

invariants A and B, and correspond to higher derivatives of the invarianjswizh
respect to the arc-length s.

Proof: By repeated derivation of the linear combinat)nwith respect tos and
elimination of thep™, p™%, etc., that appear on the right-hand side, we wiltlgetsix-

vector p™ as a linear combination @f p', ..., p™™ for any arbitrarily highm. The
coefficients are functions of th@" and correspondingly higher derivatives of g

with respect te. From no27, all invariants of, p', ..., p™ can be expressed in terms of
these coefficients and the scalar prodégts

Two families of lines are projective to each other and relat@th ether projectively
by the same s-values line-wise if and only if they have the sant®rsnaf the arc-
length s for the invariants)fand B. All projectively-invariant properties of a family of
lines are then characterized by the invarianjsaAd B.

Proof: For each of the two families of lines, we depgi(s + ¢) in powers ofsand
replace the™(s) with linear combinations of, p’, ..., p™ ™ form>n— 1. In that way,
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p(s + &) itself will be represented as a linear combinatiop,qf, ..., ™. Due to the

agreement of the invarian®), one will obtain the same linear combination for both
families of lines. Moreover, due to the agreement énitivariantsA), from no.27, the
six-vectorsp(s), p'(9), ..., p"(9), andp(s + &) of the one family of lines transform into
the corresponding six-vectors of the other familylioés under a unity transformation
that is independent of, so the two families of lines are projective. Conebfs
projective families of lines will yield the same invattisA) andB) in a natural way.

We shall refer to then linearly-independent six-vectons, p’, ..., p"™ as the

fundamental systemnd the linear combinatidB) as thedifferential equation. In place
of the p, p', ... p(”‘l), one can also employ any other linearly-independent,

inhomogeneously-normalized linear combinations of themy-at", ..., " — as the

fundamental system. The linear combinationsefor’", ..., " then appear in place of

the linear combinatioB) as the differential equations. One will chooseftimelamental
systemt', ¢, ..., " in such a way that as many scalar products as possibleawish, or
at least remain constant.

In the metric theory of curves, the fundamentateys', t", ..., t" corresponds to the
triad of unit vectors of the tangent, principal nornaalgd binormal, while the differential
equations are thierenet formulagno.5).

We will now carry out the program that was presenteck Hor hyperbolic and

parabolic ruled families and for torses, in turn. Whall leave the treatment of the
elliptic ruled families, which can result from the saprocess, to the reader.

§ 15. Hyperbolic ruled families.

57. Arc-lengthsand normalization of p.

Arc-length s Following the process &. Thomsen(1926), we define the arc-length
shy:
(65) & = D4(p_,1_o,f,p)_
(pp)

swill be established to be real by (65) since thmerator is positive for hyperbolic ruled
families, from no.50, and the denominator is positive anyway. As fo metric arc-
length of the curves, an additive constant (et ,drigin of thes-numbers) and the sign
(e.g., positive sense of teemumbers) will remain arbitrary.

The arc-length s= s(u) is completely invariant and invariant under the aaeter
substitutiong63).



§ 15. Hyperbolic ruled families. 77

Proof: The right-hand side of (65) is semi-invariant afurction of the scalar
products ofp,p,p,p. However, it is also completely invariant, so undée t

renormalizationp = op, one will obtain:

(Bp)* = ®(BP)*,  D,(p.p.p.p) = 0°D, (0. 0.5, ).

With the parameter substitution (63), one will gdter a brief reduction:

ds\'_ fdu)' (dpdp)'_ o duY
(duj S(duj’ (dudnj (bp) (duj’

dp d’ d% (dujﬂ
D l_1 l_ :D ) L 1 - ;
{p s e (PP, D) =

one gets the parameter invariance of equationk@sybstituting these expressions.
Interpretation of the arc-length sin terms of the &model:

For any four lineg® p', p", p™; p', p", p", p™: 0", p", p", pY, etc., we form the
invariant| that is described by (48) and (49), and sum tls®late values of the fourth
rootsé/_l. Upon passing to the lim¢ — 0O, the sum:

i)

_ 1
sg—ﬁz

will converge to the arc-lenggwhen one fixes the initial ling’ = p(0) and the final line
p" = p(né), and the number of intermediate lines will ingeavithout bound as — «, &

=1/n-5 0.
Proof: It follows from:

2

POZP,P'ZP+£15+%13+..., p' =p+2ep+2e%H + ...,

.09 L. 9 ;.
W=p+3eproeh+—e’p + ...
p=p p 5 p 5 p
that:
Il

(%) 0% (0%") (0'p") ('p™) (0"p") = %8“(15- R

Dap, p', 0", p") =Da(p, p + €9, p +26p+ 2%, p + 3£b+g£2ﬁ+§£3'ﬁ) + ...
=81 D,(p,p,p,p) + ...;

hence, from (48):
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| = 1873 g4 D4(P.al.3,f,¥’) +
(pp)
Normalization of p: After introducing the arc-lengtls, we normalizep by the

requirement that:
(66) pip =1

The six-vectorp(s) is established up to sign in that way. The nexjuent (66) can
always be fulfilled by real six-vectors, due to @assumption thapp > 0 (no.48). As
we deduced in nd5, the normalization condition (66) is semi-invatiagn normalizec
thus remains normalized under any unity transfoionat

One deduces the normalized six-vedior o(s) p(s) from an unnormalized ongs)
by setting:

AL
')

For a normalizeg(s), one gets from (65) and (66) that:

(67) Da (b, 9", p", ") = 1.

58. Fundamental system and differential equations.We take theundamental
systemto be the six-vectors, p', p", p"', £, €, in which¢, ¢ are the six-vectors of the
two skew nodal tangents that belong to the liig). The scalar products of the
fundamental system are summarized in the follovedue:

polop e " o|E|E
p| O 0 |-1 0 0|0
p'| O 1 0| -2a (0|0
p"| -1 0 |2a| & 0|0
p"| O |-2a|a |4a°-1|0]0
¢ | O 0 0 0 0 b
t| O 0 0 0O |b|O
In this, we have set:
(68) Aa(s) =p" p", b(s) =ttt 0.

The remaining scalar products follow from (66), }6&nd (68) with the use of (58).
Thus, e.g.p'p" will imply:
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pr pn — 0 and pr pnr - — pn pnr - — 2a

by differentiating twice.
From (34), the table of products will imply that:

|p, pr’ pn, pnr, E, E |2 - Dﬁ(p, pr’ pn, pnr, é, E) = b2 > 0’

the six six-vectors of our fundamental system are timefact, linearly independent, and
can therefore be employed in plangpf’, ..., p®.

Ifp, p, ..., p (b, p, ..., P, resp.) are linearly dependent then the ruled familly wil

be contained in a linear system of lines (a linear cempesp.), as we can also employ a
simple fundamental system with only four (five, respiv&ctors (no56) in place of our
fundamental system. We will come back to it in 6@.

Normalization of ¢, ¢ : £ andé must now be normalized, just ligebefore. That shall
come about from the demands that:

(69) p"" E = 1’ p"" E = 1 .

¢, € will then be determined uniquely and semi-invariant. €badition (69) breaks
down for:
pe=0 (pE =0, resp.).

From no.51, these equations are fulfilled identicallyuronly for parabolic ruled families
or for hyperbolic ruled families with one or two rdéicgar nodal curves. The former will
be treated in § 16, while the latter will be treated inG@ and in this paragraph we will
assume that the nodal curves are non-rectilinearexénd the foregoing table by scalar

products of the derivativgg”, ¢, ¢ with six-vectors of the fundamental system:

p | oy p" prol ot |
p|2a|-3a | o -4a°+1|4ad| O | O
¢ |0 0 0 -1 0 C
¥|o0| O 0 -1(b-c|O

In this, we have set:
(70) cs)=t¢.
Thedifferential equationshen read:

pro=-@ +1)p -3ap -2 ¢ +%E+_f’
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(71) e +alp  +2ap Coaprele

Al +a'p + %pl * + pm * b -C

o
1

Proof: In order to prove, e.g., (J1lwe first set:
pHH :Ap + Bpl + Cp" + Dp"I + Eé + FE

with undetermined coefficients, and define the scaladget withyp, p’, p”, p"', ¢,
namely:

|

p" = 2a =-C,

o = -3 =B - 2aD,

p' " = a' —4a%+ 1 =—A+2aC+aD,

p" p" = dad =-2AB+aC+ (4 - 1)D,
tp =1 =bF,
Tpm = 1 =bE.

The solution of this linear system of equations yields)(71
From no .56, it follows from (71) that:

The hyperbolic ruled family with non-rectilinear dad curves are characterized
projectively by three functions(sp, b(s) # 0, c(s) of the arc-length s; i.e., they are
projective to each other if and only if they agme¢he invariants &s), b(s), # 0, ¢(9).

A curve will be established in an analogous way in the m#taory of curves by
two invariants (viz., curvature and torsion), up to motigus 5).

59. Consequences of the differential equations.

1. The tangent system of the family of nodes and thengruled family are
differently-woundno. 48).

Proof: From (66)p'p’ = + 1, so it will follow from (71) that'¢' = ¢ ¢ =-1.
2. The osculating complexis determined uniquely by:

(72) s=¢-¢,
and since:

ss =—2b#0,
it is non-singular.
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Proof: From (60) and (62), the osculating compdeis contained in the pencil of
complexesiit + A, € ; A1 : Ay is determined by the demand that:

O=p"" s=p"" (Mt+ A, €)= A+ s.
3. The ruled families with fixed non-singular osculating complexes are
characterized by:
2c-b =0.
Proof: From (71) and (73):
s=t—¢ =ogs=0(t-¢)

is necessary and sufficient foc 2b' = 0.

4. For b > 0,there are precisely two lineg q that belong to the second osculating
quadric, as well as the osculating comptexThese lineg, q, and the nodal tangents,
¢ define a hyperboloidal quadruple of lines with the double ratrodlL.

Proof: If one starts with:
q=Ap +Bp' +Cp" +Dp" +Et + Ft,

with undetermined coefficients, scalar multiplies it fayp’, etc., and employs the fact
that:
qap =gp’ =qp” =gs =0,

which comes from the table in 88, then one will get:
q=ap+2ap +p" +A(E+E).

It will then follow fromqq = O that:

60. Hyperbolic ruled families with one or two rectilinea nodal curves. If a
nodal curve is rectilineathen one will have:

(73) p""E - 0’ p"" E - l,
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instead of (69), s& will be a constant, singular six-vector that is bksaed up to an

arbitrary numerical factor. All lines of the rulednfily will be contained in théxed
singular osculating complex = ¢. Instead of the differential equation (y,1one will

have:
(74) p"" = - (a" + 1)p _ mlpl _ mp" + E.

All derivatives ofp can be expressed as linear combinations, of, p”, p"', € with the

help of this differential equation. As a result, wen adready establish the five six-
vectorsp, p’, p”, p"', ¢ as dundamental systefmo.56). It then follows from (74) that:

The hyperbolic ruled families with precisely one rectilinear nodalve are
characterized as projectively-invariant by the two invariar{s,d(s) # 0.

If both nodal curves are rectilineahen the ruled family will be contained in the
hyperbolic system of lines with £ as the focal linediked osculating systém Equation
(69) must be replaced with:

(75) p"E=p"" € =0,

and the differential equation ()with:
(76) p"" - — (a" + 1)p _ mlpl _ mp".

Thus, the four six-vectons p’, p”, p"' already define fundamental systenand one will
have:

The hyperbolic ruled families with two rectilinear nodal curves draracterized as
projectively-invariant by the single invariansh

Equations (74) [(76), resp.] are derived in the same wéglas

In order to make things more intuitive, we juxtapose higperbolic ruled families
with one or two rectilinear nodal tangents andgimsodels.

&model Ruled family

All lines of the model have one commoiiihe ruled family has one rectilinear nodal
line of intersectiort, and thus belong to thecurve ¢, and thus belongs to the singular

singular linear complex; p°, p', p", p", ¢, | linear complext; p,p,p.p, ¢ and any
and any other ling™ of the model, will bg other derivative p™  will be linearly
linearly dependent. dependent.
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All lines of the model have two commorihe ruled family has two rectilinear nodal
lines of intersection, and thus belong to airves, and thus belongs to a hyperbolic,

hyperbolic linear system of lineg’, p', p", | linear system;p,p,p,5, and any other

p"', and any other ling™ of the model will| derivativep™ will be linearly dependent.

be linearly dependent.

8§ 16. Parabolic ruled families.

61. Parabolic ruled families with non-rectilinear nodal eirves. In order to define
thearc-length sandnormalization of the six-vectofs ¢, we set:

(77) p'p' = 1’ E' E' = — l, p"' E"' = .

Starting with the unnnormalized ¢, and an arbitrary parametey one will deduce the
normalizedp = oy, ¢ = ¢, and the arc-lengt{u) by means of the equations:

(78) 1=p'p'=—pp, -1=¢¢=—Ftk 1=p"t'=

As in no.57, s is completely invariant and invariant under theapaeter substitutions
(63), while the normalization @f andt is semi-invariant. The sign and additive constant
of swill remain undetermined.

The first two requirements in (77) are alwaysifiell by real six-vectors: From no.
48, pp > 0, while from no51, £¢ # 0 for non-rectilinear nodal curves. From (34), it
then follows from this that:

P b, EE[ == Dy(p, bt EE) == (bD)(ED) >0,
and thusé¢ < 0.

The third equation in (77) can likewise be satdfby real six-vectors under the
assumption of a non-rectilinear nodal curve, sitteequadrics were excluded (rsd);
one will then have:

If ¢ = 0 is valid identically iru then either the ruled family is a quadric or ose i
dealing with a rectilinear nodal curve.
Proof: From (60), (61), and fgré = 0, one will have:

pt=pet=jpet=jt =0,
pt=pt=pE=7¢ =0,

pt=pb=pt=pt =0.
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Either ¢, & are linearly dependent (viz., a rectilinear nodal curee)p,p,p,p are

conjugate to the bundle of complexég +A,t+At, and are thus themselves linearly
dependent (viz., a quadric).

We employ the six normalized linearly-independent sotwes p, p', p", ¢, €', ¢’ as
thefundamental systenilhey imply the table of scalar products:

p p' p" E E' E"

p] 0012|000

"l 0oj0| 0|1 0|2

with:

|p,p', p", & ¥, & F=—Dg(p, p', p", £ ¥, €)= 1.
In this, one sets:
(79) Aa(s) =p"p", 2c(s) = ¢" ¢".
We then get:

l":_a’ —2a’+E’
(80) e e

ce+2ct +p
as the differential equations. Thus:

The parabolic ruled families with non-rectilineaurves are characterized in a
projectively-invariant way by the two invariantespand «s).

From (8Q), Dy(t, €', €', €"') = 0. This gives the theorem:

The nodal family of a parabolic ruled family is aga parabolic ruled family; both
ruled families have the same nodal curve.

It follows from this indirectly, and upon refergrio no.51, that:

The nodal families of a hyperbolic ruled family again hyperbolic ruled families;
they each have one nodal curve with the given ridedly in common.
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The interchangeability of the parabolic ruled fanpi{(g) and the nodal family(s) is

clearly expressed in the table of scalar products anchensame construction for
equations (80, (8Qy).

It follows from (60), (61), (62) that = ¢; i.e.,the osculating complex is singular and
has the nodal tangent as its axis.

62. Parabolic ruled families with rectilinear nodal curves. Since the osculating
system is parabolic, as in i, it will contain the focal liné& as a line of the system, and

t, p,p,p,p are therefore linearly dependent. One then has:
(81) p=Ap+Bp+Cp+DEt (Dz0).

In this, the six-vectot is constant, in contrast to n@l. As a result, one will obtain all
derivativess™ as linear combinations ¢fp,#, ¢ by repeated derivation of (81). We can
then define the four linearly-independent six-veciggs p, £ to be undamental system
and then have (81) as the single differential equatiboe to the constancy d@f the
linear dependence ¢fp,p,p, p follows from (81). Thus, we will have (n64):

The ruled family is contained in a parabolic linear system of lingedfpsculating
system) with the focal line

We use the prescription:
(82) p'p' =1, D=1

for the definition of the arc-length and the normdi@aofp. In place of (78), one will

then have:
2

A A g .. 2
83 1=p'p'=— , 1=D =
(83) pp=—"pp @

which makess completely invariant again and invariant under) (68ce more, ang is

shown to be semi-invariant. The constant singsibavectort, and thus also the function

D(u) that was used in (83) to normalize, is determioely up to an arbitrary numerical
factor. For that reason, the arc-length is esthbti only up to an arbitrary constant
factor (along with the arbitrary additive constant)

Analogous to what we did in n61, we will get the differential equation:

(84) p" =-ap-—2ap +¢,

which agrees with (&), with the invariant(s) that is defined by (79). We then obtain
the theorem:
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The parabolic ruled families with rectilinear nodal curves are eterized in a
projectively-invariant way by the single invariar{sa

8§ 17. Torses.

63. Fundamental system and classificationAs we agreed in ngl6, we assume
that pp # 0; i.e., pencils of lines, tangent families of planarves, and the cone will

remain excluded. Torses will then be the tangent famoif non-planar curves, atite
theory of torses is identical with the projective differential getoynof the space curves.

The osculating complex is always determined uniquely (n84). In addition, we

have:The osculating complex is non-singular.
Proof: The bundle of complexdsp +A,p + A3p has typec) (nos.34 and49), and the

two conjugate quadrics will coincide in the pencil of lings + t£p. Any singular six-
vectors that satisfies the first three equations of (62):

ps=ps =ps=0
must then be representablesby tap + top. The last two equations of (62):

ps =ps=0
then yield:
,uz(pp) = _:uz(ijij) =0, ﬂl(p.ij.) = :ul(pp) =0,

son = b = 0. (62) will not be satisfied by any singular six-veapart from the null
six-vector.

The osculating complexu) contains the four pencils of lines whose vertices are four

“successive” points of the curve of regression, and which lie in fsuccessive”
osculating planes; i.es(u) fulfills the conditions:

s(U) p(u+ & =s(u)p(u+g =0,
up to orderé’ inclusive.

We take the six-vectons,p,p,p, b, s to be afundamental systensubject to the
definition of arc-length and the normalizationpodnds. Due to the fact that:

(85) lo,b.B, 5,5, 5 F=—Delp,p,B, 8,5, 5) == (¥h)° (s5) > O,

they will be linearly-independent.
In what follows, we distinguish:
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a) ps # 0: Torses with varying osculating complex
b) p's = 0: Torses with a fixed osculating.

In fact, ps = 0, together with the relations (62), which are trueamy case, is
necessary and sufficient for the linear dependency, pf ..., #, and thus for the
constancy of the osculating compkefno.54). We omit discrete valuaswith ps =0.

64. Differential equations.
a) Torses with varying osculating complexes.

In order to define tharc-length s and the normalizationpfinds, we set:
(86) p'p" =1, ss=—1, p(5)5 =n=1

In order for the first demand to be fulfillable, therdes withpp< O must be
converted into torses with p > 0 by reflection. From (85), it is then necessary that
0, so the second condition of (86) can be likewisesfgadi The last demand is
admissible, sincéiS' s # 0. Starting with unnormalizeg s, and an arbitrary parameter

one calculates(u) and the normalize@ = pp, 5 = s, by using:

1:,02%, -1=07ss, 1:,002.

S5
From the table of scalar products:

p p' p" p"' p"" 5
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with
(87) a(s) e pHI plll, 2C(S) = p"" p"",

one will obtain the differential equations:
(88) p®=(C —4aa) p- (4" +a' - ) p' - 3ap" - 2ap" 135, s =-7s.
One will then have:

The torses with varying osculating complexes are characterized irojacpvely-
invariant way by the two invariantgs), c(s).

b) Torses with fixed osculating complexes.

Sincep, p, ..., p are linearly dependent, the five six-vectprg, ..., p already
define a fundamental system (fa®). As we did ina), we will then obtain (88 again as
a differential equation, but withh = 0. In this, one must observe that the two fumstio

a(s), c(s) can be subjected to a normalization condition; simce 0, equation (89 is
distinguished as a normalization condition. We walire back to this in n&8.

8 18. Establishing a family of lines by invariants. Self-projec/e families of lines.

65. Existence theorem.Up to now, we have shown that a given family of lirees
determined as a function of the projective arc-lersytinp to principal projectivities, by
invariant scalar products of the fundamental system lamdnvariant coefficients of the
differential equations. Conversely, we now starthvtihe invariantsa(s), etc., being
given and then prove the following theorem, which is@y@us to the main theorem of
the theory of curves (n®):

There always exists a family of lines in N8&.60, 61, 62 that always has arbitrarily-
given functions @), b(s) # 0, etc. of the arc-length s as invariants.

Proof: We restrict ourselves to proving this for paraboliled families with non-
rectilinear nodal curves (n61). The other cases can be resolved analogously.

a) From known theorems about the existence of solutadnsrdinary differential
equations, one has: For arbitrary, given, regular funstags), c(s), the differential
equations (80,) will possess precisely one solutip(s), £(s) with the arbitrary initial

conditions:
p(0),p'(0),p"(0);  €(0), €(0), £"(0).

L) For every system of solutiopgs), £(s), one has the identities:
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(89) 2PP- P+t R+2ck k+ kK k- Kkk- KjJ=const,

with p, o= 1, ..., 6; the derivative of the expression on theHaftd side equal sign with
respect te will then vanish identically on the basis of thefeliéntial equations (80).

)) The initial conditions- which, froma), are arbitrary- will be chosen as follows:

pO = 1| 0] O] O] O |0

p@= 0

p"(0)=-a0) | 0 | O +1 | O |0,
(90)

€0) = 0 | O | 1|0 | O |o,

'0) = 1 1

0= 0 e 0] 0 E: 0,

0= 0 | 0 gO)J O | O |O.
They obviously fulfill the table of scalar produttst was prescribed in n61

J) We choose the system of solutions that are datedrfrom the initial conditions
(90) in the following form:

Po(9 =4, ke® =2,

Ce - 1 P
(91) P, (9 —ﬁ(yﬁﬂfi), K, () ﬁ(yﬁ Vo),

P (9 =-alS)y, - ¥, ki(9 =c(9)y, + v,

This Ansatz is admissible, since the 36 linear agnoa (91) can be solved for the 36
unknown functionsy; . If one substitutes, first the initial conditio(@0). and then the

expressions (91) in (89) then that will give:

|1 p-o=%3
y;y2+y§y;+yp3yp6+yp pl+yp p2+ypi/p _{0 ,0—07513'
From (26), they; are the coefficients of a unity transformation éwery fixed value of
s, and thus also fulfill equations (24). With thelgh of (24), however, it can easily be
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shown that the expressions (91) fulfill the table ofescproducts of no61 identically in
s. That means: The family of lines that is defined{®) is a parabolic ruled family with

arc-lengths, normalized six-vectas(s), and invariants(s), c(s).

66. Self-projective ruled families. As an example, we now treat the ruled families
that are characterized by the constancy of the invari@gtthe main theorem in n65.
Due to the constancy of the invariants, these soeca#éi-projective ruled familieare
transformed into themselves by:

s=8§ +Kk

with the arbitrary constark; i.e., at least on@ne-parameter, continuous, projective
group exists under which the ruled family remains fixed as alevhoAll maps are
collineations, as they would be for any continuousjeptive group. If we restrict
ourselves to a suitabledomain then there will always be a collineation of th&ed
family into itself that transforms any two lines bétruled family to each other.

Just like the self-projective ruled families, theimodelswill also be transformed
into themselves by certain collineations. Thesermdiiions are given by:

s=8§ +me (m=whole number)

and define a discontinuous group.

The self-projective ruled families define the line-getms counterpart of thé&\V-
curves which were investigated b$. Lie and F. Klein especially,which we would
prefer to callself-projective curves. Naturally, the self-projective ruled families will
remain nodal curves as a whole under all collineatisosthose curves will be self-
projective curves.

The explicit representation of the self-projectivded families is obtained by
integrating differential equations with constant coefits. Since the differential
equations are linear differential equations, the integ{dl can be represented as
elementary functions of the arc-length. We would like restrict ourselves to
determining theself-projective ruled families with rectilinear nodal curves:

a) Hyperbolic self-projective ruled families with two rectilingedal curves.
From (76), we have to integrate the differential equatio
p"" + %p" + p = 0

and choose the initial conditions in such a way thatdbk of scalar products in n68
is fulfilled. By elementary calculation, one obtin

a>1:

\J 2kA p = sinkscosAs| sinkssinAs| 0 | coss sinAs |- cosks cosAs| 0,
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with k= a_+]" A= a__l
\ 2 \ 2

a=1
2p = COs | Sirs |O| —ssins | scoss | O,
1>a>-1:
4kAp = € cosAs | €sinds |0 |-€°sinds | —€®cosis |0,
with k= ]'__a , A= E :
V2 V2
a=-1
J2p= Cos | Sis |0] -sSins | sCoss |0,
a<-1
2kA p = Sinks CosAg| Sinks SinAs| 0 | Coss SinAs|— Cosks CosAs| 0O,
with k= | |22 =] 722
2 2

For the ruled surfaces that are spanned by thd fakaily, one gets, for:

a>1: X =VCosls, %X= VSiMs, X=- cok S,
a=1: X =VCOSS, %= vsins, X= §
(92) 1>a>-1:x =vcosls, x= vsinl s, x= & | Xs =1,

a=-1: x =vCoss, %= vSins, x= s
a<-1: X =vCosis, x= vSiM s, x=—- cok s,

with the parameters v. The linesg = x; = 0, andxs = x4 = 0 are the two nodal curves.
If one interprets the; as homogeneous, rectangular coordinates then amesasily
discuss the forms of the surfaces. &1, one will obtain thepiral screw surfaceand
for 1 >a > - 1, one will getLie’s spiral surfaces. The group of projective maps that
transform the ruled family into itself consistssafews (rotational stretchings, resp.)

b) Parabolic self-projective ruled families with rectilinear nodal sy

From (84), one must integrate the differentialadonn:
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p"" + mp" = 0
with the initial conditions that correspond to the ac@koducts of nc61. Fora= 0, one
will get:
J2p=s|1|0Fs|g|s
The ruled surface that is spanned by the ruled familywengoy:
(93) X1 = VS, Xo=V—-5, X3=§, X4 = 1.

Performing the calculation fa# 0 will be left to the reader.

67. Ruled surface of degree 3Among the self-projective ruled surfaces that were
treated in no66, one will find theruled surfaces of degree @), namely, the ruled
surfaces (92) witha = ¥5/3, and thusk = 24, and the ruled surfaces (93). After

eliminating the parametessv, one will obtain the equations:

(¢ +X) %+2x%X =0,
(94) (¢ —%) %+2x%X =0,
(GX+ %) %x—x% =0

from (92), witha = ¥5/3, and from (93), after switching, x4, resp.

Discussion of the forms:
a) (94) [(94), resp.] (Fig. 18):

We interpret thes as homogeneous rectilinear coordinates. The gererwill then
intersect the 3-axis perpendicularly. The 3-axid the imaginary line in the plamg=0
are the nodal curves. We introduce the awngleetween the generators and the plare
0. One then gets:

X, _ —-sin2w for (94 ),
X%, | -tan2w for (94 )

It follows from this that: The curve of intersectiof the cylinder of rotation¢ + x5 =

x. with the ruled surface (9#[(94), resp.] goes to a sinusoid (four periods of @&amn
line, resp.) under the planar development of thimdgr of rotation into two periods.

() In algebraic line geometry, it will be shown thaéré are no other ruled surfaces of degree three
besides the surfaces that are treated here.
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We have encountered the ruled surfaceg)(@4der the name afylindroid in no.31: 0
(2, resp.) generators go through the points of the 3-axis xgit> X* (X < X7, resp.),

and only one generator will go through the poilt® (X = x;). These generators are

torsal; i.e., they are discrete lines witp = 0. They will be fixed or permuted with each
other under the collineations of the cylindroid into itself

=g

Figure 18.

From (94), two generators will go through any point of the 3-athis; surface is cut
out in Fig. 18 by two planes parallel to the plage 0, and likewise, the cylindroid is cut
through a cylinder of rotation.

b) (94s;) Cayley surfacdFig. 19):

The nodal curve is the line of intersectgof the planesg; = 0 andxs = 0. The plane
x; = 0 cuts the surface along the non-singular conic segtigith the equatiom, x4 + X;

= 0; Kk andg have the poinP in common. Since the generators belong to a parabolic
system of lines with the axg the sequence of intersection points of the generatitis w

g will be projective to the pencil of planes througlnd the generators. As a result, the
generators cut the conic sectioand the lineg along a projective sequence of points, for
which the point of intersectioR of k andg does not correspond to itself. In Fig. 19, all
four vertices of the coordinate tetrahedron are assumée real points; a section of the
surface that is bounded by the nodal lgjyehe conic sectiok, and two generators is
represented.
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Figure 19.
Projective generator of the ruled family of degree 3 (Fig. 20)

We have just now defined the ruled family {ptb be the set of connecting lines between
points of a lineg and a projectively-related conic sectignin whichg and x have the
point P in common, which does not correspond to itself.

/
, g

h 9 h

&7 /G /&Y

Figure 20.
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The ruled families (99 [(94.), resp.] are obtained as sets of common lines that are
met by two skew lineg, h, and a non-singular conic sectiwwhose plane will be cut by
g at the curve poin® and byh at the external (internal, resp.) po&t

Proof: We transform the configuration for (p4hat was specified in Fig. 20 by a
projective map in such a way th@tvill be the 3-axis of a rectangular coordinate system,
h will be the imaginary line of the plang = 0, andx will be an ellipse with a circular
base projection. As an elementary calculation ghibw, the lines that meet them will
then define a cylindroid. One proves the assertion fof) @4alogously: in place of the
ellipse k with circular base projection, one will have a conéct®n whose base
projection is an equilateral hyperboloid.

The generating family of the Cayley surf46ds) will be transformed into itself by
not only s= § +k, but also the two-parameter continuous group:

S:k1§+k2,

(k1, ko = arbitrary constants) That is based upon the fact that in 63.the arc-length
was established only up to an arbitrary constant factbaararbitrary additive constant.

The transformations that were considered up to novsw@perimposed for all ruled
surfaces of degree 3 by a one-parameter group of collinsatiah leaves the individual
generators fixed, namely:

X1= PX, X2 = pP%, X3 = PXs, X=X,
for (94,) and (94) and:
X=X+pX, X=X+ 0%, X3 = X, Xa = X,

for (94s). With the addition of these collineations, the surfa@k) and (94) will be
invariant under a two-parameter group of collineations and the surf@dg, under a
three-parameter group of collineations.

68. Self-projective torses (self-projective curvesJust like the self-projective ruled
families, theself-projective torsesvill yield invariants by integrating the differential
equations with constants. The curves of regressioh refain fixed under the
collineations that transform the self-projective terggo themselves, and will thus be
self-projective curve@o. 66).

We thus satisfy ourselves by determining the self-ptiwgtorseshat are contained
in a linear complex =X fixed osculating complex) From (88) with 7 = 0, one obtains
them by integrating the differential equation:

(95) p® + 2ap™ + (4> - ) p' =0
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with initial conditions from the table of scalar prodsigt no.64. In that, we recall that
we still have to dispose of a normalization conditionp and the definition oé. The

first normalization condition (86) will remain fulféd under a substitution:

(96) p =, §=0s (o= const.)
since
| — dzﬁ
P

The invariants remain constant and transform as:

2a = iZZa, 2 = %Zc,
o o
so

452 -2¢ = i4(2a2— X).
g

We can then transform equation (95) into:

(97) p®+2ap" 2y =0
or
p(5) + Zap’” =0
by a substitution (96).
If (971), we restrict ourselves to the plus sign, and felementary calculations we
will get the torses with the following curves ofression:

a>1: Xy =cC0SAS, X2 =SiNAS, X3 =—COSKS, X4 = SINAKS,
a=1 Xy =C0SS X =Sins, X3 =S, X4 =1,
(98) 1>a>-1: X =C0SAS, X =sinAs, x3=¢€"° Xq = €75,

a=-1: x;=Co0ss, X =Sins, X3 =S, Xa=1,
a<-1: X, =Co0Ss/As X =SinAs, X3=-C0SkS, X4 = Sinks.

In them, x andA are the same positive numbers as inG&o.
By means of (8), one will get:

The self-projective curvg88) are identical, up to collineations, to the secoathily
of principal tangent curves of the correspondinfpdusurfacg92).

In homogeneous rectangular coordinage$98) will yield thehelicesfor a = 1 and
the spatial logarithmic spirals(= curves on paraboloids of rotation with logaritbm
spirals as their base projections) for 4 >- 1.

In (97,), we restrict ourselves ta = 0. That will give the torse with the curve of
regression:

(99) X =S, X = S, X3 =S, Xs = 1.
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It then follows from (8) that:
The curve(99) is identical, up to collineations, with the principal tangent curves of
the second family of the Cayley surf§@a).

69. Self-projective spatial curves of order 4 and type 2.The curves that are
contained in the curves (98) wih= £5/3 (and thusx = 24) are speciaspace curves of
order 4 and type 2"). By the substitutions:

As As
tan— =u tan— =u, resp.),
> ( > p.)

one will obtain the equations of these curves f(68), upon switchings andxa:
xt=1-u", x=20(1-0%, X3 = 4u (1 +u?), Xs = — 4u? — (1 +u%) 2
(100)
xt=1-u®, x=2u(+U0), X3 = 4u (1 - U9, Xs =+ 4u? — (1- 1) 2

resp. From no68, the curves (100 [(10G,), resp.] lie on ruled surfaces of order 3. They
define a subset of the intersection of these sesfagth the surfaces of order 2:

X =% +%=%=0 [ +% -~ x =0 resp]

The rest of the intersection is the real (“imagyaresp.) pair of lines:

X3 +Xg =X —X =0, X3 —Xg =X +X% =0,
or
X3 +iXg =X3 +1iX2 = 0, X3 —IXq =X —iX2 =0,
resp.
Discussion of formsin homogeneous, rectangular coordinates (Fig. e will
obtain:
X =,/ COS2P co® X, =. COSP Sih x,=— sip2 ,
cosyp sing Xa=1
= , = , =—tan resp.),
c0s 2 % = os 2 X 2 (resp.)

from (10Q) [(10(), resp.] after introducing a new parameger
The curves are dashed in Fig. 18, while their lpmegctions are represented in Fig.
21. The point®) in Figs. 18 and 21 correspond to each other.

() One will find more details on space curves of orderditgpe 2 in, e.gE. Pascal:Repert. der hoh.
Math. I, Leipzig-Berlin 1922, Chapter 29. The space curves of ef@erd type 1 are known, since one
obtains them as the intersections of two second-cudéaces.
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Q
.._._._(i}._._._
Q

Figure 21.

70. Cubic space curvesThe curve (99) and the curves that are collinear te ithe
simplest algebraic, non-planar curves, and are callit space curve§). They are
also obtained from (98) with=x= 5/ 4, sok = 3A.

The cubic space curves will be transformed to themselves under yot amie-
parameter group of collineations, but also a three-parameter group of catilomes.
Those collineations are determined from:

_ kS+k _
(101) 5= e (ki ke —ko ks  0).

Proof: By means of (101), (99) will again yield a cubic pseter representation in
§. From (101), that map of the curve (99) into itself wilen give a linear
transformation of the point coordinatgsand can thus be realized by a collineation.

Discussion of the form(Fig. 22):

The curve (99) is partly the intersection of the coriesaer 2:

X =%%=0, X;=X%% =0,

which have the linee (2 = x3 = 0) in common. Let one cone be transformed into a
cylinder by a suitable collineation; it is dashed in Fig. 22.section of another cone
(vertex$) that is bounded by a cubic space curve and two genemt@wesented. The
generator of the cylinder is an asymptote.

() Cf., Th. Reye: Geometrie der Lage ,lILeipzig, 1923, pp. 163t seq. furthermore,E. Pascal:
Repert. der héh. Math.,|ILeipzig-Berlin, 1922, Chapter 29.
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Figure 22.




Chapter Il

Line systems

§ 19. Definition of a line system.

71. Parametric representation. A line systent’) is given by:
p=p U0

with the independent parameters u?, which vary in the region < u' < ul, u> < U? <
u?; the six-vectolp (u', 1) is determined only up to an arbitrary facm(u’, u?) # 0.

One can then generate the line system in such a \aaptie line will go through every

point of a given plane.
2

o°p,
au' ou’

0
The partial derivatives;—’i’ ( resp., etc.) transform just like thg(o=1, ...,
u

62
6) under projective maps by (19) and thus define the six-vemt(}ss%, resp., etc.).
u ou

We denote the firsf) partial derivatives by lower indices 1, 2, and demaatfdr every
locationu®, u? in the domain of definition:

p1, P2, p3 are linearly-independent; in particular, eitheror its first derivativep; will
be a zero vector.

That will give the followingmap of the line system to the points of an imageepl

At any pointu'*, u' in the domain of definition, there exists a sub-dom&ir £< u*
<sut+ g u?- e<u?<u? + gfor which the number-pair', U? is associated with the line
p(u*, U%) in a uniquely-invertible way®(. If one interprets thel as inhomogeneous,
rectangular point-coordinates in an image plane thetirtese of the line system in the
sub-domain will be mapped to the points of a quadratic doimadire image plane. Any
curveu = U (t) of the image domain will be in one-to-one corresponderitea family
of lines that is contained in the line system, and drgction of advanceal' : U* in the

() One also finds the terminology “ray congruence” uséte quiten.
(® We shall not denote the second partial derivativashyn order to express the fact that they do not
define a tensor (cf., n@5).

() We consider the three parameter-paftar’; u* + a', u? + & u' + b', > + b%. Fora' b> — & b'# 0
and sufficiently small absolute valuesafb, any two of the three six-vectors:
p(U', ) put +a, P+ @) =p+apr+ap+ .. pUt+bL P +b?) =p+btp +b7p +

will be linearly-independent, so they will determindidist lines.
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image domain will correspond to a “direction of advanicethe line system. Here, the
dot means the derivative with respect to the parareter
By repeated differentiation qip = O with respect to, k = 1 or 2, one will get the

identities:

(102) pp =0, p pi =0, p

2

0°p
ou' ou*

+pipk =0, etc.

72. Classification of line systems. Torsal modelWe now consider the family of
lines in the line system:

o p = p (UX), VD)
that is given byl = u'(t). From:

p=pu+p,0°= piui’ SO pp :pipkuiuk,

one will get from no46:

(103) g, uu=0,
with

9%p
au' ou’

Ok =pPipk=—p = Oki

as the characteristic condition for the given fanulylines to be a torse. We have

2
omitted the summation sigE from (103), corresponding to our previous convention.
ik=1
We letr denote the rank and Igtdenote the value of the determinant of gheand
we will then have the followingprojectively-invariant and parameter-invaria§ 20)
case distinction:

} line system

a) r=2 a) g<0: hy_pe_rbollc
£) g>0: elliptic

b) r = 1:parabolic line system

¢) r = 0:singular line system

a a) Two families of torse:
) Notorse

with b) One family of torses

C) Just onetorse

The singular line systems are the bundles of lines and the line fields
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Proof: The fact that the bundles of lines and lin&d$ieare singular line systems is
obvious. Conversely, one has: For 0, one will have the identity:

2

_0p
ou' ou ’

P P Do a,b| =0

for any choice of, k = 1 or 2, and arbitrary six-vectoisb. From no.26, the six given

six-vectors (and since, b can be chosen quite arbitrarily, the four six-veciors:, p2,
2

0°p
ou' ou®
independent, by assumption (Md). One will then have:

) are already linearly dependent. On the other handy, p2, are linearly

9%p
- = + Bp; + Cpo,
ou' ou* Ap *+ Bp+ Cpo
from which, it will follow that:
’p 9%

ou' ouk aumou’

sincer = 0 for an arbitrary choice ofk, m, n =1 or 2. One will then havep = 0, as
well as pp = 0, for any family of lines in the line system — i.eny damily of lines is a
pencil of lines, which is the family of tangents topknar curve or the family of
generators of a cone (n46). Therefore, any two lines of the system will isest, since
they can be coupled by a family of lines of the linedeys and any of these families of
lines will go through a fixed point or lie in a fixed planéHowever, all lines of the
system must then belong to a bundle (line field, resp.).

In what follows, we shall exclude the singular line systems fracamieation as
trivial, and likewise the isolated line with rankr0.

Torsal model: We shall employ the so-callédrsal modelsin order to make the
properties of line systems that relate to torses (22 intuitive.

hyperbolic
For { Yp } line systems, the torsal model consists of the lies faimily of

parabolic
) . rectangles
segments in a rectangular net with plahar _g (cf., no.7 and nos80, 87).
quadrilateral

Moreover, the lines of a torsal model are arbitrary.
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8§ 20. Tensors.

73. Definition of tensors. For families of lines, we can eliminate the influerof an
arbitrary parameter substitutian= u(U) by the introduction of a “natural parameter,”

namely, the arc length However, we have two independent parameters? for line
systems. Hence, the parameter substitutions:

out au'
ou' au’
ou® ou?
Tt U’

(104) ut = ui(Th, ), u? = u?(a, T?), with A= z0

cannot be eliminated in such a simple way as theya the families of lines. In order
to arrive at parameter-invariant expressions, wailévdike to introduce a suitable
analytical tool in the form of the concepttehsorin this paragraph. The considerations
that were carried out for two parametatsu?, can be carried over toparameters with
no further asumptions, and will be used in Chayten the study of line complexes for
=3.

One comes to the concept of tensor in the follgwiay:

We consider thei*, G” to be functions of and get from (104), by differentiating
with respect tda:

u = auk,

2
in which the summation sigE has once more been omitted, and we have set:
k=1

to abbreviate. Any system of quantitis a’ that is transformed like th&', u? under
the parameter substitution (104), and thus, like:

(105) a =g a,

is called acontravariant tensor of rank fupper index!). By contrast, any system of
guantitiedh,, b, that is transformed by:

(106) b =3

is called acovariant tensor of rank (lower index!).

We now also understand belatedly why we gave pmordinatess lower indices
and plane coordinateg upper ones in n®: We shall speak of collineations, instead of
parameter substitutions, for the moment;Xhé&en transform analogously to (106) under
(3a) and thav transform analogously to (105) under (4a).
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Tensors of higher rankan be defined with the help of tensors of rank 1: For
example, one understands a third-rank tengprthat is covariant in and k and
contravariant i to mean a system of quantities:

Ay AL Ay Ay By, By, By, By,
such that the system of quantities transformsgila r' under any parameter substitution

(104), in whichp;, gk, r' are tensors of rank 1.
One will get:

a; bi — gk Bk
from (105) and (106) for two arbitrary tensagsand b* of rank one & covariant,b®

contravariant!); i.e.the sum ab' + a, b® is invariant under arbitrary parameter
substitutions. It likewise follows that for higher-order tensoragowill have, e.g.:

P =3P TT,
in whichp', ¢, r, are tensors of rank 1.

Example: In (103),gk = gkiis a Ssymmetric, covariant tensor of rank 2, apai' U is
a parameter invariant. A special mixed tensor of ranklDbe given by:

1 fori =k,

107 k=
(107) 9 {Oforiik.

All components of this tensor are individually paramateariant. It follows from:
o' G=pa+pd=pd=070=9 nT,

in whichpi , g are arbitrary tensors, thaf transforms likeg; b, so it is, in fact, a tensor

of rank 2.

74. Rules of calculation.One has the following rules of calculation:

a) Addition:  One will again get a tensor upon adding the corresponding
components of equal-rank tensors; e.g.:

a, th, =G

b) Multiplication: A new tensor will result upon multiplying all comportewnf one
tensor by all components of a second tensor; e.g.:
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t — t
aik brs - C|krs;'

c¢) Contraction: If one sets one upper and one lower indices in atergual to
each other and sums over that index then one will getvetensor of lower rank; e.qg.:

&, =bi.

In particular, in no.73, we got the invariang b (= tensor of rank zero) by
contractinga; b, and similarly, we got the invariamt' p' ¢ r, from a,' p" o° r, by triple
contraction.

Proof: a) andb) follow immediately from the definition of the tears In order to
assert), we must prove only that the tensor:

a pd=c (0, o are tensors of rank 1)

has the sunt; as an invariant; the, > transform likem m., so they define a covariant

tensor of rank 2. However, with the help of the tengb that was defined in (107), one
will have:

i.e., ¢ will transform likep: o a b', so from no73, it will be, in fact, invariant.

The determinana of the componentsy of a covariant tensor of rank 2 transforms
like:
(108) a —ah?

under parameter substitutions (104).
Proof: By applying the law of multiplication for determants twice, one will get:

5 o
3 9;

2

DERDEN
5,0, 8 0053

az‘ﬁnﬁu
%1 8

:‘an a,
8y 8y,

75. Covariant derivation.

The first partial derivatives:, ¢, an arbitrary functiong (u', u?) define a covariant
tensor of rank 1 (covariant derivative).

Proof: It follows from:

$ (U 1) = H(U'(U,T%), w*(U, TY) = §(,T7)
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by differentiation and summation that:
gu =gu.

By contrast, one observes that the higher partiadatéres do not define a tensor; for
example:

0°¢ 0’ ., -
u't* and u o
Zau ouf Z u' ou-

will not go to each other under arbitrary parameter tdubiens, but only for special
ones.

Whereas we have previously investigated the behavioreotdimplex (line, resp.)
coordinates and their derivatives under projective tramsfbons, we would now like to
establish the effect of parameter substitutions:

Any individual complex coordinatg, (u', u?) with fixed p (0 = 1, ..., 6) is invariant
under (104), and thus a tensor of rank zero. For thabmet®e partial derivativepg)i,
(pp)2 will define a covariant tensor of rank 1 for any fixed On the other hand, the six
derivatives )i , ..., (0s)i define a six-vectaop; for fixedi (i = 1, 2) (no.71).

The scalar product of the first partial derivativesved six-vectorsp(u*, u?), g(u’, u?)

defines a covariant tensor of rank 2:
aik = Pi qk -

8 21. Invariants of a line system.

76. Invariant derivatives. Just as we did in né5 for the families of lines, our
problem for line systems is to find the properties “ia tieighborhood” of a system lipe

that are invariant under principal projectivities; i.e.determine the complete invariants
and sign invariants of the six-vectqrspi, p», etc., up to partial derivatives of arbitrarily

higher order. As in no55, we will again normalize the six-vectors in such a \ilagt
they remain normalized for arbitrary unity transformasioinstead of the complete
invariants, we will then have to ascertain only theisamariants.

However, similarly to the situation with families liries, we also now come to the
fact that only expressions that are invariant under paearsebstitutions (104) have a
geometric meaning. In the exhibition of such parameter-iangaexpressions in § 20, we
introduced the concept of a tensor, and we now procefedass:

Letm andm’® be two contravariant tensors of rank 1 withm'? — m? m'* # 0; let the
componentsn andm* be semi-invariants. From any semi-invarignu®, u%), we will
then get the functions:

(109) pr=mg;, go=m g,

which are semi-invariant, as well as parameter-invariant refer tog,, ¢, as the
invariant derivativef ¢ . The new parameter-invariant six-vectors:
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qu=mgi, qo = m *qu

follow from a six-vector (u*, u®) by invariant differentiation.
Solving (109) forg ; will yield:
(110) pi=m@i+meo,

with the covariant tensors, m’, which are determined by:
(111) mm=1, mm=0, nmM=0 n m=1
The fact tham, n are tensors follows by substituting:

m = & mt, = g m*
into (111), which will yield:
mo =m, mqg =m
By repeated invariant derivation, one comes to the -semariants with partial
derivatives of arbitrarily high order; e.g.:

- . 0% om
=m* (m g =m*m ——+m* i
1z =TI gk auor o o
(112)
i i 92 om’*
=l (g = m* 29 I
i (" au' ou u

in which one sums oveyk.
The sameules of calculationare true for invariant differentiation as for ordyar
differentiation:
@+ Y1 =01+, P+ )2 =p2+ o,
(¢ W1 =Y+ 0, ¢ D). =Y+ @O .

By contrast, in place of:
3¢ _ 0%
ou'au*  oufau'’

one now has the complicatedegrability condition:

(113) Ppro+tqQPp1=¢1+q@.,
with
(114) q= (mtm? - mzm)(aml aij q = (M m? - m? md) (6ml a”@j

u? ot u? out
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Proof: From (109) and (110), one has:

(Pp)i=m g2+ M Pr2, @2i=m @+ m@on,

0°¢ , om om’ ,
- = + = — + + +
U O (M @1+ M P2 P P1 P go+tmmdu+mm o
M megu+nngg,.
The integrability condition:
g 0%

ou ouf  aukau
can also be written in the form:

2
o _,

i k i
2. (o ) ou' ou*

one will obtain the equation (113) that was to be provedubstituting the expression
above and with the help of (111).

From (113), the sequence of invariant derivattd@ss not commutén general.

The expressiong, ' that were defined in (113) are not only semi-invariant, thiee
m, m¥, but also parameter invariant.

Proof: If one chooseg such thatg, = 0, ¢, # 0, (the other way around, resp.) then
(111) will giveq == @12/ &1 (0 =— @12/ ¢, resp.). q is then parameter-invariant, just
like ¢1, ¢12.

77. Differential equations and integrability conditions. Just as we did for families
of lines, we associate any system life", u?) with a projectively and parametrically-
invariant fundamental system of< 6 normalized linearly-independent six-vectgrsy,

We refer to the representation of thendnvariant derivatives®, p?, q%, ¢° ... as
linear combinations of the six-vectgrsq, ... of the fundamental system aditierential

equation. One then has that:
A) The scalar products of the fundamental system and
B) The coefficients of the differential equations

are semi-invariant with respect to projective maps andarpeter-invariant. One
difference in comparison to the families of linessigsts of the fact that the coefficients
of the differential equation are mutually-independent; ege, they must fulfill the
integrability conditionghat follow from:

P2t qp1=pa+d p2, etc.
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The line system is characterized in a projectivelyiant way by then, m*, and the
invariantsA), B); one then has the main theorem:

Two line systems are projectively related to each other anewise projectively
related to each other for equall,uuz-value-pairs if and only if they agree in their
invariants A, B), and the functions ¥, and thus also the invariants d, q

Proof: From (110), the; , and as one sees upon further differentiation, atigba
derivatives o of arbitrarily high order, are linear combinations of #ix-vectors of the

fundamental system, on the basis of the differeetiations. The coefficients of these
linear combinations are determined oy m*, and the invariantd) andB). Moreover,
one then concludes as one did in 5@.

78. Line systems with constant invariants. Later on, we shall deal with line
systems witlconstant invariantsin particular. For these line systems, we shall ptbe
theorem:

Two line systems with constant invariants B), and ¢, ¢ are projective to each
other if and only if they agree in those invariants.

Proof: We assume that:
m =0, m!=0,

which can always be arranged by a parameter substitution; ({@@4yvill get to know
about these parameters as “torse parameters’8hg principal tangent parameters” no
88), resp.] for the hyperbolic (parabolic, resp.) linetegss. There are three cases to
distinguish:

1) g#0, q #0: It follows from (111) and (114) that:

!

om,
ou*

om _ ,
auz qn]-rnZ’

=q my m,,
so, due to the constancy@andq':

0 qm) = -2
W(q m) = Py (gnt) .
We can then set:

, o9 _0¢ .
q m . qm, e

from (114), the functiong (u', u®) must then satisfy the equation:
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090909 _,

outou® outou?

By the substitution:
g=-Iny,

one will obtain the differential equation:

62¢
=0.
ou* ou?

From the general solution of this differential equation:

w="f(u') +g(ud), so  ¢=-In[f(u") +g(u?)],
one gets:
__f m =9
q(f+g)’ q(f+g)’

in which the dot means the differentiation symbol.
Finally, it follows from the parameter substiturtio

ot =fu), O =g()
that:
1

1
115 m =- m, = - |
(o) "t gy " )

One thus also gets the same functians, m ¥, for all line systems with the same
constant invariants; the line systems are theiegtige to each other, from the main
theorem of no77.

2) q=0, g#0: Itfollows from:

6ml -0, om, _
ou? ou*

that:
mo= f(u),  m=g(u)E,

and from the parameter substitution:

o =f), U =g
so one will get:
(116) m =1, m, = e,
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3) q=d = 0: Here, one finds that:
(117) m =1, m, = 1.

In the following paragraph, we will treat the hyperbaii parabolic line systems, in
turn. The elliptic line systems can be considered fdyntalbe hyperbolic line systems
with “imaginary” focal surfaces or focal curves (178).

§ 22. Contact structures for hyperbolic line systems.

79. Focal surfaces or focal curvesSinceg < 0, any line of the system will yield the
two real, distinct directions of advance:

(118) g =m(t) and U =m'(t), mmP-mm'z0,

from (103). By integrating them, one will get the tMamilies of torses that are
contained in the line system:

U=w'(t,c) and Uu=w'"(tc)

with the integration constants A torse of the first family and one of the second w
intersect at any ling of the system. The points of regressipr of those torses that lie

alongp are calledfocal points and the planes of regression that go throwglv are

calledfocal planes.
The focal pointx, X and the focal planes, w determine two restricted pencils of
lines {x | w} and {X | W} with the system ling as the common line (Fig. 10). From no.

46, since:
p=mpi+np,  (p=m'ps+mp,, resp.),

that line pencil can be represented by:
{x|w}: pp+o(Mp+m?py)  [{X |W} pp+o(m py+ntpy), resp.].

Therefore, the focal points X, as well as the focal plan@s w, will be distinct. The
pencils of lines X | w} and {x | w} define the quadric of the bundle of complexg +

At p1 + A% p,, which has typé), @) (no.34), sinceg < 0, and since the discriminabs (p,
p1, p2) has rank = 2. We will encounter two complexes that are congigathe bundle
A°p + At py + A% po in n0.83in the form of the so-callecbntact complexes.

The surfaces (curves, resp.) that are generated bipc¢hé pointsx (X, resp.) are
called thefocal surfacesp (focal curvesd’, resp.) of the line system.
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80. Classification of hyperbolic line systemslf the torses of a family are cones or
pencils of lines then the vertices of the cones @éline a focal curve; by contrast, if the
torses are families of tangents then the curves gression will define a focal surface.
One then has the followingase distinction:

1) Line systems with two focal surfacs®d’:

The curves of regression of the first (second, réamily of torses define a family of
curves on the focal surface (@', resp.). We call these families of curvasnilies of
longitudes the families of curves that are conjugate to thameral curve familiesand
the curve nets that are generated by the longitudinalaededal curve familiesgcontact
nets. Since the longitudinal and lateral curve familiee aonjugate, the lines of the
system along a curve &f (9, resp.) will define a torse of the second (firstprigamily;
i.e., a torse with a longitudinal curve @f (®, resp.). As a result, the torses of the first
(second, resp.) family will contact the focal surfaee(®, resp.) along lateral curves.
The contact planes of the focal surfaeéd’, resp.) are then identical with the osculating
planes of the longitudinal curves ®f (®, resp.); i.e., with the focal planes (w, resp.).
One then hasThe focal surface®’ (®, resp) can also be defined to be the envelopes of
the focal planes Ww, resp). The relationship betweeh and®’ is illustrated in Fig. 23.

u’? = const.

=const. (9

Figure 24. Figure 23.

Either the longitudinal or the lateral curves can becgal tangent curves; since the
principal tangent curves are self-conjugate, the longitlidind lateral curves would
coincide, and there would exist only one family of tersehich would contradict the fact
thatg < 0.

If a focal surface®d is developable then, from n6, the family of generators can
belong to any family of longitudes df as the conjugate to the family of lateral curves.
The contact planes of along the generators will then be constant and cut out
longitudinal curves from the focal surfac®s the longitudinal curves ab’ will then be
planar curves. For two developable focal surfaces, totlbact nets will consist of the
generators and a family of planar curves.
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II) Line systems with a focal surfa®eand a focal curvep’:

The contact net of the longitude and lateral curvelgimed on the focal surface as
in ). Any torse of the first family has a longitudiraurve of® as a curve of regression
and goes through the focal cur®. Any torse of the second family is a cone or pencil
of lines whose vertex lies on the focal cueand contacts the focal surfa®ealong a
lateral curve.

If the focal surfaced is developable then all torses of the second family el
pencils of lines with their vertices on the focal @4v.

[lI) Line systems with two focal cun@sd':

Both families of torses consist of cones or pencilsirefs. The cones of the first
(second, resp.) family have their verticesd®@i®d', resp.) and go through the focal curve
@' (b, resp.).

If the one focal curv@’ is rectilinear then the torses of the first familyl be pencils
of lines whose vertices run through the other focales® The line systems with two
skew, rectilinear, focal curves will be the linear hypdéddine systems (na33).

Undercorrelative mapsthere is a correspondence between:

non-developable focal surfaces -  non-developable focal surfaces

developable focal surface ~  focal curves,

S0, in particular:

line systems with two developable line systems with two focal curves
focal surfaces

The torses with the longitude curves ®f as their curves of regression will be
correlatively transformed into torses with curves @dression ord’, and conversely.
The tangents to a longitudinal curve @rwill then go to the system lines along a lateral
curve of®d under a correlation (duality of the tangents of a cuneethe generators of the
correlative strip).

A hyperbolic line system I) or Il) can be given by anyfate ® as its focal surface
and a conjugate net df as its contact netOur theory of hyperbolic line systems is then,
at the same time, a projective differential geometry of the coguyave nets.

We elucidate the hyperbolic line systems with two fetafaces bgomparing them
to torsal models:

Torsal model (Fig. 24) Line system (Fig. 23)

Two rectangle netsP, @' with planar| Two focal surfacesb, ®' with conjugate
guadrilaterals.  Longitudinal and latefadontact nets. Longitudinal and lateral
polygons. curves.
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The lines of longitudinal polygon o> | The tangents to a longitudinal curve ®f
contain the rectangle sides @ along a| contact®' along a lateral curve.
lateral polygon (“lateral sequence”).

The planes of any two successive sides pThe osculating planes of the longitudinal
longitudinal polygon of® are rectangle curves of® are contact planes f@r'.
planes ofd'.

The lines of a longitudinal polygon oh | The tangents to a longitudinal curve ®f
will go to a “lateral sequence” of under| will go to the lines of a system along a
a correlation, and thus, to the lines of lateral curve ord under a correlation, and
longitudinal polygon or'. thus to the tangents to a longitudinal curve
ond'.

81. Torse parameters and invariant derivatives. Sectional tanges. We refer to

_ first . u® =const
the parameters that yield th% family of torses for{ L as torse
seconc u- =const
parameters.Using torse parameters, one then has:
(119) 011=02=0, 012#0; m#0,m=0 and m'=0m?2%0

in (103) and (118). The lateral curves®r{®’, resp.) and the longitudinal curves @h
(®, resp.) are given by' = const. (* = const. resp.) (Fig. 23). One observes that the
notationsu® andu? are switched by correlations.

Subject to the normalization pfu*, u?) and the contravariant tensans(m’, resp.)

that are determined by (118), but only up to an arbitrary priopatity factoro(u®, u?)
[o'(u}, u?), resp.], we define the invariant derivatives by:

pr=mgi, g=m'g;,
as in no.76. Due to (119), one will then have:
(120) pr=mg1, = ’p,,

in particular, for the torse parameters. Due to tiramater invariance ofi ¢; andm’

¢, it also follows from that fact that for arbitraparameteras’, u% The invariant
derivativel (2, resp) means a differentiation along a torse of the first (second, resp.)
family.
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We refer to the tangents(c’, resp.) to the lateral curves of (9’, resp.) adateral
tangents;if a focal surface degenerates to a focal curve thertahgents to the focal
curve will be the lateral tangents. The lateral targyent’, together withp, span the
focal planesy, w, so they will be skew to each other. The singubaivectorsc andc’
satisfy the equations:

(121) CPp=cp1=chp2=cPp12= 0.

Proof: We think of the line system as being referredoteet parameters. For the
connecting liney between the focal points:

p(u',u®)  andp, U ,0°),

X
= point of intersection of:
} P {p(ul,u2+£) andp, (' ,\°+¢)

9

one obtains the conditions:

Cgh =cghp1=cg (p+EP1+ ...) =g p1+56—+"' =0.
du'ou?

Equations (121) follow from this as — 0, with consideration given to (120), and the
connecting liney will converge to the lateral tangent

The bush of complexebkp + 1/ p1 + Vo + ppi2is hyperbolic (n032), since:

Da (p, P1, P2, P12) = (P1p2)” (pp12)° = (pap2)* > O;

from (119), one will then have:
pip2 = TT'I1 mZ 912¢ 0

in torse parameters. From (124)¢" are the axes of the two singular complexes that are

conjugate to the bush of complexésy + 1 p1 + v po + p p12, and thus, uniquely

determined by (121) (n&2).
We define the symmetric, covariant tensor of rank 8 thie help of the six-vectots

!

c.
2

ap —_ —_ U | —_ I
PR =k Pi = iy G =¢Gpk=—¢

2

(122) Gk =CipPpk=—¢

po_

It follows from the last equation in (121) that:

(123) Ci2 = qz =0
for the torse parameters.
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82. Principal tangent curves and harmonic nets of focal surfacedn the event that
the focal surface® (®', resp.) are not positively-curved, one will have the ggas of
theprincipal tangent curves:

0,0 + gl G,U+ G,
ol + Gyl G+ 6,4

(124) =0, resp.

0,0 + g, g U+ g,
9,0 + g, UF G U+ ¢,

Proof: Let the tangents to a principal tangent cuhweu'(t) be represented biy= A p

+ pc. The linesh and h will then span the osculating planes of the principal tange
curves. Since these osculating planes are, at the 8me, contact planes to the surface
@ (no. 6),h,h, p, c must be linearly dependent; it follows from this that:

Apituc)=pp+oc

Upon scalar-multiplying this by, andp,, one will get:

A (g0 + g, 1F) + (¢ Ut + ¢, tf) = 0,
(125)
A (G + @, 1) + 1 (C,y 0" + G, F) = 0.

Since (125) possesses a non-trivial soludpp, (124) will be true.
In torse parameters, (124) specializes to:

(126) Cll(ul)z - sz( U2)2: 0, ql(ul)z - dzz( uz)z =0.

We denote the determinants of the tenspréc, , resp.) byc (¢, resp.). Now, from
(126), and on the basis of (8), one gatsprojectively-invariant case distinction:

>0: negatively-

. curved focal surface®@(®’, resp
c(c, resp.) < <0: positively-

=0:developable focal surface or focal curdg®’, res

at first, with torse parameters, and then, due to (I0B8grbitrary parameters, as well. A
real curve net is defined on a positively-curved focalema® (', resp.) by:

(127) cuu =0 (cuu=0,resp.),
which we would like to call &armonic net.

The harmonic net is a conjugate net, and its tangents will be separated heaittyoni
by the tangents to the contact net (80).
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Proof: In torse parameters, (127) specializes to:
(128) ¢, (U)*+ ¢, (1F)*=0 (G, (U)? + C,(1F)* = 0, resp.)
Since the juxtaposition of (8) and (126) yields:
L:M:N=c;1:0:-Cx2 (c; :0:—-c,, resp.),

conjugate nets are given by this from (6). Moreover, f(Bmthe directions of advance
(128) are harmonic to the directions of advantes 0 andu® = 0 of the contact net.

The harmonic net of — say — the focal surfécean also interpreted as followBhe
linesp of a system that cut a fixed lateral tangebntact® along two curves that will

be contacted at the focal point x of the curvethetharmonic net.
Proof: It follows from:

O=cp[U(t+g) =c p+£p+—p+ j

(
{+£pu+— i za"’gkuwj }

that:

0=cY 9P yu=—qu
ou' au A

§ 23. Differential equations of hyperbolic line systems.

83. Normalization of the six-vectors, ¢, ¢’ and the tensorsm, m*. According to
the plan that was developed in § 21, we must nosnatize the six-vectors, ¢, ¢' by a

prescription that is invariant under unity trangfations. We thus restrict ourselves to
the line systems with two negatively-curved focal stetaand leave the analogous
treatment of the other cases to the reader.

Thenormalization ofp, ¢, ¢’ results from the demands that:
(129) g=-c=-C, cc' =1.

One gets the normalized expressigns pp, ¢= oc, ¢ = o' ¢ from the un-normalized
ones on the basis of (129) with:

p4g:_p20.2(::_p2 O.IZCI, oo’ (CC'):].
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P, 0, o' can be determined to be real sice 0,c’ > 0,9 < 0; the signs op and o
remain arbitrary, although the sign of' will then stay fixed. Due to (108), the
normalization conditions are also parameter-invariant

Normalization of fym*:

From (118) and (103), the tensons m* that were employed for the definition of the
invariant derivations will be given:

gemMm=0 and gxm' mM*=0;

from the normalization of, ¢, ¢’, they are still determined only up to arbitrary factors.

Those factors will now be established, up to a signtHertensorsri and m' by the
additional requirements that:

(130) ok m mf=-1, c.mim =1,

which are invariant under unity transformations. (130) alarays be fulfilled by real
points. In fact, reverting to the torse parametersyolhget:

ckmm=cyumm=#0,  cnnf=c,m?*nm’z0;

moreover, one can always arrivecatm m* < 0 by a suitable choice of the sign in the
normalization op andc, which still remains arbitrary.

For normalizeq, ¢, ¢, theprincipal tangentof ® (P', resp.) are given by:
(131) h=p+c, t=p-—c h'=p+c, €=p-c, resp.).
Proof: In torse parameters, (125) yields:
Ag U + e Ut =0, A1 U + f1cp Ut =0.

By eliminatingu*, u® (which do not both vanish), one will get:

Mg+ 1Ffc=0,
so, due to (129):
A
U

The so-calleccontact complexes= ¢' are characterized as follows: They contain the
restricted pencils of linesx{] w} and {x' | w} (no. 79); moreoverp, b', as well ag, ¢,
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are reciprocal (nd2?2) relative toc —¢', andb, ¢, as well ag)’, ¢, are reciprocal relative to
c+c¢.
Proof: The bundles of complexé&p + A'py + A%p, and p®p + plc + pu? ¢ are

conjugate, and determine the restricted pencils of lirg¢sj, { X' |W} ({ x|w}, {X |w},
resp.) as conjugate quadrics. Thus, each of the compleatesontain the pencils of lines
{x|w}, {X |w} will be representable by = ¢/°p + z'c + £?¢'. From (30), the line
that is reciprocal t§ =p + ¢ relative toy°p + ¢ + 2 ¢’ will be given by

v=2(@h) a—(aa) b = 2L a— 20l = 4P {(p° = i) p + 8 )},

and the line that is reciprocal te=p — ¢ will be given by:

s == 202 {(u°+ i) p + £ )

The demand that= const}y’, s = const¥' yieldsu® =0, ' =— % soa=c—c¢".

84. Fundamental system. We denote the lines of intersection of the osaudati
planes of the longitudinal curves (= focal plamesv) with the osculating planes of the
lateral curves by, ¢', so:

. : . wo : o
q’ } = line of intersection o{ W with the lateral curve osculating plane{ozb,.
q

Since the focal planes, w are, at the same time, contact plane®ofd, the lineq
(g', resp.) will cut the lateral tangetit(c, resp.). As a resulg, q' are skew, just like, ¢’
(Fig. 25). The linew, ¢, ¢, q, q', together with a sixth ling, are the edges of a

tetrahedron. We take the six singular six-vectors, ¢, q, ¢', 3 to be afundamental
system From the product table:

! !

o
K

k=)

«

«

| O O] O O] Of|=

> |
Ol Ol O Ol O|v
Ol | O O O O
Ol O O O] O k,|&
ol O] Ol O] | O
o O] O k| O O

K

one will get:
Ipoc a5 ¢, P=1,
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so the six-vectors of the fundamental system willifeakly independent.
X

SN
S5

23
o
S

SN
SN
525250
5
e

L
L

N
b
&8
SN
000\
5
&5
e
etetely
Q—

£
P
433535
e,
55

£,
e

(35

355

P

!
585
bils!

£
5

Figure 25.
The normalization of, q, ¢', will be accomplished by the requirements:

(132) p3 =1, qq' = 1, p1q’ =+ pagq,

the first two of which were already included in the prodabte. The requirements (132)
can be fulfilled, since, 3 ; q, q' ; b1, q ; p2, q are pairs of skew linegs (p2, resp.) is a
line of the pencil £ |w} ({ X | w}, resp.) (Fig. 25). Whenp(q')(p2q) > 0 (< O, resp.),
one must take the upper (lower, resp.) sign in the lastiegua (132). 3 is determined
uniquely by (132), while a sign remains arbitrary withbut g’ will again be fixed

uniquely.

Determination of the lineg, ¢': The osculating planes of the longitudinal curves will
be spanned by, p1 (p, p2, resp.), while the osculating planes to the latarales will be
spanned by, ¢ (¢, c1, resp.). As a result, the lingsq' can be represented by:

q =Ap+ups =pc+oc,

(133) wu', o o #0).
ql :Alp +ﬂlpl :plcl + O.Ic:’L’

85. Differential equations. In order to calculate the coefficients of the eléntial
equations, one must next determine the scalar productheofsik-vectors of the

fundamental system with their invariant derivatives:

pu{p2lc |2 |a [d2 |3 [ |G | |4 |4
p|10(0| O O] Oo-B|-A|-A| O] 0|-B|] O
c 10O 0 0| D O|-U Ol-N N’ o C
208 |[-D| 0 0] 0 -E|-F|-C| 0] R|-R
s |A[A| U] o E| F| o] o ol u| F| E
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cJofo] N[-N] Cc[ o] o[-u]| o] o] o] D
¢|B|0| O-C[-R| R|-F|-E| 0[-D'| 0] O

Equations (121) and the invariant derivatives of the scalatupts of the fundamental
systems that are summarized in 8@ were employed in the construction of this table.
The equations:
c2q=c23= i q=c3=0
are obtained from (133), while the equations:
qc,=q'c1 =0
will be obtained from (133), when one considers theiogla:

pe,=pa=0 P, =pac1 =0,

which follow from (121). The product tables of 83 and no.85 immediately yield the
differential equations:

pr=Ap+Bq, p2=Ap+B'q,
31=-Fg—Eq -Ucd -Aj3;, 52=-F'qd -E'q-U’c-A3,
¢t =Up-Dgq +Nog, ¢,=U’p—-D’q+N’c,

(134) ¢ =-Cq —-N¢, 2 =—C’q—N’g,
g1 =Ep-Rq+Cc+B¢, g, =E’p—-R’q +C’c +D'¢,
9, =Fp+Rq' - B3, 2=F'p+R’'q-B';.

The auxiliary conditions:
(135) B=+B'£0, BB'=CD’'=C'D, BD=xB’'D’'=1
exist betwee\, A, B, B, C, C’, D, D’in this.

Proof: The first equation follows from (132). The seceqdiations can be derived
from (129): In torse parameters, one has:

(p1p2)* = (p1c1) (p2c2) = (Pe)(P£Y) |
so in invariant derivatives, one will have:
(p1p2)* = (p1c1) (p2c2) = (Pe)(P£Y) ;

the assertion then follows when one considers thierdiitial equations. The last
equations are obtained from the requirements (130): Tleegcarvalent to:
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pici=-1,  p,,= F1,

which once more leads to the assertion with the helpeodlifferential equations.

One observes that the sign of the first equation in (l53&hosen according to (132),
while the sign of the last equation is chosen accordind.30). One further observes
that, from (135), none of the six invariasB’, C, C’, D, D’ can vanish and th&’, C,
C’, D, D"are determined frof, up to sign.

The invariant derivatives 1 and 2 are switchedeundrrelations and accordingly for
the invariant coefficients of the differential e¢joas, in a corresponding way.

86. Integrability conditions. The coefficients of the differential equation84) are
not only coupled by the auxiliary conditions (13but must also satisfy the following
integrability conditiongno.77):

B, +B(R’+q) =A' B,
B +B'(R+q)=AB)
A, +BF'+Aq= A +B’F+A(,
E; +tE(A+q -RF+DU'=F +F' (A+(q)+R’E
E +tE'(A+q)-RF+D'U=F,+F (A +q) +RE,
U, +tU(N'+A +q)=ED -E’'C,
(136) U, +U'(N+A+q)=ED'-E’C,
R, + R +BF" +B’F+gR+q R’ +CC’ +DD"’ =0,
D, +D(N'-R +q)=B’'U,
D, +D’(N-R+() =BU/,
C, =C" (N+R—-(),
C, =C' N+R-(),
N+ N; +gN+gN’=DD’- CC.

Proof. The equations are obtained by applyingritegrability conditions (113) to the
six six-vectors of the fundamental system. Fongda, one has:

€12 :U]IIZ—DCI'2 +ch+U2p—D2q' + Ny ¢
= (A'U — DE’+ Uz) p+ (— DD’—= NN’ + Nz) c— NC'q -DC’¢ + (DR' -Dy + UB') q,

C21 :—C'ql—N'C2 - Ciq—Nic
= (-EC’=UN’) p-(CC’+NN’+ N!) ¢+ (C’'R- C,) q—DC’¢' +DN’q.

If one substitutes these expressions, as well@adirtbar combinations af andc, that
were given in (134), into (113):
ci2+qer—c2—(c2 =0
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and arranges the result in terms of the six-vectortheffundamental system then the
coefficients of these six-vectors must vanish; thiityaald four of the relations (136).
From the main theorem of nd7, one has:

The hyperbolic line systems with two negatively-curved focal ssrfeare
characterized projectively by the tensors mi¥, as well as the invariant coefficients A
A', etc., of the differential equations.

One can calculate all of the remaining invariantsBfor 1 (B = 1 characterizes the
W-systems that were treated in 8 29) as follows withhiélp of the auxiliary conditions
(135) and the integrability conditions (136):

The invariantg), g are determined from (114) by waymf m*; B/, C, C’, D, D’can
be calculated fronB, up to sign, using (135), and are non-zero, just Bke The
integrability conditions (136, 12, 9, 10, 1, 2, 3)sthen yield the invariant®, R, U, U’ A, A,

F, F” as functions of thé8, N, N’ g, g, and invariant derivatives of the functions.
Finally, one solve (136y) for E, E”under the assumption that:

CC’—DD’# 0, so, from (135), B?# 1.

The integrability conditions (136 19 are not employed in this.
Analogous to no65, we have thexistence theoretmere:

Let the tensors m* and the invariantsn the table of no85 be combined in such
that way that the auxiliary conditiond35) and the integrability condition§136) are
fulfilled, but they are otherwise given as arbitrary functions’oifi There is always a
hyperbolic line system with two negatively-curved focal surfaces for which the
invariant derivatives are defined by,mi*, and whose differential equations include the
given functions as coefficients.

The proof proceeds analogously to 6. One must show that, c, ¢, q, q', 3 fulfill
the table of scalar products of r8#, the normalization requirements (129), (130), (132),
and the conditions (121) and (133) forwl] U>. The over-determined system of partial
differential equations (134) will appear in place of ateysof ordinary differential
equations. From known theorems, however, that systdlmalso have precisely one
system of solutions, ¢, ¢, q, q', 3 for the given prescribed initial conditions when the

integrability conditions (136) are assumed to be satiisfie
8 24. Contact structures for parabolic line systems.
87. Focal surface or focal curve.Sinceg = 0, (103) will have a double root =

m(t). The line system will then contaémly onefamily of torses, s@netorse will go
through each line of the systgn(u', u?). Onefocal pointx andonefocal planew will
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belong to any ling (focal points and focal planes are defined as irv8p. The pencil of
lines {x | w} is given by:
Ap + g (m'po+ 1 py).

Depending upon whether the torses are families of tasgaihcurves or cones
(pencils of lines, resp.), the focal points will generat focal surface or focal curve,
respectively.

) Line system with focal surfade

The curves of regression of the torses define a fawhityrvesz on the focal surface
®. These curves must be identical with the one fanfilgrimcipal tangent curves .
Otherwise, there would be a conjugate family of curvas ighdifferent fron, and the
lines p of the system along that conjugate family of curves daeénerate a second
family of torses, contrary to assumption. Since ¢beves of regressions are principal
tangent curves, their osculating planes (= focal gavewill coincide with the contact
planes of the focal surface. Thus, as in 8@.we will have:The focal surfacepb can
also be defined to be the envelope of the focal planes w.

The focal surfac@ is always negatively-curved.

Proof: Since the focal surfadepossesses real principal tangent curves, it can only be
negatively-curved or developable. @ were a developable surface then principal
tangents would coincide with the generators, and theydadrfine only a one-parameter
set, instead of a line system.

II) Line systems with focal curvés

All torses of the line system are pencils of linexleed, if they were tangent families
of curves that these curves would provide a focal surfecstrary to assumption.
However, if they were cones then, by correlation, wmaild obtain a parabolic line
system with a developable focal surface, hence, one wnatlpative curvature, in
contradiction to ). Moreover, the planes of the qisnof lines (= focal planes) are
contact planes of the focal curve; otherwise, the epeetaf the planes of the pencil
would be a focal surface, and the line system would be hyigeilbgpe Il of no.80).
One then has:

A parabolic line system with a focal cur®econsists of the tangents to any surf&ce
along a curvey of this surface. The points (contact planes, respQ afong y are the
focal points (focal planes, resp.), and the pencils of tangerfissadbng y are the torses
of the line system.

The tangents to the focal curyand the tangents to the surfdedhat are conjugate
to them play a distinguished role in this: A seconddajoes through each of these lines,
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apart from a pencil of tangents, namely, the torsdefocal curve tangents (the torse of
the conjugate tangents, resp.).

The linear, parabolic, line systems (88) belong to the parabolic line systems with
rectilinear focal curves.

The parabolic line systems with focal surfaces (facaves, resp.) will be mapped to
other such systemsder a correlationthe tangents to a principal tangent curve of the
focal surface again go to the tangents to a principgltat curve.

Two parabolic line systems of type | are determined bynagyatively-curved surface
® that is not a ruled surface, namely, the two systenmsinocipal tangents ofb. Our
theory of parabolic line systems is then, at the same time, &cpxg differential
geometry of the negatively-curved surfa®ei&f., 8§ 26.).

We clarify the parabolic line systems with focal aggs byjuxtaposing them with
torsal models:

Torsal models Line systems

Rectangle nets with planar quadrilaterals. Negatively-curved focal surfaces with
principal tangent nets.

The two sets of lines that are defined by tAde two parabolic line systems that are
two families of polygons. defined by the two principal tangents.

The lines of a polygon again go to the linekhe tangents along a principal tangent
of a polygon under a correlation. curve again go to the tangents along a
principal tangent curve under a correlation.

88. Principal tangent parameter. Invariant derivatives. From now on, we would
like to exclude the parabolic line systems with focal curves fronsideration, and
assume, in addition, that the focal surfaieés not a ruled surfaceye already treated the
principal tangents of the ruled surface in 46. Discrete, rectilinear, principal tangent
curves and discrete points with indeterminate osculatiageg to the principal tangent
curves shall remain unconsidered.

With that restriction, two parabolic line systepfs®, u?) andp(u®, u?) will belong to
the focal surfaceb; it proves to be convenient to investigate these ¢aafocal line
systemat the same time.

The torses of thp-system §'-system, resp.) will be determined by the double roots:

m' nf

u'=m and  u*=m* with |
m

#z0
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of

(137) g u =0 (g u U =0,resp) d=g =0).
We refer to the parameters that give:

o —system u® =const
the principal tangent curves of ti{ep 4 for {

p' —systernr u' = const.

as theprincipal tangent parameter@ig. 26). In principal tangent parameters, one has:
O11 =012=0, O22 #0, ml¢0, n12:0,
(138)
92= Uz =0, 9, 70, m* =0, m?2# 0.
The tensorsm (m*, resp.) are next determined, but only up to a fac(or, u?)

[o’(u', UP), resp]. We dispense with the indeterminacy, up to gm, sby the
normalization requirements:

(139) g m' m*=+1, g, mm=-1

The expressiongx m' m* and g, m ndo not vanish. We will prove later on that they

must have different signs in n89.
We shall now once more define tineariant derivatives:

pr=m g, go=m'g,

with the help of the contravariant tensafsm’®, subject to the normalization pfandyp’,
and thus for the principal tangent parameters, in paaticahe will have:

(140) pr=mtd1, @o=m?g,.
It follows from this that:

The invariant derivativd (2,resp) means a differentiation along a principal tangent
curve of the-systemy’-system, resp.

The covariant tensors, m that are defined by (111) satisfy the relations:

(141) gk=mni, g =-mm,

on the basis of (137) and (139).
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89. Osculating hyperboloid. One has the identities:
pp1 =pp2=p'p, =p'p, =0,
(142)
pp; =pp, =p'p1=p'p2=0

for the six-vectorg andp’, as well as:

(143) pL=Ap+uy, p =Ap +HU'p (u#0,i #20).

y/

ut = const.

Figure 26.
Proof: In torse parameters, one has:

121

pL=mpy,  pe=miZp,  pl=npl,  p, = mp.

The osculating planes of the curwés= const. ¢* = const.) will then be spanned by the
linesp andp: (p and p,, resp.) (Fig. 26). Since these osculating planes aithg ssame
time, contact planes of the focal surface, the peridihes pp + op1 (0'p' + 0’ p,,
resp.) must also contain the lipdp’, resp.), from which, (143) will follow# 0 andu’
# 0 in this; foru = (u = 0, resp.)p, p1 (p', p,, resp.), would be linearly dependent, in
contradiction to our discussion in &l

The first row of (142) is obtained immediately from (10&hjle the second one can

be confirmed as follows: We assume rectangular codadithmoughout and denote the
position vector of the focal point By(u', u%). One then has:

p={X1|XxXe}, p ={X2|XxX2},

n2 = 0%x
27 Y outou?

S0, e.g.:

0°x
xzxx1+xxaulauz}’

0%x 0°%
o= ({ —, X, X, )+ X,—— X
PP <6u16u2 2> < AU U 2>

and from this:

0.
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The relations(142) are valid for the tangents to any curve net, whi&3) is
characteristic of the principal tangent nets.

The principal tangents to a family along a principabent curve of the other family
define ruled families that we would briefly like to cplincipal tangent ruled families.
They are given by(u', u®) with u' = const. §’(u*, u?) with u? = const., resp.] in principal
tangent parameters; it follows fragpp, = g22# 0 (p;p; = g;; # 0, resp.) [cf., (138)] that
these families of lines are not torses. We now state

The two ruled families of principal tangents that contact a point ofdta surface
will have the same osculating quadric there (#9); i.e., the first osculating quadric of
the one ruled family of principal tangents is the second osculating quadricef@ther
ruled family of principal tangents. The hyperboloid that is spanned by bothatsgul
guadrics shall be called the osculating hyperboloid; it was also called th&t bie.

Proof: We merely have to show that the two bundleaiplexes:
Ap+up2+vpe and  Ap'+ fp +vipy,

are conjugates, so the scalar products opthe, po> with p', p;,p;, vanish. That can be

confirmed with no difficulty with the help of (142) and (143)
From (34), one has:

3.

| b, b2, P22 ' by, Py == (02 92)° (P p)* == (' i pi® (m o ] pl)°;
as a result, the non-vanishing expressions:
m' ' pi pi = m' m* g and mntpp, =m n’ g

have, in fact, different signs [cf., (139)].
In § 25, we will learn about even more contact strust(osculating complexest’,

etc.).
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8 25. Differential equations of parabolic line systems.

90. Normalization ofp, p’. Fundamental systems.
Normalization ofp, p':

In (143), we assumed thatz 0, 1/# 0. We would now like to normalizeandp’ in

a way that is invariant under unity transformations ey demand thats = ¢’ = 1; in
place of (143), one will then have:

(144) p1=Ap+yp', p, =Ap +p.

One gets the normalizepl = pp, p' = p'%"' from the un-normalizeg, p’ as follows:
From:

A

G = P B =0 G, g =p'%g,,

and according to (139), one will get:

and therefore:

P, p’are determined up to sign, in that way.
We take oufundamental systeifl) to bep, p', along with the four normalized six-
vectors:
t =p2—20'p, q=t2+3(t2 t2) p,
(145)
t=p -2y, q=t 36,

() For this and the following numbers, &/, BlaschkeandG. Thomsen:Differentialgeometrie 111 §
90, et seq.
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in which the invariantd, A" are defined by (144).
From the product table:

potlqg |p |t | q
p| o0[o[-1]0] ofo
¢| o|1] ojo| o]0
qg|-1[0] oj0| 0]0
p| 0/0] o/0| of1
¢ | ojo] ojo[-1]0
g 0|0 o[1] o]0

and since:
Ip,t,a, 9 t.q F=—Des(p, t,qp, tq)=1

the linear independent of the six-vectors of the funddaatesystem. On the basis of
(138) and (139), the scalar products that are summarized talileeyield the following
relations:

(146) pip1 =pip2 =0, PP, = b, =0, pap2=1, ppy =-1,

along with the conjugacy of the bundles of complgxgs, p2» andyp’, p;, p;;. One then
has, for example:

pqg =pta=ppo=—p2p2=-1,

qq =ttx + (tztz)(ptz) =tt,—tt, = 0.

We refer to the non-singular, distinctly-wound compieiet’ asosculating complexes;
their geometric meaning will be given ril.
From (145), the bundle of complexes that is spanngd oy po> (p', by, py,, resp.) is

identical to the one that is spanned iy, q (p', t', ¢', resp.). The quadrics of the

osculating hyperboloid (nd89) are then the axes of the singular complexes that are
contained in the bundle:

puptppttpzq  (pp' + ot + oy, resp.).

The lineq (q', resp) can be characterized as the only line of the first (second, resp.)
quadric of the osculating hyperboloid that is different frgm (p’, resp) that
simultaneously belong to the osculating complgXk resp).

Proof: Any line of the first osculating quadric is conjugsdep’, t', q', and also
conjugate ta, if it is to belong to the completx SinceDq (p', q', t', t) = 1, and the bush
of complexes that is generated 8y ', t', t is hyperbolic, it will possess precisely two
conjugate lines, and from the product table, they will kdittesp, q.
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91. Differential equations and integrability conditions.

pr (P2 |t |t ja|qe P[P |4 |G a |6
p| O] o] of-1/4] 22 0] 0] o]0 | -1
t 0 1 0 OlH Wi 0 0|0 -C 0
q|-A]-24"|-H|[-w]|O o] 0f- c'| -R| R’
p' 0 0 0 00 11 0| 0|+1|0 [-24| - A"
' 0 0 0 0|0 | -Cc’|-1| O] O|0 |-W|-H’
q¢| 1| o] C| O[R|-R| 22| A[W]|H[ 0] O
yield thedifferential equations:
p1 =dp +yp, P, =ap’ +p,
pp =2+t p2 =20p +1t,
t1 =Hp, t’2 =H’yp’,
(247) t, =W'p' +¢q, t1 =Wp +q,
g1 =Ht-qq-W, q, =H’t' —qq' —=W’p,
q =Wt -2q -Wp+aq, g2 =Wt—209-W'p' +¢.

The first row of thantegrability conditionds already employed in this, which can be
derived just like in No86:

C =C’'=0, A=q, A’ =q, W=-R, W’ =R/,
H =q, -20.-qq +1,
H =th—2q, —qq + 1,
(148) Wi + 20W=H; + gH,
W, + 20W=H; +3qH/
W =W +4Q@W-gqW’) =0.

On the basis of the differential equations, one tetsfollowing characterization of
the osculating complexest':

The osculating complex(t’, resp) contains four “successive” pencils of tangents to

the focal surfacé’) along the principal tangent curve & const. (4 = const) (cf. Fig,
26); i.e.,t (t', resp) is conjugate to the complexes:

() Cf., the analogous theorem on the osculating compteiesses (viz., space curves) in B8.
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pp+aop, (pp+op), ..., (Ep+0p )
[op + oy, (op+0p')z ..., (Op + Tp')222, resp.].

Proof: If follows from (147), after a simple calcudet, that:
th=tp=tp1 = tp; = ... =t = tp;ll =0.

The osculating compleiis determined with that; the five complexes:
pip’apll:t’+..., plll:q’+""p’lll:q+---

are then linearly independent.

The invariantsH, H” and their invariant derivatives can be calculated with the
integrability conditions (148) from g, ', and thus, from the tensom$, m'*. One then
obtains the following theorem, which is analogous tootte in no 86:

The parabolic line systems with focal surfaces that are not ruled ssrface
characterized projectively by the tensorsmi¥, as well as by the invariants W,’W

Moreover, one has the followirexistence theorenwhich is analogous to one in no.
86:

Let the tensors Inm¥ and the invariants W, Ybe such tha(148,59 will be
fulfilled, but otherwise given as arbitrary functions ofuf. There is always a parabolic
line system with a non-ruled surface as its focal surface then,Hmhwthe invariant
derivatives are defined in terms of, m’*, and whose differential equations include W,
W' as coefficients.

The invariantdV, W can be determined uniquely from the tensdrsm*, except in
two cases:
If (148, 5 ¢ are satisfied fowW, W then the equations:

(149) wi + 20 w=0, w, +2gwW = 0, w, —wW +4@gw-gqw) =0
will be true for any further pair of functio® + w, W'+ w that likewise fulfills those
conditions.

W, W’ are thus established uniquely by (14§ if and only if (149) admits only the
trivial solutionw =w = 0. A non-trivial solution of (149) will exist in thelfowing two
exceptional casesind only in them:

a) w#0,w =0 (or vice versa): It follows from:

wi+ 2gw=0, W, + 4gw= 0,

and the integrability condition:
Wiz + qQWa = Wor + Q'W,
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that:
W (201 - g, +qq) =0,

so, with consideration given te# 0 and (1432):

(150) H=1.
b) w# 0,w # 0: In principal tangent parameters, it follows from (14%hat:
;0w on, ow om,
—+2w—= =0, —+2W =0,
mz ou' ou m ou? ou’

and from this:
(M) w= ¢ (), (M) w= g ().

One can arrange thgt =1, ¢/ = 1 through a suitable transformation:

ut=u'(@), v =u’(@) (som’Z = duz m, ,Tq:d_l“iL r@j

of the principal tangent parameters into themselves, so

oow=t
(m)°* (m)*

By substituting this into (143 one will then obtain:

0 (mm|_ 0 [mm|_
) ()

We will encounter an example of the exceptionaecél50) in no97, while the
exceptional case (151) will be characterized geaoadly in no.104

8 26. Projective differential geometry of negatively-curved surfees.

92. Darboux curves and Segre curvesln no.87, we proved that the theory of
parabolic line systems can, at the same time, garded as the projective differential
geometry of negatively-curved surfaces. In thisageaph, we will summarize some
fundamental concepts of tipgojective theory of surfacesAs we agreed in n@8, we
shall exclude the ruled surfaces from consideration

If the principal tangents along a surface curvéndetwo ruled families with the
surface curve as its nodal curve (B&) then will one call that curve Rarboux curveof
the surface. The definition is obviously projeetiinvariant.
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Any negatively-curved surface contains a family of Darboux curves;atteegiven
by:
(152) (m+nd) i =0.

Proof: For a Darboux curue = u'(t), from (60), one has the equations:

Ep=0, E(pu+p, U?) =0,
¢ [Z au??uk u'u +j =0,
t (Z%u‘ uu +j =0,
in whicht is a line of the pencil that is spannedpbgndp’. The ellipses suggest sums of

the first (second, resp.) partial derivatives of tixevectorp. Upon going to the principal
tangent parameters and finally to invariant derivativesillifollow that:

tp =0, ¢(mp, U+ nip, ) = 0,
E(mnlpuijﬁ'*'z nﬂ@lzlﬁ FJ+ fP 'rp 222u2u_) =0,

g(mmnp,,, ddd+3 mmip,, wuw3 piplm,,"ddw ' hmm,,* u) = 0.

On the basis of the differential equations (147), tihe two equations will be
fulfilled for all linest = pp + 5 p’, the third equation yields=p’, and the last one will
give:

(mu)*+(mu)°=0,
after a brief calculation, so
mu +n ¢ =0.

In principal tangent parameters, from (138), one will have
mu -+ ¢ = (m+nj) U,

from which, the validity of (152) for arbitrary parametesdl! follow, due to the
parameter invariance ofd andny U .

If a surface curve is a nodal curve for one of the tmled families that are generated
by the principal tangents then it must also be a nodaédor the other ruled family; the
relationship between ruled families and nodal famiba®ciprocal (no51).

The curves that conjugate to the family of Darboux cuarescalledSegre curves.
The Darboux tangents will be transformed into Segre tdaagender correlations, and
conversely. By contrast, the points of a Darboux c8egre curves, resp.) will once
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more go to contact planes along a Darboux curve (Segve,a@sp.). From (152), one
will get the differential equation for the Segre curves a

(153) (m-nf) i =0.

From (5), the directions of advance (152) and (153) will is¢pd harmonically by the
directions of advancend = 0 andnj ¢ = 0 of the principal tangent curves, so they will

provide a conjugate curve net.
TheDarbouxandSegre tangentare given by the six-vectors:

(154) 0 (s, resp.) p£p'.

Proof: For the torses of the line systgep’, one has:

(p; £9))(p Tp)u U = 0.
By reverting to the principal tangent parameters, i failow that:

P, pU° U% +ppl 0 U =0,
and from that:

()7~ () 1) =

However, the Darboux and Segre directions will be deteunin principal tangent
parameters from (152) and (153) in that way.
Since the demands (60) will be fulfilled for any tangerdaf the hyperboloid for

hyperboloidal quadrics, one will have the theorem:

If the principal tangents along a surface curve generate a hyperboloidal guaéen
the surface curve will be a Darboux curve. Thus, for a negatiwelyed surface of
revolution, the latitudes will be the Darboux curves and the merididlh®e the Segre
curves.

93. Enveloping structure of the osculating hyperboloid.We state in advance the
following general theorem:

Let two line systems or [by the linear dependency,afi, g (¢', 9;, 9,, resp.)]
families of lines be given by(u!, u%), g'(u*, VY. Any two corresponding linegu*, u?)
and g'(u', u%) shall intersect and determine a point of intersecti’, u?) and a
connecting plane/(u', u?). One then has:

(155) 99' =99, =99, =g'901=9'g2=0
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for the necessary and sufficient conditions that tthe sets of lines should have the
geometric locusp of the points as their common contact structure, i.e.:

Either both sets of lines are tangents to a suri@ag they are secants to a curde
(w = contact plane ofd) or they all go through a fixed poirt.

Proof: We have already proved that (155) is necessaryé contact surfac@ with
(142), whose second row is equivalent to (155); the prookepdscanalogously wheh
degenerates to a curve or a fixed point. One recogniae§lthb) is sufficient as follows:
For any family of lineg(u'(t), U?(t)), one has, from (155):

g'g=gg=0;

i.e.: g' is tangent, and therefore the plaseof g andg’ will be the contact plane of the
line surface that spanned by ). As a result, the geometric locus of poxthat lie

on the line surface will contact the planésso those planes will be the contact planes of
the set of points.

With these preparations, we then go on to the detenomaif the enveloping
structure to the osculating hyperboldib. 89):

The lines of the two quadric of the osculating hyperlbtain be represented in the
homogeneous parametgrsr (o', T, resp.) by:

(156) g=pp+.20r t+1q, g =p'p 201 t+T7'q,
as would follow from the general Ansatz:

g=pp+ot+rg, g =pp+ot+Iq,
with gg =g'g' = 0.
We would now like to separate the sets of lipas, u?) andg'(u', u?) that have a

common contact structure from (156) with a suitable &ofp, r andp’, 7, resp. That
contact structure is then, at the same time, the epwel structure of the system of
surfaces that is generated by the osculating hyperboloids:

In order for (156) to represent a set of lines with mmmon contact structure, it is
necessary and sufficient that:

(157) a) r=7'=0 or b) p—MW=p'—17"W'=0.
When one replaces the partial derivatives in (156) with iamtuones, with the help of

the differential equations (147), it will then follow by application of (155) to (156)
that:

T(o-T'"W)=1"(p—1W) =0,

andp=r=0o0rp' =71' =0 are excluded.
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(157a) gives the initial surface that is spannedppy’ as the trivial enveloping

structure of the osculating hyperboloid. In regard torémaining enveloping structure
that is given by (157b), one has the followprgjectively-invariant case distinction:

a) W>0,W >0: 4

L) W=0,W >0, or vice versa: 2 enveloping structure of the osculatingperboloid
y) W=W =0: 1 | along with the initial surface

0) W<0orW<o0: 0

Discussion of the cas®&): The osculating hyperboloids contact the envelggstructure
that is different from the initial surface at fquwints, namely, the four intersection points
of the lines:

g :V\’P+\Wt+q, g =W’p'+‘m‘y+q',

CowNF e 5w AT

The skew rectangle that is generated by thesdlifs is called th®emoulin rectangle

(158)

Figure 27.

94. Projective normals and tangents.As the product table of n®0 shows, the
linesp, p', q, q' define a skew rectangle. The lime¢hrough the point of intersection pf

p' andq, q' shall be called thprojective surface normalvhile the connecting line of
the intersection points qf, g’ andyp’, q shall be called therojective surface tangent;
goes through the point of the surface and doedenot the contact plane, whilelies in
the contact plane and does go through the poitheoturface.p, p', q, q', n, v yield the

six edges of a tetrahedron (Fig. 27) and can bentédk be a fundamental system in place
ofp,p',q, ¢, t t. Since:

(t+t)p=(ttt)p =(txt)q=(t£t)q =0,
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the normah and tangent will be given by:
(159) n (v, resp.) £ t.
They will be switched with each other under correlati@msl for that reason, they cannot

be distinguished in (159per se.
In the case?) of N0.93, n andv can also be characterized in the following waykas

J. Wilczinski did:

n (v, resp.)is the line that goes through the point of the surface (lies in the contact
plane, resp.) that cuts both diagonals of the Demoulin rectangle.

Proof. From (158), since:
of=¢' f=gf=g'§=0, of =g f=gf=g'f=0,
the diagonal$, f' can be represented by:
f(f', resp.) W' (Wp —q) = W(W’p' —q'),
from which, the assertion will follow, since:

np =np' =nf=nf =0, op =op' =of =vof =0.
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Special line systems

8 27. Self-projective line systems.

95. Characterization of self-projective line systems.Just as we considered self-
projective families of lines in no$6 to 70, we now investigateself-projective line
systems which are characterized by having constant coefficiemtshe differential
equations (134) [(147), resp.].

A self-projective line system will be transformedointself by at least awo-
parameter, continuous group of collineationdJpon restricting to a suitable', u?
domain, any two lines of the system can then be asedaidth each other collinearly.

Proof: The invariants|, 0 can be expressed in terms of the constant coeffician
the differential equations with the help of the inteditgbconditions (136.) [(148),
resp.], and are therefore themselves constant. Foom8nhone can then normalize the

!

torsion parameters (principal tangent parameters, respsuch a way thatm, m,

become the functions that were given in (115), (116), or (1Ifpse functions af*, U
correspond to each under the two-parameter substitution gobtips same functions of

the 0*, U?:

au“ - b, etc.
€972 + b, etc.
u% +b,

q) u'=aut' +b, u
(160) H ut=T" +a, u?
) ut=T +a, u

with the arbitrary constants b.
In that way, a line system with constant coeffitsein its differential equations will

(a6Qx)
be transformed projectively into itself by the subsumsi (1605) for
(160y)
g#0, gz0
g=0, g # 0. Since these projective maps define a continuous gtioeypwill be
q=¢ =0
collineations.

Discussion of the group of collineation$160a, 5, )):

For (160Q), there exists a one-parameter subgroup of collineat®rs0 b variable
or a variable,b = 0) in each caseunder which, either the torsion (principal tangentp.fes
curvesu® = const o = const. will remain fixed individually.

For (16(5), there exists such a one-parameter subgraup @, b variable) only for
the torsion (principal tangent, resp.) cureés= const., and for (16f) there is no such
subgroup.
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The focal surfaces of the self-projective line systameself-projective surfaceshey
will be transformed into themselves under at leastoagarameter group of collineations,
and by restricting to a suitable domain, any point of a saisalt go to any other point of
the surface. For example, the ruled surfaces that teeated in nd66 are self-projective
surfaces. Any self-projective surface is the focal amefof infinitely-many self-
projective line systems.

For (160), the longitude curves of both focal surfaces (the al¢cangent curves of
both families, resp.) are transformed into themseindidually, and will then beself-
projective curves. For (16(5), the longitude curves of a focal surface (the prircipa
tangent curves of a family, resp.) are self-projectiddong with the longitude curves of
the one focal surface, the latitude curves of the atherwill likewise be self-projective.

96. Self-projective hyperbolic line systems.We restrict ourselves here to (380
i.e., to the assumption thgt=q = 0. It then follows from (135), and sinbe = N; =0,

from (1363), that

We choose the plus sign and obtain the relations (¥3®n taken with the plus signs:
B=B'=C=C'=D=D"=1,
and from the integrability conditions (13629101238

R =-N, R =-N/ U =2N/ U'=2N,
A =-N, A =-N/ F=F=-1

Equations (13&;) provide only the one condition:

while equations (136) yield nothing new. With that, in total, the threens@ntsN, N’
E =E’= pwill remain arbitrary.

The special case dil =N’"=0:

The differential equations (134) specialize to:

p1=q, p2 =1,
31=9-p9q, 32 =9 — p,
ca=—q, ¢, ==,

(161) ¢ =-q, 2 =—q,
qu=pq+c+c, G=pp+c+d,

G ==p 3 2=—p—3.
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When we replace the tensers m* as in (117), the invariant derivatives 1, 2 will go
to the usual partial derivativés/ du', 8 / du® with respect to the torsion parameters. In
order to discuss the focal surfaces, we transform theneseas:

It will then follow from (161) for the principal tangertisat:

h =p+c, by =0; E =p-q t,=0;
h'=p+c, b,=0; ¥ =p-c, £,=0.

The principal tangents (', resp.) of the focal surface (@', resp.) are then fixed along
the curvest®= const., while the principal tangents(', resp.) are fixed along the
curvedi'= const.; i.e.:

The focal surface®, ®' are hyperboloids.

bUZUZUZ _4(,0+ Z)b—uz =0, Ealalul _4(p_ Z)Enl =0,

(162)
b —4P+20, =0, .. —4p-2), =0.

uTu-u uuu

With the initial conditions:

p=1]0]0]0|0|0, q =0[1[0[0[0|0, ¢ =0|0[1[0][0]O,
3=0]0]0]|1]0]0, ¢ =0]0]0]0]1]0, ¢ =0]0]0]0]0]1,

one will obtain the normalized line coordinatesy@ndh’ by integrating (162):

1 p+1 1

h, = + cosku?), hy =- + cosku?),
1= e 2 «u-) R R «u-)
hy = Esin(/(Uz), hs = —Esin(KUZ),
K K
hs = pri, 1 CosSKU?), he = — . CosSKU?),
p+2 p+2 p+2 p+2
and
) 1 p+1 2 1 —2
= +-——CoskUu“), hy =- + Cosku“ ),
h 0+2 pr2 «u-) ERPE R «u-)
h = Esin(/(Uz), hs = —Esin(KUZ),
K K
h, =- . CoSKU?), hs-'o+1+ CosSKU?),

p+2 p+2 Cp+2 p+2
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in which we have set:
K=2|p+2,

to abbreviate. With that, we will have:

CD) h, + hs =0, hs —hg =0, hl—h3—,0h4:0;
(163)

@) h+h =0, h,—h; =0, h-h-pH =0.

It follows from these representations that the twoaf surfacesb, @' have the skew

guadrilateral of lines:
h=p+1l|xJp+2 | 1l|Fp+2 |1,
t=p-1|t/p-2|-1|5/p-2|1

in common when we assume that 2.
The parametric representation:

L@P+O) Ul -p | LUl L,
1@+ lul 1 [Ltuliei-p)

can be derived from (163). In point coordinates, thatyield:

P’ U)q:u+(u2+p)v, oX,=1+ A, oxX,=2, ox,=1.

By eliminatingu, v, one will obtain the equations:
®) X =% -2%%-p% =0, ) XX 2% %t pX =0,
They can go to:
P) yr1ys+AY2Ya=0, D) AyYst+ Y.y, =0
by a suitable choice of coordinate transformation. fie focal surfaces and the two

singular second-order surfacgsys = 0,V, y4 = 0, through the skew quadrilateral that is
common to the focal surfaces, then yield the double:rati

_A A, _pFp°-4
d=-2 2= resp. (d>0).
A, A px\ p* -4

It then follows that:
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Any two hyperboloids that have a quadrilateral in common and produce a positive
double ratio d with the two second-order surfaces that are determined bgkéve
quadrilateral will be focal surfaces of a self-projective lineesyg161)with p> 2.

97. Self-projective parabolic line systemsFrom the integrability conditions (148),
one has the following possibilities for constant invagan

H=H'=p<1, g=q =+1-p, W:W':%p,
(164) orH=H'=1, g=qg =0, W=p W’'=p,
or H=H'=0, q:p,q’zi, W=W’'=0.
P
The special case dl =H'=1,g=q =W=W’'=0:
The differential equations (147) yield:
pL=yp, pp=t, t=p, =g, @=t q=q
po=p P2t =P, 6 =g, o=t =4

One more, by the special Ansatz (117), the invami@nivatives 1, 2 will go to the usual

partial derivative® / du*, 3 / du® with the principal tangent parameters. One Vidirt
get:

% _ ’p  _

a(uh)® P o P
% _ % _
o(u?)® v o b

from the differential equations. With the parametgbstitution:

Ul:_Ul_Hz, u2:—U1+U2,

one will get the line coordinates:

‘”’%} = &' [cos@/ 3/ 3sinty 3],

ap,

ap’2 } =" [sin(Uz\/_B)J_r\/_ScosUz\/_Sj, Upf’ } =- 2",

ap, gp;
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g 94} =3¢ ~/3sin@/ 3}/ 3cost’y 3,

op,

0'[:);3 O Ps

Upf’} = /3e™ [\/_3 cosUZ\/_S);\/_Ssin‘az\/_S}, Up?} = +,/3¢",

with a suitable choice of initial conditions.
The focal surfac@® that is given by the, p’ will be represented in point coordinates

by:
ox = e cos@ 3), ox= e”lsin(Uz\/_B), oxs= €%, oxg=1.

By eliminatingT", T?, it will follow that the equation ob is:
¢ + %)% = X,

If one interprets the; as homogeneous, rectangular coordinates dhevill be a third-
order surface of rotation. As for any surfaceattion (n0.92), the latitudesi* = const.

will be the Darboux curves, while the meridiais = const. will be Segre curves.
The self-projective transformations are composeriations around the axis of the
surface of rotation and the affinities:

1 o
2

X =KX, X, = KX, )~(3:K X3 X=X,

(x = arbitrary constant). From n@5, the principal tangent curves of both families are
self-projective.
In plane coordinates, the surface has the equation

27 [Wh? + W) WP + 4 @)’ = 0,
which is also of class 3.
§ 28. Special parabolic line systems3)(

98. Line systems withV=W’= 0. From (157b) and (156), there exist precisety
line systemgy(u*, U?), g'(u*, u?) for W=W’= 0, namely:

() Cf.,W. Blaschke and G. Thomsenloc. cit, page 119.
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As a consequence, the osculating hyperboloids have omygla snveloping structurd,
along with the initial surfac&d. The surfacesp and W are of equal status, in the
following sense:

a) Just asp, p' are the principal tangents to the surfa®e the q, ' are principal
tangents to the surfacg.

If one associates the points of intersection of corresponding line4paifsandq, g’
with the projective normals of ® then the principal tangent curves anand W will
correspond.

Proof: From (147), one has:
q2=-20q +9, q =-20q +q.

From (144), this means thagtand q' are principal tangents to the surfad€e and the

principal tangent parameters @fare, at the same time, principal tangent parameters of
W. However, one observes that the six-vegt{y', resp.) corresponds to the six-veajor

(', resp.) under the comparison with (144). The principal tangemes of®, with the
tangenty (p', resp.), then map to the principal tangent curved ofvith the tangentsg

(', resp.).

b) The osculating hyperboloids ob are, at the same time, the osculating
hyperboloids ofV.

Proof: it follows from (147):
n=Ht-dq, qu=Hp+Hi—qH) t+ @* - q) o
GE=HE—ar, =+ (H; —qH) €+ @ - @) o'

As a result of this, the quadrics that are spannegl, byq (p', t', ¢', resp.) are identical
with the ones that are spannedgby, q11 (4', 95, d5,, resp.).

The special self-projective line system that wagéckan no.97 is, at the same time,
anexampleof the line systeriV=W’= 0. Since:

q=t2=p22,
after a brief computation, one gets from 8@that:

U

b= P, =P, 0z = P, Qa==P;s Os=—P;;  Os=—P;-
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By choosing rectangular coordinates, the jih&vill go to theq under a reflection in the
coordinate origin. With that, the surfa&é that is spanned by the lineswill be
symmetric to the focal surface:

(X +x)%=% =0

of the line system of the lings, and will have the equation:

(X +%) %+ % =0.

99. Line systems withg =g = 0. For any parabolic line system, the tangents to the
Darboux curves and the Segre curves of the focal sudfadefine two hyperbolic line
systems that have in common the focal surf®cand the net that is generated by the
Darboux curves and Segre curves as the contact neB@o Along with the common
focal surfaced, the two hyperbolic line systems each have anothed &cface or focal
curve®d’ (d", resp.).

The line systems with =g = 0 now have the following special properties:

Forg=d =0and Wz W', ®, as well asd’ and ®", are negatively-curved surfaces.
Under the association of corresponding focal points, the principal tangent cofves
will be transformed to the principal tangent curvesifand ®”, so the line systems of
Darboux tangents and Segre tangents are W-sy{®213).

Forg=d =0and W=W’, @ and®" are focal curves or developable focal surfaces.

Proof: From (154), the tangents to the Darboux and Segrescare given by the six-
vectorsp + p'. Since, from (117), wheq =g = 0, one can set the tensons m, equal

to:
m =1, mp = 0; m =0, m, =1,

(152) and (153) will giver' + u? = const. for the Darboux and Segre curves. As atresul

the torsion parameter@’, U> of the hyperbolic line system of the Darboux and Segre
curves will be coupled to the principal tangent parameters® of the given parabolic
line system by:

(165) ut=0' + 0%, w=0 - o,

We now determine the lateral tangents @D. c, ¢’ of the line system of Darboux
(Segre, resp.) tangengs = p' according to (121). In that way, we can replace the

invariant derivatives in (121) with partial derivatives lwitespect to the torsion
parameter®)/ou’, d/0u’, and then have, on the basis of (165):

c(ptp)=0, c(pxp), +e(pxp).=0, c(pxp),—clptp),.=0,
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¢ (p * p')ulul —-C (p T p’)uzuz =0.

Since, from (117), the partial derivatived ou*, @ / du? are identical with the invariant
derivatives of the parabolic line system, one willhertget:

c(p £p) =clpr £ p) =clp2 £ py) = c(prr—p22 Py FP3,) = 0.
With the help of the differential equations (147), oneaoist
(166) cpxp)=c(p'xt)=clpxt) =c(t ~Wo—qxWp"£q'Ft) =0.
For the general Ansatz:
candd =ap+a’'p +Bq+p'q +tyt+yt,
it will follow from (166) andcc = ¢'¢" = O that:

BB =BxY =BFy=-y +Wh+atW S ta'3y=0, af-ap'=0.

That will yield:
¢ =PER witha=1,a’ =5 1,8=B'=y=y'=0),
¢ = (1—W;Wj(p tp)+q+q tt+t
(With’g:]-u[’”:ily:il,}/: lg=+a'= ]__W-;W)

The line system of the Darboux (Segre, resp.) tatsginen has (as it should) the Segre
(Darboux, resp.) tangents @ffor its first lateral tangents Furthermore, we now define

the tensorc, according to (122). Inthat, one must takep’ in place of the ling of the

system in (122), and by referring to the principaigent parameters @f, the partial
derivatives can be replaced with the invariant \@gives relative to the parabolic line
system. One then has:

. _ N oo W=-W

Cll - (p T p )1Cl - 2 )

. _ N oo _ W=-W

C =(p £p')ac, = 5

C,=Cy =@ xp)c,=1-H'=0;

from (148), it will then follow fromq' = 0 thatH "= 1.
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The determinant’ vanishes wherW = W’ so &', ®" will be focal curves or
developable focal surfaces (r82). ¢ > 0 whenW # W’. The focal surfac&®’ (®",
resp.) will then be negatively-curved, and from (124), wilveu' = const, and? =
const. for its principal tangent curves with:

gu=@xphp xp) =-1,
G2=mxp)p £p) = 1,
G1= Q1= £p)ulp £p')2 0.

The principal tangent parametersdofare also principal tangent parameterddrand ®”
then.

100. Line systems wittH = 0or H’=0.

H =0 H’= 0)is the necessary and sufficient condition for the osculating complex
(t', resp) to be fixed along the principal tangent curvés=uconst. (4 = const.) Not
only will four “successive” tangent$0. 91) belong to the linear compléxt’, resp), but

all pencils of tangents to the focal surfabealong a principal tangent curve’ & const.
(u* = const.).

Proof: From (147), foH =0 (H’'= 0, resp.):
t,=0 (t'z = 0);

on the other hand, fafl # 0 (H'# O, resp.), from (147}, t; (t, t,, resp.) will be linearly-

independent.
In connection with that, let the following theoremalso mentioned:

A surface curve along which all pencils of tangents of the surfactakea from a
fixed linear complex is necessarily a principal tangent curve.

Proof: The theorem will be trivial witha = O for a rectilinear surface curve or a

planar surface curve with fixed contact planes. Inrdémeaining casesia # 0, and one

will then conclude the following: We give the surfaceveubyu? = 0 and denote the
derivatives with respect ta' for u> = 0 by dots. For the pencil of tangepts(u') + o

s(u?) alongu? = 0 one has, by assumption:

a(pr+0s)=0 (@ = const.)

for all p, g, so:
at=as =0 and thus, alsait = as = 0.



§ 28. Special parabolic line systems. 149

It follows from this and the identities (155) that:
D, (t,s, v, §,a,10)=0.

From no.26, these six six-vectors (and sinmemeans an arbitrary six-vector, the first
five six-vectors) are then linearly-independent, so:

At +Bs +Ct +Ds +Ea=0;

scalar multiplication byt will give E = 0, sincena # 0. Due to the linear independence
of vt ands, C andD cannot vanish simultaneously. For that reason, onsetaisaypD =

-1, and then have:
(167) § =Ar+Bs + Cr.

From no.46, the tangents to the curvé = 0 and the surface tangents that are conjugate
to them are given by:

0= (ot +0s) Yo+ 0s) = p?(¢t) + 0(85) + 200 (5) .

From (167), since:
(tt)(55) - (t5)°= 0,

that equation will have a double ropt o ; i.e., the tangents to the curu@ = 0 are
conjugate to themselves, so the cure 0 will then be a principal tangent curve.
For the line systerd = H’= 0, the osculating complexis fixed along the principal

tangent curves® = const., just ag is fixed alongu’ = const. In addition, one has:

All of the osculating complexésndt’ of a line system with # H’= Oare contained
in two conjugate bundles of complexes.

Proof: From (147), one has:

t=t, t2 =Wp+q, to =Wo+2WQp —-Wp' +2Wt —20q +¢q,
t' :t" t:’L :W/p' +q', t:'Ll : (\Nl'+ M/q’) p' _Wp + M/t' _m’q’ +q.

Thus,t, to, to2, and likewiset', t;, t;,, will be linearly-independent and span two bundles
of complexes. In addition, the scalar products of the, tx»> with the t', ¢}, t;, will

vanish, as a simple calculation will show; i.e., th® bundles of complexes will be
conjugate.
In principal tangent parameters, one hag (U%), t' = ¢ (u"). It follows from:
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() (Ul =t (1) U =t () £, (") =0

by repeated differentiation that all arbitrarily highierivativesd "t / d(u?)" are conjugate
to the bundlet’, t;, t;,, and are therefore contained in the burtdle, t,, . The same
thing will then be true for any complex:

dt & d*

tP+g=t+e—+— +
9 d? 2 d(P)?

with an arbitrarye.

101. Line systems wittH =H’ Two curve nets of a surface shall be catlegjonal
when they are representable by:

(168)  u'=const.u’=const., and u' +u?®=const.,, u'-u?= const.,

after a suitable parameter substitution. Two eisgrarbitrarily closely-meshed, curve
nets can be selected from the four families of esirthat are diagonally-coupled, as in
e.g., Fig. 29. These discrete curve nets will &ned by the curves:

1_

=me, u2_

u =ng, ut+u¥=hg u'-u=ks
in which gis an arbitrary, sufficiently-small positive nummpandm, n, h, k mean positive
and negative whole numbers, as well as zero.

The 2x 2 tangents to a diagonal curve net that intergeet point of the surface are
separated harmonically. If the curve net is aqyp@l tangent net then any diagonal
curve net will be conjugate and will be callsdthermally conjugate.These statements
follow immediately from (168) and né. We now further show that:

There are negatively-curved surfaces on which tircypal tangent net is diagonal
to the net of Darboux and Segre curves. Thesasesfcan be characterized as focal
surfaces of the parabolic line system withH .

Proof: It is necessary and sufficient for the diaglity that the differential equations
(152) and (153) for the Darboux and Segre curvédisgwito U'+ U?= 0 by a parameter
substitution: This is the case in reference tophecipal tangent parameters if and only
if:

m:, =@ () (),
SO

(169) i zln(ﬂj =0
ouodu m

is fulfilled. Since from (114), on the basis afimple calculation, one will have:
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a1 0? m
v minwdatfln[réj

in principal tangent coordinates, it follows from (169) that
- =0,

and from (1483), one has the assertion that= H’. ConverselyH = H’ once more
yields (169).

Of the numerous remarkabjgroperties of the surface€) H = H’, let only the
following ones be cited:

The torses of the projective normét®. 94) intersect the surfac® along conjugate
families of curves if and only if the principal tangent net and theoh®&arboux and
Segre curves is diagonal to the surfaze

Proof: The torses of the normals are given by:
O=nn =nin U = (nmU +n,mM E)(n, md+n, ry o)
in principal tangent parameters. It follows from (159}:tha

I‘llzflit'l :HpiW'p'iq',
np=t, 2 t, =t H'p'+Wp +q,
SO
0=1an =Wmmud+( H- H miptit- wWm'm?i’.

This equation produces conjugate families of curvesiferH’, and only in that case.

Special parabolic line systems withH =H":

a) The line systerkl =H’"= 0 (no0.100).

b) The line systeng = = 0 (n0.99), since, from (148), it follows this thatH =
H".

¢) The self-projective line system (n87), since forq = const.,q = const, if
likewise follows from (1485) thatH =H".

d) The principal tangent system of negatively-curved susfaderotation. Due to
the rotational symmetry, the net of principal tangent esiwill then be diagonal
to the net of Darboux and Segre curves (from3®the latitudes and meridians,
resp.).

() O. Baier has investigated the analogous surfaces of positive aueydiss. Munich, 1931.
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§ 29. Special hyperbolic line systems/\-systems.

102. Definition of theW-systems. A hyperbolic line system with twoegatively-
curved focal surface®, @' is called aN-system ) when the principal tangent curves of
® and®’ correspond to each other under the association obta pointsx, X. If one
family of principal tangent curves df is mapped to principal tangent curvesiofthen
the same thing will always be true for the second fanaihd the line system with the
focal surfacesp, @' will be aW-system; the contact nets ®@f ®' will then correspond
without that, and their tangents will be separated harabipiby the principal tangents.

The W-system will be characterized by:

(170) DD'-CC'=0
or the condition:
(171) BZ=1,

which, from(135),is equivalent to it.

Proof: In torsion parameters, the differential equati(r?4) for the principal tangent
curves ofd (@', resp.) read:

Cll(ul)z - sz( uz)z =0 [ql(ul)z - dzz( uz)z =0, resp.]

A necessary and sufficient condition for the corresigoce of the principal tangent
curves is then:

C11:C2 = qli C'22.
It then follows from (170) that:

mlmlcllzmlmlplcl :pltlz—BD, IT]'ZITI'Zsz:poz:—B'C',
m'm ¢, =ps1 ¢, =-BC, m?*m? ¢, =p,c,=-B’'D"

Since the principal tangents d&f and @' are associated with each other byVa
system, any conjugate curve net of the one focal surfacg again correspond to a
conjugate curve net of the other focal surface. Orother hand, the principal tangents
are determined uniquely by two pairs of conjugate directionthaslines that each
separate the two given conjugate pairs of tangents harmgnidalfollows from this
that:

If, along with the contact nets, yet another pair of conjugate nets pomds under
the map of the focal surfacds @' that associates focal points X then the line system
will be a W-system.

() One should recall the nameXbfWeingarten.
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Now, W-systems with twapositively-curved focal surfacesill also be defined by
this theorem. They can be characterized, for exgrbgleéhe demand that the harmonic
nets (n0.82) of ® and®' must correspond. The conditions (170) and (171) are true for
positively-curved focal surfaces, as well as for negatiecurved ones.

As discrete-geometrienodels, one can compare the negatively-curved focalcasrfa
of the W-systems of the rectangle nt¥) and (Y) that are associated with angle-fixed
rectangle nets (n@.3):

Model W-system

Two rectangle net§X), (Y) with planar| Two principal tangent nets of negatively-
quadrilaterals. curved surface®, @',

The connecting lines of correspondinghe connecting lines of corresponding
quadrilateral vertices ofX) and (Y) shall| surface points ofp, @' shall each lie in

each lie in both quadrilateral planes. both contact planes; i.e., they will be
common tangents @ andd'.

Sets of connecting lines. W-systems of connecting lines.

We will come back to this analogy in § 33.

103. Osculating complex.TheW-systems can be characterized by the demand that:

(172) [b, 1, P2, P11, P12, P22 | =0,

instead of (171), or by:

°p 0%p 0%

173 D10, , , =
(173) PP 5 0 AUa W 9 1D

in ordinary partial derivatives with respect to arlbigrparameters?, 1.
Proof: From (134), one has:

pu=ap+Bq+B(Cc+Dc),
pr2=yp+90q+eq —BB';,
p2=a’p' +Bq +B’(C'¢' +D’0),
SO
| P, 1, P2, P11, P12, P22 | = |p, Bg, B"q', B (Ce + D¢'), -BB’3, B’ (C’¢' +D’¢) | .

SinceB # 0,B’# 0, and due to the fact thptq, q', c, ¢, 3 are linearly-independent, that

determinant will vanish if and only @ : D =D": C’, so (170) will be true. (173) follows
from (172) by going from invariant to ordinary partial detives, and conversely.
We refer to a linear complexthat satisfies the conditions:
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2

2 2
o _ 0% __ O .

(174) 5P = 5P =8p2 =5 ouout ° ouou? ° ou®du?

as anosculating complex. It then contains the first osculating quadric (48). of all
families of lines of the given line system that gmtigh a linep of the system. The six
linear, homogeneous equations (174) will have a non-triviatisa s # O if and only if
(173) is true. Thus:

A hyperbolic line system with two focal surfaces possessesalatosy complex for
any line of the system if and only if it is a W-system.

104. ConfocalW-systems. In this and the following numbers, we shall assume tha
the focal surfaces are negatively-curved. We first pos@roblem (cf., nal16):

Let a negatively-curved surface be given. Find the W-systems for whighs one
focal surface.

We start with the confocal, parabolic line systemthefprincipal tangents p' of the
given surfacab. The lines: of the desired\V-system are then given by:

(175) t=ppt+p (07 0),
with the auxiliary condition (173):

- 0% 0% 0% _o
2 A A |

By going to the invariant derivatives with respecthie parabolic line system p’,

one again comes to:
| v, t1, t2, t11, t1z, 22 | = 0.

This equation differs from (172) by the fact that the irar@rderivatives were defined as
in no. 81 there, but here they are defined as in8®. By substituting (175) and the use
of the differential equations (147), one will g8t (

(176) PP2—pLp+ (G —) +qpo—F po—p—0 q+pd =0.

() One represents ty, t,, etc., as linear combinations pf p', q, ¢', t, t, and sets the coefficient
determinant equal to zero.
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When one again expresses the invariant derivativeseimst of ordinary partial
derivatives, this will become a second-order partidetghtial equation for the function
o (u, ud).

We understand the terconfocal W-system® mean twoW-systems that have a
negatively-curved focal surfac® in common and contac® along two conjugate
families of curves. The net that is defined by theseilias of curves will then be a
common contact net to the tWé-systems. Moreover, one has the theorem:

The focal surface® of confocal W-systems are identical with the focal surfaces of
the parabolic line systems that were characterize(lby)in no.91

Proof: The focal surfaces of confodisystems can be characterized by the demand
that (176) admits two solutionsg{u®, u?) and —o (u*, u®) . In fact, the linegp +p' and

— pp +p' of the twoW-systems will then be separated harmonically by the ipahc
tangentg andp'.

Equation (176) will have 4o and —p for its solutions if and only if the two
conditions:

PP+ P+ pa-pq =0,

(177) o
PPy, = PP, + P (d,~d) + gop,=0

are fulfilled. Now, in principal tangent parameterse onll have:

pz 2
- = I
PP2=PLP+qp/p = M, 8 Uo Lfnp

. pZ 62 m

- In—L

ql q2 n‘; Lf r@

One gets from (1% that:

p=1 p(u’)
m, g (u)

and after the parameter transformation:

U= ) dd, @ =] g’) dd,

one will get:

p=

E1E

One will get (151) by substituting this expressiofl177).
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105. W-system with a ruled surface for one focal surface.We assume that the
principal tangent curves® = const. are rectilinear, so the focal surfages a ruled
surface. One will then have:

The tangents to the second focal surf@along each principal tangent curvé &
const. belong to a fixed linear complexThe principal tangents to the surfadé then

define parabolic line systems with=H0 (no.100).

Proof: We consider the ruled fami®y of the system lines that contabtalong one
generatoe and®' along the corresponding principal tangent ci@veThat ruled family
R is contained in a linear line system, namely, the mdiatangent system (nd8) that
is defined by the tangents @ alonge. The ruled surface that is spannedroyself has
e andé€ for its principal tangent curves. The assertion noleWs immediately from the
lemma

If a ruled family is implied by a linear line system then the tarsgéo the ruled
surface along each principal tangent curveokthe second family will belong to a fixed
linear complex.

Proof of the lemma: For the principal tangeiptsf the principal tangent curves,
one will have:

h=ap+ph;

in that way, one expresses the idea that the osaylplime that is spanned hyand
contains the generatgr, and is thus the contact plane to the ruled surfacelinear
complex that satisfies the conditions:

(178) tp=th=1t =16 =th=0
will also satisfy the equations:

(179) th=th=th=th =0.

(180) tp =0.
One further obtains from (178), (179), and (180) that:

(181) tp=tp=tp=tp=1th =0.
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In the event thagp, p,p,p , b are linearly-independent, (178) and (181) will yield:
t=ot;

i.e., the complex is fixed along the principal tangent curge In casep,p,p,p, bh are

linearly-dependent, the ruled family will be eith@ra quadric o) parabolic, and will
haveh as its nodal tangent. For a hyperbolic ruled familyill then be impossible to

have:
(182) h=ap+Bp+yp+dp,

since otherwise one would haw¢ = he= 0, and for parabolic ruled families, the
condition (60)hp = 0 for nodal tangents would follow from (182) by scatfaritiplying
with h . The casen) is trivial, while the assumptiob) can be fulfilled only for a
rectilinear nodal curve, which again makes the lemma krivia

When the focal surfac® is a hyperboloid,the theorem that was stated at the
beginning of this number will be true for the principal tangent curvesaonst., as well
as for f = const., so the principal tangent to the focal surf@tavill define a parabolic
line system with H H’=0 (n0.100).

We leave it to the reader to prove the contents ofrtineber immediately with the
help of the differential equations (134).

106. W-system with two ruled surfaces as focal surfacesThere is aN-system
whose focal surfacesp, @' are both ruled surfaces with mutually-corresponding
generators. The lines of the system that corbaahd®' along each generator define a
hyperboloidal quadric. In analogy with the theorem in48about the second family of
principal tangent curves to a ruled surface, it will tr@iov that:

The longitudegno. 80) cut the generators of the focal surfasesd’ along projective
point sequences.

We now pose the problem:

Determine all W-systems that have two ruled surfaces with mpttailesponding
generators for their focal surfacds, ®'.

Let the first focal surfac® be given by the arbitrary ruled family = gq(u). The
second focal surfac®’ must then be spanned by a ruled family= g (u) with linearly-
dependent six-vectors q, q’, 4", since the tangent systems alayig) andq (u) have a
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hyperboloidal quadric in common. By a suitable normatiratifq’, one can arrange
that:
i =pq+0oq,

in particular. Since;q” = 0,qq" # 0, one will again come to:
p:o=-(aq") : (aq),
SO
0’ =7{q(@q)-d@a)},  aq’ =-7(qq)@q),
and sinceqq # 0, one will finally have:
4°(aq") (@) +(@4") {a(@q”) —a(qq?)} =0.

If the arbitrarily-given ruled familyy = q(u) is hyperbolic, for example, then we will
assume the normalization conditions as in § 15 fand

q =Aq+Bq +Cq" +Dgq" +Et + F¥,

we will obtain six first-order ordinary differenti®quations inA’, B', C, D, E, F’
explicitly with the use of the differential equai®(71). One proceeds analogously for a
parabolic ruled family(u). One will then have:

Along with the ruled familyy = g(u), one can also give the ling (0) that is
associated with the ling(0) in the second ruled family essentially arbitraril{2recisely
one W-system is determined in that way.

107. Examples.

Any self-projective, hyperbolic line system witlo fwcal surfaces and gq = 0is a
W-system.

Proof: One obtains the relation (170) that cham@mtdW-systems immediately from
the integrability conditions (136 with N = const.N’= const.q=q = 0.

The first osculating quadric of a hyperbolic rulémily with non-rectilinear nodal
curves generates a special W-system: The focaesfwill be spanned by the two nodal
families(no.51) of the given ruled families.

Proof: For an arbitrary line of a first osculatigpgadric:
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t=ap+ Bp+yp,

and the nodal line ¢ follow from (60):
tb=tf =¢F =t =0;

i.e., the linex contacts the ruled surface that is spanned by the noddy.fa
For the sake of completeness, we add that:

The first osculating quadric of a parabolic ruled family with non-rewtiéir nodal
curves defines a parabolic line system whose focal surface is spantredirimdal ruled
family.

Proof: From (60) and (61), one will have:
tt=1tt =1t =0,

so the line: will be the principal tangent to the nodal ruled famil

The line system that was treated in 86.is a speciaM-system with two ruled
surfaces for its focal surfacdsth focal surfaces are hyperboloids.

Discrete-geometric moddbr the W-system with two ruled surfaces for its focal
surfaces:

Two discrete line sequences q', ¢", ... andq®, q", g, ..., with the hyperboloidal
line-quadruples’, ¢', 4°, q", as well asf, ¢", q", ", etc., enter in place of the ruled
familiesq = q(u) andq” = q’(u) (n0.106). q" must then lie hyperboloidally with’, q',
q°, and furthermorey” must lie hyperboloidally witly', ¢", q".

The special case for which thW-system is constructed from the first osculating

guadric of a hyperbolic ruled family corresponds, as a mddetwo discrete line
sequenceg’, ¢', ¢", ... andq™®, q", q"', ... that possess a common sequence of “nodal

lines” p°, p', p", ..., as in Figure 16.

108. Laplacian cycles) and W:-systems. Let ®, ®' be the focal surfaces of a
hyperbolic line system I, and let, u? be the torsion parameters, in the terminology of
no.81 The tangents to the lateral curees= const. ofd, and likewise, the tangents to
the lateral curves® = const. of®’, will then define two more hyperbolic line systems |
(1, resp.). Il has yet another focal surfa®€’, along with®; Ill has the focal surface
®", along with®'. If one now considers the lateral tangentsPnd™’, as well, then one

() Cf., on this, volume 22 of this collectioR: Salkowski: Affine Differentialgeometriel934, pp. 160;
furthermoreG. Darboux: Théorie des surfaces IParis, 1925.
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will generally obtain two new line systems and two rfesal surfacesp', ®V, and by
continuing with that process, one will get an infiniteain of line systems and focal
surfaces. However, it can happen t#f, @Y coincide with®"', ®", resp. The chain
then “closes” and reduces to the so-cafledr-term Laplacian cyclg’) of the four
surfacesb, @', d", @™,

The surfaces of a Laplacian cycle are related to e#odr point-wise by the line
systems I, I, lll. The skew rectangle that is deél by the point-quadrupie x', X", X"’
generates the four surfaces of the cycle as the georeetns of its vertices, and likewise
as the enveloping surfaces of the planes that are spaynde sides of the rectangle.
From no.80, paragraph |, the osculating planes of the contacoietsurfaced of the
cycle are simultaneously the contact planes of theataaht” surfaces’, ®"', and thus
coincide with the osculating planes of the contaciohéhe “opposite” surface”.

We cannot go deeper into the appealing properties of Liaplagcles. We mention,
in passing, the following theorem that Jonas(°) recently found:

The connecting lines of “opposite” points of a four-term Laplacian cyefend a W-
system.

() One will find examples itl. Jonas Berliner Math. Ges. BeR9 (1930); Math. Ann87 (1922), and
Sachs. Akad. BeB7 (1935).
() H. Jonas Math. Ann.114(1937).



CHAPTER V.

Infinitesimal bending of surfaces

8§ 30. Screw cracks.

109. Concept of the infinitesimal bending of a surface.n 8§ 11, we examined
infinitesimal wrinkles of nets of rectangles by meamdine geometry. In this chapter,
we would now like to treat the differential-geometanalogues of these discrete-
geometric relationships, namely, the so-called infimb@sibending of surfaces. Asin 8§
11, we also start here withe posing of metric problenad will then eventually arrive
at some remarkablprojective-invariant propertieg?). In particular, we will soon
deduce a close connection with the theorWeystems.

Let a non-developable surface) e given by:

X =X W),

2

with the parameter domaint < u' < u!, u? < ¥ < u?. We refer to a deformation:

(183) X =2 W) +eX(Uh ) (¢ = const.)

as annfinitesimal bendingf the surfaceX) when the auxiliary condition:

(184) %0 = XX +2X X

is fulfilled for all u* = u'(t), u* = U’(t). That means: The arc lengths of the curves that lie
on the surfaceX) remain unchanged under the deformation (183)for O in order of
magnitudes. (184) is equivalent to the requirement that:

(185) X = (XUt +X,07) (X0 + X, 17) = 0;

the indices mean partial derivatives with respear't@? resp.). Since (185) should be

fulfilled by the mutually-independent functions, u*, the factors ofu't’, uU?®, u'u?
must vanish individually, so:

(186) XX, =X%,X,=%XX,+x,%,=0.

() Cf., for this, volume 22 of this collectiofE. Salkowskij Affine Differentialgeometrie1934. In
chapter 9, the infinitesimal bending of surfaces iate@ in the context @ffine geometry. Moreover, one
should confer the presentation of the bending of surfacesBianchi, Lezioni di geometria differenziale
II, Bologna, 1923.
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The existence') of a vector) (u*, u?), for which:
(187) X =9xx, so X, =9xX, X,=9 % X,
follows from (186); i.e.2) x dX is acomplete differentiadX . Since:
d@ xX)=9 xdx - X x d),

X x dQ) is also the complete differential of a functigh(u', u?) then, and we have:

(188) P =xXx9, 9, =X Xy, 9, =X xY2.

The vector)) is determined fron and®), up to an additive constant vector, in that way.
By a suitable choice of that constant vector, omeat&ays arrange that:

(189) D-X =xxY;

from (187) and (188), the differentiad§2)—X) andd(X x ) are equal to each other
then.

110. Definition of the screw crack. Any tangent pencil of the surfa¢¥) will
experience the infinitesimal screw:

(190) en={eY | D}
under the infinitesimal bendin(@83).

Proof: From (189), the infinitesimal displacemer of a pointP on the surface can
be decomposed into: B
EX =eYPxX+£D.

The shifte ) x X can then be produced by a rotation of the surface jpoaround a
rotational axis that goes through the ori@rwith the rotation vectoe ). At the same

time, from (187), any surface tangent through the pBinwill be brought into the
direction that is prescribed by (183) under this rotatioBy adding the parallel
displacements ), the entire tangent pencil with the vertexwill then go to the new
position that corresponds to the infinitesimal bendk&gJ.

(") Upon excludingX, x X, = 0 (page 163, footnote), due to (28@&ne will also havex X = - X X #
0. One then gets from (186) that:
- XxX, - XXX,

Y XX XX
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Three more surface¥)( (Y), (X) are defined b®), 9, X as position vectors. We
assume that these surfaces do not degenerate into amyesints {). Due to the
kinematic interpretation o), 9, we refer to the surfacer) as arotational crack the

surface (Y), as adisplacement crackand the surface-paity), (Y) as ascrew crack
relative to the infinitesimal bending (183). When the tiotal crack ¥) is given, the
displacement crackY), as well as the functionX (u', u®) that characterizes the
infinitesimal bending (183), can be determined by means of (i8§uadratures and by
means of (189). In contrast to the rotational crackdibplacement crack will depend
upon the position of the origiD.

As equations (187) and (188) show, the surface-paks () and &), (X) are
equivalent. The surface-pair can also be regarded as a screw crack then, namély, wit
respect to the infinitesimal bending:

(191) Y =Y+ Y
of the surfacgy).

111. Integrability conditions. From (187), the integrability condition:

%X _ 0%
outau®  ou’aut
implies that:
(192) Dax X1 =P1 % X2;

l.e., the vectorsty, X», 91, 92, are linearly-dependent. As a result, one can re@hce
), with linear combinations a4, X5 :

M=puXi+AX,, Vo=—vXi—- U Xs.
Upon substituting this into (192), we will get:

M Xox X1 =Xy % Xy, SO U= U,
and thus:
(193) 2)1:/,1%14'/]%2, 2)2:—V%1—,U%2.

Due to the linear independenced, )2, one will have the auxiliary condition:

Av—1F#0.
It follows further from (188) that:

(*) One would then haw; x9),# 0,9, xY, #0, X, xX,# 0.
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(194) D, TUXXX+AX XXy, D, =-VEXX - X x X,

Let the tangents to the curve’s= const. (' = const.) on the surfacX) be given by
the singular six-vectors:

(195) p={X[XxX}  (q={X2|X x X} resp.).

With the use of these six-vectqrsq, and the six-vectoy that was defined in (190), the
two equations (193) and (194) can be combined into:

(196) pL=pp+Ag, D2=-Vp—-pq.
This implies:

0 0
197 — +Aq)+ —(vp+ =0
(197) e (up +A0q) aul( p+uq)

as a further integrability condition.
Mapping the surfaces(X), (Y), (Y), (X) to each other:

We associate the points of the surfacds (), (Y), (X) with each other when they

belong to the same values of the parameteng®. It will then follow from (187) [(188),
resp.] that:

a) Any tangent to the surfa¢®) [(Y), resp.]corresponds to a perpendicular tangent
to the surfacg X) [(Y), resp.].

b) Any contact plane of the surfa¢X) [(Y), resp.]is perpendicular to the position
vector of the corresponding point of the surf@ége[(x), resp.].

From (192), one will have:

c) The contact planes to corresponding points of the sufdcand (Y) are parallel
to each other.

Any surface-pair X), (X) with the reciprocal relationshig) will satisfy equation
(187) and thus defines an infinitesimal bending. By contifastmnap of the surfaceX)(
(Y) that is given by (192) is still not determined compietey the propertyc). The
requirement of the parallelism of corresponding cdnpdgnes then brings with it the
additional conditionz = 1’ in (193). We will interpret that condition geometrigah
nos.118and119 (Figures 28, 29).
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8 31. Infinitesimal bending of mutually-projective surfaces.

112. Bending of collinear surfacesAlthough infinitesimal bending was defined by
metric concepts, the following projective-geometric tleeois true {):

Any surface(X) that is collinear to a surfacéX) will yield a screw cracKY), (\7)
from the screw cracKY), (Y) of (X) in such a way that one subjects the screw
coordinates of) and the line coordinates of the surface tangen{Xpfo the same linear

transformation with constant coefficients — i.ees that are independent df u>. One
can derive an infinitesimal bending for any collinesurface from a given infinitesimal
bending of a surface in that way.

Proof: The homogeneous, rectangular point cooretna(u', u?) of the points of the
surface X) will be transformed by (3a) int& (u', u?), while the line coordinates, of the

surface tangents will be transformed info, by (19). Thus, the transformation

coefficients y; will be mapped to ther® by (20a), and like them, they should also be
constant; i.e., independent @f u>. We now compute, for example, the first coordinat

of the ve(:t0r3_€l = i(éj and obtain, with consideration given to (195) &1#):
%

ul

i & = 1 X %—"%j
aul[xj (24)2(X4au1 “ou

(aixl+...+a':x4)(aia_xl+...+a4%j

) <a1x1+---+a:x4>2{

ou fou
0 0X
@ rratx) @i s a1 |

X 2 0
vty ata gy 3 - ietai-ab)
4 44

() 3))

(%)°

(@ -+ a5X,)

(%)°

(@t aix)

Ap ot yipd = - B

() For this and the following numbers, cR. Sauer “Infinitesimale Verbiegungen zueinander
projektiver Flachen,” Math. Annl11l (1935); one already finds the results without the kinerahti
interpretation (but not in a line-geometric represématin G. Darboux, Théorie des surfaces |VParis,
1925.
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Thus, the first coordinate of the six-vectprand the first coordinate of the vectar
(%)’
(@x e +agx,)”

proportional, one will have:

differ by the factor , and since the six-vectofsand{X,| XxX} are

(198) p =X, XTxX) (4 = F{X,| XxX}),
with:
(199) w= @+ i),

4

Due to the constancy of the transformation coieffits ); in (19), it follows from
(197) that:

0 e e 0, .
W(ﬂp‘*/]Q)‘*m(Vp‘*,UQ) =0

for the collinear surfacéX) so, from (198):

0 ,_~ == 0 .~ .=
7(ﬂ%1+/] %2) +ﬁ(V%1+IU%2) :01
0 ,. R A 0 -z ~ = _
W(y%x%ﬁ)l%x%z)+w(v3€><3€l+,u3€><3€2) =0,
with:
(200) A=1d, p=ud, V=vd.
As a result, one can set:
Y, = aX,+1 X, VD, =-VX -} %,
(201)
D, = AXXX +AXXZE,, D, =-VEXX, -EXxX,,
as well as: B B
(202) X, =9 xX,, X,=9 xX,;

hence, due to (201), the integrability condition:

°x _ %%
outou®  dulout

will be fulfilled. From (201),(Y), (\7) is the screw crack ofX) for the infinitesimal
bending:
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X0= X +ex.

Due to (198), equations (201) can be combined into:

v, = Up+AT, D, =-VP-HY.
The juxtaposition of these relations with (196) shows thatsix-vectors);, y, — and
thus, up to some inessential constants, the six-veatself — transform in the same way

as the singular six-vectops q of the surface tangents.

Geometric interpretation au  The so-called flight plane:
@yt aix, = 0

is mapped to the virtual plarg, = 0 under the given collineation (3a). From (198)s,

up to a constant factor, equal to the distance fronpthet of the surfaceX) from the
flight plane.

113. Bending of correlative surfaces.
The theorem that was stated for collineations inlId®is also true for correlations.

Proof: The homogeneous, rectangular point coordinates, u?) of the points ofX)
will now be transformed by (3b) into the plane coordinafééu’, u?) of the contact
planes of the correlative surfa¢X). Moreover, the line coordinatps (g, , resp.) of the
tangents to the curvag = const. ¢* = const., resp.) ofX), which are normalized by
(195), will go to the line coordinateg, (d,, resp.) of the tangents to the family of

curves on(X) that are conjugate to’ = const. ¢* = const., resp.) under (19) [(20b),

resp.]; the tangents to a surface curve are then mapped tonjugate tangents along the
corresponding surface curves under a correlation. Weonge more assume that the
coefficients of the transformation equations (3b) and.(19)

One will obtain:

p= F{Wx2W,| W} (4 = F{W=2,| W),

by calculations that are analogous to then ones.it12 and furthermore:

(203)
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with functionse A, I, VU that are defined by:

1
w= ;(ﬁ‘llxl +ﬁ42X2 +ﬁ43x3 +,344X4).

4

The six-vector{X,| xX}, {X,| XxX} (b, §, resp.) yield the tangents to the curves

u? = const. u' = const. (the tangents to the surf4€) that are conjugate to them, resp.).
As a result, the following linear combinations éxis

QUXQ"'Ul = Jllil-*-JlZ/% 2! §zUXQMUZ = 521§1+522/% 2
gzA’Ul:5].1§x£1+512/%x£2’ §zMUZZ521£x£1+522/%x£2'

By substituting this into (203), one will get:

and it follows from this thaMi'= M , as in (193). Thus(Y), () is a screw crack of
(X). Just as in nal12 one shows thaj, p, q go tof, p, 4, resp., by the same linear
transformation.

Special correlation: polarity.

p ={P | B} will be transformed intop = {P | P} under the polarity (nol4):
pp = ppi3 ]

and thereforg = {) | 2} will also be transformed intg = {2 |}. Thus, if (¥), (Y)
is a screw crack of the surfacé then (Y), (Y) will be a screw crack of the surfa¢X)

that is polar to X); i.e., the rotational cracky] and the displacement cragl) will
exchange their meanings.
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§ 32. Connection with the theory of\-systems.

114. Determination of aW-system for a given surface bending.The points of
(X), (Y) that correspond to connecting lines define a system of lines(Xith (Y) as
its focal surfaces.

Proof: From (189) and (187) [(188), resp.], the vec®rsX, X,, X, [9-X%, 9.,
2),, resp.] are perpendicular to the vec®r (X, resp.}, and are therefore linearly

dependent; i.e., the points 6X) and (Y) that correspond to connecting lines lie in the
corresponding contact plane of the surfag$3 and (Y).

Any conjugate net of curves @iX) corresponds to a conjugate net of curves(di,

and conversely. Thus, when one of the two surfaces is negativedg cits principal
tangent curves will correspond to the principal tangent curves of thex surface, and
the letter will then be negatively curved, as well.

Proof: From (8), we must confirm the proportion:

<X, X,,X,.>:<X.X%,,X,,>: <3_€l,3_€2,3€12>

utu 120 ly utu

Now, from (188), (1), and (193), one has, e.g.:

<@1@2,@u1u2 > = <Xy, XxYp, X1xY1> = (A —1F) <XxY1, XX, X1xY 1>
= A (A —1f) <X, X1, X5,
and likewise, from (187) and (193);

- - - y
<X, X, X,.> =" - ,u)2 <), V1, V>°;

in this, Av — 7 # 0, and except for some special points, one b dlave:
<X, X1, X>#0, <), D1, @2>¢O_

From these and the corresponding formulas for theraotriple products, it will then
follow that:

X <X XX, > <X X, X, > =204y
2., @2,®u1u2> <9,.9, @ > <D,9,9,.>= A (4 V.

<
<

In summary, one obtains from the foregoing twmtkens:
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The points of(X), (Y) that correspond to connecting lines define a W-system with
(X), (Y) as its focal surfaces.

115. Determination of a surface bending with a givelV-system. We shall now
show, conversely, how one can determine the surfa(eqY) that are linked by the

conditions (187) and (188) to a given arbitrakysystem with the focal surfacgX),
(Y), and thus obtain an infinitesimal bending of the serfxg.
From (188)X is perpendicular t®), and¥),, so one can set:

(204) X=¢9,x,,
with the yet-to-be-determined functign(u®, u?). It follows from:

%l:¢l@1x@2 + ¢@lx@uluz_¢@2x@ulul’
Xo = ¢2 @1x@2 + ¢®lx®u2uz _¢@ZX@U1U2’

and the three requirements (186) that:
¢l<@1’@2’§1> + ¢{<@1»@u1u2’ 5:1> _<2_32»2_Ju1u11 X 1>} =0,

$2<9,,9,. %, >+¢{<@1»@ >_<@2»2_JL}L}1%2>}:O1
(205)
¢l<@1’@2’§2> +¢l<@11@2’_1>
+¢ {<2_31»2_Ju1uz' X

_<2_32»2_JL}L}1§2>+<@1»@&@%1>_<@2@&a'x >} =0.

These are three first-order partial differential@iipns for the desired functigh(u®, u?).
We shall show thaprecisely one solutio (u', U?) of it exists, up to an arbitrary
constant factor:

We first perform a transformation (cf., Figure 28) the torse parameters of the given
W-system. We will then have:

-9 = =09, (0, 0% 0),
(206) 3‘6 @ﬁal 20D 0
X, =(1+0,)9,+09..

By substituting this into (2@} one will get the identity O = 0, and from (20% one will
obtain:

$20=9(2+0a7),
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(207)
@10N = ¢ (N + gP),
with

N = <@1,@2,@u1uz >, P= <@21®u1u1’®u2u2>'

We must now express the idea that the principageat curves ta(X) and (Y)

correspond to each other. Since the parameteesum both surfaces define conjugate
nets, the condition that will characterize that is:

<§1’§21§ TR <§1’%21%u2u2 > = <@112_J2’2_Ju1u1 > :<@11@2’@u2u2 >.

uu

It follows from this relation, with the help of (8] that:

(208) 9 (2+02j =9 (ﬂ+3j.

o'\ o ou’\ o N

(208) is the integrability condition for (207). The integral is determined up to a
constant factor, and can be obtained be quadratures

Infinitesimal bending of the surface(X):

Since (205) possesses precisate solution, up to a numerical factor, precisehe
surface X) will be determined by (204), up to a similariansformation. The given

surface(X) will then define an infinitesimal bending of) by (183). The given surface

(Y) will belong to that bending as the displacemeatkythe contact planes ¢¥) will
then be established uniquely by the requiremen®)(2&s the planes through the
corresponding points of the given surfg¢€) that are perpendicular 1.

116. Summary. Since (186) is formed the same way in regar@ Bmd X , not only
will the infinitesimal bendingt” = X + X of the surfaceX) be defined by the surface

pair (X), (X), but also the infinitesimal bending” = X + £ X of the surfacgX). As
a result, we can summarize the results of hddand115in the following theorem:

If an infinitesimal bending of a surfat¥) is given then a W-system that h@é) as
a focal surface can be derived frgit87) and (189) by differentiations and algebraic
operations. Conversely, if a W-system wi) as a focal surface is given then one can

obtain an infinitesimal bending of the surfa¢&) from (205) and (204) by only
quadratures. The determination of all infinitesinb@ndings of a surfacéX) and the

determination of all W-systems that hayX) as a focal surfacg204) are thus
equivalent problems.
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Example: We determine the infinitesimal bending that belong# the W-system
that was found in nd®6 whose two focal systems are:

(X): XXHAARK =0, (V): AL V+V, V=0
The focal surfaces are represented by:
X =-uA|-u A -, D =ut|ut v |- P
in principal tangent parameters. From (205) and (204), thiatpily:
X=-uA]1|u'A D =u?|-1 |

so the infinitesimal bending of the hyperboldgi) will be:

X0=-uA -l | -U A+ e|-PA+ed'a,
and the infinitesimal bending of the plang ill be:

X =-A-euA | 1-cu AU - .

§ 33. Torsion-fixed and curvature-fixed nets of curves.

117. Definition. In this paragraph, we treat tdferential-geometric analogues of
the unsteady net of rectanglett.is then recommended that the reader should go®ver
11 again.

Torsion-fixed nets:

Let a net of curves be given on a surfaXg gnd an infinitesimal bending (183) of
(X). We select two corresponding net-rectangles Xf gnd &) and consider the
tetrahedron that is defined by the corners of these n&thrgles. |If the two net-
rectangles contract to points then the quotient of tthe tetrahedral volumes will
approach the value 1£4...}. The net of curves is then calledrsion-fixedwith respect
to (183). Being torsion-fixed can also be defined by the reoant that “torsion” in the
“transvelrse ruled surfaces” remains unchanged under thé&asimal bending (183) to
ordere (V).

() The transverse ruled surfaces of a net of curvesbeilspanned by the tangents to one family of
curves along the curves of the other family. The dorsif a ruled surface is the limiting value of the

angle between two generato - ¢ 1\ yhicR Sauer Math. Ann.108(1936), 673-693.

uotient - .
q shortest distance between th
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Curvature-fixed net of curves:

A net of curvesX) is calledcurvature-fixedwith respect to (183) when the curvature
k of the curves of the net remain unchanged to ar,des one also has =k + £{...}.

Analogy with the unsteady rectangle net (§ 11):

Rectangle net Curve net

Tetrahedral volume of the rectangle Tetrahedral volume of the “infinitesimal”
net-rectangle

Angle between successive sides of tl@urvature of the net curves
rectangle

Face-rigid unsteady: Torsion-fixed:

The tetrahedral volume is preserved | (6)
ordere.

Vertex-rigid unsteady: The angle Curvature-fixed: The curvature of the net
between successive sides of the rectapglerves remains unchanged to order
remains unchanged to order

The parameter net is torsion-fixed for:
(209) <XLXGXD, > =<X X, X, > e}
Proof: We consider the net-curve rectangle whosécesrare:
ut | U, ut+ 7t | U ut | W+ 7 ut+ 7t |+
The tetrahedron with these vertices has the spatiame:

Vo =i<x U+ 4L v -x Wh W), X WL G+ =X (UL WD),
XU+ &+ ) - X (U BD)>

= 1<, %, %, > (1 (D) + ..y
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in which the ellipsis means terms of degree higher thanif thes7. (209) follows from
VIV=1+e¥..}when 7t - 0,77 = 0.
In the exceptional case &fX,,X,,X , . >= 0, the parameter neté®njugate. In the

event that it is torsion-fixed, according to (209), it weémain conjugate to orderunder
the infinitesimal bending (183).

The parameter net is curvature-fixed for:

(210) X, X0, =X, %, ved) (i=1,2).
Proof. One has:

= (%lx'xulul)(%lx‘%ultﬂ) = (%l %1)(%ulul %ulul) _(%1%6&)2
(X, %) (X, %)

for the curvaturd of, e.g., a curve = const.
Due to (186), one has:

X/ X=X %+ {0 k% P i SR P8 §
SO:
0 0 2
k*z — (%1%1)(%u1u1 %ulul)_(%lfulul) + 82

@ x) {...}.

(210) will then follow from the fact th&? = k& + £%...}.
We substitutét” = X + £%{...} into (209) and (210). By setting the coefficientsof

equal to zero, we will get the theorem:

The parameter net i) is characterized as torsion-fixed (curvature-fixed, resp.) by
the fact that:
<X XX <X X, X, >+H<X X ,X,,> =0
(211)

(X, X, = X, X, =0,resp)

utat 7T utat

118. Properties of the torsion-fixed net.By the replacement of:

%12: %(@xxl):@x%1+2jx %uluz :—ﬂx2x%1+2jx %uluz
u

uu

in (211), one will obtain:

<X XX, > <X XX, > <X XX > = H (XX XD (X% X),
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Therefore, whew = 0,0ne can characterize the parameter nepfas torsion-fixed.

The relations (196) then specialize to:
(212) D1 =A q, UZZ—A p,

which is the differential-geometric counterpart to (5R)joreover, one has the analogues
of the corresponding discrete-geometric theorems 04310

1. Relations between the parameter nets ¢X) and (Y). From (193), withu = 0,
the tangent to a curw€ = const. (¥ = const., resp.) will be parallel to the tangenthe t
curvesu® = const. ¢* = const.) along the corresponding cuve= const. ¢ = const.) in
(Y). The bold-faced tangents toX)(and {¥) in Fig. 28 are pair-wise parallel;
corresponding points of the surfac&$ &nd {¥) are denoted by the same symbols.

Figure 28.

2. Relations between the parameter nets qX) and (X), (Y) and (Y). The
tangents to the parameter curvesX)f[(Y), resp.] are perpendicular to the corresponding
tangents of X) [(Y), resp.] (no. 111, Theorem a). It follows from (187) ak@B3) that:

<3—€1’3€2’3€u1u2 > =< x X1, x Xy, Y1 % Xo>
= U< X X1, Y x X, X1 % Xp> = <Xy, X, D>,

so <X,,X,X,,> = 0 wheny = 0. Conversely, except for special points,
X,,x

Any conjugate curve net ¢X) corresponds to a torsion-fixed curve net(@f, and
conversely.
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3. Collinear invariance. From (200), it follows fromy = 0 that iz = O for any
collineation. Thus:

Every net that is collinear to a torsion-fixed curve net is ongeertorsion-fixed, and
in fact, with respect to the bending that was determined i 1.

4. Commutation of (X), (X) and (Y), (Y). From no.110, (X), (X) can also be

regarded as screw cracks, and indeed for the infinitedsrading (191). From (193),
one has:

(213) X1=- %@2, X2=D1.

Just as the parameter net ¥j (vas characterized by (193) with= 0, the parameter net
of (Y) will be characterized as torsion-fixed. Thus:

If the parameter net iX) is torsion-fixed unde(183)then the parameter net ¢Y)
will be torsion-fixed undef191).

119. Properties of the curvature-fixed nets.If one substitutes:

X =AX2x X1+ x X, Xpp = VX XX+ D X X,
into (21%) then that will make:

O :A <%ll %21 %u1u1>l 0 = V <%ll %21 %uzuz >
As a result, the principal tangent net is always atune-fixed. Therefore, we would now

like to exclude the principal tangent nets from the cureatiied nets as triviald = v =
0 then characterizes a parameter net as being curvature-fiie@b) specializes to:

(214) D1=Hp, Y2 == Hq.

Once more, this relation corresponds to the discrategiic condition (52) of the
vertex-rigid rectangle net, and it implies the follogrtheorem, which is analogous to
one in n043:

Every net that is collinear to a curvature-fixed curve net is agamature-fixed, and
in fact, with respect to a bending that is determined as i1 1.

If the parameter net afX) is curvature-fixed undefl83) then the parameter net of
(Y) will be curvature-fixed undgr91).

The curvature-fixed nets, in contrast to the torsion-fixed onesalam@ys conjugate.
The tangents to the curveSzconst., 4 = const, u* + u? = const. of the curvature-fixed
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parameter net ofX) are parallel to the tangents to the curves=uconst., G = const,
u'F u? =const. of(Y) (Cf., Fig. 29).

Figure 29.
Proof: (193), withd = v= 0 implies that:

D1=uX1, P2=—-UXy,
and that will imply:
D1+ P2 = (X1F X2),
as well as:
Voo St Xt U Xy =~ fa X~ U Xy,
Therefore:

<@ll @21 @u1u2> == /'[’3 <%ll %21 %uluz > = + /'[’3 <%ll %21 %uluz > = 01

and sinceu # 0, one will also have:

<Xq, X, %uluz > =0.

Theinterpretationof (192) that was promised in nbl1is given by the relation between
(X) and ) that is represented in Figs. 28 and 29. Fig. 28 (29, resth¢ idifferential-
geometric analogue of Fig. 13 (14, resp.).

If the parameter curves fulfill (214) then the curiés= u' + u?, 0% = u* - u? will
satisfy the condition (212). Thus:

Every net that is diagonal to a curvature-fixed isébrsion-fixed.
Confer Fig. 29 on that; the diagonal net in it has #mesrelationship to it as the

parameter net in Fig. 28.

120. Correlation conjugate torsion-fixed and curvature-fixed cuve nets. The
following argument is analogous to the one in4®.
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The nets that are correlatively-conjugate to a conjugate and torsion-fixedafare-
fixed, resp.) net are curvature-fixed (torsion-fixed, resp.h vaspect to the bending that
was determined id13

Proof: Foru=0 A =v=0, resp.), (203) specializes to:

9, = AWx90,, 9, =-UWxW,,
or.
@1:ﬂmxm1’ @zz_ﬂmxmw

resp. Thus, the vecto® x20,, W xW, will be parallel to the conjugate tangents to
the curveas® = const.,u' = const., so, since the parameter net is conjugatg wtitiebe
parallel to the tangents to the cureés= const.u” = const.; i.e., tat,, X,, resp.

The principal tangent net dfX) corresponds to curvature-fixed net ¢, and that
is the only curvature-fixed net @¢K) for the bending183). A curvature-fixed net o(X)
for the bending183)will then exist if and only it X) is negatively-curved.

Proof: (187) and (193) imply that:

<§1’%2’%u1u1 >S=QY XX, Y XX V1 XX 1>=A<Y X X1, Y x Xo, Xo X X1>
= - < X1, X2, D>

Except for special points} = 0 and<X,,X,, X, > = 0 are reciprocal conditions; the

same thing will be true for= 0 and<X,,X,,X .. > = 0.
The last part of the last theorem in dd.is the discrete-geometric analogue of the
fact that was proved in nd14 that the points of(X) and (Y) that correspond to

connecting lines will define W-system with(X) and (Y) as its focal surfaces (cf., the
discrete-geometric juxtaposition in n02)

121. Torsion-fixed and curvature-fixed systems of lines. An arbitrary given
conjugate net on a surface is, in general, not torsi@ufor curvature-fixed for any
infinitesimal bending of the surface. Therefore, iflsachending does exist then both of
the tangents that define the conjugate net shall be cattadian-fixed (curvature-fixed,
resp.) systems of linedA torsion-fixed (curvature-fixed, resp.) system of line#l thien
be characterized by the collinear-invariant requiremesit the contact net (n80) on at
least one focal surface is torsion-fixed (curvature-fixedp.).

We would now like to characterize the torsion-fixedteyns of lines with two focal
surfaces byrojective invariantgno. 85):
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(212) implies the necessary and sufficient collinearsiava condition for a system
of linesp (U}, u) to be torsion-fixed:

) ) _
(215) w(ppﬂw(at) = 0.

As in no.81, we have again replacedwith ¢ in (212) and thought gf andc¢ as being

normalized as in n@3, which is why other functions, gappear in place of, L.
We introduce torsion parameters and obtain from (215l eahsideration given to
(120):

Plp+02t+i,0p +i0t =0
i 1 2 2 '
and furthermore, with the help of the derivation equat{aBg):
1 1, 1 1
p(pl-FFApj'f‘C(Uz _F N Uj +q(ﬁplB_WUC)

Due to the linear independentgfc, q, it follows from this that:

0.

mpo, +Ap=0m?c-N’0=0, m?pB-moC’=0.

The first two equations imply:

[Agd N g2
p=x@ e, o=y el

with the arbitrary functiong (u"), x (u); the last equation yields:

mcC ej%duuj%duz _ x(u?)
m?B (98

and thus, after a double logarithmic differentiativith respect tar*, u*
o* . [m ), 0° |n(5j+i(ﬁj+i(ﬂj:o
ougu® | mi?2) odowr  B) o\l m) 9 dl nf '
J0 (A 1 0
- | — = +
Ouz(mlj o auz(

0 (N 1 , 0 (1 . 1 N
1) = e S ) =gt

Since:
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9° n m* _ 1 (@ -q)
autow " mi? ) minge T
one finally comes to:

(216) Ao +gA+ N +qN+d - q+(|n£j + ({mgj =0.
B 12 B 1

One can characterize the curvature-fixed systemdines by invariants in an
analogous way. We would like to skip over that dastration, since, from nd20, the
curvature-fixed systems of lines are correlativéhotorsion-fixed ones.

122. Example. From (216), the self-projective hyperbolic syssewfilines (constant
invariants!) withqg = ' = 0 are torsion-fixed. Sincg =d = 0 and the constancy of the
invariants remain valid under correlations, theg#esns of lines will likewise borsion-
fixed and curvature-fixedand indeed, with respect to the contact oetboth focal
surfaces.

An example of such a system of lines is the sedjgutive W-system that was
described in n096. The likewise curvature-fixed and torsion-fixegntact nets lie on
hyperboloids and are diagonal to the generatoofigte hyperboloid.

More generally, one has:

Any diagonal net of the generator net of a hyperboloid is torsion-fixed for artgendi
and curvature-fixed for another bending.

Proof: From the Ansatz:
X=gU+0) @ -u)|g U+ Opu -ud),
with the arbitrary functionsp and ¢, the parameter net is conjugate to the net of

generators” + U? = const.
The functior)(u*, u?) is determined, up to a constant factor, by:
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1 1

T V2=
(that is:

231 ) ¢1]4-01 %1’ 232 - ¢1]4-01 %2,
resp.), since:

Hlawarlas) o [l arli o
. +— =0 — +— =0, resp|.
ou\gy,) ou gy, ou\gy,) ou\ ¢y,

From no.118 (no. 119 resp.), the parameter net of) (then characterized by being
torsion-fixed (curvature-fixed, resp.). The didergeometric analogues of these curve
nets were mentioned in the conclusion ofs.

8§ 34. Stress distributions in membranes.

123. Screw crack of a stress distribution.In no.42, we juxtaposed the kinematic
picture of the face-rigid, unsteady, rectangulat néh a static interpretation by
replacing the motion screws of the screw crack fathe screws. In an analogous way,
we would now like to reinterpret the kinematic stud an infinitesimal surface bending
statically as results concernirsress distributions in inextensible membra@®s We
thus assume that the membrane surface is not ¢y so planar membranes will be
excluded, in particular.

Equilibrium conditions:

Any line elemendX of the membraneX) belongs to a stress-force that acts in the
contact plane, which we will represent by the sector:

(217) dy = {d9) | X x dD}.

If no external forces are present then the stres®fthat acts upon the boundary of any
simply-connected surface patch &) (nust vanish, so:

(218) <'|3 dy =0;

l.e.,dy will be a complete differential, so the elementsirgsses glcan be derived from
a stress functiop(u’, u?).

() Cf., on this, W. Blaschke: “Reziproke Kréftplane, usw.,” Int. Cong. of Math. Cambridge
Proceedings 2, 1913; and furthermdvk, Lagally, “Uber Spannung und elastische Deformation, usw.,”
Zeit. f. angew. Math. u. MecH, 1924.
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Screw crack:

When one goes from the six-vectdy to the ordinary vectord), X x d¥), using
(217), it will follow from (218) thatdy), as well ast x dY), are total differentials. There
then exist two functiong)(u*, u?) and 9 (u', u®), which are coupled with the position
vectorX(u', u?) of the point on the membrane by:

dP=%xxdY .

This relation is equivalent to the conditions (188) of h69 As a result, the
membrane surface) and the surface®) [(Y), resp.] that are described by the position

vectory) (2, resp.) will have the same relationship to each othéhesurfaces with the

same notations do under the infinitesimal surface benddy. infinitesimal bending of
(X) will then also produce a stress distribution on the membi@)ethat will be in
equilibrium in the absence of external forces, and convers@lg. call the surface-pair

(Y), (Y) thescrew crackor the given stress distribution iX)(

124. Juxtaposition of analogous theorems on surface bending andrests
distributions. From no.123 the theorems on surface bending can be translated
immediately into the theory of stresses. For examgne will get:

a) From no.110 A given stress distribution in the membradg (ith the screw
crack (), (Y) also determines a stress distribution in the membrégneith the screw

crack ), (X), for which (X) is given by (189).

b) From nos.112and113 A known stress distribution(u®, u?) on the membrane

(X) will imply a stress distribution in any membra(¥) that is collinear or correlative
to (X) when one subjects the line coordinates of the tangé(§ and the coordinates of
the screw to the same linear transformation with constantfeoents.

¢) From nosl118and119 Torsion-fixed (curvature-fixed, resp.) nets correspond to
lateral stress netéshear stress netsesp.). For those nets, the stress-forces thai@oy
a net curvex act in the direction of the net curves of the ofermily (in the direction of
the net curvex, resp.).

One can represent the lateral stress nets by stiaatpls with families of intertwined
strings in a state of tension. The string stressdd the lateral stresses in the net. Since,
by assumption, the lateral stresses are in equilibribensurface that is generated by the
strings does not need to be realized by a rigid material.

Any collinear map transforms a lateral stress (sk&ass, resp.) into another one.
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d) From nos119and120 There are conjugate and non-conjugate lateral stress nets
but only conjugate shear stress nets. A correlatiohtraihsform a conjugate lateral
stress net into a shear stress net, and conversely.



CHAPTER VI

Line complexes

8 35. Definition of a line complex.

125. Parametric representation.A line complex(*) is given by:
p=p UL W),

with the independent parameter's U7, u® that vary in the domain!, < u' < u! (i = 1, 2,

3); the six-vectop (u*, U?, u°) is determined only up to an arbitrary factofu®, u?, u’) #

0. If one associates any pombf a region in a plane/ with a cone or a pencil of lines
with the vertexz then those lines will define a line complex in themvthat they do not
all belong to the plane. Conversely, any line complex can be generated in that wa
Every line of the complex that does not lienwrwill then cutw at a well-defined poirt,

and a one-parameter set of complex lines will go throeagry non-special point of
intersectiore.

Just as we did for line systems in i@, here, we introduce the six-vect@rs %
u
2
as well asaai P -, etc. Therefore, the identities (102) are once mokd, \aut this time
u'du

withi, k=1, 2, 3. In addition, we demand, as in nf.that:

p, P1, P2, p3 shall be linearly-independent; in particular, eithg or one of the first
derivativesp; will then be a zero vector.

One gets the followingnap of line complexes to the points of an imageesfram
that: For every location’" in the domain of definition, there exists a finite sapionu’”
—e<u <u' + g for which, the triple of numbeng is associated with the line(u®, U,

u’) in a single-valued, invertible way)( If one interprets thel as inhomogeneous,
rectangular point coordinates in an image space themtefl the complex in the sub-
region will be mapped to the points of a cube in thagenspace in a one-to-one
correspondence. Any curve (surface, resp.) of the impgeeswill correspond to a
family of lines (line system, resp.) that is containedthe line complex, while any

direction of advance in image spacé: u®: U will correspond to a “direction of
advance” in the line complex.

() The metric differential geometry of line complexes hasently been treated thoroughly Wy.
Haack; cf., the citation on page 1.
(®) Cf., page 100, footnote 3.
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Tensors: As we did in 8§ 20 for two variablas, u,, here, we define tensors in three
variables that are covariant (contravariant, resm$aes with respect to the parameter
substitution:

o ot ot
au' ou® ou’
C . ou® au® au’
219 u =u'(Th,w, T with A=|— —| #0.
(219) ( ) au' ou® ou’
w’ ow ov
ou' au’ ou’
. . ap, . _ Op
In particular, the coordlnateg_—i of the six-vectom; = a0 are once more tensors of
a U
rank one.

126. Torses in a line complex.The torseal = u'(t) that are contained in a line
complex are implied by the condition:

(220) g, Ut =0,

which reads the same as (103) formally, in which one ftheéssymmetric, covariant

tensor of rank two:
2

ik i Pk auiauk ki -
Since the indices now run from 1 to 3, (220) now iegpla one-parameter set of

directions of advancai': v*: u® (no. 128 for any linep of the complex. As a

consequence, for the torses that go through a compley,linee can prescribe, along

with the differential equation (220), an essentially taaby relation between two
parameters, as well — e.g? = x(u"); i.e., except for the parameters, the set of torses
contains an arbitrary function of variable. Speciate¢s of the complex are the complex
lines that go through a fixed point(viz., acomplex coneand dual to that, the complex
lines that lie in a fixed plan (viz., tangents to theomplex curvgs We will learn
about other projectively-distinguished torses (8.

One always has* 1for the rank r of the matrix;g.

Proof: (220) transforms under a parameter transform&2b@) as the equation of a
second-order curve in homogeneous point coordindtesioes under a coordinate
transformation (no4). Thus, for <1, (220) will go to:
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gllllllul =0, with 011> Oor<o.
One will then have:
pP2p2=p3p3=p2p3=p1p2=p1p3=0.

It follows from this, and the fact that:
pp =pp1=pp2=pp3=0,

thatp, p2, p3 are pair-wise intersecting lines that belong to thedr complexi. Forpip:
# 0, the three lines, p2, p3 then belong to a pencil, whifgp; = 0, the four lines, p1, pa,
ps lie in a plane or a bundle. In both casesi, po, ps will then be linearly-dependent,

which contradicts our assumption (A25.

All complex cones and complex curves degenerate intoilpesf lines for alinear
complex. This property is also characteristic of linear cawpk. A relation that is linear
in the x will then follow from the equation of a complex:

F (pl, P2, ...,pe) =0

upon substituting (9) if and only F is a linear form in th@, . In that way, we have
implicitly given the complex by an equatidh = 0, instead of an explicit parametric
representation of the line coordinates, as an exceptiase.

127. Classification of the line complexesSincer > 1, the followingprojectively
and parametrically-invariant case distinction follows:

a) r = 3:non-singular line complexes.

b) r = 2:singular line complexes.

The singular complexes are the tangent complexes of the surfaces arstahe s
complexes of the curves; the latter go to tangent complexes of develsepdhtes under
correlations.

Proof:
a) Let the tangent complex of a non-developable or develepabfacex = X(u’,

u?) be given. From = {3 | B}, with:

‘B :%1+U3%2,
P=XxP=XxX+BXxX,,
one will get:

pip3 = ;’Bl;’f;g + ;’B;’Bl
= (X, FUX L) X X Xp + X (XXX, +UPX XX, )= 0,
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as well asyops = 0 andpsps = 0, sor < 3. The same thing will be true for the secant

complexes, since they correspond dually to the tangenpleses of the developable
surfaces.

L) Let aline complex witlh = 2 be given. (220) can then be transformed into:
g,Urit+2g,tf+ g, d'd=0

by a parameter substitution (219). Sipegs = pp3 = 0, p, p3 are two lines that intersect
in a well-defined poink and span a well-defined plane It follows from:

9%p b= 9%p by = 9%p b = 9%p
ou’ou® ol T Ao autawd

ps=0
and the linear independencepps, p2, ps that:

9%p

—— =Aip + Aops;
aua T

i.e., the families of linest = const.,u* = const. that are contained in the complex are
pencils of lines (no46). They have the pointas their vertices and lie in the planes

The pointx cannot be fixed, since otherwise the complex lines woedthe a bundle,
and only a two-parameter set. xlgenerates a curve then all complex lines must cut that
curve, so the complex would be a secant complexx dgénerates a surface then the
planesw of the pencils of lines will be the contact planeshi surface, so the complex
will be a tangent complex. One sees that as foll@irxce:

pp(U'(t)) = pp(u’ (1)) = pap(U'(t)) = pop(u' () = O,

p, p3 will be tangents, sav will be the contact plane to a line surface thapsnsed by
the family of lines of the complex that go througlna p of the pencil & | w}.

In following, we exclude the singular line compkexas well as the isolated lines with
r = 2,from consideration.For the determinamg of thegi, we will then always have:

(221) gz0.

8§ 36. Contact structures.

128. Contact complex, contact system, and contact correlationThe bush of
complexesA® + A'p; + A%, + A%ps is established by the four linearly-independent

complexesp, pi1, b2, p3 IN @ manner that is projectively-invariant, as welliragariant
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under renormalization and parameter substitutions. Oheplexesb of the pencil of
complexes that is conjugate to that bush are determined by:

(222) bp =bp1 =bp, =bps =0,

and are calledontact complexeghey then contain the complex linesnd all complex
linesp(u' +re U2 + s¢, u® + té) in the neighborhood gi(u®, U, U%), to ordere.

Since the discriminar®a4(p, p1, po, p3) has rank = 3, the busi® + A'py + A%p, +
A%ps will be parabolic (no32), as well as the pencil of the contact compbethat is

conjugate to it. There is then precisely one singedartact complex, and since (222)
will be fulfilled by b = p, it will have the complex ling for its axis.

The lines that are common to all contact complexeefine a parabolic system of

lines that we call theontact system The contact system generates a correlation batwee
the pointsx of its focal linep and planesv through p (n0o33). This so-calleccontact

correlationcan be characterized as follows:

The torses of the given complex that go through theplihave x for their point of
regression w for their plane of regression.

Proof: For any torse' = u'(t), the point of intersectior of p and p = pU' is the
point of regression, and the connecting planaf p and p is the plane of regression (no.
46). p is a singular complex of the budfp + A'p; + A %p, + A 3ps3, so the linep will

then belong to the contact system, anflw will be an element-pair of the contact
correlation. Conversely, since:

0 =s5 = pipk AN = g /A6

any singular six-vector will produce torses of the givempiex with u*: u?: u® = A':

LW

O

Figure 30.
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Some particular torses are the generating famili¢lseofomplex cone with the vertex
x and the tangent family of the complex curves in tlaew (no. 126). It will then
follow, in particular, from the theorem that was prdvefore that:

If wis the plane, and x is the contact point of a complex curve theifl e, at the
same time, the contact plane alomdor the complex cone with the vertex x (Fig. 30).

That complex cone will contact any torse of the complex threpugfhose point of
regression is x along.

129. Principal points and principal planes. Let the parabolic pencil of the contact
complex be represented by:

b=Ap+uc (pp = 0,cc £ 0).

With the help of the tensor:

Ck =CipPk=ckpi=— 62p = Gk
k i Pk k Vi auiauk iy
when:
(223) @ g+ (ck) Ut =0,

one will get the direction of advaneg: u”: u® that contacts the compléxto order two;
i.e., for which, the condition:

2

0=bp U(t+8)=blp+ep+ip+-! =b p+epUl £ (p. Ui +p d)+--
2 2 Uik

is fulfilled to order&’. Any contact complex is then contacted to order twa mne-
parameter set of directions of advance. In particiog way of (223), withi = 0, the
singular contact complex = p will be associated with the directions of advan220j

that determine the contact correlation. The so-dafincipal directions of advancg)
that are given by:

(224) g, Ui =0, cuU =0

are characterized by the fact tladit contact complexes contact them to order two. The
associated points (planesw, resp.) of the contact correlation (28 are called the
principal points(principal planesyesp.).

The equation that follows from (223) can be interpreted finite way by means of
the family of lines of the complex:

() The principal directions of advance were first intragtlibyF. Klein: Math. Ann.5 (1872).
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The first osculating quadrics of all families of lines of the compitesxughyp for a
fixed direction of advance' are contained in the contact complex that belongs to

Mapping the directions of advance to the points of an image plan

Along with the map of complex lines to the points o§matial domain that was
discussed in nal25 we now introduce a map)(of the directions of advana@ through
a complex linep to the points of a plane, in which we interpret theas homogeneous,
projective point coordinates in a projective plane. Urttiat map, the directions of
advance (226) that contact a well-defined contact compldr order two will be
associated with the points of a second-order curve. ficpir, the singular contact
complexb =p will correspond to the non-singular second-order cyrve

g, uu =0.

It is non-vacuous. The parabolic bugly + A'p; then contains singular complexes that
are notp, so the equation:
0= (A% + Ap)(A% + AP = guA'A*

will admit A*, A%, A® as a real non-vanishing triple of values.
The parameter substitutions (219) of the line complexespond to coordinate
transformations (collineations, resp.) with non-vanistuogfficient determinan:

v s P aui
(225) u —5|I(Uk (d‘(_ﬁj

in the image plane:

130. Case distinction for nonsingular line complexesA pencil of conics in the
image plane is given by (223). The projective classiboabdf these pencils of conics
yields aprojectively-invariant and parametrically-invariamtase distinction of the non-
singular line complex.

In what follows, we restrict ourselves to the carseshich we assume:

The pencil of conic€23)shall have precisely four distinct real base poiffitg. 31).

These four base points then correspond to precisely gaocipal directions of
advance, and thus to four principal planes and four pringpaits, as well. The
qguadruple of principal planes is correlative to the quadrapfrincipal points, so both
qguadruples will yield the same double ratio.

() This map was first employed By Zindler andG. Sannia
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Figure 31.

Thelinear complexesin particular, will be excluded by the assumption of [m&lyi
four distinct real principal directions of advance: Tosstancy ot will imply that cyx =

¢i px = 0, and the pencil of conics will then degenerate tdixeel conic y; so the base

points of the pencil of conics and the principal direiof advance that correspond to
them will be undetermined.

In the following numbers, we will learn about otherjpobively-distinguished contact
complexes, in addition to the singular contact comple p.

131. Doubly-contacting complexes. We now ask which contact complexes are
stationary for certain directions of advance; i&neighborhood contains not only the

complex linep(u), but also the “neighboring lingf(u' +&u' ), to orders. These so-called
doubly-contacting complexésare then defined by the fact that, along with (222), they
also fulfill the corresponding conditions with+&u'

bp(u +eu') = 0, bp(U' +&u') =0 k=1, 2, 3),

to orders. Along with (222), that also yields:

S0 < ?%p
0=)>» b————U' = Ap+ — U,
Z;‘ ou' U ;( P ”c)au'auk

so finally:
(226) Agk+uchu =0 k=1, 2, 3).

These three equations, which are linear and honsmgsnin U', have a non-trivial
system of solutions if and only if the determinaanhishes, so for:

(227) A gi + 4| = 0.
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Any root of this third-degree equationlinm will imply a doubly-contacting complei
=Ap+ uc, and (226) will give the associated direction of advance.

Under the map of the directions of advance to the poirasplane (no129), one will
get the singular conics of the pencil of conics (223) by gubsg A : i in (227); in Fig.
31, they are drawn with dashed (dotted, dash-dotted, resps) likf@om (226), the
directions of advance that belong to the doubly-comgaomplexes map to the vertices
k, I, mof the polar triangle (= double points of the singulamicpthat is common to the
pencil of conics (223). It will then follow from thesasnption of four real distinct base
points thatThere exist precisely three (real) double-contacting complexes.

We denote the directions of advance for the doubly-cantacomplexes that are
given by (226) by:

u'=K, u=1" u'=m.
Since the vertices of the polar triangle do not leng a line,K, 1 ', m will be
linearly-independent; i.e.:
k! k? KB
(228) It 12 13| 20,
m nf ni

Figure 32.

132. Lemma on apolar conic sections. Apolar complexn order to find another
conic in the pencil (223) that is projectively-distinguishedt in its own right, but
relative to y; we first state the followingemma from the projective theory of conic
sections:

In a pencil of conics, for every non-singular copithere exists a second coruacof
the pencil with the following projectively-invariarelations:

a) The polar of any point a ofr relative to they intersectsy and a in harmonic
point-pairs1, 2and3, 4(Fig. 32; a is the imaginary point of the hyperbaian it).
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b) Harmonic tangent-pairs tar and y go through any pole of any tangent yo
relative toa.

It then follows directly from this that:
¢) There are infinitely many polar triangles pfvhose vertices lie oa.

d) There are infinitely many polar triangles @ whose sides contagt This
relationship between the conjcand a will be called theapolarity relationship; « is
calledapolar to y.

Proof of the lemma:

We first introduce the second-rank tengfrthat is contravariant to the covariant
tensorgi (g # 0) by the requirements:

- 1 =1
229 xg =g, = for =’
(229) Ok 9 =0 {o K,
with the help of the mixed tensay, (no.73). Sinceg # 0, theg® will be determined
uniquely ¢). They are the subdeterminants of the elemgpts the matrixgy, divided

by g.
By contracting, one gets from (229) that:

(230) g g = 3.
Thus, the requirement: _
9" (Mg +uci) =0,

which is invariant under collineations (225), witiply the ratiog: A = g# 0. Withay =
gik + O Ci, one will have: _
(231) g ai = 0.
We shall show that this condition is characterifgicthe apolarity of the conics:
Y g uu =0and a) auu =0:
a) We take vertex 3 of the coordinate triangle tcal@int ofa that does not lie on

¥, and take the vertices 1, 2 to be two points efgblars of 3 relative tg. We will then
have:

() One will then get, e.gg™, g**, g** from the three linear equations:

010" +0n G + a0 = 1, G2 G + G2 0 + 022 G = 0, 30" + s O + a3 0 = 0,

with the non-vanishing coefficient determingnt
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a3 =0, 013=023=0, g
and (231) will specialize to:

033 (011 @2 + Q22 @11 — Q12 &12) = 0.
Sincegss # 0, the expression in parentheses must vanish. Tymtlsat the point-pairs:
g,Uu+2g,tf+ g, d'd=0, a,uu+2a,tf+ g, d'd=0,
at which the conicg’and a are cut by the polarg® = 0 of vertex 3 relative tg are
iseerﬁerg;\.ted harmonically. (231) likewise follows converdedyn requiremeng) of the

b) The proof of statemei) of the lemma proceeds duallydhn

By basing the polar triangle that is common to thecpeof conics (223) upon the
coordinate triangleyanda will have the equations:

9. (U)* + G (U)°+ g W) * =0,  a,(U0)*+a,(UF)°+ au)*=0.
The apolarity condition (231) specializes to:

(232) Y48 ,% -
gll gZZ g33

We now return to the theory of line complexes and dehe@polar complex to be

the contact complex:
a=p+oc,

in which o= Ais determined by the apolarity condition:
g“ (A gi +pci) = 0.

Sinceo# 0, a will be non-singularp is then the single singular complex of the parabolic

pencil of contact complexes (nd28. The definition of the apolar complex is
projectively-invariant and invariant under renormalizatiansl parameter substitutions.
From now on, we will always span the pencil of cohteomplexesb by the singular

complex p and the apolar complexso:
b=Ap+ua.

From no.129, we define the tens@ by:
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2
R
ou'au®

Ak = ai Ppk=ak pi = —

and replacei with ay in (223) and (224).

133. Osculating ruled families and osculating torsesThree systems (226) of first-
order ordinary differential equations are determined bythhee rootsi : i of (227).
Each of these three systems of differential equatilhyield a solution:

n=g¢'@t-t,0%,0%,1°%,
with the initial conditionst , T*, U2, G®. The families of lines' = U|(t) that are given in
that way will be ruled families. The solutions of (226) will not fulfill the torse
condition (220), since the corresponding pomatss K , u' =1', u' = m of Fig. 31 will
not lie on the conic. We call these ruled familiesdsculating ruled familiesf the line
complex. They define three two-parameter sets; thsealating ruled families will go

through any complex line. From nd31, a doubly-contacting complex will belong to
any complex lingp and any osculating ruled family that goes thropghe., a contact

complex that is stationary under advancing in the agiewesculating ruled family.

Just as three two-parameter sets of ruled famileslarermined by (224), four two-
parameter sets of torses will be determined by (224).cdlléhem theosculating torses
of the line complex; four osculating torses go through amgpdex line. The osculating

torses contact each lipeof the contact system (nb28) to order two; i.e., they fulfill the

condition: _
(Ap+pa)p(u(t+e)=0

for everyA andy to orderé (no.129.
Under the map of complex linggu’) to the points of space with the rectangular

coordinatesu’ (no. 125), the osculating ruled families (osculating torsesspr) will
correspond to three (four, resp.) two-parameter systécigrves.

8 37. Invariants of a line complex.

134. Definition of the invariant derivatives. In order to find the invariants of a line
complex, we proceed essentially as in § 21. Once meeefirst defineinvariant
derivatives. For that, we employ the three first-rank contramrtensors, | ', m that
were introduced in nol31, and which satisfy the inequality (228). They give the
directions of advance in the osculating ruled familieo.133) of the line complex [the
vertices of the polar triangle that is common to pleacil of conics (223), resp.]. As a
result, one has the polar relations:
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JAm =g mK=g k=0,
al'm =g mMK=g k'1=0.
The tensorgkx anday are then dependent upon the normalization of theeikersp, a

in that way; we shall defer that normalization th H36 Furthermore, the tensoks | ',
m are established by (233) only up to an arbitrary proportiyntdctor. In order to
eliminate that indeterminacy, we demand that:

(234) giklgl%(:'i'l, giklilk:_l, gikrﬁn‘r:_l;

the three tensors will be determined uniquely, up to a sighat way.

The requirements (234) can be fulfilled by real numif@irsce every polar triangle of
the conic sectiory has one interior point and two exterior ones awetsices, we can
assume that, saly,is interior, and, mis exterior (Fig. 31). However, one will then have:

g KK>00r<0, gul'*>00r<0, gxmn>00r<0.

We restrict ourselves to the left-hand inequality, whigh be enforced by a reflection of
the given complex, under which, the scalar product p; px will change sign (nol6).

Analogously to (109), we now define thevariant derivativesof a semi-invariant
function ¢ (u*, U?, U°) by:

(235) $=Kpi, ¢=1"¢i, @s=mlg;;

just like the invariant derivatives for line systems,ytlage parameter invariant under
projective maps, as well as semi-invariant.

135. Integrability conditions for the invariant derivatives. By solving equations
(235) forg i, one obtains:

(236) pi=kgr—ligo—m g3,
with the covariant first-rank tensors:

k=Kak, li=1"g, m = m g,
for which, from (233) and (234), the relations are true:

im=lik=mK=ml'=kl'=km=0,
kkK=+1, Il'=-1, mm=-1

Proof: Thek;, (- 1)), (- m) are equal to the sub-determinants of the elemé&rits m
in the determinantK, | ', m' |, divided by the determinank'|l ' m' |. It will then follow
from this that:
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. . , 1 fori=k
237 i K=1L1"'-mm = :
(37) « m {Ofori#k

and (236) will follow from this as the solution of (235).
In place of (113) and (114), one has ititegrability conditions:

P23 —P22=q¢1 + d P2 + " @3,
(238) P31 — Pr13=rP1 + 1" P2 + 1" Ps,
P12— Po1=SP1 +S P + 5" @3,

with
- ik_kiaki - ik_kiali
q=- X (mt -1t = +3 (-1t T
. . am
"n— i k_Ik i
q +iZk:(Im m)—auk,
- _ i _ j akl [ i _ j al|
(239) r = iZk:(mkk njfk)—auk, r +iZk:(mkk njfk)—auk,

. .0
=+ otk - lns

- i\ Ok - ol
s=- K'E =k —-, s =+ (K'I* =Kk ") —,
izk:( )6u" izk:( )6u"
. . am
g =+> (K" =K I —~.
izk:( )6u"
Proof: From (235) and (236), one obtains:

(P)i=k Pr1—li pro—m P13

and the second partial derivatives:

%9 _ ok ol om
ou'au*  au 2 ou 9. ou* s
(240) +ki ke @11 — ki Ik @12 — ki mx @13
“like@o +li kg2t li mcgi3
“—Mke@gar+tmlc@g+mm@as.

The integrability conditions for the partial dertives:

0’ _ 0’
ou'au®  auau’
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can be replaced with the three requirements:

0’9 _

6¢
i Iau

=0, Z(k'l" k1Y)

. 0%
I'm* —1¥ :
%( au'ou*

Equations (238) and (239) then follow from this by substitutibm (240).

Analogously to no76, one shows that the nine functiapgy, 9"; r,r', r"; s, s, s" are
not only projectively-invariant, like the, | ', m, but are also invariant under parameter
substitutions.

136. Fundamental system. Normalization gf. We next take the complexestbé
fundamental systeto bep, along with the three invariant derivativespof

q="p t =p2, 5=p3.
From (234) and (233
qq=+1, v =ss =— 1,
ts =sq =qr = 0;

i.e., the complexes are non-singular and pair-wiseugag.
We choose the apolar complexo be the fifth complex. The six-vectaris non-

singular, and for that reason, it can be normalizethbyequirement that:
(241) aa =+ 1.

We will see directly that only the plus sign is possible
In order to come to the last complex, we start ftbenbush of complexekq + /v +

Vs + pa, which naturally depends upon the normalizatiop tiiat has yet to be done.

Since:
Da(q, v, 5, a) = (qq) (vv) (s5) (aa) = (aa) =% 1,

that bush will be elliptical or hyperbolic (n82); i.e., there will exist 0 or 2 skew lines
that are common to all complexes of the bush. Howyeuece:

pq =pr=ps =pa=0,

the complex ling is obviously such a common line. Therefore, the bsdtyperbolic,
and there is yet a second common HKpevhich is, in fact, skew tp. It satisfies the
conditions:

39=3v=35=3a=0;
the six-vectog is normalized by:
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(242) 3p=1.

Since the bush is hyperboliD(q, ¢, s, a) > 0 (n0.32), so only the plus sign can be used

in (241), as was already predicted.
We now have the following table of products for the fuméntal system:

p
_q_ 0
_t_
_5_

—=t-zF—d-—t-—F

3/ 10000 0Q

It follows from this that:
Ip,q,v,5 0,3 F=-De(p, q, 1,5 a,3) =1,

so the six complexes of the fundamental system aearly-independent.
We must now attend to theormalizationof the singular six-vectop: Along with

(242), we demand that:
(243) =7

in whichg (z resp.) means the determinant of glae= p; px Or:
Zk = 3i 3k,

resp. Due to (108), the ratig : z will be parameter invariant, and therefore, the
normalization condition (243), as well. One will gke thormalized six-vectop = pp
from an unnormalized one by using (242) and (243):

6

g=009, zZ=z
p2=|zlg],

so p is determined up to sign. In order for the noimation condition (243) to be
fulfilled, we assume from now on thathe line; shall define a non-singular complex, as
shall the linep. From no.127, in fact, one will then have# 0, along withg # 0.

from the equation:
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§ 38. Differential equations.

137. Summary of the differential equations. We next give the scalar products of
the six-vectors of the fundamental system with theriawa derivatives:

p q v 5 a |3
g | -1 0 S -r R|D
q2| O 0 -3 i(q+r'-s)| O]l
q3| O 0 3(-q+r’—s’) r" 0H
tu| O -s 0 i(q+r'+s)| Ol
| 1 s 0 -q S| E
) 0 3(@-r'+9) 0 -q' 0/G
o] O r Icq-r-sy| 0 0[H
s2) 0] 3(-q-r'+s) q 0 0|G
s3] 1 -r" q’ 0 T|F
P ) “R 0 0 0| A
x| O 0 s 0 0B
az| O 0 0 -T 0|C
5] O -D Y y -AlO
2| 0 iy —E ~G “B|O
33 0 -H -G -F -C|0

In this, one must consider that:

a) The conditions (238), when appliedgowill yield:
t3—s2 =qq+qe+q s,
S1—qz3 =rq+r v+r's,

g2—t1 =Sq+S t+S's.

By scalar multiplying withy, ¢, s, resp., one will get:

qe3 +sq2 =0, ts2 =(, st3 =—(",
qs2 =T, ts1 tquz =—1r1 sqz= 1",
qr1 =S, tq2 =— S Sqp+ts1=-9',

SO
qru=3(q-r'+s"), sq2=3(q+r'=s"), 1 =3(-q-r'-s).
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b) G =3v3 =3p23=3p32=352,
H =351 =3p31=3p13 =343,
| =3092=3p12=3p21 =311 -

C) aqzz—azq:—aquz—kiIkpiak:—kilka;kzo
from (233); analogously:
aq3:—ki mt ay = 0, avy =arg=as;=asy = 0.

With the help of the table of products in n@86 and 137, we get thedifferential
equations:

b =4, P, =1, P =5,

q, =Dp —Sv +rs +Ra -3,

q, =Ip +s't -1(g+r'-9)s,

q; =Hp +3(q-r'+s)e - r's,

v,=1p -sq -1(g+r'+9)s,

,=Ep +gq +ds F S+,

5 =Gp +3(q-r+s)q +d’s,

s, =Hp +rq +1(q+r'+s')e

s, =Gp —3(q+r'-=s)q - dr,

53 = Fp _r"q _q"‘t +Ta+3l

a,=Ap —Ry

a,=Bp +S,

a, =Cp +Ts,

3= —Dq +lt +Hs —Aa,

3, = -lq +Et +Gs —Ba,
(244) 33 = -Hgq +Gr +Fs —Ca.

138. Integrability conditions and auxiliary conditions. For the sake of brevity, we
restrict ourselves in what follows to the special aggion of constant coefficients in the
differential equations (244) and vanishing invariagisq, "; r, ', r"; s, s, S'.
Analogous to what was done in 86, one then obtains from (244) tlhategrability
conditions:

A =B=C=0,
G=H=1=0,

(245) D =-1( RS+ST+TR),
E =—3(-RS+ST+ TR,
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F =-1( RS+ST-TR.
Along with the integrability conditions, one must atsmsider:

a) The apolarity condition (231).

b) The normalization prescription (243).

¢) The requirement of the existence of precisely four gaidirections of advance
(no.130.

That leads to thauxiliary conditions:
R-S-FQ,

(246) D*E*F?=1,
R+S#0, T-S£0, R+T#O0.

(246, 3) will then be true in general; i.e., for non-constianariants, as well.
Proof: From (236), one has:

Oik = (ki p1 —li p2 —m p3) (K p1 —l p2 =M p3) = ki ke — i e —my my,

and analogously:
ak =~ Rk ke=Sli lk =T m m,
so, from (231)Y):

0=g“ax=-Rdkk-Sdlilk-Tdmm=-R+S+T.

Moreover, one has:
kK k|
g =Da(p1, b2, p3) =Da(pa, p2,p3) | I, 1, 15|,
m m m

k ko k[
Z =D3(31, 32, 33) =Da(31,32:33) |1, 1, 15,
m m m
so, from (243):
[Da(p1, p2, p3)]° = [Da(31, 32, 39)]°;

(246,) will come about upon replacing the differential edquag (244) and considering
(245).

() It follows fromK =g" k. thatk, = g, K, and thereforg* k k. = k“k, = 1, etc.
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Upon establishing the common polar triangle to be thedomate triangle and making
a suitable choice of unit point (i.e., a parameter #ulisin), the pencil of conics (223)
will have the equation:

A =)=+ RY*+ §J =+ TFF =0

The requirement that there be precisely four basagwitl imply (246s).

Analogously to what was done in 186, if one excludez = 0 (n0.136) and assumes
that there are precisely four distinct real principaints for every complex line (nd@30
then:

~ The non-singular line complexes are characterized projectively byetisers k |,
m, and the invariants A, B, C, etc.

The function, | ', n1, A, B, C, etc., are not independent of each other. They must
satisfy the inequality (228), the integrability conditioasid the auxiliary conditions.
They are subject to no other restrictions, so one vathio the following existence
theorem by a development that is similar to the om®iG5:

Let the tensors'kl ', m, and the functions A, B, C; D, E, F; G, H, |; R, S, T béasuc
that the integrability conditions, as well as the auxiliary conditions, falfilled, but are
otherwise given as arbitrary functions of thie wf, u>. There will then always be a non-
singular line complex for which the invariant derivatives with respedt, | ', nl are
defined and whose differential equations contain the given functions asieoésfi

139. Double ratio of the principal points. From no.130, any complex linep
contains four principal pointsOne will get:

R-2S
2R-S

d=

for the double ratio d of the principal points.
Proof: For a suitable parameter substitution (cf., 1138), the four principal directions
of advance will be given by:

(U)*=(u?)*=(u)*=0, R(U)*+ g 1)°+ T'd)* =0,
a0 =+ -S+T £ /R+T £ /-R-T

(Four sign combinations!)

SO:

For a suitable coordinate transformations, one will have:

p=0[ O |O[1] O |0,
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|0]0 = |0,

=01z 10101

=0]0-=10]0}=

7 f
I\FIOIOI-I

This Ansatz then satisfies the table of scalar product®0136 Since the principal
point is the point of intersection of the linesnd u'q + U’ + U’s, (17) will then give the
coordinates:

XXX :xg =0:0:k/R+T : (+,/-S+T -\/-R-S),
0:0:+/R+T :(+\/-S+T +/-R-S), resp,,
0:0:—/R+T : (+,/-S+T +,/-R-S), resp,,
0:0:—/R+T : (+,/-S+T -/-R-S), resp,

from which, one will get the given double ratio from (2).

0.

§ 39. Tetrahedral complexes.

140. Characterization of the projective invariants. As an example of what was
discussed in general in § 38, we now treat the so-daiteathedral line complexesvhich
are characterized by having constant coefficients @& differential equations and
vanishing invariantsg, ', g"; r, r', r"; s, s, s'. We have already derived the integrability
conditions (245) and the auxiliary conditions (246) for ¢hgsecial complexes.

The tetrahedral line complexes adf-projective i.e., they will be transformed into
themselves by three-parameter group of collineation&Jpon restricting ourselves to a
suitable domain iru', u?, u°, two arbitrary complex lines can go to each other by a
collineation of the group.

Proof: From (239), sincg=r =s=0:

ok, _ ok, ok, _ ok ok _ ok

o au’ aut  oud’ au® ot

and sincef =r'=s =0,q" =r"=5" =0, one likewise has:

o, _a, A, _oa, a, _oa,
ou*  au®’ aut A’ au®  aut’
om, _om, 0m, _dm om _dm,
ou®  au®’ aut  au®’ A  aut
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One can then set:
0 0 0
k= — ¢ (u', U, ), li=— @, & b, m=— x (U v ),
ou ou ou

in which ¢, ¢, x are three arbitrary functions with non-vanishing fumtal determinants.
With the parameter substitution:

(247) =g (U, o), Ti=g(d, A dd), o= x(d v dd),
one will get:

U = Kb =kt + o+ k) + K([d+ L+ L)+ mide mis m,

so:
ki = bk + KL+ ko,
ko = Kk, + kol + ks,
ks = Kiks+ Kl + kg .

Since, from (228), the coefficient determinaktl| m | does not vanisH) these and
the corresponding equations fipr m imply that:

(248) k =1,k,=0,k,=0; 1, =0,1,=1,I,=0; m=0,m=0,m=1.

The assertion then follows on the basis of thesframation of the complex into itself
by:

=0t +al, v=0%>+a% B¥=0°+&’

with the arbitrary constantg, &, &, in analogy to na95.
In analogy to ndd5, one further gets:

There exists a one-parameter subgroup of collioeatifor which every family of
lines f = const. d = const. (d = const. d = const., resp., U= const. d = const., resp.) of
the tetrahedral complex is transformed into itsdtine.

In no. 145 we will show that these families of lines are tiseulating ruled families.

() From no.135 one has:
k, k k|| K K K
RREATE

mm m||mrh mh
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141. Explicit representation of the tetrahedral complexes We choose the
parameters that are given by (147) as our reference anditlgethe special values (248)
to ki, li, m that make the invariant derivatives go to ordinary padesivatives. From
(245), a tetrahedral complex is characterized projegtibgl three constantR, S T.
From (246),R, S T are not mutually independent, but they can be reducedsiagbe
projectively-invariant constant:

One the basis of (246, one can set:

R=r1(a+ 2b), S=r1(b+ 2a), T=1(b-a),
(a#0,az0,a+bz0;7r%0),

in which 7, a, b are arbitrary constants, at first. The integrabttibnditions (245) then
imply thatD, E, F are:

_Tz 2 2 _Tz 2 2 _Tz 2 2
D—E(a—Eb—Eab), E_E(Sa_b + 5ab), F_E(_a_b_hb)’

and (246) will give t for any pair of numberg, b such that the ratia : b remains
arbitrary as a single projectively-invariant consta Iln no.142 we will interpret that
invariant geometrically.

The differential equations (244) yield:

9%p 9%p 9°p
— F = O, _—F = O, _—F = O,
ou’ou® ouou’ ou'ou?
Ry o 9% p 0°p 2 0
= (2D -R}) =, =(E+Z , = (2F +T%) =,
o(u)? ( ) 3 o(u?)? ( ) 3 o(U%)? ( o’

For a suitable choice of initial conditions, theegration will imply:

(249) pp=e || e |rag" |1 bEY |r c&v,
with the abbreviations:
c=-(a+bh),
(250) & =1%(2D-R) =%cr? B?=r1%(E+S)=-9cr?

y?=r%(2F + T% = - 9abr?.
The normalization factgo will be established by:
l=qq=p°ppr=—2p°d"ar, 1l=—qq=-2p°B%br, 1=-s5=20%pcr,

namely:
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P
18abcr®

The constants, S, ), p are real fom < 0,b > 0,c > 0; from now on, we shall make that
assumption.
It follows further from (249) and (244) that:

pa=1(b-0d e |r(c-a&™ |r(a-b |
(251) Ir2a(b-9 e™ |t (Cc-9e” |r%c@-9 e”';

p3 =-De™ | E& | Fe" |-ra De™ | b Ee™ | 1c Fe ™.

142. Interpretation of the projective invariant a : b. The tetrahedral complex has
been the subject of numerous investigations irgelahic line geometry), Its name is
based upon the following property:

All lines of the tetrahedral complef249) cut the four planes of the coordinate
tetrahedron in quadruples of points that have the constant double ratio:

R-2
2R-S

n

(252) d=-

>1.

oo

Proof: (14) implies the points of intersection:

) X = 0, x=-cé, x= be", X = g

) x = c&v, Xo = 0, Xs =— ae", X, = A
)  x. =- be™, X = ae’, X3 = 0, Xy = @A
V) x = €&V, o= e Xs= v, X4 = 0,

from which the assertion follows by means of (2)
Conversely, one has:

The set of all lines that cut the planes of a tetrahedron with condtauttle ratio d
define a tetrahedral compl€249)with the projective invariant e —a/ b.

Proof: Among the six values that the double ratii assume under all possible
permutations of the four points, there will alwdgsone of them witd > 1. From (252),
the ratioa : b is determined from that value df We can then set<0,b>0,c=-@+
b) > 0 (no.141) and obtain the proportionality factofrom (246). The constantg, 5, y
that one obtains from (250) will then be real.

() Cf., e.g..Th. Reye:Geometrie der Lage lllLeipzig, 1923.
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143. Quadratic equation of the tetrahedral complex.lt follows from (249) that:

(253) Cpps—bmps=0, ampps—bpps=0, bpps—apps=0.

Due to the fact thad + b + ¢ = 0 and the identity (10), these three equations are
independent of each other, and in fact each of themheasther two as a consequence.
The tetrahedral complex can then be defined to be thefsall lines whose line
coordinates satisfy the condition (2R3 That equation is also satisfied by all lines that go
through the four vertices of the coordinate tetrahedrahe four coordinate planes (cf.,
Fig. 2), so we would not like to count those lines witd tetrahedral complex in what
follows. Since (253) has degree twaopjy one calls the tetrahedral compleguadratic
complex; however, one observes that conversely, not everygrgtia complex is a
tetrahedral complex. The theory of general quadratmptexes belongs to the realm of
algebraic geometry.

From no.140, the tetrahedral complex (253) is self-projective. THree-parameter
group of collineations under which it is transformed i®giby:

X = 01X, X, = Oz Xz, X = 03 X3, X, = 01 Xa,

with arbitrary non-vanishing constants. It will then consist of all collineations under
which the vertices (planes, resp.) of the coordinetit@ihedron are the only fixed points
(fixed planes, resp.) (n@®). Along with these collineations, there are alsaalations
that transform the tetrahedral complex into its@iich a correlation is, e.g., the polarity
(no. 14).

pp = ppi3a
under which, the four points of intersection of a comgdieg with the planes of the
tetrahedron go to the four connecting planes of the qayneng complex lines with the
vertices of the tetrahedron. Since the double ratih@fjuadruple of intersection points
is equal to that of the quadruple of the connecting plained| follow from no. 142that:

All lines of the tetrahedral compl€249) lie with the four vertices of the coordinates
in quadruples of planes with the constant double ratto-ca / b.

One will get the equation of the complex cone of thetpoiny substituting (9) in
(253):
cOeX = X% %) (% %= ¥9- b%x %Y 'xx "¥»=0.

It will then follow from this that:The complex cone of any point that does not lie in a
coordinate plane is a non-singular cone of order two.

The dual theorem readShe complex curve of any plane that does not go through a
vertex of the coordinate tetrahedron is a non-singular curve of class tw

We shall now discuss tlmmplex of the ling: From (251%), it satisfies the equation:
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E°bpps—E’bpps=0,

so it will again be a tetrahedral complex. Its doubleoratis coupled with the double
ratio d of the tetrahedral complex of the lipdoy:

aD’ _  (d?+5d-5)
bE2 ~  (5d°-5d-1F

o=-
The requiremend = J can be fulfilled for onlyd=d = 2, sinced > 1 [cf., (252)].
Thus:

The tetrahedral complex with a harmonic double catf = d = 2 is the only
tetrahedral complex for which tihecomplex is identical with thgcomplex.

144. Different ways of generating a tetrahedral complex.The definitions of a
tetrahedral complex that were given in nb40 and142 are equivalent to the following
way of generating them:

The set of connecting lines of corresponding poings under the collineation:
(254) X =0iX, X, =CX, X, =FBXs, X, =X (>0>0>0, g%0),

which has the four vertices of the coordinate teédron for its only fixed points, is a
tetrahedral complex with the double ratio:

d= (05,-0,)(0,~0) >1

(255)
(03 _01)(04_02)

Proof: From (254) and (9), the connecting lines@fresponding points have the line
coordinates:

rp=(m—a)XiX| (- ®) XeXa| (0~ TB) XaXa| (G2~ BB) X2 X3 |
| (58— 0i) Xs X1 | (0i— ) X1 %2 .
If one sets:

(256) X = !

1 aut eﬂu2 X3 = eyu3 X4 = eau1+ﬁu2+yu3
g,—0; g,—0, 0,~0;

then one will get the representation:

pp=e| e e
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o,-0, ot o,-0, i 0,-0, e
(04 _02)(04 _03) (04_09)(04_01) (U 4_0-)(0- 0 )

which can be identified with (249). In the notation of b1, one has:

ra= 92~ 9 <0, rb= 9579,
(04_02)(04_03) (04_03)(04_01)

rc= 9.~ >0

(04 _01)(04_02)

and (255) will follow from (252); in order to fulfi(246,), the g must be normalized
correspondingly.

Conversely, every tetrahedral complé®49) can be generated as the set of
connecting lines of corresponding points under any collineation of the two-parameter
collineation group(254), in which the ratiose: / 5 < 1, 03 | 02 < 1 are regarded as
arbitrary parameters, andi / ¢ is determined by the double ratio d fr¢255).

Since, from nol143 the tetrahedral complex will be transformed inself under the
polarity, the connecting line of two points X that correspond under (254) must also
belong to the line of intersection of the polamaaw, W of the complex. That will then
imply a way of generating it that is dual to (254):

The set of lines of intersection of corresponding plane& wnder a collineation:
(257) W=aw, W=aow W=aw, W=agw,

(>> 01> 0m)
define a tetrahedral complex with a double ratiattis determined b§255).

Another manner of generating the tetrahedral cersl the following one:

The set of lines of intersection of correspondingjgetive pencils of lines with
different vertices and in different planes will d¢etrahedral complex when the pencil of
lines cuts two projective sequences of points priécisely two fixed points out of the line

of intersection.

Proof: Two projective pencils of lined @re given by:

() The linesq, t have nothing to do with the fundamental complaxes s that were introduced in no.
136
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q=0]0|0|0¢" |- e, vt =0|ce” |-be” |0]0]0,
(258) q=0|0|0F €™ |0]e™, v=-ce”™ | 0]ag™|0]0]|0,resp.,
q=0]0|0F*|-e"|0, v =be™ |-ae™'|0]0]0]0,resp.,

with the parametens’, u?, u®. Its planes intersect along the edge 23 (31, 12, resfh of t
coordinate tetrahedron (Fig. 2) and the projective point-seggealong those edges will
have the vertices 2 and 3 (3 and 1, 1 and 2, resp.) for peaus. The line of
intersectiorp of the two skew lineg, ¢ is determined by the conditions:

& p,— & g = 0, ce” ps — be? ps = 0,
(259) € ps— e p =0, ag™ pg—ce”™ ps =0, resp.,
e p— e p =0, be” ps— ag™ ps = 0, resp.

The lines of intersection each define a hyperbolic listesn with focal lines, © for 8 u?

—y@ (Y@ —au, au -S4 resp.). Equations (253) will yield the tetrahedral cempl
upon eliminatings®, 12, U,

145. Osculating ruled families and osculating torsesln no.138 we had:
Ok = ki ke =l Ik = m m, ak=—RKkki—S{lk—T mm.
Due to (248), (227) specializes to:
(A=tR) (A +uS (A+4T) =0,

and one will obtain the three systemsstulating ruled families:

1 _ 2 _ 2 _ 3 _ 3 _ 3 _

u- = const.u” = const. (° = const.u’ = const.u” = const.u” = const., resp.)

The osculating ruled families are hyperboloidal quadrics. Any quadric ofirdte

system (viz., u= const.u? = const) contains the opposite edgk8, 34of the coordinate
tetrahedron and intersects any two corresponding lines of the projective pencil of

lines (258) |vertex= 3 (4, resp.)plane of pencil= 123 (124, resp.); cf., Fig. 33].
Conversely, any quadric of that kind is the osculating ruled familyeofitst system.

Proof: (249) implies that:

(260) & pi—€e =0, be? p,—ae™ ps=0, rae ™ p.— e ps = 0.
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Therefore, any family of linesS{ u* = const.,u? = const. is a quadric, as the intersection
of three independent linear complexes, and a hyperbolic guadra ruled family. Since
(260, ») agrees with (259, any line of § will intersect the lineg, v that are given by
(25%). Furthermore, since (260) will be fulfilled tpy = p2 = ps = 0, © will contain the
line 12 s # 0,p, = 0 for p# 6) and 34§z # 0, p, = O for p # 3) of the coordinate
tetrahedron (Fig. 2).

From (224), th@sculating torseare given by:

) -(u)?-(u¥)? R(U)*+ gd)*+ Td)*=0.
As in no.139 it follows from this that:
uu? b= -S+T:JR+T:/-R-S=-a:b:/c,

ut=t/-a +h% w=tJb +h? we=tJc +h°

SO

with the parametet and the integration constants, h® h®. The various sign
combinations of the roots yield the four systems of @émg torses. By substituting
them in (249), one will get, e.g., for the sign comborat + +:

ra

b
K

rc

(261) Py = Kw| Aw| pw pa

with the abbreviations:
w=eN k= A=, u=et.

The osculating torse (261) is a pencil of lines whose vdrexin the planey = 0 and
whose plane goes through the vertex 4 of the coordinai@héelron {). Since the
vertices and planes of the coordinate tetrahedron Heesdame status relative to the
tetrahedral complexes, one will then have:

The four osculating torses that go through a compiee p are pencils of lines.
Their vertices are the four points of intersectiminp with the planes of the coordinate

tetrahedron, while the planes of the pencils cor#apposite vertices of the coordinate
tetrahedron.

() (261) yields a line in the plang = 0 (through the vertex 4, resp.) fa= 0 (1 /w= 0, resp.)



§ 39. Tetrahedral complexes. 213

Figure 33.

From no.149, the vertices (planes, resp.) of the pencils areptigcipal points
(planes resp.) of the complex ling the agreement of the formulas fbm nos.139and

142 has this result, which one could have expected frorouhset.

Figure 34.

Under themap of the line complex to point spag®. 125), the three systems of
osculating ruled families will correspond to the thieundles that are parallel to the
coordinate axes, and the four systems of osculatingdosdl correspond to the four
bundles of parallels that are pair-wise symmetricho doordinate planes. These seven
bundles of parallels can tieked diagonally(*); i.e., one can give small-celled structures
of congruent cuboids in such a way that the edges andmdilsgof the cuboid are taken
from the 3 + 4 bundles of parallels. A cuboid with faegonals is represented in Fig.
34. This configuration of cuboid edges and diagonals in irspgee is associated with
an analogougonfiguration of osculating ruled families and osculating torgeghe
tetrahedral complex: Any three of the osculating ruledhifies and any four of the
osculating torses will collectively have a complerelin common that corresponds to an
edge of the cuboid in image space.

() Cf., on this, the footnote in page 216 that refer/t@laschke.



§ 40. Tetrahedral line systems of class 2 (ordersp. e 214

8 40. Tetrahedral line systems of class 2 (order 2, resp.).

146. Definition of the tetrahedral line system of class @rder 2, resp.){). The
set of connecting lines of corresponding points of two Hygeids H), (H) that are
associated with precisely four fixed points by an arbit@lineation (254) is called a
tetrahedral line system of class Zhe term “tetrahedral” refers to the fact that lihe
system is contained in the tetrahedral line compleat ik determined by (254).
Conversely, infinitely many tetrahedral line systemslags 2 can be selected from any
tetrahedral complex by varying the hyperbold).(

The term “line system of class 2” is justified by tbhédwing property (cf., no33):

Precisely two system lines lie (in the algebraic sense) imanyspecial plane (i.e.,
one that contains no vertex of the coordinate tetrahedron).

W)

Figure 35.

Proof: Let ybe the second-order curve of intersection of aspmtial planev with
the hyperboloid ), and let y be the curve of intersection of the plande that

corresponds with (254) wittH) (Fig. 35). Since the plane does not contain texesf
the coordinate tetrahedron, and thus containsxaal fpoint, w will be different fromw,
and the two points of intersectian, b of wwith 7 will be collinearly assigned to other

pointsa, b of . The four pointsd, b, a, b do not lie on a line, since otherwise that line
would contain at least one fixed point, which isiwcary to the assumption thatis not

special. Thus, precisely the two lines and bb of the line lie in the plane. That
count is to be understood in the algebraic sense.—~with no concern for multiplicity
and reality.

Dually, we define the corresponditegrahedral line system of ordert@ be the set of
lines of intersection of corresponding contact pfanf two hyperboloids that are related
collinearly by (254).

() Cf., on thisTh. Reye Geometrie der Lage I/lLeipzig, 1923.



§ 40. Tetrahedral line systems of class 2 (ordersp. e 215

147. Special tetrahedral line systems of class 2 and order Zhe line systems' =
const. (¥ = const. u® = const., resp.) that are contained in the tetrahedraplex (249)
are special tetrahedral line systemsouader 2, as well as class 2With the manner of
generation in nol46, they will yield corresponding points, as well as esponding
contact planes (by intersection) of two collinear hippéyids that have the skew
quadrilateral 13421 (12341, 14321, resp.) of the coordinate tetrahefighn2) in
common.

Proof: By eliminatings?, u, it will follow from (256) that the hyperboloidH) is:

2aut
€

(01— %) (02— 03) Xo X3 — (0a — O1) X1 X4 = O,
and from (254), the corresponding hyperbol¢t) :

2aut
€

(s — &) (08 — &) 008 ,%— (08 — 1) 203 %%, = 0.

(H), (H) have the skew quadrilateral 13421 in common and generalieghgystenu’
= const. according to nd46 as the line system of class 2 by connecting collinearly-
corresponding points oH), (H). Since a line system® = const. will be once more
transformed into a line systewh = const. by polarity, that line system can also belyglua
generated by the intersections of associated conta@sptercollinear hyperboloids with
the common skew quadrilateral 13421.

The line systems' & const.are elliptic. The line system$ & const.and & = const.
are hyperbolic and identical with the W-systems that were treated. @6 that had two
hyperboloids with common skew quadrilaterals as focal surfaces.

Proof: From nol141, one has:
Poipr==2a0’T,  ppapa=-20B%1,  ppaps=-2cy’T;  ppipe=0forizk
so one will get:
bB?(U?)? + gy*(u) % = 0, [y’ () + ax(U) = 0, aa®(U")*+bB?*(U%)>*= 0, resp.]
for the differential equation (103) of the torses &f line systemu® = const. ¢ = const.,
u® = const., resp.). Sina@< 0,b > 0,c > 0 (no.141), the first system will have no

families of torses, and the second one will have thyeethe third system will have two
real ones. For example, the torse parameters dlitldesystem will be:

Ut =i(af-aut+p bw), u? =i(a/-au'-8bw).

Upon introducing these parameters, (249) will imply that:
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Lty Lt-u? -1 (@) L @-u?)

,Op—e‘/_ |ef |eV“|raeJ_ |rbef |rce“’“3.

One finds the focal surfaces from the geometric lbthe points of intersectiox (X,

resp.) of the Iines p - (p, resp.). From (17), one will get:

a—z !

X1 X+ AXgXa =0 (X X +uxX X =0, resp.),
with:
rcle rcle”

UG

as in no96, the double ratial / iis positive.

148. The three edge systems of a restricted cubic framefk. From no.144, any
collineation of the one-parameter group of collineations

(262) % =(Ci+D)Xx, (% =(B+DX, XK=(B+D)X, %X =(0+1DX,

with the parameterr generates the tetrahedral complex (249) by connecting
corresponding points, X; by varyingr, the pointX(7) that corresponds to the poixt
will run through the complex line that is assoaikwéth the pointx by (254).

Any hyperboloid H) will be related collinearly by (262) to a one-pianeter set of
hyperboloids(H (7)) . The pointsx(r) of (H (7)) that correspond to a poirbf (H) will
lie on a line, and, from nd.46, the set of all those lines will be a tetrahedira system
of class 2. That line system and the generatimjlyjeof the hyperboloid(H (7)) havea
topologically-remarkable link:

They span three one-parameter sets of hyperboldiison restricting to a suitable
region in projective space, hyperboloids of the sa®t will have no point in common,
while two hyperboloids of different sets will ings&ct in a generator. The link will
become very intuitive when we select three discsetpiences of hyperboloids from the
sets. They will then define a spatial arrangeneiexahedra with hyperboloidal faces
and rectilinear edges that run through them. 4., 36; for ease of illustration, six cells
were removed from the cube.) The configuratiotomologically equivalent to a regular
spatial arrangement of congruent cubes, and farréason, it shall be calledrestricted
cubic framework®).

The three edge systems of a restricted cubic fraorleare equivalent to each other in
the following sense: Any system of edges relatesotie-parameter set of hyperboloids
that are spanned by the other two edge systenectoie a point-wise collinear way, and

() Such topological questions in differential geometryeniawvestigated thoroughly in the last few
years by. Blaschkeand his students, especialy, Bol.
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for that reason, they can be constructed from twdho$e hyperboloids by connecting
corresponding points. If the hyperboloids that are sghfnyetwo of the three edge
systems are related to each other by collineations préhisely four fixed points then,
from no. 146 the third edge system will be a tetrahedral line systeohass two.

N .
RN

A

Figure 36.

Specialization: We take the first edge system to the specialliethal line system of
class two and order twa' = const. of no147. The hyperboloids that are spanned by the
other edge system will then define a pencil witd $kew quadrilateral 13421 as its base
curve. As a result, all lines of the second (thimebp.) edge system will intersect two
opposite sides of that quadrilateral;, the second t@ird edge systems will then be
hyperbolic linear line systemith 13, 42 (34, 21, resp.) for their focal lines.




