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The solutions of the Dirac equation with the potential V = vx will be obtained and their behavior will be 
discussed.  Along with the region of the function that also appears in the non-relativistic calculations, there 
is a region in the Dirac theory in which the impulse and velocity of the electron possess opposite signs.  In 
conjunction with that, the probability will be computed for an electron to go from the “positive impulse” 
region to the “negative impulse” region.  This yields the result that transition probability first takes on finite 
values when the magnitude of the potential ramp over a distance that is equal to the Compton wavelength is 
comparable to the rest energy of the electron.  The large values for the transition probability that were 
computed by O. Klein for a potential well whose order of magnitude is twice the rest energy are understood 
to be limiting values in the case of an infinitely steep potential ramp. 
 
 Some time ago, an interesting work by O. Klein∗ appeared on the reflection of 
electrons by a potential well.  The computation in terms of Dirac’s relativistic theory 
yielded the following result: If one lets the height P of the potential well increase from 0 
then the reflection coefficient R also takes on values from null to 1, which it attains when 
P = E – E0 .  (E is the relativistic energy of the electron; E0 is its rest energy.)  With 
further increases in P, R remains constantly equal to 1, up to the value P = E + E0 .  If one 
lets the height of the potential well increase still more then the reflection coefficient goes 

down again, and in the limiting case of P = ∞ it approaches the value 
E cp

E cp

−
+

.  (p = 

impulse of the electron before the transition through the potential well).  In Dirac’s 
theory, an electron therefore possesses a finite probability that it might pass on through a 
very high potential well that is completely reflecting in the classical analysis. 
 The state that the electron attains after this transition is thus recognized to be one in 
which its velocity (group velocity) is oppositely directed to its impulse. 
 The appearance of a “negative impulse” is no longer surprising, since one has already 
learned to compute with the concept of “negative energy. ∗∗”  The large value that Klein 
found for the probability of making the transition from a state of positive impulse to one 
of negative impulse is therefore noteworthy.  N. Bohr made the conjecture that this high 

                                                
 ∗ O. Klein, ZS. f. Phys. 53, 157, 1929.  
 ∗∗ Cf., dispersion theory, in which I. Waller (ZS. f. Phys. 61, 837, 1930) has shown precisely that the 
states of negative energy take on a special meaning as intermediate states. 
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value comes about only as a result of the assumption of a potential well, thus, an 
infinitely steep potential ramp, and that finite transition probabilities are to be expected 
when and only when the ramp is so steep that the potential at a distance on the order of a 
Compton wavelength h/mc increases by an amount whose order of magnitude is the rest 
energy of the electron *. 
 The goal of the following investigation is to test and verify this opinion of Bohr.  To 
that end, the rectangular potential well AB′C′D (see Fig. 1) that the calculations of O. 
Klein were based upon will be replaced by 
a potential ramp ABCD that exists 
between regions (I and III) of constant 
potential, between which one finds a 
region (II) of linearly increasing potential; 
hence, a region of constant electric field.  
The question is also posed in this case of 
what the transition probability would be 
for an electron to go from region I to 
region III. 
 In order to respond to this question, it 
is necessary to solve the Dirac equation for the case of a homogeneous electric field.  The 
first three sections of the following investigation are concerned with arriving at this 
solution and a discussion of it, while in the fourth section we will treat the problem posed 
above of calculating the probability for the transition of an electron from positive to 
negative impulse. 
 

1.  Solution of the Dirac equation. 
 

 The potential V may be put into the form: 
 

V = vx;      (1) 
the Dirac equation then reads: 
 

1 2 3 4 0

1
vx E

x y z ic t
γ γ γ γ κ κ ψ ∂ ∂ ∂ ∂ + + + + +  ∂ ∂ ∂ ∂  

= 0,  (2) 

 
with the abbreviations: 

E0 = m c2, κ =
2

hc

π
.    (3) 

By means of the Ansatz: 

ψ = 
2

( )
( )

y z
i

yp zp Et
he x
π

χ
+ −

⋅ ,    (4) 
(2) goes to: 
 

                                                
 * I would like to thank Herrn Prof. Heisenberg for the friendly tip about this hypothesis of N. Bohr. 

 

I II III  
A B B′ 

P 

C′ C D 

Fig. 1. 
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( )1 4 0 2 3( )y z

d
vx E E ic p ic p

dx
γ κγ κ γ γ χ + − + + + 
 

 = 0 .  (5) 

 
This equation may be further converted:  One sets: 
 

K2 = 2 2 2 2
0 ( )y zE c p p+ +      (6) 

and: 
γ5 K = γ1(E0 + ic γ2 py + + ic γ3 pz),     (7) 

 
in which γ5 is obviously anticommutative with γ1 γ4, and has the property that 25γ = 1, 

such that after left multiplication by γ1 (5) becomes: 
 

 ( )1 4 5

d
vx E K

dx
κγ γ κ γ χ + − + 

 
= 0.    (5a) 

 
It is indicated that we introduce rational units; with: 
 

ξ = 
v

κ
(vx – E),     (8) 

k =
v

κ
K,      (9) 

one obtains from (5a): 

1 4 5

d
k

d
γ γ ξ γ χ

ξ
 + + 
 

= 0.    (10) 

 
One can then integrate this equation when one now introduces four-rowed matrices for 
the γν and a column of four functions for χ in the usual way, and solve the resulting 
simultaneous system of four first order differential equations.  The integration of (10) 
then becomes simpler when one does not specialize the γν , but only uses their 
commutation relations and regards χ as a linear aggregate of the γν  

*. 
 It is recommended that one puts c into the form: 
 

χ = [f(ξ) + γ5 g(ξ)] ⋅ (1 + i γ1 γ4) Γ,    (11) 
 

in which f and g include no γν , and Γ may mean an arbitrary operator connected with the 
γν .  If one introduces this Ansatz into (10) then, due to the factor 1 + i γ1 γ4 , one obtains: 
 

5

df dg
i f kg i f kf

d d
ξ γ ξ

ξ ξ
    − + + + +    
    

(1 + i γ1 γ4) Γ = 0. 

 

                                                
 * F. Sauter, ZS. f. Phys. 63, 803, 1930; 64, 295, 1930.  
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If one multiplies this equation on the left by 1 + i γ1 γ4 then one recognizes that the 
expressions in the two square brackets must vanish identically: 
 

0,

0.

d
i f kg

d

d
i g kf

d

ξ
ξ

ξ
ξ

 − + =  
  


  + + =    

    (12) 

 
These equations may be easily solved.  If one understands F(α, γ, x) to mean a degenerate 
hypergeometric function, which is defined in the entire complex plane by the convergent 
series: 

F(α, γ, x) =
0

( ) ( )

( ) ( ) !

xνα ν γ
α γ ν ν

∞ Γ + Γ
Γ Γ +∑ ,    (13) 

 
then one can write down the two solutions of (12) in the form: 
 

2

2

2
22

1

2
22

1

1
, , ,

4 2

3
1, , ,

4 2

i

i

k
f e F i

i

k
g k e F i

i

ξ

ξ

ξ

ξ ξ

 
= − −  

  


  = − − + −  
  

   (14a) 

2

2

2
22

2

2
22

2

1 3
, , ,

4 2 2

1 1
, , .

4 2 2

i

i

k
f k e F i

i

k
g e F i

i

ξ

ξ

ξ ξ

ξ

 
= − − + −  

  


  = − + −  
  

    (14b) 

 
On the basis of the relation: 
 

F(α, γ, x) = ex F(γ − α, γ, − x), 
one easily verifies that: 

f1 = 2g∗ ,  f2 = 1g∗ ,     (15) 

 
in which the star refers to the complex conjugate value. 
 In the following, along with the series development that is given by (14), an integral 
representation for f and g in higher weights will also find application.  We therefore 
derive such an integral representation for the function *: 
 

ϕ  = 
2

2
i

e
ξ

F(α, γ, − iξ2).    (16) 

                                                
 * The integral representation that W. Gordon gave [Ann. d. Phys. (5) 2, 1031, 1929] is not convenient 
for the following computations.  
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Due to (13), one has the development for ϕ: 
 

ϕ  = 
2

22

0

( )
( )

( )

i

e i
ξ

να γ ξ
ν γ ν

∞ −  Γ
 Γ + 

∑ . 

 

For 
1

( )γ νΓ +
, the well-known integral representation for the gamma function: 

1

( )γ νΓ +
=

12

i n t

n

e e dt

i t

π

π

−

+∫  

 
may be introduced; the path of integration in it is a loop around t = 0 that goes to infinity 
in the direction of the positive real axis.  The summation may then be carried out, and 
yields: 

ϕ =
2

( 3/ 2) 22
( )

( )
2

i
i te e e t t i dt

ξ
π γ α γ αγ ξ

π
− − − −Γ −∫ . 

 
 

+
2

i  

0 

−
2

i  

Fig. 2.  
 
One obtains a symmetric form by means of the transformation: 
 

t = 2

2

i
sξ  + 
 

; 

this gives: 

ϕ  = 
2( 3/ 2) 2 2( )

| |
2 2 2

i s i i
e e s s ds

α γ α
π γ γ ξγ ξ

π

− −
− − −Γ    + −   

   
∫ .  (16a) 

 
The path of integration is depicted in Fig. 2.  The arguments of s ± i/2 run from 0 to 2π. 
 If one introduces this expression into (14) the one obtains the integral representations 
for the solutions: 
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2 2

2

2 2

2

1

4 2 4

1

1
1

4 2 4

1

1
| | ,

2 22

1 | |
,

2 2 22

k k

i i
s

k k

i i
s

i i
f e s s ds

k i i
g e s s ds

ξ

ξ

ξ
π

ξ
ξπ

− −
−

− − −
−


    = − + −        


    = − + −   
    

∫

∫

   (17a) 

2 2

2

2 2

2

1
1

4 4 2

2

1

4 4 2

2

1 | |
,

2 2 22

1
| | .

2 22

k k

i i
s

k k

i i
s

k i i
f e s s ds

i i
g e s s ds

ξ

ξ

ξ
ξπ

ξ
π

− − −
−

− −
−


    = − + −        


    = − + −   
    

∫

∫

   (17b) 

 
 

One easily verifies that these expressions satisfy equations (12).  The absolute value sign 
on ξ is necessary in order to guarantee the symmetry of the functions f and g at the 
location ξ = 0 that is given by (14), along with a continuous path to this place *. 
 

2.  Series development for f and g for large k. 
 
 For physical applications, it is necessary to have some knowledge of the way that f 
and g depend upon the independent variables.  The series development that one obtains 
from (14), by means of (13), converges for very small values of ξ and k so well that one 
can reduce it to the first pair of terms.  For larger values of ξ and k this development is 
not suitable in practical calculations. 
 It is indicated that we make the order of magnitude of k clear; by definition, [cf. (6) 
and (9)], it is: 

k =
2 2 2 2
0 ( )2 y zE c p p

hc v

π + +
⋅ . 

 
If the components of the impulse in the y and z directions are negligibly small compared 
to E0/c then k depends only upon the magnitude of the potential ramp.  If one introduces 
the numerical values and expresses v/e in volt/cm then this gives: 
 

k = 
81.15 10

/v e

⋅
. 

 
One recognizes that for the highest attainable electrostatic fields of several million 
volt/cm k is still several powers of ten higher than 1.  The first time that k becomes 
comparable to 1 is for extremely high, practically unrealizable, field strengths of 1016 
volt/cm.  In the following, we will therefore only deal with the case k ≫1 throughout. 

                                                
 * One observes that the point ξ = 0 represents a singularity for the integral representation (16a).  
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 In order to achieve of rapid convergence, it thus seems promising to develop f and g 
in descending powers of k, which can come about on the basis of Debye’s saddle point 
method.  The functions (17) that are to be developed possess the form: 
 

F(ξ) = 

2

2

4

2 ( )

2

k t

s

i
s

e G s ds
i

s

ξ−

 + 
 
 −
 

∫ ,    (18) 

 
in which the function G(s) can be regarded as slowly varying compared to the first two 
factors of the integrand.  With the abbreviation: 

h(s) = ξ2s −
2

2log
4

2

i
sk i

i
s

+

−
, 

F assumes the form: 
F = ∫ e−h(s) G(s) ds.     (18a) 

 
This integral will be evaluated in such a manner that one seeks a (saddle-) point, at which 
the integral possesses a possible sharp maximum; if one then directs the path of 
integration around this point and develops the integrands at this place then one will 
obtains a series that falls off quickly enough that one can, at least in our case, truncate it 
after the first term. 
 As the position of the saddle point, one obtains from: 
 

( )dh s

ds
= 0 

the two points: 

s1, 2 = ±
2

2

1
1

2

k

ξ
− .     (19) 

 
They lie on the real or imaginary axis according to whether | ξ | is smaller than or greater 
than k, respectively. 
 The points ξ = ± k thus take on a special position mathematically.  One easily arrives 
at it, since they are also physically distinguished.  Due to (6), (8), and (9) it is the point 
for which one has: 

(E – vx)2 = 2 2 2 2
0 ( )y zE c p p+ + ; 

 
i.e., at this point, classically speaking, the impulse component px in the field direction 
vanishes.  It therefore represents the antipodal point to the classical path, which lies in the 
region | ξ | > k, while | ξ | < k represents the classically forbidden region. 
 For the computation of (18a) we must still clarify the nature of the integration path 
(I.P.) around the saddle points.  As is well known, one chooses it advantageously in such 
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a way that the real part of the exponent – R(h) increases as quickly as possible, while the 
imaginary part of h remains constant.  If one writes s in the form: 
 

s = σ + iτ, 
then the latter will be given by: 
 

J(h(s)) = ξ2τ −
2 22 1

2
2 21

2

( )
log

8 ( )

k σ τ
σ τ

+ +
+ −

 = J(h(s0)). 

 
 We would now like to treat the two cases | ξ | < k and | ξ | > k separately: 
 1. | ξ | < k.  In this case, the saddle points lie on the real axis.  The I.P. will, from the 
above, be given by: 

ξ2τ −
2 22 1

2
2 21

2

( )
log

8 ( )

k σ τ
σ τ

+ +
+ −

 = 0. 

 
Its definition can be gathered from Fig. 3.  (The real axis σ = 0 is also a branch of the 
I.P.)  The arrows refer to the removal of the real 
part of h, thus to an increase in the integrands.  
One obtains a useful I.P., which may be 
continuously deformed into the I.P. of Fig. 2, when 
one goes rectilinearly from + ∞ to s2, from there 
along the indicated curve over to s1 in the positive 
sense around the two branching points ± i/2, and 
again rectilinearly from s2 back to + (cf., the 
dashed curve in Fig. 3, which, for the sake of 
clarity, is indicated near the correct integration 
path.  The rectilinear parts of the I.P. lie on 
different Riemann surfaces.).  The integrand 
assumes its maximal value at the location *: 
 

s1 = −
|

2

2

1
1

2

k

ξ
− ; 

 
the development of h(s) at this saddle point reads like: 
 

h(s) = h(s1) – (s – s1)
2 ⋅

|
2 2

2 2

2
1

k

k

ξ
ξ

−  + … 

with: 

                                                

 * As usual, the stroke | on the root 
|
shall imply that its positive value is to be taken.  

 

s1 s2 0 

+
2
i

 

−
2
i

 

 

Fig. 3. 
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h(s1) =

|
2 2 2

2

| |
1 arcsin

2 2

k k

k

ξ ξ
ξ

− − . 

 
One has, in fact, due to the assumption that was made above on the arguments of s ± i/2: 
 

s1 + 
2

i
=

| |
arccos

21

2 | |

i
kk

e
π ξ

ξ

 + 
  , 

s1 − 
2

i
=

| |
arccos

21

2 | |

i
kk

e
π ξ

ξ

 − 
  , 

 
where arcsin and arccos refer to the principal values of the cyclometric functions (i.e., the 
ones between 0 and π / 2). 
 For the computation of F, along with e− h(s), one must also develop G(s) in powers of s 
– s1 and integrate termwise.  We would then like to restrict ourselves to just the first term 
of the series.  (The series goes in increasing powers of 1/ξ2, and therefore falls off for 
sufficiently large ξ2 ≫1 very rapidly).  G(s) can then be treated as constant for the 
integral and one has: 

F = G(s1)

|
4 2

2
1 2 2

1

2
( ) 1

( )

k
s s

kh se e ds
ξ

ξ
− ⋅ −

−
∫ + … 

 
In the same approximation, the I. P. can be replaced by its tangent at the saddle point; one 
then integrates rectilinearly from s1 + i ∞ to s1 − i ∞ .  One obtains: 
 

F = G(s1)
1( )

2
|

2
2

4
2

2

1

i
h s

k
e

k

π
π

ξ
ξ

− −

−

 + …    (20a) 

 

This result is valid as long as 

|
2

2
1

k

ξ
− is greater than 1 or at least comparable to it, since 

in the development (20a) this root appears in the denominator.  The case | ξ | ~ k must be 
treated specially.  In that case, both saddle points move to the coordinate origin and there 
is some advantage in developing from the position | ξ | = k outward.  Since we will not 
need this development in what follows, its derivation may be suppressed, for the sake of 
brevity.  The result reads like: 

F = G(0)
2

2 24 2
2/3 2 /3

0

1
3 1 log3

(6 ) 3 (6 )

k i

s

d G
e k

k k ds

π π

ξ
−

=

  Γ −        ⋅ Γ − + −    
     
 
 

 + …, (20b) 

which is valid for | ξ2 – k2 | ≪1. 
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 2.  | ξ | > k.  Now, the saddle points lie on the imaginary axis.  Since σ1, 2 = 0, τ1, 2 = 

±
2

2

1
1

2

k

ξ
− one obtains the I. P. from: 

ξ2τ − 
2 22 1

2
2 21

2

( )
log

8 ( )

k σ τ
σ τ

+ +
+ −

= ξ2τ1, 2 −
2 1

1,2 2

1
1,2 2

log
4

k τ
τ

+
−

 

 
(see Fig. 4; the arrows have the same meaning as in Fig. 3.)  One obtains a useful I. P. in 
the following way: From + ∞, one comes in to the 
branch point + i/2 and goes around it in the 
positive sense and crosses over the saddle point 
s1, and goes back to + ∞ .  One then comes in to 
the second saddle point s2, around the branch 
point – i/2, again in the positive sense, and the 
goes back to + ∞.  (See the dashed curve in Fig. 
4.)  This I. P. may obviously be continuously 
deformed into the one in Fig. 2 when the path 
segments s1 → ∞ and ∞ → s2 lie on the same 
Riemann surface. 
 For the determination of F one must add the contributions of the integrals in the 
neighborhoods of both saddle points.  The aforementioned assignment yields: 
 

|
22

2

3 |
22

2

1
1 1 ,

2 2

1
1 1 ,

2 2

i

i

e k
s

e h
s

π

ν

π

ν

ξ

ξ

 
 + = ± −
 

  


  
  + = −
  
  

∓

 (ν = 1, 2). 

 
(The upper sign refers to s1 and the lower one, to s2.)  For h(s) one obtains the 

development: 

h(s) = h(sν) ± (s – sν)2

|
4 2

2 2

2
1

i k

k

ξ
ξ

− + … 

with: 

h(sν) =

|
2

|
22 4

2
|2

2

2

1 1

1 log
2 4

1 1

h

i k k i

h

ξξ
ξ

ξ

+ −
± −

− −

∓ . 

 
The I. P. intersects the imaginary axis at an angle of 45o at the saddle points; in the 
neighborhood of the first saddle point, if we set: 

 

s1 

s2 

+
2
i

 

−
2
i

 

0 

Fig. 4. 
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s = s1 + 4
i

te
π−

, 
and for the second one set: 

s = s2 +
3
4
i

te
π−

 
 
then the integrations can be extended in the approximation considered rectilinearly from t 
= − ∞ to t = + ∞.  One thus obtains: 
 

|4
2

2 21 2

1 2

23 1( ) ( )
4 4

1 2

0

3
( ) ( )

4 4
1 2|

2
2

( ) ( )

2 ( ) ( )

1

ki i th s h s k

i i
h s h s

F e G s e G s e dt

k
e G s e G s

k

ξπ π
ξ

π π
π

ξ
ξ

∞ − −− − − −

− − − −


  = + ⋅ + 

 




  = + +  
  −



∫ ⋯

⋯

  (20c) 

 
This development progresses in powers of 1/k2 and thus converges for arbitrary values of 
ξ sufficiently strongly that one can satisfy oneself with the first approximation.  As in the 
first case, it loses its validity when one approaches | ξ | at the location k, in which limiting 
case, the development (20b) is to be employed. 
 If one substitutes the expressions (20a) and (20c) into the functions (17) then one 
obtains for the first system of solutions: 
 

2|
2 2

2|
2 2

| | | |
arcsin

2 2
1 2

4
2

| | | |
arcsin

2 2
1 2

4
2

1
| | : ,

2 1

1 | |
;

2 1

k k i
k

k

k k i
k

k

k f e

k

g e

k

ξ ξξ

ξ ξξ

ξ
ξ

ξ
ξξ

+− +

−− +


< = 

− 


− = 
−


    (21) 

2 2 2 22

2 2 2 22

1 1
log log

2 4 1 2 4 14

1 | | |

1 1
log log

2 4 1 2 4 14

1 | | |

| | : ,
2 | | 1 1

,
2 | | 1 1

i w k i w i w k i wk

w w

i w k i w i w k i wk

w w

ke ie ie
k f

w w w

ke ie ie
g

w w w

ξ ξπ

ξ ξπ

ξ
ξ

ξ

+ +− + − −
− −

+ +− + − −
− −

 
 > = +  

+ −  
  


  
  = + +  − +    

  (22) 
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in which w has been used as an abbreviation for 

|
2

2
1

k

ξ
− .  One obtains the corresponding 

development for the second system of solutions from this one on the basis of the relations 
(15): 

f2 = 1g∗ ,  g2 = 1f
∗ . 

 
 

3.  Discussion of the solutions. 
 
 First, we must examine the behavior of the functions f and g.  As we are to gather 
from (14), they are symmetric (anti-symmetric, resp.) about the point ξ = 0, and 
furthermore one of the functions is 
even when the other one is odd.  One 
can deduce their behavior from the 
developments (21) and (22).  For ξ < − 
k and ξ > + k, they represent an 
oscillation with variable frequency and 
amplitude, as is depicted schematically 
in Fig. 5.  (The functions are 
essentially complex, so Fig. 5 therefore 
serves only to give a rough idea of the 
functional behavior.)  In the intermediate region, their absolute values decay like a power 
of e to 1 or 0 [cf. (14)] as one approaches ξ = − k and then they again increase 
exponentially. 
 It must be pointed out that this exponential decay of the functions around the point ξ 
= 0 is achieved only by the special choice of our system of solutions.  If one were to use 
an I. P. for which the second saddle point: 
 

s2 = 

|
2

2

1
1

2

k

ξ
−  

 
in Fig. 3 gives the essential contribution to the integrands then one would obtain an 
exponential growth of the functions around the null point.  Such an I. P. will be given by, 
e.g., a loop that comes in from positive infinity, as in Fig. 2, and goes around only one of 
the two branch points.  A special linear combination of our two systems of solutions must 
then give the desired growth.  The dotted curve in Fig. 5 depicts this possibility 
schematically. 
 It might not be inappropriate to compare this behavior with that of non-relativistic 
wave mechanics.  The Schrödinger equation for the one-dimensional problem reads *: 

                                                
 * In the sequel, we shall set py = pz = 0.  Due to (6) and (9), one has: 
 

k = 
v

κ ⋅ E0 =
2
hcv

π ⋅ mc2. 

 

A B 0 

Fig. 5. 
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2 2

2 2

8

2

m h
vx

x h i t

π ψ
π

 ∂ ∂ − +  ∂ ∂  
= 0. 

 
By means of the Ansatz (E  = non-relativistic energy): 
 

ψ = 
2 i

Et
he
π−

χ(x), 
 
one obtains, when one further introduces the new variable: 
 

ξ = ( )vx E
v

κ −  

 
in place of x, the differential equation for χ: 
 

2

2 2 ( )
d

k
d

ξ χ ξ
ξ

 
− 

 
= 0. 

 
As is well known, its solution reads: 
 

χ = 3/ 2
1/3

2 2

3

k
Zξ ξ

 −⋅   
 

, 

 
when Zp(x) refers to an arbitrary solution of Bessel’s differential equation: 
 

2 2

2 2

1
1

d d p

dx x dx x

 
+ + − 

 
Zp(x) = 0 . 

 
The behavior is represented schematically in Fig. 6: For negative values of ξ the 

argument of Z1/3 is real, and the function is thus periodic; for positive ξ the argument is 

complex, so χ represents the superposition of an exponentially increasing branch with an 
exponentially decreasing one (viz., the decomposition of Z1/3 into the two Hankel 
functions (1)

1/3H and (2)
1/3H ). 

 In order to carry out the transition from the relativistic case to the non-relativistic one, 
we assume that: 

E = E + E0, 
so: 

ξ = ξ − k. 
 

The coordinate system in Fig. 5 is therefore displaced by a distance k compared to the 
one in Fig. 6, so the point ξ = 0 of Fig. 6 corresponds to the point A (ξ = − k) in Fig. 5.  
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The transition to the non-relativistic case amounts to the passage to the limit lim k → ∞, 
hence, lim E0 → ∞, and therefore also lim k → ∞.  Under 
this transition, the points O and B in Fig. 5, which have the 
abscissas k and 2k relative to the non-relativistic system 
with A as its origin, go to positive infinity.  The right half of 
Fig. 5 therefore goes away, and the left half will be stretched 
along the entire distance from – ∞ to + ∞, in which the 
functional behavior of Fig. 5 obviously takes place. 
 Whereas the region ξ < 0 therefore corresponds to the 
domain of validity of the Schrödinger equation, the region ξ 
> 0 possesses no non-relativistic analogue.  This region is, 
as will be shown, characterized by the fact that the wave-mechanical impulse vector is 
oppositely directed to the velocity. 
 As is well known, in the Dirac theory the three-dimensional velocity uν corresponds 
to the operator icγν (ν = 1, 2, 3).  One obtains the wave mechanical expectation value of 
this operator in the form: 

[uν] = icψ γν ψ .     (23) 
 
In this,ψ  refers to the adjoint wave function, which satisfies the equation: 
 

1 2 3 4 0

1
vx E

x y z ic t
ψ γ γ γ γ κ κ ∂ ∂ ∂ ∂ − − − + − + +  ∂ ∂ ∂ ∂  

= 0.  (2a) 

 
In order to arrive at a relation between the quantities [ux] that are given by (23) and the 
expectation value [px] of the impulse in the field direction, we multiply equation (2) on 
the left by ψ γ4γ1 and equation (2a) on the right by γ1γ4 ψ, and then add them together; 
this yields: 

4 4 4 1 2 4 1 3( ) ( )
x x x y

ψψγ ψ γ ψ ψγ γ γ ψ ψγ γ γ ψ∂ ∂ ∂ ∂ − + + ∂ ∂ ∂ ∂ 
 

− 1 1

1 1
vx vx

ic t ic t

ψψγ κ ψ κ ψ γ ψ∂ ∂   + + −   ∂ ∂   
= 0. 

 
For a particular infinitely steep impulse in the y and z direction, the terms with ∂/∂y and 
∂/∂z [which, due to the dependency on y and z that is given in (4), fall out of the quadratic 
expressions ψ γ4γ1γ2,3ψ] vanish.  Since we are considering a stationary state of the energy 
E, we can carry out the time differentiation, and we obtain: 
 

4 4 1

1
( )

2
E vx

x x

ψψγ ψ γ ψ κ ψγ ψ∂ ∂ − + − ∂ ∂ 
 = 0.  (24) 

 
Due to (23), the second term may be written in the form: 
 

 

O 

Fig. 6. 
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−
2

2
[ ]x

i E vx
u

h c

π −
. 

 
From the meaning of the first expression we consider that the impulse operator in Dirac’s 

theory is given by 42

h

i xν

γ
π

∂
∂

; the first term of (24) thus represents the symmetrized 

expectation value of the impulse [px], multiplied by the factor
2 i

h

π
.  (24) may then be 

written in the form: 

[px] = 
2

E vx

c

−
[ux].     (25) 

 
This equation thus says that for E > vx [or, due to (8), for ξ < 0] impulse and velocity 
carry the same sign, whereas for E < vx (or ξ > 0) they are oppositely directed, which was 
to be proved.  One observes, moreover, that (25) represents the wave mechanical 
translation of the relativistic connection between impulse and velocity: 
 

px =
2

21

xmu

u

c
−

, 

since: 

E – vx = 
2

2

21

mc

u

c
−

. 

 
 For the application in the next section, the dependency of the velocity [ux] on the 
constituent functions f and g can be worked out here.  For this, we introduce the 
expression for ψ  that is obtained from (4) and (11): 
 

ψ = [f + γ5 g] ⋅ 
2

( )y z
i

yp zp Et
he
π + −

(1 + i γ1 γ4) Γ;   (26a) 
 
one easily convinces oneself in the same way as in the first section that the corresponding 
expression for ψ  will be given by: 
 

ψ  = 
2

( )

1 4 5(1 )[ ]
y z

i
yp zp Et

hi f g e
π

γ γ γ
− + −∗ ∗Γ − +  .   (26b) 

 

5γ  refers to the adjoint quantity to γ5 [see (7)]: 
 

5γ  = − (E0 + icγ2 py + icγ2 pz) γ1 = − γ1 γ5 γ1 . 
 
If one now constructs the density ψ γ4ψ  then one obtains: 
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ψ γ4ψ  = 1 4 1 5 1 4 1 4(1 )( ) ( 5 )(1 )i f g f g iγ γ γ γ γ γ γ γ γ∗ ∗Γ − − + + Γ = (ff* + gg*) ∆,  (27) 

 
in which: 

∆ = 2Γ γ4(1 + i γ1γ4) Γ 
 
means a constant operator †.  Analogously, one gets: 
 

[ux] = icψ γ1ψ  = − c(ff* − gg*)∆,    (28) 
 
so [ux] is also spatially constant for the stationary state under consideration, as one can 
easily confirm on the basis of (12).  Indeed, this also already follows from the divergence 
condition for the current Sν = e[ux], since we consider a stationary state for which the 
current components in the z and z directions are constant (viz., a plane wave!). 
 Because of this constancy, one computes the value of (28) most easily for the location 
ξ = 0.  If one assembles the general functions ψ from linear combinations of the 
constituent functions ψ1 and ψ2, hence: 
 

ψ = αψ1 + βψ2 ,     (29) 
and therefore: 

f = α f1 + β f2 ,  g = α g1 + β g2 ,   (29a) 
 

then, from (14), one easily confirms that: 
 

ff* − gg* = αα* − ββ*,     (30) 
 
since f1(0) = g2(0) = 1, f2(0) = g1(0) = 0.  The current that results from the two partial 
solutions ψ1 and ψ2 is therefore assembled with no interference into the total current in 
the x direction. 
 
 

4.  Transition of an electron into an antifield. 
 
 We will now address the problem that was posed in the introduction of calculating the 
probability that an electron will go from the region of positive impulse to the region of 
negative impulse *.  To that end, we consider the potential function that is represented by 
the line ABCD in Fig. 1: 
 

                                                
 † Cf., F. Sauter, ZS. f. Phys. 64, 295, 1930; there, the operator ∆ was referred to as the “normalization 
operator.” 
 * By “positive” (“negative”, resp.) impulse it shall be understood that the impulse and the velocity 
have the same (opposite, resp.) directions.  In the former case, the kinetic energy is positive; in the latter, it 
is negative. 
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1 1 1

1 2 1 2

2 2 2

I. or ,

II. " ,

III. " .

x x k V vx

x x x V vx

x x k V vx

ξ ξ
ξ ξ ξ

ξ ξ

−∞ < < < < − = 
< < < < = 
< < +∞ < < = 

⋯

⋯

⋯

   (31) 

 
We must now solve the Dirac equation for the three cases separately and then match up 
the three wave functions continuously at the points x1 and x2 .  For all three cases, the 
integration can be achieved by the same method, from which the matching will be made 
essentially easier. 
 We make the Ansatz: 

ψ = [f + γ5g](1 + i γ1γ4)Γ
2

( )y z
i

yp zp Et
he
π + −

,   (32) 
 

where γ5 is given by (6) and (7).  If one now introduces, as above, the new variable: 
 

x = 
v

κ
(vx – E)     (8) 

 
then one obtains the equations for f and g precisely as in the first section: 
 

1 1

2 2

I. 0, 0,

II. 0, 0,

III. 0, 0.

d d
i f kg i g kf

d d

d d
i f kg i g kf

d d

d d
i f kg i g kf

d d

ξ ξ
ξ ξ

ξ ξ
ξ ξ

ξ ξ
ξ ξ

   − + = + + =    
    

    − + = + + =    
    

   
− + = + + =   
    

  (33) 

 
k is defined by (9), while ξ1 and ξ2 are obtained from (8) by introducing the values x1 and 
x2 at the location x.  We write the solutions of the second pair of equations (33) [which is 
identical with (12)] by the use of the two constants a and b in the form (29a), where f1, g1, 
and f2 , g2 are given by (14).  For the first and third regions one naturally obtains a plane 

wave of the form 1,2iqe ξ± , where q1 and q2 are determined by means of the equations †: 
 

2qν = 2
νξ − k2,  (ν = 1, 2).   (34) 

 
If one computes the coefficient ratios by means of (33) then, with the arbitrary constants 
aν and bν, this yields the solutions: 

 

                                                

 † qν is connected with the ordinary impulse pν by the relation qν = cp
v

κ
ν .    Since | ξν | > k, qν is real 

and we assume that qν > 0. 
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,

[ ( ) ( ) ];

iq iq

iq iq

f a e b e

i
g a q e b q e

k

ν ν

ν ν

ξ ξ
ν ν

ξ ξ
ν ν ν ν ν νξ ξ

−

−

= +



= − + + 


    (35) 

 
ν = 1 is valid for region I and ν = 2 for region III. 
 We achieve a continuous connection between the wave functions at the locations x1 
and x2 (ξ1 and ξ2, resp.) when we connect the functions f and g with each other at those 
locations.  This leads to the equations: 
 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

,

[ ( ) ( ) ;

iq iq

iq iq

a e b e F G

i
a q e b q e G F

k

ξ ξ

ξ ξ

α β

ξ ξ α β

− ∗

− ∗

+ = +



− + + = + 


   (36a) 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

,

[ ( ) ( ) .

iq iq

iq iq

a e b e F G

i
a q e b q e G F

k

ξ ξ

ξ ξ

α β

ξ ξ α β

− ∗

− ∗

+ = +



− + + = + 


   (36b) 

 
In this, due to (14), to abbreviate we have set: 
 

2

2

2
22

2
22

1
, , ,

4 2

3
1, , ,

4 2

i

i

k
F e F i

i

k
G k e F i

i

ν

ν

ξ

ν ν

ξ

ν ν ν

ξ

ξ ξ

 
= − −  

  


  = − − + −  
  

    (37) 

 
and used (15).  The system of equations (36) for the determination of the six quantities 
aν , bν , α, β is still undetermined; to the mathematical continuity conditions one must 
also add a physical condition that establishes the behavior of the wave function at 
infinity. 
 We shall now, as we have already stressed on many occasions, ascertain the 
probability that an electron in region I with positive impulse will go over into region III 
with negative impulse.  We must therefore assume an incident particle current that comes 
in from the left, partly goes through region II and continues on into region III (from left 
to right), and is partly reflected by the separating surface between x1 and x2, which 
represents a reverse current in region I.  The solution must therefore be chosen in such a 
way that in III only one current flows in the left-to-right direction and none flows in the 
opposite direction.  The current component in the x direction for a wavefunction that was 
represented by the expression (32) was determined in the third section [equation (28)].  
When applied to the plane wave that represented by (35) this produces: 
 

Sx = − iecψ γ1ψ  = 
2

2
[ ( ) ( )]

ecq
a a q b b q

k
ν

ν ν ν ν ν ν ν νξ ξ∗ ∗− + + + ∆ , 

 
while the particle density will be given by way of (27). 
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 For ν = 1, one thus obtains, since ξ1 < − q1, an incident current of strength: 
 

Se = 1
1 1 1 12

2
( )

ecq
q a a

k
ξ ∗− + ∆  

and a reflected current: 

Sr = − 1
1 1 1 12

2
( )

ecq
q b b

k
ξ ∗− − ∆ ; 

for ν = 2, since ξ2 > q2 : 

Sa = 2
2 2 2 22

2
( )

ecq
q b b

k
ξ ∗+ ∆  

 
represents the required outgoing current, while the incoming current in this region must 
vanish.  One thus obtains a2 = 0 as the physical condition. 
 One calculates the transmission coefficient: 
 

D = a

e

S

S
= 2 2 2 2 2

1 1 1 1 1

q q b b

q q a a

ξ
ξ

∗

∗

+⋅
− +

;    (38) 

 
the corresponding reflection coefficient is given by: 
 

R = r

e

S

S

−
= 1 1 1 1

1 1 1 1

q b b

q a a

ξ
ξ

∗

∗

− −
− +

,    (39) 

where naturally R + D = 1. 
 If one sets a2 = 0 in (36b) then, since: 
 

2 2 2 2F F G G∗ ∗−  = 1 

 
the solution to these two equations in α and β reads [see (37) and (13)]: 
 

α = 2 2
2 2 2 2 2( )iq i

b e F G q
k

ξ ξ− ∗ ∗ − ⋅ +  
, 

β = 2 2
2 2 2 2 2( )iq i

b e G F q
k

ξ ξ−  − + ⋅ +  
. 

 
If one substitutes this expression in (36a) and solves it for a1 and b1 then one obtains: 
 

− 1 11
1

2 iqiq
a e

k
ξ = 2 2 1 1 2 2

2 1 1 2 2 2

( )( )
( ) ( )iq q qi i

b e q A q A B B
k k k

ξ ξ ξξ ξ− ∗ ∗+ + − + + + + +  
, 

1 11
1

2 iqiq
a e

k
ξ− = 2 2 1 1 2 2

2 1 1 2 2 2

( )( )
( ) ( )iq q qi i

b e q A q A B B
k k k

ξ ξ ξξ ξ− ∗ ∗− + − − + + + +  
, 

 
where: 
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A = 1 2 1 2F F G G∗ ∗− , 

B = 2 1 1 2F G FG∗ ∗− . 

 
For the sake of simplicity, we would like to assume symmetric behavior about the point ξ 
= 0: 

− ξ1 = ξ2 = ξ0 > 0.     (40) 
One will then have: 

q1 = q2 = q0 , 
F1 = F2 = F0 ,  − G1 = G2 = G0 , 

A = A* = 0 0 0 0F F G G∗ ∗+ ,  Bx = − 0 0F G∗ , B* = − 0 02F G∗ . 

 
One then obtains: 
 

   a1 = b2        0
0 0 0 0 0 0 0 0

0 0

( ) ( )
ki

F F G G F G F G
q q

ξ ∗ ∗ ∗ ∗ 
− + + − 
 

, 

   b1 = 0 0

2
2 0 0 0 0

2 0 0 0 0 0 0 0 0
0 0 0

( )
( )iq q i q ki

b e F F G G F G F G
q kq q

ξ ξ ξ− ∗ ∗ ∗ ∗ + ++ − + 
 

. 

 
Now we employ the development (22) for F0 and G0 

† that was given in the second 
section, which is valid for ξ2 > k2 .  Since: 
 

w0 = 

|
2

2
0

1
k

ξ
− = 0

0

q

ξ
, 

one has: 

F0 =

2 22
0 0 0 0

0 0 0 0
0 0 0 0

log log
2 4 2 44

| |
0 0 0 0

0 0

2
1 1

q qi k i i k ik q q
q qke ie e

q q q

ξ ξπ ξ ξ
ξ ξ

ξ
ξ ξ

+ +
− + −

− −

 
 
 + 
 + − 
 

, 

 

G0 =

2 22
0 0 0 0

0 0 0 0
0 0 0 0

log log
2 4 2 44

| |
0 0 0 0

0 0

2
1 1

q qi k i i k ik q q
q qke e ie

q q q

ξ ξπ ξ ξ
ξ ξ

ξ
ξ ξ

+ +
− + −

− −

 
 
 − + 
 − + 
 

. 

 

                                                
 † By the application of the development (22), which is valid only for the case where | ξ | does not lie 
too close to k – for | ξ | ~ k one uses a series of the form (20b) – the validity of the result will be reduced in 
the case of high velocities for the incoming and outgoing electrons.  For small velocities, the problem then 
loses its interest, since then, from (45) or (46), the “Klein paradox” vanishes in any case. 
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One thus obtains: 

   0 0 0 0F F G G∗ ∗+ =       
2 2

0 0 02
0 0

0 0 0 0

sin log
2

k qk k
e q

q q q

π ξ ξξ
ξ

  + + −  −   
, 

   0 0 0 0F G F G∗ ∗−  = − 
2 2

0 0 02
0 0

0 0 0 0

sin log
2

k qk k
ie q

q q q

π ξ ξξ
ξ

  + + −  −   
, 

and: 

     a1 = −
2

2
2

k

b e
π

, 

     b1 = 

22 0 0
0 0

0 0

log
20 02

2
0

( )
qkk i q
qi q

b e e
k

ξππ ξ
ξξ +

− −
−+

. 

 
From this, on account of (38) and (39), one determines the transmission coefficient: 
 

D = 
2ke π−       (41) 

and reflection coefficient: 
R = 1.       (42) 

 
This result is valid up to higher order terms in 1/k2 and was derived under the assumption 
that k2 ≫1. 
 This therefore shows that for all electric fields for which k2 ≫1, hence, for all 
practically attainable fields (cf., supra), the transmission coefficient is vanishingly small; 
transitions into the region of negative impulse are therefore very rare in this case †. 
 For the case of high electron velocity and a symmetric potential function, in the first 
approximation the value of the transmission coefficient D depends upon only the field 
strength, hence, upon only the steepness of the potential ramp.  This case would (cf., 
supra) correspond to around 1016 volt/cm.  The location k2 ~ 1 has a special physical 
meaning.  In this case, one has: 

k2 = 
2 22 ( )mc

hc v

π
~ 1, 

or: 

 
vh

mc
~ mc2.     (43) 

 
This agrees with the conjecture of N. Bohr that was given in the introduction, that one 
first obtains the finite probability for the transition of an electron into the region of 
negative impulse when the potential ramp vh/mc over a distance of the Compton 
wavelength h/mc has the order of magnitude of the rest energy. 
 It is naturally impossible to experimentally configure fields of this strength.  One can 
possibly imagine that such fields can appear in the interior of an atom in some 

                                                
 † This result is naturally independent of the aforementioned assumption of symmetric behavior.  In the 
general case, the final formulas thus become very unclear.  
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circumstances; in a pure Coulomb field, the critical point that is given by (43) would be 
at a distance of roughly: 

r ~ 
e h

mc c
 ~ 8 × 10−12 cm 

 
from the center of force; similar high fields in atoms must also exist in Gamow’s nuclear 
model.  It will therefore be pointless to draw any conclusions about the behavior of an 
electron in the immediate neighborhood of nuclei, since Dirac’s theory (which is already 
invalid due to the fact that we are neglecting the nuclear spin) loses its validity at such 
small distances from the nucleus. 
 For the sake of completeness, we would still like to consider the case that treated by 
O. Klein * of a potential well, hence, the limiting case of an infinitely steep potential 
ramp.  The calculation can then be carried out in such a manner that one links the wave 
functions that are valid in region I and region III to each other directly.  v is then to be 
viewed as an auxiliary mathematical quantity that drops out of the result automatically.  
In order to use the notation of Klein, one must set: 
 

ξ1 = − E
v

κ
,  ξ2 = ( )P E

v

κ − , 

q1 = cp
v

κ
,  q2 = cp

v

κ
,  

 
where P is then the height of the potential well, E is the energy before the transition to the 
antifield and p and p measure the impulse before and after the transition.  One then 
obtains by simple calculations, which shall be omitted here, in the name of brevity: 
 

2

2

2

4
,

[ ( )]

( )
.

( )

P E cp c pp
D

E cp P c p p

E cp P c p p
R

E cp P c p p

− += ⋅ + + − 


 − + + = ⋅   + + −  

   (44) 

 
One obtains the formulas that were given in the introduction from these expression in the 
limiting case of a very high potential well (lim P → ∞): 
 

2
,

.

cp
D

E cp

E cp
R

E cp

= + 
− =
+ 

     (45) 

 

                                                
 * O. Klein, loc. cit.  
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In order to obtain the analogy with the previously-treated case of a symmetric potential 
function, one must set ξ1 = − ξ2 , and then set P = 2E, and thus obtain: 
 

2 2
2

2

2 4
2

2

,

1 .

c p
D

uE
vm c

R
E

β
β

β


= =  =  

 = = −


   (46) 
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