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The solutions of the Dirac equation with the poteniat vx will be obtained and their behavior will be
discussed. Along with the region of the function that afgmears in the non-relativistic calculations, there
is a region in the Dirac theory in which the impulse e@ldcity of the electron possess opposite signs. In
conjunction with that, the probability will be computid an electron to go from the “positive impulse”
region to the “negative impulse” region. This yields tbsult that transition probability first takes amite
values when the magnitude of the potential ramp ovestardie that is equal to the Compton wavelength is
comparable to the rest energy of the electron. Tige lsalues for the transition probability that were
computed by O. Klein for a potential well whose order afjnitude is twice the rest energy are understood
to be limiting values in the case of an infinitely gt@atential ramp.

Some time ago, an interesting work by O. Kleappeared on the reflection of
electrons by a potential well. The computation in teoh®irac’s relativistic theory
yielded the following result: If one lets the heidhof the potential well increase from 0
then the reflection coefficiefR also takes on values from null to 1, which it attaumen
P =E —Ey. (Eis the relativistic energy of the electrdsy; is its rest energy.) With
further increases iR, R remains constantly equal to 1, up to the védueE + E; . If one
lets the height of the potential well increase stilirenthen the reflection coefficient goes

down again, and in the limiting case Bf= « it approaches the vaIueE;—C. =
cp

impulse of the electron before the transition through pbtential well). In Dirac’s
theory, an electron therefore possesses a finite pilitpdhat it might pass on through a
very high potential well that is completely reflectinghe classical analysis.

The state that the electron attains after this itiansis thus recognized to be one in
which its velocity (group velocity) is oppositely directedts impulse.

The appearance of a “negative impulse” is no longegrrsimg, since one has already
learned to compute with the concept of “negative enettjyThe large value that Klein
found for the probability of making the transition fr@state of positive impulse to one
of negative impulse is therefore noteworthy. N. Bohdenthe conjecture that this high

7 0. Klein, ZS. f. Phys53, 157, 1929.

T Cf., dispersion theory, in which I. Waller (ZS. hyB.61, 837, 1930) has shown precisely that the
states of negative energy take on a special meaningeasnatiate states.
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value comes about only as a result of the assumptioa pbtentialwell, thus, an
infinitely steep potential ramp, and that finite trainsitprobabilities are to be expected
when and only when the ramp is so steep that the pdtahaadistance on the order of a
Compton wavelength/mc increases by an amount whose order of magnitude ieshe r
energy of the electron

The goal of the following investigation is to test andfyehis opinion of Bohr. To
that end, the rectangular potential waB'C'D (see Fig. 1) that the calculations of O.
Klein were based upon will be replaced by
a potential ramp ABCD that exists
between regions (I and Ill) of constant
potential, between which one finds a
region (Il) of linearly increasing potential;
hence, a region of constant electric field.
The question is also posed in this case aqf
what the transition probability would be i A
for an electron to go from region | to*
region Ill. Fig. 1.

In order to respond to this question, it
is necessary to solve the Dirac equation for the chaehomogeneous electric field. The
first three sections of the following investigation a@ncerned with arriving at this
solution and a discussion of it, while in the fourtbtea we will treat the problem posed
above of calculating the probability for the transitiohan electron from positive to
negative impulse.

1. Solution of the Dirac equation.

The potentialVV may be put into the form:

V =vx (1)
the Dirac equation then reads:
0 0 0 10
—+y,—+y,—+y,| ——+kvx |+KE, ;¢ =0, 2
{Vlax V> dy y3az V{ icot j o}l/’ (2)
with the abbreviations:
2
Eo=m (,2, K=——. (3)
hc

By means of the Ansatz:

2%y, + 20~ )

y=e Dv(%, 4)

(2) goes to:

I would like to thank Herrn Prof. Heisenberg for therfdly tip about this hypothesis of N. Bohr.
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{n%&wﬁw—a+ﬂa+m69+mgm}x=0- (5)

This equation may be further converted: One sets:

K*=EJ+c (g + ) (6)
and:
6 K= Ji(Eo +ic Jspy + +ic J5py), (7

in which j is obviously anticommutative with; 4, and has the property thaf= 1,
such that after left multiplication by (5) becomes:

{diﬂ(yly4 (vx-E)+« Kys})(z 0. (5a)
X

It is indicated that we introduce rational units; with:

&= < (), ®
v
k= %k, 9)
v
one obtains from (5a):
{dif+ VY& + ysk})( =0. (10)

One can then integrate this equation when one now intesdieur-rowed matrices for
the ), and a column of four functions fgy in the usual way, and solve the resulting
simultaneous system of four first order differential &epns. The integration of (10)
then becomes simpler when one does not specializeytheout only uses their
commutation relations and regargss a linear aggregate of the".

It is recommended that one patito the form:

X=M() +)1a(dl U1 +i )T, (11)

in whichf andg include noy,, andl" may mean an arbitrary operator connected with the
W . If one introduces this Ansatz into (10) then, due tdab®r 1 +i )4 )4, one obtains:

{j—;—iff +kg}+y{j—?+iff +kf}} (I+ipmr=0.

F. Sauter, ZS. f. Phy83, 803, 193064, 295, 1930.
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If one multiplies this equation on the left by 1i 44 y4 then one recognizes that the
expressions in the two square brackets must vanish idbyitic

d .
[——Ifjf +kg =0,
d (12)

(dig+ifjg+kf20.

These equations may be easily solved. If one wtaedd=(a, y; X) to mean a degenerate
hypergeometric function, which is defined in theirencomplex plane by the convergent
series:

-M@+v) Ty X

Fla, y,x) = : 13
(@ %) ZO: MNa) T(y+v)v! (13)
then one can write down the two solutions of (1Zhie form:
ek 1
f,= e Fl-—, =,-i¢*],
! i 2%
' (14a)
0= —kg‘eg F —k—2+1§ -
' 4 2 ’
< (k¥ 13
f,= -kfe? F| ——+=,2,-i%|,
2 J 42278
D (14b)
— ke 11 .
= ez Fl ——+=,=,-ié% .
% [ 4 2'2 "(j
On the basis of the relation:
F(a, yX) =€ F(y-a, y - x),
one easily verifies that:
fl :gzma f2 :g]_D! (15)

in which the star refers to the complex conjugatieie.

In the following, along with the series developm#rat is given by (14), an integral
representation fof andg in higher weights will also find application. Wherefore
derive such an integral representation for thetfonc:

¢ = o2 F(a, y—i&). (16)

The integral representation that W. Gordon gave [Annhgs.R5)2, 1031, 1929] is not convenient
for the following computations.
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Due to (13), one has the developmentdor

SR AN/
=e? i£?)".
= e
For , the well-known integral representation for thengaa function:
M(y+v)

1 @™ ce'dt
F(y+v) 2im) t™

may be introduced; the path of integration in iai®op around = 0 that goes to infinity
in the direction of the positive real axis. Themnsoation may then be carried out, and
yields:

ie?
¢ :r(y) eirr(y—3/2)ez .[ gt f—y( = j;(z)—a dt.
2

N =

4

Fig. 2.

One obtains a symmetric form by means of the toainsdtion:

_ oo 1.
t—g‘(s+2j,

p =W gmramgpa e-fZS[ s+l2j( si—j_” d. (162)

this gives:

217 2

The path of integration is depicted in Fig. 2. Hnguments o$+i/2 run from O to 2z
If one introduces this expression into (14) the obtains the integral representations
for the solutions:
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k
1 2 i_E_Z i Y4
f=— e¢s| s+— s—| d
! [Zj [zj s
1
2

K2 K2 (17a)
:—iﬁl ¢’ l A |_ Vi
5 a2 (S+2j (gzj %
___L k] g( Ij( _ijii
Py T > LI" % q
2 oJm 2¢ Ie s+2 s S -

K2 K2

RO A O ACE
g, = 2\/I—Tlflje (S’sz (&ZJ ds

One easily verifies that these expressions satisfyteqsa12). The absolute value sign
on £ is necessary in order to guarantee the symmetry ofuthetionsf andg at the
location& = 0 that is given by (14), along with a continuous pathiplace .

2. Series development for f and g for large k.

For physical applications, it is necessary to haveesknowledge of the way thét
andg depend upon the independent variables. The series develofinaeane obtains
from (14), by means of (13), converges for very small wbfef andk so well that one
can reduce it to the first pair of terms. For largdues of £ andk this development is
not suitable in practical calculations.

It is indicated that we make the order of magnitudk dear; by definition, [cf. (6)
and (9)], it is:

hc \Y}

If the components of the impulse in thandz directions are negligibly small compared
to Eo/c thenk depends only upon the magnitude of the potential ramp. elirgroduces
the numerical values and expresgksn volt/cm then this gives:

_ 1.1518
Jvie

One recognizes that for the highest attainable elaatiosfields of several million
volt/cm k is still several powers of ten higher than 1. Tinst time thatk becomes
comparable to 1 is for extremely high, practicalilyrealizable, field strengths of 0
volt/cm. In the following, we will therefore onlyeal with the cask > 1 throughout.

k

One observes that the poifit O represents a singularity for the integral regmé&sion (16a).
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In order to achieve of rapid convergence, it thus sgeomising to develop andg
in descending powers &f which can come about on the basis of Debye’s saddig poi
method. The functions (17) that are to be developed posseform:

e
S+
RO =[e™| —2| &9 (18)
S—i
2

in which the functiornG(s) can be regarded as slowly varying compared tditsetwo
factors of the integrand. With the abbreviation:
i

2; St+—
h(e) = &s—X1jog—2
477 1
2
F assumes the form:
F=]e" G(s) ds (18a)

This integral will be evaluated in such a mannet tine seeks a (saddle-) point, at which
the integral possesses a possible sharp maximuronef then directs the path of
integration around this point and develops thegirseds at this place then one will
obtains a series that falls off quickly enough thia¢ can, at least in our case, truncate it
after the first term.

As the position of the saddle point, one obtaiosf

dmgzo
ds

the two points:

Sl,zzi% —-1. (29)

They lie on the real or imaginary axis accordingvteether |¢ | is smaller than or greater
thank, respectively.

The pointsé = + k thus take on a special position mathematicallye @asily arrives
at it, since they are also physically distinguishd2ue to (6), (8), and (9) it is the point
for which one has:

(E-vY?=Ec+ (g + 1);

i.e., at this point, classically speaking, the ispucomponenpy in the field direction
vanishes. It therefore represents the antipodat pothe classical path, which lies in the
region |&| >k, while | £ | <k represents the classically forbidden region.

For the computation of (18a) we must still clarihe nature of the integration path
(I.P.) around the saddle points. As is well knoame chooses it advantageously in such
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a way that the real part of the exponem(k) increases as quickly as possible, while the
imaginary part oh remains constant. If one writen the form:

S=0+iT,
then the latter will be given by:

o’ +(r+1)°

m = J(h(s0)).

() = Ezr—k—;log

We would now like to treat the two caseS| <k and || >k separately:
1. |€| <k. Inthis case, the saddle points lie on the real axm I.P. will, from the
above, be given by:
2 2 1)2
g(22._k_loga- +(T+2) -

8 “ot+(r-1)?

Its definition can be gathered from Fig. 3. (The reas @ax+ O is also a branch of the
I.P.) The arrows refer to the removal of the real
part of h, thus to an increase in the integrands.
One obtains a wuseful I.P., which may be
continuously deformed into the I.P. of Fig. 2, when
one goes rectilinearly from ¢ to s, from there
along the indicated curve over $pin the positive
sense around the two branching potatg2, and
again rectilinearly froms, back to + (cf., the
dashed curve in Fig. 3, which, for the sake of
clarity, is indicated near the correct integration
path. The rectilinear parts of the I.P. lie on
different Riemann surfaces.). The integrand
assumes its maximal value at the location

1 [k
=—— [—-1;
5=

the development df(s) at this saddle point reads like:

2 2 |
h(s) :h(sl)—(s—sfazkiz %—1 o

with:

* | . - -y .
As usual, the stroke | on the roqft_ shall imply that its positive value is to be taken.
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2 2 | 2
h(s1) :% %—1 —kE arcsir!%l.

One has, in fact, due to the assumption that waerabove on the argumentssaf i/2:

i _ 1 k i[ﬂrarccoéijj

St E —El—l ,
B |_ :Eie{ —arcco%lj

2 2|<| ’

where arcsin and arccos refer to the principaleshf the cyclometric functions (i.e., the
ones between 0 amd/ 2).

For the computation d¥, along withe ", one must also develd®(s) in powers of
—g and integrate termwise. We would then like tdrietsourselves to just the first term
of the series. (The series goes in increasing powe1/#, and therefore falls off for
sufficiently large& >1 very rapidly). G(s) can then be treated as constant for the
integral and one has:

In the same approximation, the I. P. can be redldgats tangent at the saddle point; one
then integrates rectilinearly frosn+i o tos; —i o . One obtains:

ok \FT
F=G(s)e 22 (20a)

|
: . . k* . o
This result is valid as long i%;—l is greater than 1 or at least comparable to itesin

in the development (20a) this root appears in g@dinator. The case&| ~k must be
treated specially. In that case, both saddle pamdve to the coordinate origin and there
is some advantage in developing from the positién £ k outward. Since we will not
need this development in what follows, its derivatmay be suppressed, for the sake of
brevity. The result reads like:

1
K2 im r(_j
F-GOe’ Y3 r(—lj— 3) Kd'ong +k2—52} + ..., (20b)
(6k) 3) (&k) ds Jeo

which is valid for |& -k | <« 1.
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2. |¢| >k Now, the saddle points lie on the imaginary a8sceo, ;= 0,71 2=

1 k? ) )
iE 1—? one obtains the I. P. from:

2 2+ +l 2 2 7.+
gzz'—k_| 0-2(—1-?2: fzrlyz—k_k)g 12
8 o +(-3) 4 T,,~

NI

Nl

(see Fig. 4; the arrows have the same meaning as i8.FFigone obtains a useful I. P. in
the following way: From 4o, one comes in to the
branch point +i/2 and goes around it in the
positive sense and crosses over the saddle point
s1, and goes back toe . One thencomes into ____« — [fo=S==———-
the second saddle poirs, around the branch
point —i/2, again in the positive sense, and the —=
goes back to . (See the dashed curve in Fig. i
4.) This I. P. may obviously be continuously
deformed into the one in Fig. 2 when the path
segmentss; » o ando - S lie on the same Fig. 4.
Riemann surface.

For the determination df one must add the contributions of the integrals in the
neighborhoods of both saddle points. The aforemerttiassignment yields:

in !
1 e? K
= 1_ 1—_

3ir |
1 _e?2 15
5”5‘7[1*\/1 & }

(The upper sign refers ts, and the lower one, ts,.) For h(s) one obtains the
development:

T ——— —

(v=1, 2).

" |
h(s) =h(s)) £ (s— s.,)2 2‘( 1- ? +

with:

H |
2
—| :

2
R
The I. P. intersects the imaginary axis at an andld5’ at the saddle points; in the
neighborhood of the first saddle point, if we set:

2 5o AF _:
h(s)) = ,/——2 L
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s=g +te 4,
and for the second one set:
s

s=5 +te 4

then the integrations can be extended in the approximediosidered rectilinearly fromn
=—-otot =+0. One thus obtains:

w 28 thz
F_{ (%)‘46( )+e hs)-27 2 Q?)}Ej e \/? dt---

k\/77 (20c)
- 2 l{ (Si)_"'G( )+ér(§)—4 Cﬁ§)}
52

&

This development progresses in powers &t ahd thus converges for arbitrary values of
& sufficiently strongly that one can satisfy oneseth the first approximation. As in the
first case, it loses its validity when one appraac|€ | at the locatiok, in which limiting
case, the development (20b) is to be employed.

If one substitutes the expressions (20a) and (#@o)the functions (17) then one
obtains for the first system of solutions:

1 klﬂ«lkz Ezl I+ Iarcsw&
|§( |< k: fl :—52 ,
241=—5
k
; e (21)
g = -1 |f| K l\lkz &2+ Iarcsw&
1 ;
52
24 1_P
L P KA Tew i€ KA dew
|5|>k f _ ke4 Ie 2 4 l—W+ Ie 2 4 w
ColEWw | W JEw |
K2 i&w K34, 1+w 2w k%, 1+w (22)
ket |ie 2 4%w jo 2 47w
= + ,
218 Ww —w JEw
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|
2
in whichw has been used as an abbreviation ﬁf% . One obtains the corresponding

development for the second system of solutions ffasmone on the basis of the relations
(15):
fzzng, gzzle_

3. Discussion of the solutions.

First, we must examine the behavior of the fumgibandg. As we are to gather
from (14), they are symmetric (anti-symmetric, rgsabout the point¢ = 0, and
furthermore one of the functions is
even when the other one is odd. One

can deduce their behavior from the ___-41 T -
developments (21) and (22). Rék - A [\ ]\ ﬁ I\
k and & > + k, they represent an h S MLER A

oscillation with variable frequency and x Ui{ A 0 B U_ U \
amplitude, as is depicted schematically -- ~ M-
in Fig. 5. (The functions are Fig. 5 i

essentially complex, so Fig. 5 therefore
serves only to give a rough idea of the
functional behavior.) In the intermediate regitheir absolute values decay like a power
of eto 1 or O [cf. (14)] as one approachés= — k and then they again increase
exponentially.

It must be pointed out that this exponential decBthe functions around the poiét
= 0 is achieved only by the special choice of gustesm of solutions. If one were to use
an |. P. for which the second saddle point:

|
2
_1 K
2\ &
in Fig. 3 gives the essential contribution to theegrands then one would obtain an
exponential growth of the functions around the polint. Such an I. P. will be given by,
e.g., a loop that comes in from positive infinigg in Fig. 2, and goes around only one of
the two branch points. A special linear combinaod our two systems of solutions must
then give the desired growth. The dotted curveFig. 5 depicts this possibility
schematically.

It might not be inappropriate to compare this b&rawith that of non-relativistic
wave mechanics. The Schrodinger equation for tieeddmensional problem reads

In the sequel, we shall ggt=p,=0. Due to (6) and (9), one has:

k= \E By =27 tmé.
\% hcv
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{62 _8n2m( h i+VXj}l/’: 0.

ox>  h? \ 2ot

By means of the AnsatZ( = non-relativistic energy):

27

g=e " xX),

one obtains, when one further introduces the new variabl

z- ﬁ(vx— B
Vv

in place ofx, the differential equation foy:

s P
{ 7 —ZkE}X(E)—O-

As is well known, its solution reads:
= 24-2k =
)(:\/E [leg(ngs/zj )

whenZ,(X) refers to an arbitrary solution of Bessel's diffietial equation:

@ 1d P _
{dxﬁxdx{L %}Zp(x) 0.

The behavior is represented schematically in FigFér negative values of the
argument oZy3 is real, and the function is thus periodic; fositive & the argument is

complex, sqy represents the superposition of an exponentiatlieasing branch with an
exponentially decreasing one (viz., the decompmositof Z;3 into the two Hankel

functions H{J and H?).
In order to carry out the transition from the teiatic case to the non-relativistic one,
we assume that:
E = E+ Ey,
So:

f=8-k

The coordinate system in Fig. 5 is therefore degdaby a distanck compared to the
one in Fig. 6, so the poirf = 0 of Fig. 6 corresponds to the poki{(& = - K) in Fig. 5.



Fritz Sauter, Behavior of an electron in a homogenetagiric field, etc. 14

The transition to the non-relativistic case amouatghe passage to the limit lin— oo,
hence, limEy, - o, and therefore also lik — c. Under
this transition, the point® andB in Fig. 5, which have the 4
abscissak and X relative to the non-relativistic system -~

with A as its origin, go to positive infinity. The right haff o A A- \

Fig. 5 therefore goes away, and the left half wilsbetched ™ v \Uj o)

along the entire distance fromoe- to + oo, in which the
functional behavior of Fig. 5 obviously takes place.
Whereas the regioé < 0 therefore corresponds to the _
domain of validity of the Schrédinger equation, the sagi Fig. 6
> 0 possesses no non-relativistic analogue. This ragjon
as will be shown, characterized by the fact thatwh&e-mechanical impulse vector is
oppositely directed to the velocity.
As is well known, in the Dirac theory the three-dmsional velocityu, corresponds
to the operatoicy, (v =1, 2, 3). One obtains the wave mechanical expectasilue of
this operator in the form:

[Wl=ic@yy. (23)

In this, refers to the adjoint wave function, which satisties equation:

0 0 0 10
-V — =Y, ——Vo—+V,| ———+kVX|+KE =0. 2a
tﬁ{ Vlax Vzay V3az V{ ot j o} (22)

In order to arrive at a relation between the quantitigstihat are given by (23) and the
expectation valuepf] of the impulse in the field direction, we multiplguwation (2) on
the left by  j4)4 and equation (2a) on the right Ipys ¢, and then add them together;
this yields:

9,99 9 o0
(lZM axél/ ax y#’j‘*‘ax(wyd/]y#/)'*'ay(lpyd/lyyl)

10 109
- —— KX | +| ————KV =0.
wyl(ic at jw (ic at )‘vjylw
For a particular infinitely steep impulse in th@ndz direction, the terms with/dy and
0/0z [which, due to the dependency yandzthat is given in (4), fall out of the quadratic
expressiondl )i ys sy vanish. Since we are considering a stationaatessf the energy
E, we can carry out the time differentiation, andaain:

gy, 2y 97 - _
Z[wn 5 o y4wj+K(E @y = 0. (24)

Due to (23), the second term may be written infoinen:
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_2_77iE—vx[u]
h & =

From the meaning of the first expression we considertthieaimpulse operator in Dirac’s

theory is given by% y4axi; the first term of (24) thus represents the synnzed
7a

14

expectation value of the impulsp], multiplied by the factolem. (24) may then be

written in the form:
E -vx

[P = ——[ud. (25)
c

This equation thus says that far> vx [or, due to (8), foré < 0] impulse and velocity
carry the same sign, whereas ok vx (or ¢ > 0) they are oppositely directed, which was
to be proved. One observes, moreover, that (2p)esents the wave mechanical
translation of the relativistic connection betwé@mapulse and velocity:

since:

For the application in the next section, the deleeny of the velocityUy] on the
constituent functiond and g can be worked out here. For this, we introduce th
expression foyy that is obtained from (4) and (11):

278 (o + 2p,- EY

w=1[f+)g Le" A+ipwr; (26a)

one easily convinces oneself in the same way #seiffirst section that the corresponding
expression foy will be given by:

2

@ =TA-iyy )t "+yg"e "

(ypy+zp,— E)

(26b)
¥, refers to the adjoint quantity g [see (7)]:
Vo =~ ([Boticyppyticlop) K=— A ) }.

If one now constructs the densiy s/ then one obtains:
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@y = TA=iyy,)F "=y )y (f +y50)A+iyy N = @ +99) A, (27)

in which:
A=2T (1 +i ) T

means a constant operatorAnalogously, one gets:

[ud =ic@ g =-c(ff —gg)A, (28)

SO [uy] is also spatially constant for the stationaryestabder consideration, as one can
easily confirm on the basis of (12). Indeed, this alssadly follows from the divergence
condition for the currens, = €uy,], since we consider a stationary state for whiah th
current components in tlzandz directions are constant (viz., a plane wave!).

Because of this constancy, one computes the value of (&8)aasily for the location
& = 0. If one assembles the general functighdrom linear combinations of the
constituent functiongs and ¢, hence:

W=ayn+ Bye, (29)
and therefore:

f=af,+ph, g=ag+p9, (29a)
then, from (14), one easily confirms that:
ff —gg =aa - B8, (30)

sincef1(0) = g2(0) = 1,f2(0) =g1(0) = 0. The current that results from the two partial
solutions¢n and ¢ is therefore assembled with no interference inettial current in
the x direction.

4. Transition of an electron into an antifield.

We will now address the problem that was posed intneduction of calculating the
probability that an electron will go from the regionpafsitive impulse to the region of
negative impulse. To that end, we consider the potential function éhatpresented by
the lineABCDin Fig. 1:

T Cf., F. Sauter, ZS. f. Phy84, 295, 1930; there, the operafowas referred to as the “normalization
operator.”

" By “positive” (“negative”, resp.) impulse it shall hmderstood that the impulse and the velocity
have the same (opposite, resp.) directions. In tmediocase, the kinetic energy is positive; in the laiter
is negative.



Fritz Sauter, Behavior of an electron in a homogenetagiric field, etc. 17

. —o<x<x or ¢{<é<-k-V=vx
Il X <x<X " §<é<é&,--V= X (31)
. X, <Xx<+00 " k<¢§,<&---V=vx

We must now solve the Dirac equation for the thresegaeparately and then match up
the three wave functions continuously at the poxatandx, . For all three cases, the
integration can be achieved by the same method, fromhwthé& matching will be made
essentially easier.

We make the Ansatz:

278 (g + 2p,- EY

Y=[f+pd@+ipplren : (32)

where)s is given by (6) and (7). If one now introduces, asvapthe new variable:

X= \E (vx—E) (8)
v

then one obtains the equationsff@ndg precisely as in the first section:

. [d%(—ifl f +kg =0, (O%Hfl g+kf=0,

0 [-9—ig |t +kg=0 (iﬂf g+kf=0 (33)
dé " dé ’

. (d%(—ifz f +kg =0, (O%HEZ g +kf =0.

k is defined by (9), whilef; and ¢, are obtained from (8) by introducing the valdeand
X2 at the locatiorx. We write the solutions of the second pair of equatiB88% [which is
identical with (12)] by the use of the two constamedb in the form (29a), wherg, g1,
andf,, gz are given by (14). For the first and third regions one nitwhbtains a plane

wave of the forme™*# | whereq, andg, are determined by means of the equations
o= &-K, v=12) (34)

If one computes the coefficient ratios by means of (88, with the arbitrary constants
a, andb,, this yields the solutions:

T q,is connected with the ordinary impulsgby the relatiorg, =\/§ch. Since |, | >k, gy is real

and we assume thagj > 0.
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f = avéqvg + Q e_iqvg,

i . . 35
9='E[av(fv—q) &+ (&, + g) €%°; (35)

v =1is valid for region | and = 2 for region IlI.

We achieve a continuous connection between the wavednsdct the locations;
andx; (& and &, resp.) when we connect the functidrendg with each other at those
locations. This leads to the equations:

aléchfl + qe—ichfl =04 E+ﬁ C—%
i . . (36a)
LA -a) e+ yET Q) € =a GHA E;
azéCszz+ Qe—iqu =a E_*_ﬁ Cg,
i . . (36b)
a6 - @) €+ (&, g) € =a G B
In this, due to (14), to abbreviate we have set:
i&2 2
F, = eZF(—% , ,—ig‘fj,
(37)

Nlw Nl

& K2
GV :_kgvez F[_z+1! v fl/zjl
|

and used (15). The system of equations (36) for the detation of the six quantities
ay, by, a, Bis still undetermined; to the mathematical contiwbnditions one must
also add a physical condition that establishes the bmha¥ithe wave function at
infinity.

We shall now, as we have already stressed on mangsioos, ascertain the
probability that an electron in region | with positivepulse will go over into region Il
with negative impulse. We must therefore assum@@deant particle current that comes
in from the left, partly goes through region Il and aants on into region Il (from left
to right), and is partly reflected by the separating serfaetweenx; and x,, which
represents a reverse current in region I. The solumiost therefore be chosen in such a
way that in Il only one current flows in the left-t@ht direction and none flows in the
opposite direction. The current component inxltirection for a wavefunction that was
represented by the expression (32) was determined in tllesgttion [equation (28)].
When applied to the plane wave that represented by (35)rthdsices:

2690 108, (~&, + ) + (&, + PIA,

S=-iecyf py = ”

while the particle density will be given by way of (27).
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Forv =1, one thus obtains, sinée< — q;, an incident current of strength:

2ecq

&= 2

(=& +a)aald
and a reflected current:
§ == 20 (- - )tiba;
for v=2, sinceé, >(Qy:
5 =252 (g, +q,) b
represents the required outgoing current, while the inc@mirrent in this region must

vanish. One thus obtaias = 0 as the physical condition.
One calculates the transmission coefficient:

D :i:igﬁ@; (38)
S q “§+q aa

the corresponding reflection coefficient is given by:

_ _r_ 0
Y 39
S _§(1+qlaiai

where natural\R + D = 1.
If one sets, = 0 in (36b) then, since:

F,F, -GG, =
the solution to these two equationsaiand S reads [see (37) and (13)]:
a:bze““zf{ F- G (& + qz)} ,
p=b,e" [—q + REL(E+ Cb)} .

If one substitutes this expression in (36a) andexoit fora; andb; then one obtains:

- 2% 5 gtz [—i—k(fﬁ Q) A (& + ) A+ (81010 g @]

ﬂ "t — 10265 _i_ _ I_ (@tl_ql)(gz-*'qz)
hagnizh e (@) A (@) A GBS 5 g

where:
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A=FF, -G[G,,
B =F,G,/- FG,.

For the sake of simplicity, we would like to assumemetric behavior about the poiét
=0:

-é&6=&=46>0. (40)
One will then have:
Q=0=0,
Fi=F=Fo, —G1=G2=Gp,
A=A =F,F +GG;, By=-F,G,, B =-2FG,.

One then obtains:

a;=hy { gZO(FF +GG)+ (FGD FEG()},
q o)

0

by = —2|q050|:§(0 o FD+ |(50+q0) 5 +ﬂ|'—g }
b, o (B GG) - @ RG g %

Now we employ the development (22) 65 and G, ' that was given in the second
section, which is valid foé > k?. Since:

/_&
& &

one has:
K 50q0+—|095°+q° i*fo%_% |Og§o:'%
F ke 4 N é 0~ o
(0 )

|

2\/ 50qo 1_&

\/ $o
K2 +7| o+ i _LZH $otdo
ke * 5°q° 4 °ge'o % iezg"q" 4 9eoao

T o [t [
2 50qo f 1+;0

" By the application of the development (22), which is vaiity for the case wheref]| does not lie
too close tk — for | £ | ~k one uses a series of the form (20b) — the validithefresult will be reduced in
the case of high velocities for the incoming and outgeiegtrons. For small velocities, the problem then
loses its interest, since then, from (45) or (46),'Klein paradox” vanishes in any case.
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One thus obtains:

¢ K &+q
FF+G.G. = e2 0+—S|n &aq-——Io 0 It
oo 00 {qo % ( o~ 2 ggo %j}

FoGo — Fy G, = |e2 {g‘; +Esm[50q0 —I gg qoj},

$o~ 0
and:
Ko
_bze 2 ,
34 2 &+
b= be? L |(§0+q0) -Iéoqo 7|09{O 20.
Ko
From this, on account of (38) and (39), one deteesithe transmission coefficient:
D=e*” (41)
and reflection coefficient:
R=1. (42)

This result is valid up to higher order terms ik®Hnd was derived under the assumption
thatk® > 1.

This therefore shows that for all electric fieltts which K >1, hence, for all
practically attainable fields (cfsuprg, the transmission coefficient is vanishingly sinal
transitions into the region of negative impulsetaerefore very rare in this case

For the case of high electron velocity and a sytnmeotential function, in the first
approximation the value of the transmission coeffitD depends upon only the field
strength, hence, upon only the steepness of thenpalt ramp. This case would (cf.,
suprg correspond to around ¥Ovolt/cm. The locatior ~ 1 has a special physical
meaning. In this case, one has:

12 = 27 (me)*

~1,
he v
or.
M me (43)
mcC

This agrees with the conjecture of N. Bohr that wa®n in the introduction, that one
first obtains the finite probability for the tratish of an electron into the region of
negative impulse when the potential ramp'mc over a distance of the Compton
wavelengtth/mchas the order of magnitude of the rest energy.

It is naturally impossible to experimentally canfre fields of this strength. One can
possibly imagine that such fields can appear in ititerior of an atom in some

" This result is naturally independent of the aforementi@ssumption of symmetric behavior. In the

general case, the final formulas thus become very unclea
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circumstances; in a pure Coulomb field, the criticahpthat is given by (43) would be
at a distance of roughly:

e |h _
r~— |— ~8x10*cm
mc\ ¢

from the center of force; similar high fields in atomast also exist in Gamow'’s nuclear
model. It will therefore be pointless to draw any dosions about the behavior of an
electron in the immediate neighborhood of nucleigeiBirac’s theory (which is already
invalid due to the fact that we are neglecting the nudpar) loses its validity at such
small distances from the nucleus.

For the sake of completeness, we would still likedasider the case that treated by
O. Klein " of a potential well, hence, the limiting case ofiafinitely steep potential
ramp. The calculation can then be carried out in sugtanner that one links the wave
functions that are valid in region | and region lllé¢ach other directly.v is then to be
viewed as an auxiliary mathematical quantity that dragsob the result automatically.
In order to use the notation of Klein, one must set:

&=- |%E, ézﬁ(P—E),
Vv Vv

/K /K —
\' \'

whereP is then the height of the potential wdlljs the energy before the transition to the
antifield andp and pmeasure the impulse before and after the transiti@me then

obtains by simple calculations, which shall be tedithere, in the name of brevity:

_P-E+c¢p 4¢ pp

D= E L
E+cp [P+ ¢p- Pl

noE-cpl Prapr pf
E+cp|[ P+¢p- P

(44)

One obtains the formulas that were given in theodhiction from these expression in the
limiting case of a very high potential well (lifh - ):

D=_%P

E+Cp (45)
R=E~CP.

E+cp

O. Klein, loc. cit.
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In order to obtain the analogy with the previouslateel case of a symmetric potential
function, one must s&t =— & , and then seé® = 2E, and thus obtain:

CZ 2
D= 5 :,82,

mE“ [ﬁ=%) (46)
R= Ef =1-p°.
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