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The stress functions of the three-dimensional continuum  

and elastic bodies (*) 
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Translated by D. H. Delphenich 
 

 The stress function tensor, whose divergence is prescribed by the equilibrium conditions and whose 
rotation is prescribed by the compatibility conditions, will be determined with the help of a tensor potential, 
namely, the stress function tensor.  For the covariant calculations, close analogies with Einstein’s theory of 
gravitation are indicated.  In the special case of isotropic, elastic bodies, one will obtain the Boussinesq-
Neuber representation of stresses and displacements in terms of potential functions. 
 
 

1. Notations. 
 

 In the following discussion, rectangular parallel coordinates xi (i = 1, 2, 3) will be 
employed throughout.  To abbreviate, we write ∂ / ∂xi = ∂i .  Summation signs will be 

omitted.  The operator ∆ means ∂r ∂ r = 
23

2
1r rx=

∂
∂∑ , as usual. 

 
 

2. Problem statement. 
 

 As is known, the basic equations of the classical theory of elasticity can be 
formulated in terms of the stresses alone.  Except for the boundary conditions and in the 
absence of volume forces, the symmetric stress tensor σik has to satisfy the three 
equilibrium conditions: 

∂k σik = 0     (2.1) 
 
and the six compatibility conditions (Beltrami  conditions): 
 

∆σik + 
1

m

m+
∂i ∂k σ = 0   (2.2) 

 

                                                
 (*) Presented at the annual meeting of the GaMM in Braunschweig, 1952. 
  After my presentation, H. Richter, Haltingen, made me aware of the work of V. I. Bloch: “Stress 
functions in the theory of elasticity,” Priklad. Mat. Mech. Moscow 14 (1950), 415-422 [Russian].  
Richter’s discussion of that work in the Zentralblatt für Mathematik 39 (1951) had escaped me.  In the 
meantime, Richter was so kind as to give some glimpse of Bloch’s treatise.  With the same objective, 
Bloch’s formulation and representation (viz., the nabla symbolism) of the problem was so fundamentally 
different from my own that I do not feel that my publication is superfluous.  Neuber’s representation of 
stresses, to which one can simplify Bloch’s results, seems to be unknown in the Russian literature. 
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(m = Poisson transverse contraction number; σ = σrr) [1]. 
 These nine equations for the six components of the stress tensor are not independent 
of each other, since three differential identities must exist between them, as well.  We 
shall return to this situation at a later point. 
 As is known, if the stress state is independent of some coordinate – say, x3 – then one 
will arrive at a clear formulation of the problem of integration by the introduction of 
stress functions – viz., the Airy  and torsion functions [2]. 
 That raises the question of whether one can proceed correspondingly in the general 
case of a three-dimensional stress state [3].  With such an integration process, one would 
initially treat the equilibrium conditions (2.1) of a continuum that are satisfied identically 
with the help of stress functions.  It is plausible that one will require at least three stress 
functions for that. (With a terminology that G. Prange used, the equilibrium problem is 
“threefold functionally undetermined.”) One finds the Ansätze of Maxwell and Morera  
[4] in the literature of the classical theory of elasticity, which are complementary, in a 
sense that will be clarified later.  In both Ansätze, the stresses are represented by sums of 
second derivatives of just three stress functions, and one can show that any stress state in 
equilibrium can be ascertained by means of those Ansätze. 
 Now, once the three equilibrium conditions (2.1) are satisfied in that way, one 
introduces one of those three-stress functions Ansätze into the six compatibility 
conditions (2.2).  One then obtains six fourth-order differential equations for the three 
stress functions that are once more not independent of each other.  Those equations were 
presented for the Maxwell case, as well as the Morera  case [5].  However, they seem to 
be so complicated that any attempt to find a general method of integration for them 
would seem hopeless from the outset. 
 The question of whether the equilibrium conditions can be fulfilled by stress 
functions was addressed by C. Weber [6].  He could show that the combination of the 
two Ansätze of Maxwell and Morera  (hence, an Ansatz that contains six stress 
functions) preserves its form under an orthogonal transformation, as long as one demands 
that the six stress functions transform like the components of a symmetric tensor of rank 
two.  One concludes from this that neither of the two Ansätze of Maxwell and Morera  
are covariant by themselves, which might make their lack of utility for a general 
integration procedure more understandable. 
 However, not even C. Weber’s covariant Ansatz has a form that would make its 
further use promising.  For that reason, we have to look for a rational, covariant 
representation. 
 
 

3. The compatibility conditions for the infinitesimal state of deformation. 
 

 On grounds that will soon become clear, we shall anticipate our consideration of the 
compatibility conditions. 
 The symmetric deformation tensor εik is defined in terms of the three components ui 
of the infinitesimal displacement vector u by way of: 

 
εik = 1

2 (∂i uk + ∂k ui).     (3.1) 
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We shall call it the symmetric gradient tensor of the vector u, and write it symbolically 

as: 
(εik) = Grad u. 

 
Obviously, not just any symmetric second-rank tensor can be a deformation tensor.  
Moreover, it has to satisfy the compatibility conditions, which is a system of second-
order field equations that one will obtain most simply by eliminating the components of 
the displacement vector from (3.1). 
 We shall deviate from the usual procedure in the literature and carry out that 
elimination in the following way: We first define: 
 

eik ≡ εik – 1
2 δik ε = 1

2 (∂i uk + ∂k ui) − 1
2 δik ∂l ul    (3.2) 

 
(δik = Kronecker symbol; ε = εll) as a linear combination of equations (3.1), from which 
we will obtain the divergence: 

∂k eik = 1
2 ∆ ui .     (3.3) 

 
The application of the operator ∆ to (3.2) yields: 
 

− ∆ eik + 1
2 (∂i ∆uk + ∂k ∆ ui) − 1

2 δik ∂l ∆ul = 0,   (3.4) 

 
and after one introduces (3.3) into (3.4), the elimination will be complete.  The 
compatibility equations will then take on the form: 
 

Aik ≡ − ∆ eik + ∂i ∂l ekl + ∂k ∂l eil − δik ∂l ∂m elm = 0.  (3.5) 
 
The left-hand side of this defines a symmetric second-rank tensor that we shall refer to as 
Aik .  Those six field equations for the eik (or also for the εik) are not independent of each 
other.  A simple calculation will confirm that: 
 

∂k Aik ≡ 0,     (3.6) 
 
so the tensor Aik is divergence-free. 
 In the literature, the compatibility conditions are given in the form: 
 

Rik, lm ≡ ∂i ∂l εkm + ∂k ∂m εil − ∂k ∂l εim − ∂i ∂m εlm = 0.  (3.7) 
 
In that representation, the left-hand side defines a fourth-rank tensor Rik, lm , which 
nonetheless possesses only six algebraically-independent components in three 
dimensions, due to its symmetries: 
 

Rik, lm = − Rki, lm , Rik, lm = − Rik, ml , Rik, lm = Rlm, ik .  (3.8) 
 
(In a two-dimensional continuum, only one equation will remain, namely, R12,12 = 0.) 
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 In a deformed continuum, the arc length indeed has the form: 
 

ds2 = (δik + 2eik) dxi dxk ,    (3.9) 
 
but the metric remains Euclidian.  The Riemann-Christoffel tensor Rik,lm of (3.9) must 
vanish, and that will lead to (3.7) for infinitesimal deformations. 
 One easily confirms by calculation that the components (3.5) are connected by: 
 

Aαβ = Rα+1, α+2; β+1, β+2 .    (3.10) 
 
(Any index that is greater than three shall be replaced with its residue modulo 3.) 
 The symmetric curvature tensor: 

Rkl = Rik,li      (3.11) 
 
arises from Rik,lm by contraction, and a further contraction will give the curvature scalar: 
 

R = Rll .     (3.12) 
That will then, in turn, imply that: 

Aik = Rik – 1
2 δik R,    (3.13) 

 
which can be shown most simply by exhibiting the individual components, and that 
means that Aik will be the Einstein tensor of the arc length (3.9).  The Riemann-
Christoffel  tensor can then be replaced with the Einstein tensor in three-dimensional 
space.  One already finds the introduction of the eik into (3.2) and (3.5), in place of εik , in 
Einstein’s theory for weak gravitational fields [7]. 
 The representation of the tensor Aik as a matrix product: 
 

(Aik) = 
3 2 11 12 13 3 2

3 1 21 22 23 3 1

2 1 31 32 33 2 1

0 0

0 0

0 0

ε ε ε
ε ε ε
ε ε ε

∂ −∂ − ∂ ∂     
     − ∂ ∂ ∂ − ∂     
     ∂ −∂ −∂ ∂     

   (3.14) 

 
is instructive.  The matrix of the deformation tensor is multiplied on the right by the 
operator matrix of the rotation and on the left by its inverse.  For that reason, we would 
like to call the tensor Aik the symmetric rotation of the tensor εik and write symbolically: 
 

(Aik) = Rot (εik).    (3.15) 
 
We shall express the fact that the vectorial divergence of Aik vanishes from (3.6) with the 
notation: 

Div Rot (εik) ≡ 0.    (3.16) 
 
 The compatibility equations (3.5), which we can now write as: 
 

Rot (εik) = 0,     (3.17) 
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are the necessary, and also sufficient, integrability conditions for the system of equations 
(3.1).  A symmetric tensor εik is the symmetric gradient tensor of a displacement vector 
field u if and only if its symmetric rotation tensor vanishes.  The identity: 

 
Rot Grad u ≡ 0    (3.18) 

 
is then satisfied, as well as the theorem that any symmetric tensor that satisfies (3.17) can 
be represented as the symmetric gradient tensor of a vector u. 

 
 

4. – Covariant Ansätze for the fulfillment of the equilibrium conditions  
by stress functions. 

 
 The equilibrium conditions (2.1) of the continuum require the vanishing of the 
divergence of the stress tensor.  In analogy to (3.16), they can be fulfilled identically in 
the components Fik of the symmetric tensor of the stress functions by the Ansatz: 
 

(σik) = Rot (Fik),     (4.1) 
 
or from (3.5), when one introduces the stress functions: 
 

Φik = Fik – 1
2 δik F      (4.2) 

(F = Fll), by: 
σik = − ∆Φik + ∂i ∂l Φkl + ∂k ∂l Φil − δik ∂l ∂m Φlm .   (4.3) 

 
It follows from (3.18) that for a given equilibrium state, the stress functions Fik are 
determined up to an arbitrary symmetric gradient tensor Grad v.  One can make three of 

the six Fik (Φik , resp.) equal to zero by a suitable choice of the vector v, but not 

arbitrarily, in general.  One will then be led to, e.g., the non-covariant Ansätze of 
Maxwell (F12 = F13 = F23 = 0) and Morera  (F11 = F22 = F33 = 0). 
 We shall discuss a covariant normalization of the Φik later. 
 The close coupling of the stress functions with the compatibility conditions can be 
clarified by the principle of virtual deformations.  We shall content ourselves by 
sketching out that connection.  For the sake of simplicity, the displacements shall be set 
to zero on the outer surface of the continuum.  In the principle of virtual deformations, 
one can vary the deformations εik independently of each other when one equips the 
compatibility conditions with Lagrange multipliers that are included in the integrand of 
the volume integral: 

, ,( )ik ik ik lm ik lmRσ δε δ+ Γ∫ dV = 0.   (4.4) 

 
By definition, the Γik,lm have to exhibit the same symmetries as Rik,lm [cf., (3.8)].  By 
partially integrating the second summand in (4.4) twice (the outer surface integrals 
mutually cancel each other), one will get: 
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σkm = ∂i ∂l Γik,lm ,     (4.5) 
 
since the δεik are independent of each other, and one convinces oneself that the 
equilibrium conditions are fulfilled due to the symmetries of the Γik,lm .  The six stress 
functions Γik,lm define a fourth-rank tensor from which the stress tensor will arise upon 
taking its divergence twice. 
 The stress functions Φik (Fik , resp.) are connected to the Γik,lm by way of: 
 

Γik,lm = δim Φkl + δkl Φim − δil Φkm − δkm Φil    (4.6) 
or 

Fik = Γik − 1
2 δim Γ,     (4.7) 

 
resp. (Γik is a single contraction of Γik,lm , and Γ is a double contraction of it.) (4.6) and 
(4.7) are only valid in three dimensions.  In the two-dimensional case, only the one 
component Γ12,12 will remain, which is the Airy  stress function. 
 Any compatibility condition is associated with a stress function.  The stress functions 
are the reactions to the geometric constraint that the metric of the deformation should 
remain Euclidian under a deformation. 
 
 

5. – The stress functions of a body that is loaded with volume forces. 
 

 If volume forces Xi are present then the equilibrium conditions will read: 
 

∂k σik + Xi = 0.      (5.1) 
 
One will get a covariant particular solution by the Ansatz: 
 

σik = ∂i Φk + ∂i Φk − ∂k Φi – δik ∂l Φl ,    (5.2) 
 
which will yield the determining equation: 
 

∆Φi + Xi = 0     (5.3) 
 
when it is introduced into (5.1).  From (4.3), one can define the most general solution of 
(5.1) with a particular solution Φi of this Poisson equation: 
 

σik = − ∆Φik + ∂i (∂l Φkl + Φk) + ∂k (∂l Φil + Φi) – δik ∂l (∂lm Φlm + Φl). (5.2) 
 
In the absence of volume forces, the Φi are harmonic functions that can be omitted from 
(5.4), since (5.2) will then be simply the special case ∆Φik = 0 of the Ansatz (4.3). 
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6. – Analogies with Einstein’s general theory of relativity. 
 

 In the case of no volume forces, there exists a close analogy between the present 
developments and Einstein’s theory of gravitation in the special case of weak matter 
fields.  The metric: 

ds2 = (δik + 2Fik) dxi dxk    (6.1) 

 
deviates infinitesimally from the Euclidian one.  The stress tensor will then be equal to 
the Einstein tensor of the arc element (6.1): 
 

Rik – 1
2 δik R = σik .     (6.2) 

 
δik + 2Fik corresponds to the gravitational potentials gik , and the stress tensor σik is the 
impulse-energy tensor in Einstein’s theory, while our equilibrium conditions are the 
analogues of the conservation laws for energy and impulse.  In the context of this 
analogy, (6.2) corresponds to the field equations of gravitation.  The integration of the 
field equation, in turn, corresponds to the problem of ascertaining the stress functions Φik 
or Fik for a given equilibrium state.  Einstein’s method of integration for the linearized 
field equations, when adapted to this problem statement, is briefly the following one [8]: 
Since the Fik are determined only up to a gradient tensor (and correspondingly for the 
Φik), one can always impose the covariant normalization: 
 

∂k Φik = 0.     (6.3) 
 
However, (4.3) decomposes into the two systems of equations (6.3) and: 
 

∆Φik = σik .     (6.4) 
 
Due to the fact that ∂k σik = 0, it will follow from (6.4) that ∂k Φik is harmonic for any 
integral of (6.4).  One can always fulfill (6.3) by integrating (6.4) with a suitable 
combination of harmonic functions then. 
 The spherically-symmetric solution to the field equations of gravitation for empty 
space that is singular at the center, which can be interpreted as the gravitational field of a 
mass point, also has its analogy in the context of our problem.  Namely, it corresponds to 
the solution: 

Φ33 = 2 2
1 2ln x x+ , Φ11 = Φ22 = Φ12 = Φ13 = Φ23 = 0 

to the equations: 
∆Φik = 0, ∂k Φik = 0, 

 
which can be regarded as the stress function tensor of a thin string that is tensed along the 
x3-axis.  However, in contrast to the four-dimensional theory of relativity, the metric (6.1) 
is Euclidian in three-dimensional space outside the continuum.  For that reason, in this 
example, the stress functions can be represented as the gradient tensor of an infinitely 
multi-valued vector that is singular along the x3-axis. 
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 In the case of a finitely-extended body, the actual stresses that appear will be subject 
to compatibility conditions.  The theory of relativity was first made into an intrinsically-
closed theory by such “compatibility conditions” for the impulse-energy tensor, which 
describes the structure of matter by way of elementary particles. 
 
 

7. – The elastic body. 
 

 We shall now return to our actual problem statement.  The tensor field of stresses for 
an isotropic elastic body can be calculated from its vectorial divergence (equilibrium 
conditions) and tensorial rotation (compatibility conditions): 
 

Div (σik) = − Xi ,     (7.1) 
Rot (εik)  = 0,      (7.2) 

 
in which σik and εik are connected by Hooke’s law: 
 

2Gεik = σik −
1

1m+
δik σ .    (7.3) 

(G = shear modulus) 
 Recall the known problem in mathematical physics of determining a vector field from 
its scalar divergence and its vectorial rotation.  There, one will be led to the concept of 
the vector potential.  Here, the tensor of stress functions plays the role of a tensor 
potential. 
 We first treat the case of absent volume forces (Xi = 0) and write (4.3) as: 
 

(σik) = − ∆*(Φik),     (7.4) 
 
with the introduction of the operator ∆*.  With that operator, the compatibility conditions 
(3.5) read: 

− ∆*(eik) = 0,      (7.5) 
 
and from (7.3), σik and eik are coupled by: 
 

2 G eik = σik −
1

2 1ik

m

m
δ σ

+
.    (7.6) 

 
As one confirms immediately, for an arbitrary symmetric tensor Hik , one will have: 
 

∆*(∆*(Hik)) = ∆*(∆Hik).    (7.7) 
We make the Ansatz: 

Φik = Ψik − 1
2 δik Ω     (7.8) 

 
for Φik , in which we reserve the right to assign the scalar function Ω at will.  It will then 
follow from (7.4) to (7.8) that: 
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− ∆* 1 1
2 2 1ik ik ik

m

m
δ δ σ − ∆Ψ + ∆Ω − + 

= 0.   (7.9) 

 
We will now demand of Ω that: 

∆Ω = 
1

m

m+
σ ,     (7.10) 

and what will remain is: 
 − ∆*(∆Ψik) = 0.    (7.11) 

 
The ∆Ψik will then satisfy the compatibility conditions, so they can be represented with 
the help of a vector ∆w by: 

∆Ψik = ∂i ∆wk + ∂k ∆wi − δik ∂l ∆wl .   (7.12) 
Integration yields: 

Ψik = ∂i wk + ∂k wi − δik ∂l wl + Θik ,   (7.13) 
 
so ∆Θik = 0.  The Θi = ∂k Θik are likewise harmonic functions then.  We substitute (7.13) 
and (7.8) into (7.4), which will make the derivatives of the wi cancel, and obtain: 
 

σik = − ∂i ∂k Ω + δik ∆Ω + ∂i Θk + ∂k Θi − δik ∂l Θl .  (7.14) 
 
 If volume forces Xi are present then, as a glimpse at (5.2) and (5.3) will show, one can 
immediately consider the manner by which one can subject the Θi in (7.14) to the 
equations: 

∆Θi + Xi = 0.     (7.15) 
From (7.14), one calculates that: 

σ = 2 ∆Ω + ∂l Θl ,    (7.16) 
and with (7.10), one will have: 

∆Ω = 
1

m

m+
∂l Θl .    (7.17) 

 
One will get the representation of the displacement vector u of the elastic body from 

(7.14): 
G ui = Θi − 1

2 ∂l Ω.    (7.18) 

 
 

8. – Concluding remarks. 
 

 One finds the results of the last section already in Boussinesq [9], who arrived at 
them by starting from the differential equations for the displacements.  They were once 
more discovered by Neuber [10] by the same method, and he then made them known by 
way of numerous investigations of spatial stress states. 
 The fact that our considerations above seem to flow along familiar lines from a 
chapter in the classical theory of elasticity should not seem miraculous and should have 
been expected.  However, the fact that it would follow precisely from the Boussinesq-
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Neuber representations of stresses and displacements could not have been suspected 
from the outset. 
 One knows that classical mechanics, in particular, the Hamilton-Jacobi theory, 
already carries the skeleton of quantum mechanics in it.  The fact that this classical 
example of a field theory clearly limns out the contours of Einstein’s theory of relativity 
seems to be a non-trivial addition to our knowledge from our present investigations.  
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