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The stress functions of the three-dimensional comtuum
and elastic bodies ()

By Hermann Schaefer in Braunschweig

Translated by D. H. Delphenich

The stress function tensor, whose divergence is pioescby the equilibrium conditions and whose
rotation is prescribed by the compatibility conditions| be determined with the help of a tensor potential,
namely, the stress function tensor. For the covadalctulations, close analogies wHmnstein's theory of
gravitation are indicated. In the special case ofapitt elastic bodies, one will obtain tBeussinesg-
Neuber representation of stresses and displacements is td#rpotential functions.

1. Notations.

In the following discussion, rectangular parallel coaatiesx (i = 1, 2, 3) will be

employed throughout. To abbreviate, we wdtéodx; = d; . Summation signs will be
3 2

omitted. The operatdkx means; 0, = 26—2 as usual.
r=1

2. Problem statement.

As is known, the basic equations of the classicabmyh of elasticity can be
formulated in terms of the stresses alone. Excepht boundary conditions and in the
absence of volume forces, the symmetric stress teggohas to satisfy the three
equilibrium conditions:

o ox=0 (2.1)

and the six compatibility condition8éltrami conditions):

m

Aoy +
m+1

0idko=0 (2.2)

() Presented at the annual meeting of the GaMM in Brehweeig, 1952.

After my presentatiorl. Richter, Haltingen, made me aware of the work\Vofl. Bloch: “Stress
functions in the theory of elasticity,” Priklad. Maltdlech. Moscow14 (1950), 415-422 [Russian].
Richter’s discussion of that work in the Zentralblatt fir Mamatik 39 (1951) had escaped me. In the
meantime,Richter was so kind as to give some glimpseBdbch's treatise. With the same objective,
Bloch's formulation and representation (viz., the nablatsyiism) of the problem was so fundamentally
different from my own that | do not feel that my publioatiis superfluous.Neuber's representation of
stresses, to which one can simpBfipch’s results, seems to be unknown in the Russian literatu
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(m = Poissontransverse contraction numbers d) [1].

These nine equations for the six components of thesstemsor are not independent
of each other, since three differential identitiegstnexist between them, as well. We
shall return to this situation at a later point.

As is known, if the stress state is independent okesooordinate — says — then one
will arrive at a clear formulation of the problem iotegration by the introduction of
stress functions — viz., thry and torsion function<].

That raises the question of whether one can proceedspondingly in the general
case of a three-dimensional stress stdlte With such an integration process, one would
initially treat the equilibrium conditions (2.1) ofcantinuum that are satisfied identically
with the help of stress functions. It is plausitilat one will require at least three stress
functions for that. (With a terminology th&. Prangeused, the equilibrium problem is
“threefold functionally undetermined.”) One finds the Atxe ofMaxwell andMorera
[4] in the literature of the classical theory of eflast, which are complementary, in a
sense that will be clarified later. In both Ansathe, stresses are represented by sums of
second derivatives of just three stress functions, arccan show that any stress state in
equilibrium can be ascertained by means of those Ansatze

Now, once the three equilibrium conditions (2.1) aa#éisBed in that way, one
introduces one of those three-stress functions Ansitte the six compatibility
conditions (2.2). One then obtains six fourth-orderedéhtial equations for the three
stress functions that are once more not independegdalbf other. Those equations were
presented for thilaxwell case, as well as thdorera case $]. However, they seem to
be so complicated that any attempt to find a general adetli integration for them
would seem hopeless from the outset.

The question of whether the equilibrium conditions dan fulfiled by stress
functions was addressed By Weber [6]. He could show that the combination of the
two Ansatze ofMaxwell and Morera (hence, an Ansatz that contains six stress
functions) preserves its form under an orthogonabkfamation, as long as one demands
that the six stress functions transform like the gonents of a symmetric tensor of rank
two. One concludes from this that neither of the twsdre ofMaxwell andMorera
are covariant by themselves, which might make theik lat utility for a general
integration procedure more understandable.

However, not everC. Webers covariant Ansatz has a form that would make its
further use promising. For that reason, we have to lawkaf rational, covariant
representation.

3. The compatibility conditions for the infinitesimal stateof deformation.
On grounds that will soon become clear, we shaltgmatie our consideration of the
compatibility conditions.

The symmetric deformation tensay is defined in terms of the three componants
of the infinitesimal displacement vectoby way of:

&k = 3 (0i U + O ). (3.1)
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We shall call it thesymmetric gradientensor of the vectax, and write it symbolically

as:
(&) = Gradu.

Obviously, not just any symmetric second-rank tensor aara lWeformation tensor.
Moreover, it has to satisfy the compatibility conalits, which is a system of second-
order field equations that one will obtain most simipyyeliminating the components of
the displacement vector from (3.1).

We shall deviate from the usual procedure in the literatum@ carry out that
elimination in the following way: We first define:

Bk=EEk— 3 E=5(0i i+ 0k U) =301 U (3.2)

(A = Kronecker symbol; &= &) as a linear combination of equations (3.1), from which
we will obtain the divergence:

ak Gk = %A U . (3.3)
The application of the operatarto (3.2) yields:
Ay =T +% (ai Aug + 0 A Ui) —% Ak 0 Ay, = 0, (3.4)

and after one introduces (3.3) into (3.4), the elimimatwill be complete. The
compatibility equations will then take on the form:

Ax=—-Aex+00 6¢+0k0 & — Ak 0 Om&m = 0. (3.5)
The left-hand side of this defines a symmetric secondtemgor that we shall refer to as

Ak . Those six field equations for tleg (or also for thegy) are not independent of each
other. A simple calculation will confirm that:

Ok Ak =0, (3.6)

so the tensoAy is divergence-free.
In the literature, the compatibility conditions areeg in the form:

Ri, im = 0 01 &m+ Ok Om & — Ok 01 &m — 0i Om &m = 0. (3.7)
In that representation, the left-hand side defines atHfeank tensorRk im , which

nonetheless possesses only six algebraically-independempooents in three
dimensions, due to its symmetries:

Ri, im = = R, im, Ri, im = = Ri, mi, Ri, im = Rim, ik (3.8)

(In a two-dimensional continuum, only one equation withagn, namelyRi» 12.=0.)
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In a deformed continuum, the arc length indeed hasthe f

ds’ = (dk + 2ax) dx dx, (3.9)

but the metric remains Euclidian. TReemann-Christoffel tensorRym of (3.9) must
vanish, and that will lead to (3.7) for infinitesimal def@tions.
One easily confirms by calculation that the componéh& are connected by:

Aap = Ros1, av2; pr1, pra (3.10)

(Any index that is greater than three shall be replagtdits residue modulo 3.)
The symmetric curvature tensor:
Ria = Ricji (3.11)

arises fronRg ;m by contraction, and a further contraction will give tturvature scalar:

R=Ry. (3.12)
That will then, in turn, imply that:
Ak=Rx-3&R (3.13)

which can be shown most simply by exhibiting the individobaimponents, and that
means thatAx will be the Einstein tensor of the arc length (3.9). Tiemann-
Christoffel tensor can then be replaced with thastein tensor in three-dimensional
space. One already finds the introduction ofghéto (3.2) and (3.5), in place &k, in
Einstein’s theory for weak gravitational field3][

The representation of the tenggras a matrix product:

0 a3 _62 &1 €1 €43 0 -0 3 0 2
(Aw) =| -0; O 0, En €n En|| 04 0 -0, (3.14)
a2 _61 0 € €3 €3 -0 2 0 1 0

is instructive. The matrix of the deformation tensomultiplied on the right by the
operator matrix of the rotation and on the left byintgerse. For that reason, we would
like to call the tensofy thesymmetric rotatiorof the tensoky and write symbolically:

(Aik) = Rot (&x). (3.15)
We shall express the fact that the vectorial divergerié\x vanishes from (3.6) with the
notation:

Div Rot (gx) = 0. (3.16)

The compatibility equations (3.5), which we can now vage

Rot (gk) =0, (3.17)
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are the necessary, and also sufficient, integralmbtyditions for the system of equations
(3.1). A symmetric tensagy is the symmetric gradient tensor of a displacementor
field u if and only if its symmetric rotation tensor vanishd@$e identity:

Rot Gradu =0 (3.18)

is then satisfied, as well as the theorem that any stnntensor that satisfies (3.17) can
be represented as the symmetric gradient tensoreaxdtan.

4. — Covariant Ansatze for the fulfillment of the equilibium conditions
by stress functions.

The equilibrium conditions (2.1) of the continuum requine vanishing of the
divergence of the stress tensor. In analogy to (3théy can be fulfilled identically in
the componentBix of the symmetric tensor of the stress functions byAhsatz:

(di) = Rot Fi), 4.1)

or from (3.5), when one introduces the stress functions

O =Fkx—3&F (4.2)
(F = F||), by:
O = — DDy +0; 0) Py + 0k 01 Pjj — A« 01 O Pim - (4.3)

It follows from (3.18) that for a given equilibrium &ta the stress functionsy are
determined up to an arbitrary symmetric gradient tensod @raOne can make three of

the six Fx (®i , resp.) equal to zero by a suitable choice of the vegtdsut not

arbitrarily, in general. One will then be led to, e.dne thon-covariant Anséatze of
Maxwell (Flz =Fi3=Fy= 0) andMorera (Fll =F,=F33= 0)

We shall discuss a covariant normalization ofd®heater.

The close coupling of the stress functions with ¢benpatibility conditions can be
clarified by the principle of virtual deformations. We kheontent ourselves by
sketching out that connection. For the sake of simplitite displacements shall be set
to zero on the outer surface of the continuum. Inptteciple of virtual deformations,
one can vary the deformatiorgz independently of each other when one equips the
compatibility conditions with.agrange multipliers that are included in the integrand of
the volume integral:

'[(O-ik 08, + Ty 1mORy ) dV = 0. (4.4)

By definition, thel i m have to exhibit the same symmetriesRagn [cf., (3.8)]. By
partially integrating the second summand in (4vice (the outer surface integrals
mutually cancel each other), one will get:
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G =0i 01 Mim (4.5)

since thedgx are independent of each other, and one convinces ortese¢lfthe
equilibrium conditions are fulfilled due to the symmetraf thel i ;m . The six stress
functionsl i ;m define a fourth-rank tensor from which the stress temglbrarise upon
taking its divergence twice.

The stress functior®i (Fik, resp.) are connected to them by way of:

Cikim = Om P + A1 Pim — A Prm — Im Pi (4.6)
or
Fikx=Tk—3amT, 4.7)

resp. (ik is a single contraction dfm, andl’ is a double contraction of it.) (4.6) and
(4.7) are only valid in three dimensions. In the two-dingered case, only the one
component 12 12Will remain, which is théiry stress function.

Any compatibility condition is associated with a stress functibme stress functions
are the reactions to the geometric constraint thatntktric of the deformation should
remain Euclidian under a deformation.

5. — The stress functions of a body that is loaded with volunierces.
If volume forcesX; are present then the equilibrium conditions wilrea
Ok gk + X = 0. (5.1)
One will get a covariant particular solution by the Amsa
Ok = 0; Py + 0y Py — Ok P; — A 01 D, (5.2)
which will yield the determining equation:

AP+ X =0 (5.3)

when it is introduced into (5.1). From (4.3), one canngethe most general solution of
(5.1) with a particular solutio®; of this Poissonequation:

Ok = = Ay +0; (0) Py + P + 0k () Pit + D) — Ak 01 (Oim Pim + D). (5.2)

In the absence of volume forces, theare harmonic functions that can be omitted from
(5.4), since (5.2) will then be simply the special ca®g = 0 of the Ansatz (4.3).
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6. — Analogies with Einstein’s general theory of relativity.

In the case of no volume forces, there exists aeclnalogy between the present
developments ané&instein’'s theory of gravitation in the special case of weaktena
fields. The metric:

ds® = (dk + 2Fi) dx dxc (6.1)

deviates infinitesimally from the Euclidian one. Tdteess tensor will then be equal to
the Einstein tensor of the arc element (6.1):

Rik — 3 KR = i . (6.2)

ak + 2ZFi corresponds to the gravitational potentigis, and the stress tensok is the
impulse-energy tensor i&instein's theory, while our equilibrium conditions are the
analogues of the conservation laws for energy and smpulln the context of this
analogy, (6.2) corresponds to the field equations of grawmitatiThe integration of the
field equation, in turn, corresponds to the problem of tsioang the stress functior,

or Fi for a given equilibrium stateEinstein’s method of integration for the linearized
field equations, when adapted to this problem statementieitylihe following one §]:
Since theFy are determined only up to a gradient tensor (and camedgmly for the
@y), one can always impose the covariant normalization

ak CDik =0. (6-3)
However, (4.3) decomposes into the two systems of emsat6.3) and:
ACDik = Ok . (64)

Due to the fact thadx g = 0, it will follow from (6.4) thatox ®i is harmonic for any
integral of (6.4). One can always fulfill (6.3) by intetyng (6.4) with a suitable
combination of harmonic functions then.

The spherically-symmetric solution to the field equasi of gravitation for empty
space that is singular at the center, which can bepneted as the gravitational field of a
mass point, also has its analogy in the context oponinlem. Namely, it corresponds to
the solution:

Dyz= N X +X, P=@p=0p=P;3=P;=0
to the equations:
ADy =0, Ok Pik = 0,

which can be regarded as the stress function terisothin string that is tensed along the
xz-axis. However, in contrast to the four-dimensidhaory of relativity, the metric (6.1)
is Euclidian in three-dimensional space outsidedetinuum. For that reason, in this
example, the stress functions can be representéldeagradient tensor of an infinitely
multi-valued vector that is singular along theaxis.
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In the case of a finitely-extended body, the acttrakses that appear will be subject
to compatibility conditions. The theory of relativityas first made into an intrinsically-
closed theory by such “compatibility conditions” for timepulse-energy tensor, which
describes the structure of matter by way of elementatic|es.

7.— The elastic body.
We shall now return to our actual problem statemethie t€nsor field of stresses for
an isotropic elastic body can be calculated fromvéstorial divergence (equilibrium

conditions) and tensorial rotation (compatibility caiwchs):

Div (Ui'k) =- Xi , (7.1)
Rot (k) =0, (7.2)

in which gk andgg are connected kijooke’s law:

2Gé&k = Ok — A O. (7.3)

m+1
(G = shear modulus)

Recall the known problem in mathematical physics ofrdateng a vector field from
its scalar divergence and its vectorial rotation. Thene will be led to the concept of
the vector potential. Here, the tensor of stress imetplays the role of a tensor
potential.

We first treat the case of absent volume forées 0) and write (4.3) as:

() == A'(Pi), (7.4)

with the introduction of the operatdr. With that operator, the compatibility conditions
(3.5) read:
- A (ex) =0, (7.5)

and from (7.3) g andey are coupled by:

1 m
2Ge=0xk—=90, —oO. 7.6
& = Jik 5% 1 (7.6)

As one confirms immediately, for an arbitrary symneetensorH., one will have:
A'(A (Hi)) = A" (AHw). (7.7)
We make the Ansatz:

O =Wk -5k Q (7.8)

for @y, iIn which we reserve the right to assign the scalactionQ at will. It will then
follow from (7.4) to (7.8) that:
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* m
-A (_Aq)ik +%5|kAQ__:2L5Ik maj =0. (79)

We will now demand of2 that:

po=-"g, (7.10)
m+1
and what will remain is:
- N (AW;) = 0. (7.11)

The AWy will then satisfy the compatibility conditions, $leey can be represented with
the help of a vectahw by:

AWy = 0; Aw + 0 AW — Ok 0, Awy . (7.12)
Integration yields:

Wik = 0i Wk + Ok W — Ak Oy W + Oy, (7.13)

S0A®y = 0. The®; = dy Oy are likewise harmonic functions then. We subii{7.13)
and (7.8) into (7.4), which will make the derivasvof then; cancel, and obtain:

Ok=—00cQ+xAQ +0; O +0cOi — J 0, O . (7.14)
If volume forcesx; are present then, as a glimpse at (5.2) and @bll3how, one can

immediately consider the manner by which one canest the®; in (7.14) to the
equations:

AG; + X; = 0. (7.15)
From (7.14), one calculates that:
o=2AQ +0, 0, (7.16)
and with (7.10), one will have:
r0=-"2sa@. (7.17)
m+1

One will get the representation of the displacemautoru of the elastic body from
(7.14):
G V] :@i —%&Q. (7.18)

8. — Concluding remarks.

One finds the results of the last section alremdBoussinesq[9], who arrived at
them by starting from the differential equations tlee displacements. They were once
more discovered bMeuber [10] by the same method, and he then made them kngwn b
way of numerous investigations of spatial streagest

The fact that our considerations above seem to #dong familiar lines from a
chapter in the classical theory of elasticity sdoubt seem miraculous and should have
been expected. However, the fact that it woultbtolprecisely from theBoussinesg-



Schaefer — The stress functions of the three-dimealssmmtinuum and elastic bodies. 10

Neuber representations of stresses and displacements cotltiane been suspected
from the outset.

One knows that classical mechanics, in particulag, Hamilton-Jacobi theory,
already carries the skeleton of quantum mechanics inThe fact that this classical
example of a field theory clearly limns out the consoafEinstein’s theory of relativity
seems to be a non-trivial addition to our knowledge foumpresent investigations.
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