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1. Introduction

In this treatise, a question shall be addressed tlag teaa response in the continuum
mechanics of dislocations. A moving, deforming continuutih wobile dislocations is
characterized by the following kinematical quantitiesoe®y, state of deformation, its
volume element, dislocation density and dislocatiomezurdensity (number of moving
dislocations in a volume element per unit time). Our dueseads: What “forces” are
these kinematic quantities associated with? One knoatghb impulsg and stress,
along withv and g, define the power densitiesv and o€¢. However, what power

densities are associated with dislocation densities? ®imén this question is clarified
can one formulate the next question regarding the riahtlaws (i.e., constitutive
equations) that exist between the “forces” and the katieal quantities.

The field equations of linear dislocation theory adram analogy with the
MAXWELL equations of electromagnetic fieldl]] This analogy asserts that the
constitutive equations of dislocation theory up to nogak down. Thus, it also becomes
clear that a complete dislocation theory must passe®ther structure beyond the
MAXWELL-LORENTZ theory. In dislocation theory, thdislocation field interacts with
the matter field. The electromagnetic field of LOREAs theory is indeed analogous to
the dislocation field, so there is no energy andulsg exchange with a matter field in an
electron. There is only the four-vector of the LOREIN®rce density.

Fortunately, in the electrodynamics of MIB,[we possess a theory that is essentially
more general than LORENTZ's, makes the electromagfiete and the matter field in
an electron interact, brings clarity to the const#eitequations, and ultimately leads to
the LAGRANGE density. This more than 50-year-old theoirWIE — one can find a
presentation of it in WEYLJ] that is concise, but emphasizes the essentialsatisally
superseded by quantum field theory nowadays. However, thiaa@ntinuum theory of
displacements is a macroscopic theory in the coraéxtlassical mechanics, we can
follow the train of thought of MIE’s theory, and angdusly unify the dislocation field
and the matter field into a common field, for which aation quantity is defined that
remains stationary during an infinitesimal variation &f field state.

If we consider the dislocation theory of a COSSER#Ntinuum #] here, it is
because the continuum theory of dislocations up to now -haconsciously or
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unconsciously — employed the geometric model of an incabopaCOSSERAT
continuum []. We shall not discuss the still-debatable questiorwbéther such a
macroscopic theory can describe crystal plasticitg.her

Let our problem be outlined once more: The present aantirtheory of dislocations
is incomplete; it lacks constitutive equations. We miogestigate how, and in what
place, the theory of constitutive equations must bedioiced. We will consider our
problem as having been solved when we have found a LAGRANGdtyl¢mat, on the
one hand, delivers all of the constitutive equations, anthe other, defines an action
integral whose variation leads to a complete systefieldfequations.

2. Notations

The kinematical and dynamical equations of a COSSERAfdtimaum can be
brought into a lucid form when one employs the followiiféedential operatorsq], [6]:

1 1
a 0, 4,
Grad || = 8; . (2.1)
a ai &~ & &
1] a 1
A & ’
Rot| [={"" A;’" . (2.2)
_A_ giklak Am+£mknp?n’
M 17] a 1
R i )
Div| (=1 Rzk . (2.3)
_R_ ai I%k-+-£klm Rm
This symbolism is justified by the two identities:
Rot Grad = 0, Div Rot = 0, (2.4), (2.5)

All indices range from 1 to 3. The summation cartign is in effect. gq is a unit tensor
that is alternating in all indices. We use Cadrstoordinates;, X, X3 throughout and
the abbreviation; =09 / 0x; .

As much as is possible, we adopt the notatiorpfysical quantities that is used in
the work of KLUGE B].

We will further make use of the scalar productha motor algebrag]. It is defined
by:

1 2 2 1 1 2 2

:aob+aob:a1.ob+q0b (2.6)
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for vectors and by:
1 2 2 1 1 1
oo :AoB+AoB:Ako k+ OBk (27)
for tensors of second rank.

3. Basicdynamical and kinematical equations

The theory of dislocations that lies before 8iscbnsists of the dynamical equations:

Div a} . {p‘_’] (3.1)
| M o5
and the kinematical equations:
[ B
Rot K} :{ } (3.2)
| € D

S| |K S
Grad{ }{ } :{ } (3.3
v £ I
For — e.g-— elastic bodies, a generalized Hooke law coueg)(to (& «).
ok and 4 are the asymmetric tensors of force and moment eesg = U, is the

translation velocity and = ¢, is the angular velocity of a material poiptyi = px is the

impulse along the path, ai®@l s = g« is the proper rotation (i.e., spin), both of which are
referred to unit volume. By restricting to linearity s \@e do here and in the further
reasoning — the dot means the partial derivative with regpéimet.

In the kinematical equations, the asymmetric tenggrand & describe the state of
deformation of the COSSERAT continuu#j.[ Bix andDj are the asymmetric tensors of
dislocation density — or more precisely, disclinatiod drslocation density, resp. In a
geometrically compatible continuum, the deformatiomsdafined by:

{K} = Grad{a} : (3.4)
£ u

in which ax anduk are the vectors of the infinitesimal rotation andpthicement of a
material point. In a compatible, dislocation-free tomrum, (3.4) vanishes as a result of
the right-hand sides in (3.2) and (3.3). One recognizéshihaasymmetric tensofS
andli in (3.3) are the measure of how many disclinations aldadtions are found in a
unit volume element per unit time or leave it. Ondsct#lem thedislocation flux
densities
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One succeeds in eliminating; (&), (s, v) from (3.2) and (3.3) with the help of the
identities (2.4), (2.5), and this leads to the equations:

S| (B|_ .. BT
RO{I}{D}_O’ Dlv{D}—O, (3.5), (3.6)

which are analogous to the homogeneous MAXWELL equations.

We consider the integration theory in the examplarogtlastic body. For this, we
summarize the equations that are obtained by diffet@miwith respect to time; we call
them thedeveloped equations.

a) {P}Div{”}o,! {
q Koo LV
Ib) —F}Grad{s = Oj {a
é v o L]
Ic) F}Rot{s :O.i V
D | | | LP]

They will be accompanied by equations that do not includértteederivatives, namely:

| 2l-rolfl=o o ow|f] =0

To this, one adds the constitutive equations:

a) px=,0W; Ok = 0,
and for elastic bodies:
1 2
lIb) &k = Cikm &m ; Mk = Cikm Kim .

It now follows from Ic), and further from Ib) and I¢hat:

IVa) ioiv{ﬂ -0, IVb) 3{8}—%{?} -0
ot D ot||D £

Thus, if the equations II) are fulfilled at any inittahe t, then they remain fulfilled for
every latert on the grounds of the developed equations Ib) and Ic).c@méhus specify
the dislocation densitieB[ D] at the timet, in the entire body, where 1lb) must be
fulfilled. By integrating lla), one then obtainS][the initial values of k, £. Now, in
order to give some meaning to the developed equationsd)cam further prescribe the
space-time distribution of the dislocation flu& [] for t >ty . la), Ib), together with the
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constitutive equation llIl), then define an integrable systé equations. We have thus
presented the current state of dislocation theory.

The presentation of the energy theorem will be udefulater considerations. We
scalar multiply the developed equations la) and Ib) wighflctors that are next to them
and add:

= (Pt Ges) — (Kulty +€,00) +0,( S+ Vo) = Hik S + Oic li - (3.7)

We can write this as:
6_w + divs =1. (3.8)
ot

The first two terms in (3.7) are the temporal derivabv the energw of the matter field,
s Is the vector of the energy flux, ahdis the power density that is produced from

dislocation fluxes $, 1] of the matter field. The counterpart to an enetggotem for the
dislocation field does not exist. The situation in MMAXWELL-LORENTZ theory is
complementary. There, an energy theorem (Poyntxig)sefor the electromagnetic field
(the analogue of the dislocation field), so there i€mergy theorem for the material field
in the electron. Thus, just as the electron is @idor body in the MAXWELL-
LORENTZ theory, so are the dislocations and dislocatiuxes foreign bodies in the
present continuum theory. There, one has the PEACHHIER force P] in the stress
field of the dislocation, like the LORENTZ force inet magnetic field of the electron.
The incompleteness of the dislocation theory becochesrer when we give the
dynamical equations (3.1) the form of the inhomogeneouXWELL equations:

SR A

Obviously, (3.1) to (3.9) and (3.10) are fulfilled identicddly the stress potential ,
@y, and the impulse potentialg , xi . ¢@x and®y are the 18 stress functions that
GUNTHER [7] introduced. In the statics of continua with disldmas, they are tools that
are often very useful, but still largely superfluous. aAsounterpart, but not an analogue,
in electrodynamics, one has the LORENTZ four-potentidipse vector and scalar are
only mathematical quantities that serve to simplifg integrations. The analogue of the
four-potential are, however, the tensaxsd) and the vectorss(v) in the equations (3.2),
(3.3) of dislocation theory, which are completely detieed physical state quantities
here. (3.2) and (3.3) fulfill the homogeneous MAXWELL edqua (3.5), (3.6)
identically in (, & and §, v).

The analogues of the stress and impulse potenai®][and W, x| of dislocation
theory in the inhomogeneous MAXWELL equations (3.9), (3d8)the current potential
H and the charge potential (both of them have many names in electrodynamics), which
are coupled with the vecto®8 and E of the magneto-electric field by constitutive
equations.

The idea of MIE was to give some physical realityni tORENTZ four-potential of
the electromagnetic field and couple it to a matdredl of the electron by means of
constitutive equations.
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We extend the developed equations I) by means of (3.9) to:

o [left-] 0[]

(3.10), which contains no time derivative, comes todl) a

o ol

From la) and Id), it follows that:

ve) %{Div mm} -0

In order to obtain a complete dislocation theory,mnest demand that in addition to III)
there must exist constitutive equations betwegr], [W, x|, on the one hand, an@& |
D], [S, 1], on the other for example, the ones for elastic bodies. Laterwill see that
the constitutive equations can be made essentially gemeral. In any event, one must
demand that the still-missing constitutive equationsdigtocation theory reduces the
number of unknowns in the developed equations la to Iduaih a way that a closed
systems of equations exists that is soluble when ogiwes the initial conditions lla) to
lic).

4. Theenergy theorem

We now follow MIE’s theory. In order to arrive atsgarting point for it, like the
constitutive equations in the dislocation theory, we @®amthe validity of an energy
theorem of the form:

W L divs=o, (4.1)
ot

whereW is the energy density and the veciois the energy flux. The energy shall then
be localizable in space and time.

One then has (3.7). We now multiply the developed equati and Id) with the
scalar factors next to them and then obtain, aftentermediate calculation:

(B|kq)ik + D|k¢ik) + (wik Iik +)‘(ik3k) +ai (‘girs $chsk + ‘girs lrk¢sk)} (4 2)
= _(luikSk * Oy Iik)'
Equation (4.2) is obviously the analogue of the POYNTINGit&e in MAXWELL'’s

theory. On the right-hand side of (4.2), one finds theguadensity that the dislocation
field delivers to the material field.
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We now add (3.7) to (4.2) and recognize the vextofenergy flux:
Zi = S Mk + Vi Ok + &rs (Sk Psk + ik Psi). (4.3)
Furthermore, a comparison with our postulated energyéne (4.1) yields:

aa—VtV: ((Dian( + Py Dik)+(|ik¢/ik +SX) (MR T 8~ (Wi t o) (4.4)

Here, in order to make things more organized, it is recended that one introduce the
LAGRANGE densityL:

W == (P Vi + Ok S + (lik ¥ + Sic xiv) —L, (4.5)
such that:
% = =(PV% *+ 4.8 ~ (WL + O €)= (P a<+¢ik Dk)+(¢/ik ‘Iik+)(ik %) (4.6)

contains the kinematical quantities only by way ofrtbemporal derivatives.
The right-hand side of (4.6) must now be the time dékig of a function:

L=L(s v,k &B,D, S 1), 4.7)

where (4.6) must be true as a result of the relations:

LI R R R
ov, ' s, A ok, ' “oag,
(4.8)
oL oL oL oL
:_q)"_:_i1_:i!_: -
aBlk ik ale ¢k aSk Xk a |ik wk

These are the constitutive equations.

5. Thevariational problem for stationary action

We can define the action of the field with (4.7).slthe integral extended over space
and time:

[Ldx dx dx dt (5.1)

In (4.7), which includes only geometric field quantitiese onmust observe th&, D,
S, | depend upos, v, k, € only by means of equations (3.2) and (3.3). Thus (assuming a
knowledge of the material law), becomes a function of the independent state quantities
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S, V, K, & and their spatial and temporal derivatives. Theatianal problem for the
stationary action then has the form:

S [Ldx dx dx di= [aL dx dx d df (5.2)
with the LAGRANGE density:
L =L(s, Vk, Kik , &k, 0 S, 0i Vk, Oi Kik , Oi &k » Ky 5 &)- (5.3)

The field equations that our variational problem leadé&dve already been established
with no explicit knowledge of the material law (4.8Pne derives the variation of the
Lagrange density from (4.6):

A =— (Px i + Ok &) + (L OKik + O Oki)
— (@i« Bik + @i Dik) + (Y Aik + Xk Bi). (5.4)

Thus, from (3.2) and (3.3), one has:

_58} {5/(}

= Rot : (5.5)
| oD €

_55} . Gradrs}ir’(] (5.6)
| Ol ov| ot| e

Carrying out the variation in (5.2) then delivers thé&dfiquations:

Pk + 0ith = O, (for ow), Ok + @iXik + &m Ym) =0 (for sy,

and furthermore:
Ok + Yk — &s 0rPsk= 0 (for o),
Mk + X — Ers(0Psk + & @) =0 (for Ok).

However, these are the inhomogeneous MAXWELL dynamszplations (3.9) and
(3.10).

Naturally, one can define the LAGRANGE dendifythat is conjugate ta under a
LEGENDRE transformation, and which is then a functmihthe dynamical field
quantities p, q), (g, W), (¢, ®), (¥, x), but from (3.9) and (3.10), this reduces to a
function of the impulse potentia, x), the stress potentia§p( P), and their spatial and
temporal derivatives. Carrying out the variations ttielivers the kinematical equations
(3.2) and (3.3).

In [4], | set down how one is to interpret the GUNTHERs#rfunctionsd, @) of the
COSSERAT continuum intuitively. As of yet, | havdlstot developed an explanation
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for how the stress potentialg,(®) of our theory do work on the moving dislocations as
physical quantities.

However, let me be permitted the observation thed tensorial MAXWELL
equations of dislocation theory that were presenteddreressentially more complicated
than the ones for electrodynamics. After all, un@dading all of the consequences of the
vectorial MAXWELL equations of electrodynamics has adheg required decades of
work.

6. Outlook

The continuum theory of dislocations that was progednhere is the analogue of
MIE’s electrodynamics, and like it, is a logicallfosed theory. In general, it is first
animated by the material law that couples the kinemaimd dynamical field quantities
with each other. In order for one to make a seriesatéments about the general form of
these constitutive equatiorespriori, one would ultimately be led to experiment with the
material from which the continuum is composed, as ooeldvbe for any macroscopic
continuum theory. However, one would then set footnupa entirely unexplored
territory.
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Summary

There is a mathematical analogy between the camintheory of moving dislocations and
electrodynamics. This remarkable analogy pointstioat the theory of dislocations is incomplete with
regard to the missing constitutive equations. The gkreueelectrodynamical theory of MIE shows a way
to complete the theory of moving dislocations that finiglads to the formulation of a Lagrangian density.
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