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Summary 

 
 The continuum theory of moving dislocations is mathematically analogous to MAXWELL’s equations 
of electrodynamics.  This analogy shows that the present linear theory of dislocations is incomplete and 
must be supplemented by constitutive equations between dynamical and kinematical quantities.  MIE’s 
generalized electrodynamics points the way to a Lagrangian density.  Whereas, in the static case, the stress 
functions of the continuum are reaction forces with the task of preventing the motion of dislocations, they 
become impressed forces in the field of moving dislocations and are connected with the dislocation density 
by constitutive equations. 
 
 
 § 1. Introduction. – At this point in time, the linear continuum theory of dislocations 
and internal stresses [1] consists of the system of three equations: 
 

εiλµ ∂λ βµk = Dik ,             (1.1) 
∂i vk − ikβɺ  = Iik ,             (1.2) 

∂i σik − kvρ ɺ  = 0.     (1.3) 

In this: 
 

βik Distortion tensor, whose symmetric part β(ik) = εik is the deformation 
tensor 

vk Material velocity vector 
ρ Mass density 
σik Stress tensor 
Dik Dislocation density tensor 
Iik Dislocation current tensor 
 

 We call equations (1.1) and (1.2) the kinematical equations, while (1.3) are the 
dynamical equations. 

                                                
 (†) Now deceased.  
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 In our notations, x1, x2, x3 are the Cartesian coordinates, εikl is the unit tensor that is 
alternating in all indices, ∂i = ∂ / ∂xi , and the dot over a quantity means its partial 
derivative with respect to time t. 
 HOOKE’s law exists between stress and extension in an elastic body: 
 

σik = λiklm εlm .     (1.4) 
 
 H. GÜNTHER  [1] has shown that the system of equations (1.1) to (1.4) can be 
integrated when one freely prescribes Dik at one time-point and Iik for all time. 
 
 
 § 2. Maxwell’s equations for the theory of dislocations. – If one ignores the index k 
in the basic equations (1.1), (1.2), and (1.3) then βik and vk can be interpreted as the 
LORENTZ four-potential of an electromagnetic field Ei ~ Iik , Bi ~ Dik , while (1.3) seems 
to be the analogue of the equation of continuity for the charge density.  That analogy with 
electrodynamics will become clearer when one eliminates the “potentials” βik and vk from 
(1.1) and (1.2): 

ikDɺ + εiαβ ∂α Iβk = 0, ∂i Dik = 0.   (2.1), (2.2) 

 
 In these homogeneous “MAXWELL equations,” (2.1) is the analogue of 
FARADAY’s law of induction.  Equation (2.2) contains the geometric statement that 
dislocation lines are always closed or that they can begin and end only on the outer 
surface of the body, and it is analogous to the non-existence of magnetic monopoles. 
 The inhomogeneous “MAXWELL equations” will appear when one fulfills: 
 

ikψɺ − εiαβ ∂α ϕβk = − σik , ∂i ψik = − pk   (2.3), (2.4) 

 
identically in the “impulse potentials” ψik and the “stress potentials” ϕik . 
 In the conventional notations of MAXWELL’s theory, the analogy here reads: 
 
 Charge density  ρ ~ negative impulse  ρ vk = pk , 
 Current density  si ~ stress   σik , 
 Charge potential  Di ~ impulse potential  ψik , 
 Current potential  Hi ~ stress potential  ϕik . 
 
 One test for the correctness of this association is to calculate the analogues of the 
LORENTZ force density fk and the power density λ : 
 

fk = ρ Ek + εklm sl Bm ,       (2.5) 
λ = si Ei ,      (2.6) 

which are: 
Fk = − ρ vi Iik + εklm σli Dmi ,       (2.7) 
Λ = σik Iik ,      (2.8) 

resp. 
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 The expression εklm σli Dmi is the well-known PEACH-KOEHLER force density, 
which originates in the dislocation density in the stress field [2].  The first sum on the 
right in (2.7) was found by KOSEVICH [3].  He interpreted it as the force density that 
originates in the dislocation current density Iik in the velocity field. 
 We will encounter the expression (2.8) once more when we present the law of energy.  
It is the power density that is transferred from the field of the moving dislocations to the 
“matter” [4]. 
  However, this impressive analogy will collapse when we consider the constitutive 
equations (viz., material law) in both theories.  An analogue to HOOKE’s law (1.4) does 
not exist in MAXWELL’s theory.  The four-vector of the LORENTZ potential is only a 
computational convenience.  Things are different in the theory of dislocations: 
 βik and vk in (1.1) and (1.2) are well-defined quantities that are coupled to σik and pk 
by constitutive equations.  In MAXWELL’s theory of macroscopic electrodynamical 
phenomena, it is known that constitutive laws exist between Di and Ei , on the one hand, 
and Hi and Bi , on the other.  If we were to try to draw an analogy to the theory of 
dislocations here then the impulse and stress potentials ψik , ϕik , which have been only 
computational conveniences, up to now, would have to be coupled with the dislocation 
current density Iik and the dislocation density Dik by constitutive laws.  Here, a 
fundamental deficiency in our dislocation theory becomes clear, namely, that the 
dislocation current density Iik (a measure of the number of dislocations that enter into a 
volume element per second) must be given for all times if the system of equations (1.1) to 
(1.4) is to be integrable.  However, from whence does once gather that knowledge? Here, 
we have only one-half of the theory before us.  The analogy points to the way that one 
must extend the theory to moving dislocations. 
 
 
 § 3. The law of energy. – We shall first summarize the equations of the theory of 
dislocations that include differentiations with respect to time: 
 

− kpɺ  + ∂i σik = 0,     (3.1) 

ikDɺ + εiαβ ∂α Iβk = 0,              (3.2) 

− ikβɺ + ∂i vk = Iik ,     (3.3) 

ikψɺ − εiαβ ∂α ϕβk = − σik .             (3.4) 

 
 Now if (as we presume) all quantities that enter into these equations by way of their 
spatial derivatives (hence, vk , σik , ϕik , Iik) are coupled to those quantities that appear in 
time derivatives (namely, pk , βik, Dik , ψik) by constitutive equations then a closed system 
of equations must arise (say, for pk , βik , Dik , ψik) in which those quantities are coupled to 
each other by way of their temporal and spatial derivatives and that is integrable with the 
prescribed initial conditions.  Now, it follows from (3.2) that: 
 

t

∂
∂

(∂i Dik) = 0,      (3.5) 
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and from (3.2) and (3.3) that: 

t

∂
∂

(Dik − εiλµ ∂λ ϕµk) = 0,    (3.6) 

and from (3.1) and (3.4): 

t

∂
∂

(∂i ψik + pk) = 0.     (3.7) 

 
 However, those are, in essence, the remaining equations of the theory of dislocations.  
It one demands that they should be valid at a certain time-point then they will be valid for 
all times on the basis of the integrable system of equations (3.1) to (3.4). 
 All of this consists of only suspicions to begin with.  However, MIE’s generalized 
electrodynamics [5], namely, “Die Grundlagen einer Theorie der Materie,” points the 
way to the constitutive equations that we are still missing.  We shall follow the clear and 
concise presentation of that theory by H, WEYL [6]. 
 MIE postulated that the energy is localizable in space and time in such a way that a 
law of energy of the form: 

i i

W

t

∂ + ∂ Σ
∂

= 0      (3.8) 

 
would exist, where W is the energy density and Σi is the energy current vector. 
 In order to get such an equation in our theory if dislocations, we first multiply eq. 
(3.1) by vk and eq. (3.3) by σik and add them: 
 

− k k ik ikv p σ β− ɺɺ  + ∂i (vk σik) = σik Iik .    (3.9) 

 
 For later purposes, we define the analogue to POYNTING’s law of electrodynamics 
by multiplying (3.2) by ϕik and (3.4) by Iik and then adding.  After an intermediate 
calculation, we will get: 

ik ik ik ikD Iϕ ψ+ɺ ɺ + ∂i (vk σik) = − σik Iik .        (3.10) 

 
 On the right-hand side of both equations (3.9) and (3.10), we again recognize the 
power density (2.8).  In (3.10), it was inferred from the “dislocation field,” and in (3.9), it 
was supplied by the “matter field”, or conversely. 
 We must now call upon an intermediate consideration in regard to the symmetry of 
our tensors.  The symmetry of the stress tensor σik = σki requires that the impulse 
potential ψik in (2.3) and (2.4) must also be a symmetric tensor.  Furthermore, the 
symmetry of σik has the consequence that the asymmetric stress potential ϕβk in (2.3) 
must be replaced with: 

ϕβk = εkλµ ∂λ Fβµ ,     (3.11) 
 
so with the BELTRAMI stress function Fβµ = Fµβ .  If we indicate the symmetric part of a 
tensor by parentheses, as usual, then equation (3.9) will imply that: 
 

− k k ik ikv p σ ε− ɺɺ  + ∂i (vk σik) = σik I(ik) ,   (3.12) 
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and (3.10), with (3.11), will imply that: 
 

( )k ik i ik ikD F Iλµ λ µε ψ∂ +ɺ ɺ + ∂i (εirs Irk εkλµ ∂λ Fsµ) = − σik I(ik) .  (3.13) 

 
 Now, one has: 

k ik iD Fλµ λ µε ∂ɺ = ( )i i k k ik k ikF D F Dµ λµ λ λµ λε ε∂ + ∂ɺ ɺ .   (3.14) 

 
Due to the symmetry of Fik , the second summand on the right here can be written as: 
 

( )1
2ik k i i kF D Dλµ λ µ λµ λ µε ε∂ + ∂ɺ ɺ  = ik ikF ηɺ ,   (3.15) 

 
in which we have introduced KRÖNER’s incompatibility tensor [7]: 
 

ηik = ( )1
2 k i i kD Dλµ λ µ λµ λ µε ε∂ + ∂ɺ ɺ .    (3.16) 

 
Due to (1.1), one will have: 
 

ηik = εiαβ εkλµ ∂α ∂λ β(βµ) = εiαβ εkλµ ∂α ∂λ εβµ .   (3.17) 
 
We now use (2.1), (3.14), and (3.15), in order to put (3.13) into the form: 
 

( )ik ik ik ikF Iη ψ+ɺ ɺ + ∂i εirs εkλµ (Irk ∂λ Fµ s − Frk ∂λ Iµ s) = − εik I(ik) .  (3.18) 

 
 We shall now show that the symmetric parts I(rk) and I(µ s) of Irk and Iµ s , resp., can also 
be substituted in the third summand on the left.  Performing the differentiation implies: 
 

εirs εkλµ (∂i Frk ∂λ Iµ s − ∂i Irk ∂λ Fµ s + Frk ∂i  ∂λ Iµ s − Irk ∂i ∂λ Fµ s) 
 

= εirs εkλµ (Frk ∂i  ∂λ I(µ s) − I(rk) ∂i ∂λ Fµ s),   (3.19) 
 

when one permutes the dummy indices in the first term suitably.  With that, it has been 
shown that the law of energy includes only the symmetric parts of all tensors that occur.  
The parentheses in the indices shall now be dropped. 
 We add (3.12) and (3.18), and a comparison with (3.8) will yield: 
 

Σi = vk σik + εirs εkλµ (Frk ∂λ I(µ s) − I(rk) ∂λ Fµ s)   (3.20) 
 
for the energy current, and furthermore that: 
 

W

t

∂
∂

= − k k ik ik ik ik ik ikv p F Iσ ε η ψ− + +ɺ ɺ ɺɺ .   (3.21) 
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 § 4. Lagrangian density and constitutive equations. – In order to bring a certain 
degree of order to matters here, we set: 
 

W = − pk vk + ψik Iik – L,    (4.1) 
and with (3.21), we will get: 
 

L

t

∂
∂

 = − k k ik ik ik ik ik ikp v F Iσ ε η ψ+ − + ɺɺ ɺɺ .   (4.2) 

 
 All kinematical quantities appear in (4.2) as temporal derivatives. 
 Now, since an energy density W [or, from (4.1), a Lagrangian density L] should exist, 
according to (4.2), one would need to have: 
 

k

L

v

∂
∂

= − pk , 
ik

L

ε
∂
∂

= σik , 
ik

L

η
∂

∂
= − Fik , 

ik

L

I

∂
∂

= ψik .  (4.3) 

 
Hence, L will have the form: 

L = L (vk , εik , ηik , Iik),     (4.4) 
 
and (4.3) will be the constitutive equations. 
 HAMILTON’s principle reads: 
 

1 2 3L dx dx dx dtδ ∫  = 1 2 3L dx dx dx dtδ∫  = 0,   (4.5) 

with 
δL = − pk δvk + σik δεik – Fik δηik + ψik δIik .   (4.6) 

 
 In general, the kinematical quantities vk , εik , ηik , Iik cannot be varied independently of 
each other, since from (3.17), one will have: 
 

δηik = εiαβ εkλµ ∂α ∂λ δεβλ ,    (4.7) 
and from (1.2): 

δIik = ( )1

2 i k k i ikv v
t

δ δ δε∂∂ + ∂ −
∂

.   (4.8) 

 
 Only vk and εik are free to be varied in (4.4), (4.5), (4.6).  The field equations that 
HAMILTON’s principle (4.5) will lead to can already be inferred from (4.6) with no 
knowledge of the constitutive equations (4.3).  The variation δvk yields: 
 

pk + ∂i ψik = 0,     (4.9) 
and the variation δεik yields: 

 σβµ − εiαβ εkλµ ∂α ∂λ Fik + βµψɺ = 0.   (4.10) 

 
However, those are the dynamical equations of the theory of dislocations. 
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 If we once more start from (3.21) and introduce the dual Lagrangian density L* by 
way of: 

W = − σik εik + Fik ηik – L*     (4.11) 
then we will have: 

L

t

∗∂
∂

 = k k ik ik ik ik ik ikv p F Iε σ η ψ− + −ɺ ɺɺ ɺ .  (4.12) 

 
 The variations δpk and δσik in δL* are once more coupled with δψik and δFik by: 
 

δpk = − ∂i δψik      (4.13) 
and 

δσik = εiαβ εkλµ ∂α ∂λ δFβµ − 
t

∂
∂

δψik ,   (4.14) 

 
such that the variation δψik will imply that: 
 

( )1
2 i k k i ikv v ε∂ + ∂ − ɺ − Iik = 0,    (4.15) 

 
and the variation δFik will imply that: 
 

ηik − εiαβ εkλµ ∂α ∂λ εβµ = 0.    (4.16) 
 
 However, those are the kinematical equations for the theory of dislocations, and 
generally in symmetric form.  Our theory then dispenses with a whole series of facts that 
would follow from the starting equations (1.1) and (1.2).  The data that is not utilized 
here first becomes meaningful in the context of a COSSERAT continuum with 
compatible curvatures [9]. 
 
 
 § 5. Outlook. – Both of the variational problems with the Lagrangian densities L and 
L* confirm that the postulate of the law of energy (3.8) leads to a “complete” and closed 
theory of dislocations.  Whether that theory is in a position to describe, say, the 
mechanics of an elastic-plastic crystal, depends upon the choice of constitutive equations 
(4.3).  If certain statements can also be made about the constitutive equations a priori 
then their ultimate form must be supported by experiments.  We can emphasize that an 
essential result of this new theory of dislocations is that constitutive equations must exist 
between impulse potentials and stress potentials, on the one hand, and dislocation 
densities and dislocation current densities, on the other.  In the statics of a continuum 
with dislocations, the stress potentials degenerate into stress functions that can often be 
quite useful in calculations, but mainly expendable.  In the sense of Lagrangian system 
mechanics (as HEUN and HAMEL [8] have envisioned it), the stress functions in the 
static case are “reaction forces” that prevent the dislocations from moving, and for that 
reason, they can do no work.  It is only when the dislocations are put into motion that the 
stress functions will become stress potentials and “impressed forces” whose physical 
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origins are expressed in the constitutive equations.  That suggests a comparison with the 
forces of static and kinetic friction. 
 The next problem will now be the computational investigation of the consequences of 
making the simplest assumption about the constitutive equations. 
 I would like to thank by colleague J. BAUMGARTE for stimulating discussions. 
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