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Summary

The continuum theory of moving dislocations is matheally analogous to MAXWELL's equations
of electrodynamics. This analogy shows that the prdsesdr theory of dislocations is incomplete and
must be supplemented by constitutive equations between dalaend kinematical quantities. MIE’s
generalized electrodynamics points the way to a Lagramigiasity. Whereas, in the static case, the stress
functions of the continuum are reaction forces with tdsk of preventing the motion of dislocations, they

become impressed forces in the field of moving dislonatand are connected with the dislocation density
by constitutive equations.

8 1. Introduction. — At this point in time, the linear continuum theorydidlocations
and internal stresses][consists of the system of three equations:

&ap 04 Bu = Dik, (1.1)
0 ik =y =i, (1.2)
0 gx-pVv, =0. (1.3)
In this:
B Distortion tensor, whose symmetric pgity = & IS the deformation
tensor

Vi Material velocity vector

Jo Mass density

Ok Stress tensor

Dik Dislocation density tensor

lik Dislocation current tensor

We call equations (1.1) and (1.2) thmematical equations, while (1.3) are the
dynamical equations.

(" Now deceased.
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In our notationsxi, Xz, X3 are the Cartesian coordinateg, is the unit tensor that is
alternating in all indicesg; = d / 0% , and the dot over a quantity means its partial
derivative with respect to tinte

HOOKE's law exists between stress and extension elastic body:

Ok = Aikim &m- (1.4)

H. GUNTHER [1] has shown that the system of equations (1.1) to @dad)be
integrated when one freely prescrilizgat one time-point ang for all time.

8 2. Maxwell's equations for the theory of dislocations- If one ignores the indek
in the basic equations (1.1), (1.2), and (1.3) therand v can be interpreted as the
LORENTZ four-potential of an electromagnetic fi€ld~ lix , B ~ Dik , while (1.3) seems
to be the analogue of the equation of continuity feradharge density. That analogy with
electrodynamics will become clearer when one elimgte “potentials’Zx andvk from
(1.1) and (1.2):
D, + &as0a 14 =0, 0iDi=0. (2.1), (2.2)

In these homogeneous “MAXWELL equations,” (2.1) is thealague of
FARADAY'’s law of induction. Equation (2.2) contains the gesdric statement that
dislocation lines are always closed or that they lbagin and end only on the outer
surface of the body, and it is analogous to the nonexdstof magnetic monopoles.

The inhomogeneous “MAXWELL equations” will appear whee dufills:

Wy~ &apOa P = — Tik, 0i =~ Px (2.3), (2.4)

identically in the “impulse potentialglix and the “stress potentialgiy .
In the conventional notations of MAXWELL'’s theoitie analogy here reads:

Charge density £ ~ negative impulse P Vi =Pk,
Current density S ~ stress Ok,
Charge potential D; ~ impulse potential WY,
Current potential H; ~ stress potential Pik -

One test for the correctness of this associatioio isalculate the analogues of the
LORENTZ force densityi and the power density:

fu = pEx + &m S Bm, (2.5)

A=SE, (2.6)
which are:

Fk =— pVi lik + &m A D (2.7)

N\ = Ok lik (28)

resp.
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The expressiorgum di Dmi is the well-known PEACH-KOEHLER force density,
which originates in the dislocation density in the stréeld P]. The first sum on the
right in (2.7) was found by KOSEVICH]. He interpreted it as the force density that
originates in the dislocation current densityn the velocity field.

We will encounter the expression (2.8) once more wiepresent the law of energy.
It is the power density that is transferred from ibe&lfof the moving dislocations to the
“matter” [4].

However, this impressive analogy will collapse whes eonsider the constitutive
equations (viz., material law) in both theories. An agaé to HOOKE's law (1.4) does
not exist in MAXWELL’s theory. The four-vector ofédHLORENTZ potential is only a
computational convenience. Things are different irthkbery of dislocations:

Lk andv in (1.1) and (1.2) are well-defined quantities that are couplegk andpx
by constitutive equations. In MAXWELL’s theory of mascopic electrodynamical
phenomena, it is known that constitutive laws exetveenD; andE;, on the one hand,
and H; andB; , on the other. If we were to try to draw an analogyhe theory of
dislocations here then the impulse and stress potegtialsgi , which have been only
computational conveniences, up to now, would have to be couptledh# dislocation
current densitylix and the dislocation densitpix by constitutive laws. Here, a
fundamental deficiency in our dislocation theory becoroksar, namely, that the
dislocation current densitiy (a measure of the number of dislocations that entera
volume element per second) must be given for all tifribe system of equations (1.1) to
(1.4) is to be integrable. However, from whence doee @ather that knowledge? Here,
we have only one-half of the theory before us. Theogyapoints to the way that one
must extend the theory to moving dislocations.

8 3. The law of energy— We shall first summarize the equations of the thedr
dislocations that include differentiations with respgedime:

-p, +0 gk=0, (3.1)
Dy + &ap0ala =0, (3-2)

—,B'ik+6i Vi = lik, (3.3)
l//ik_ ‘giaﬂaa ¢ﬂr< =~ Ok - (3.4)

Now if (as we presume) all quantities that enter thiese equations by way of their
spatial derivatives (hence, di, @i, li) are coupled to those quantities that appear in
time derivatives (namelyx, B« Dik, ¢) by constitutive equations then a closed system
of equations must arise (say, far, Gk, Dik, ¢ in which those quantities are coupled to
each other by way of their temporal and spatial derivatare that is integrable with the
prescribed initial conditions. Now, it follows fror8.R) that:

%(ai Di) =0, (3.5)
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and from (3.2) and (3.3) that:

2 (k= 8101 4) = O (3.6)
and from (3.1) and (3.4):

%(ai Ui+ = 0. (3.7)

However, those are, in essence, the remaining egsaiicthe theory of dislocations.
It one demands that they should be valid at a certagpomnt then they will be valid for
all times on the basis of the integrable system oftans(3.1) to (3.4).

All of this consists of only suspicions to begin withlowever, MIE’s generalized
electrodynamicsq], namely, “Die Grundlagen einer Theorie der Materpgdints the
way to the constitutive equations that we are stillsmg. We shall follow the clear and
concise presentation of that theory by H, WEWL [

MIE postulated that the energy is localizable in spacktane in such a way that a
law of energy of the form:

MW as=0 (3.8)
ot

would exist, wher&V is the energy density aiglis the energy current vector.
In order to get such an equation in our theory if diglona, we first multiply eq.
(3.1) byw and eq. (3.3) byik and add them:

=V P = Gy By +0i (Vi Gi) = Tic i - (3.9)

For later purposes, we define the analogue to POYNTIN®Isof electrodynamics
by multiplying (3.2) by¢x and (3.4) byl and then adding. After an intermediate
calculation, we will get:

P Dy + Ly + 0i (W Gi) = = Gk ik (3.10)

On the right-hand side of both equations (3.9) and (3.18)again recognize the
power density (2.8). In (3.10), it was inferred from tdeslocation field,” and in (3.9), it
was supplied by the “matter field”, or conversely.

We must now call upon an intermediate consideratioegand to the symmetry of
our tensors. The symmetry of the stress teror= oy requires that the impulse
potential ¢« in (2.3) and (2.4) must also be a symmetric tensor. h&urtore, the
symmetry ofdi has the consequence that the asymmetric stress pogatial (2.3)
must be replaced with:

P = 802 Fpu (3.11)

so with the BELTRAMI stress functidfs, = F,z. If we indicate the symmetric part of a
tensor by parentheses, as usual, then equation (3.9)nplil that:

= Vi B T éi +0i (W Gi) = Gik Lk » (3.12)
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and (3.10), with (3.11), will imply that:

‘gk/],uDika F,t I(ik)‘//ik+ 0i (‘girs Ik &y 0, FS.U) =~ Ok I(ik)- (3-13)

AViu

Now, one has:
€0, F,= 0,(5

iy ik

F/LuDAk)+Fik ‘gkA,ua/lDik' (3-14)
Due to the symmetry d¥«, the second summand on the right here can be writen a
F'k%(gk/l,ua/l I:.)i,u +£i/l,ua/l I:.)k,u) = I:ik ,7ik’ (315)

in which we have introduced KRONER'’s incompatibility t@nf7]:

Tk = %(gk/l,ua/l Dip +£i/1,ua/1 ka) . (3'16)
Due to (1.1), one will have:
Mk = &ap i 9a 03 By = Eap EiuOa0i Epy - (3.17)

We now use (2.1), (3.14), and (3.15), in order to put (3.18)tv& form:
Fo T + I(ik) //s 0i &rs Eu (Irk 02 F/IS —Fnc0, |/IS) =~ &k I(ik) . (3.18)

We shall now show that the symmetric pagigandl s of I andl,s, resp., can also
be substituted in the third summand on the left. Perfayie differentiation implies:

&irs S (0 Frc 04 1 ys— 0i 1k 04 Fus + Frc 01 0alys— 1 0i 04 Fus)
= &rs Sau (Frk 0i 04 lus — Iy 0i 04 Fuo), (3.19)
when one permutes the dummy indices in the first termaldyit With that, it has been
shown that the law of energy includes only the symmeiits of all tensors that occur.

The parentheses in the indices shall now be dropped.
We add (3.12) and (3.18), and a comparison with (3.8) wiltlyiel

2 = Vk Ok + &rs b (Frk 04 Lus) — ) 94 Fus) (3.20)
for the energy current, and furthermore that:

ow : ) .
E:_vkpk_a-ik Ex TRy 1y i - (3.21)
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8 4. Lagrangian density and constitutive equations= In order to bring a certain
degree of order to matters here, we set:

W:_kak+l//|k|ik—|—, (4.1)
and with (3.21), we will get:
oL ) . . .
E == PV T Oy ‘gik_Fik,7ik +¢Iik|ik' (4-2)

All kinematical quantities appear in (4.2) as temporaldéries.
Now, since an energy density[or, from (4.1), a Lagrangian denslty should exist,
according to (4.2), one would need to have:

oL oL oL oL
Eep, Z=a, = —Fi, 2= . 4.3
VL PR PR TS (@)

Hence,L will have the form:
L =L (W, &, i, liw), (4.4)

and (4.3) will be the constitutive equations.
HAMILTON'’s principle reads:

S| Ldx, dx, dxdt = [SLdx dx, dx,dt =0, (4.5)
with
A = p« O + Gk &k — Fik Ofi + i dik . (4.6)

In general, the kinematical quantitias &k, /i, lik cannot be varied independently of
each other, since from (3.17), one will have:

ik = &ap Eip 0a 01 OEpn, 4.7)
and from (1.2):
dik = %(ai ov, +0, 5\4)—%58”(. (4.8)

Only w and gx are free to be varied in (4.4), (4.5), (4.6). Thedfiequations that
HAMILTON's principle (4.5) will lead to can already beferred from (4.6) with no
knowledge of the constitutive equations (4.3). The vanahg yields:

Pk + 0 Y =0, (4.9)
and the variatiosy yields:
Opu — &ap &y 0a 04 Fir + Yy = 0. (4.10)

However, those are the dynamical equations of the tledfatiglocations.
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If we once more start from (3.21) and introduce the dugtdrajian density.” by
way of:

W = - g &k + Fix k=L (4.11)
then we will have:

oL"” _ . . .

E =V P —Ex O T Fik - Iik wik . (4-12)

The variationsp anddai in AL~ are once more coupled with4 and JFj by:

Pk = — 0i Ol (4.13)
and

0
OOk = Eap & 0a 0y Fpy — a&ﬂlh (4.14)

such that the variatiod will imply that:

(v, +0, V) =&~ lik =0, (4.15)

and the variatiodF will imply that:
Mk = &ap Eip0a 01 gy = 0. (4.16)

However, those are the kinematical equations forthieery of dislocations, and
generally in symmetric form. Our theory then dispenséis avivhole series of facts that
would follow from the starting equations (1.1) and (1.2).e Tata that is not utilized
here first becomes meaningful in the context of a SBESAT continuum with
compatible curvature$].

8 5. Outlook. — Both of the variational problems with the Lagrangiensitied. and
L" confirm that the postulate of the law of energy (3.8}i¢eto a “complete” and closed
theory of dislocations. Whether that theory is inpasition to describe, say, the
mechanics of an elastic-plastic crystal, depends uponhbice of constitutive equations
(4.3). If certain statements can also be made albeutdnstitutive equatiors priori
then their ultimate form must be supported by experimeWe. can emphasize that an
essential result of this new theory of dislocationth#ét constitutive equations must exist
between impulse potentials and stress potentials, oroniee hand, and dislocation
densities and dislocation current densities, on the otherthe statics of a continuum
with dislocations, the stress potentials degeneratesiness functions that can often be
quite useful in calculations, but mainly expendable. h; gense of Lagrangian system
mechanics (as HEUN and HAMEIS][ have envisioned it), the stress functions in the
static case are “reaction forces” that prevent téodations from moving, and for that
reason, they can do no work. It is only when the dalons are put into motion that the
stress functions will become stress potentials and “iegeee forces” whose physical
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origins are expressed in the constitutive equations. Suwgests a comparison with the
forces of static and kinetic friction.

The next problem will now be the computational invesigaof the consequences of
making the simplest assumption about the constitutjuatons.

| would like to thank by colleague J. BAUMGARTE for stilating discussions.
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