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 Summary. – The kinematic and dynamical equations of a Cosserat continuum with moving 
dislocations assume the same form as Maxwell’s equations when one makes use of the differential 
operators Grad, Div, and Rot of motor analysis. 
 
 
 1. Introduction . – It is known that in a coherent system of units Maxwell’s equations 
for the electromagnetic field can be given a form in which no constants or parameters 
appear any more that would pertain to the properties of a particular medium.  With the 
conventional notations, one will then have: 
 

rot E +
t

∂
∂

B = 0,  div B = 0,   (1.1) 

 

rot H −
t

∂
∂

D = s,  div D =ρ .   (1.2) 

 
Furthermore, one has: 

f = ρ E + s × B,    (1.3) 
 

λ = s ⋅ E     (1.4) 
 
for the four-vector of the Lorentz force f and the power density λ, or in coordinate 
notation: 

fk = ρ Ek + eklm sl Bm ,     (1.5) 
 

λ = sl El .     (1.6) 
 

                                                
 (*) Dedicated to Herrn Prof. Dr. Luigi Sobrero, Trieste, on his 60th birthday. 
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 The impressive elegance of these equations, which encompass the vast complex of 
macroscopic electromagnetic phenomena, has also defined the yardstick for other field 
theories of physics, and in particular, it has also led to the explanations for complicated 
connections in continuum mechanics by drawing upon electromagnetic analogies.  One 
finds a wealth of examples for this in volume 2 of the brilliant Feynman lectures on 
physics.  Hence, in the still-young continuum theory of dislocations and internal stresses, 
one also frequently refers to analogies to electromagnetic phenomena, such as when one 
explains the laws of vortices in hydrodynamics as examples of Ampère’s law between 
current density and the magnetic field.  Our present exposition shall now show that not 
only are individual analogies between the theory of dislocations and Maxwell’s theory 
present here and there, but that both theories are mathematically isomorphic, moreover.  
Generally, that isomorphism exists only when one considers the theory of dislocations in 
a Cosserat continuum.  In it, any mass “point” has the degrees of freedom of a rigid 
body, so it possesses orbital momentum and spin.  Along with force stresses, moment 
stresses can appear.  The deformations of the continuum are described by two asymmetric 
tensors [6].  However, the kinematic and dynamical equations of Cosserat continuum are 
consistently clearer than those of the classical continuum.  There are cases in which the 
degenerate equations of the classical continuum first become understandable when one 
considers the corresponding equations of the Cosserat continuum. 
 
 
 § 2. Notations. – All indices run from 1 to 3.  The summation convention is observed.  
εikl is the unit tensor that is alternating in all indices.  We employ Cartesian coordinates 
x1, x2, x3 and the abbreviation ∂i = ∂ / ∂xi throughout. 
 The follow presentation will be based upon a Cosserat continuum.  It has been shown 
that the kinematical and dynamical equations of that continuum can be written quite 
clearly when one appeals to the following symbolism [1, 2, 3, 4]: 
 

Grad 

1

2

 
 
 
 

a

a
 ≡ 

1

2 1

,

,

i k

i k ikl k

a

a aε

 ∂

 ∂ −

     (2.1) 

 

Rot 

1

2

 
 
 
 

A

A
 ≡ 

1

2 1

,

( ,

ikl k kl

ikl k lm mkn ln

A

A A

ε

ε ε

 ∂

 ∂ +

    (2.2) 

 

Div 

1

2

 
 
 
 

R

R
 ≡ 

1

2 1

,

,

i ik

i ik klm lm

R

R Rε

 ∂

 ∂ +

     (2.3) 

 
and as one can confirm by a simple calculation, the two identities: 
 

Div Rot ≡ 0, Rot Grad ≡ 0    (2.4), (2.5) 
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exist between those three differential operators. 
 
 
 § 3. Basic dynamical equations and stress functions. – The equations of the 
continuum read: 

Div 
 
 
 

σσσσ
µµµµ

= 
ρ
θ
 
 
 

v

s

ɺ

ɺ
.     (3.1) 

 
σik and µik are the asymmetric tensors of the force and moment stresses.  On the right-
hand side of (3.1), vk and sk mean the velocity and angular velocity, resp., of a mass 
element whose density is ρ (x1, x2, x3) and whose spin is θ (x1, x2, x3) s.  If we restrict 
ourselves to linearity (a nonlinear theory of the Cosserat continuum still does not exist) 
then we will have to replace the total derivatives vɺ  and sɺ  with ∂v / ∂t and ∂s / ∂t, resp. 
 From W. Günther [5], the condition for static equilibrium: 
 

Div 
 
 
 

σσσσ
µµµµ

= 0      (3.2) 

 
can be fulfilled identically in the eighteen stress functions ϕik , Φik by the Ansatz: 
 

 
 
 

σσσσ
µµµµ

 = Rot 
 
 
 

ϕϕϕϕ
ΦΦΦΦ

.     (3.3) 

 
In order to fulfill the inhomogeneous equations (3.1), one now sets: 
 

 
 
 

σσσσ
µµµµ

= Rot 
   

−   
   

ɺ

ɺ

ϕ ψϕ ψϕ ψϕ ψ
Φ χΦ χΦ χΦ χ

     (3.4) 

 
so the tensor-pair ψik , χik must then satisfy the equations: 
 

Div 
 
 
 

ψψψψ
χχχχ

 = − 
ρ
θ
 
 
 

v

s
.     (3.5) 

 
The dots in (3.4) again mean partial derivatives with respect to time.  One already sees 
the analogy between (3.4) and (3.5) and the inhomogeneous Maxwell equations (1.2).  
The continuity equation of the charge density: 
 

t

ρ∂
∂

+ div s = 0      (3.6) 

 
in them corresponds to (3.1) here. 
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 § 4. The kinematic equations of the incompatible continuum. – The deformations 
of a Cosserat continuum are described by two asymmetric εik , κik .  In a compatible 
continuum, they are defined by: 
 

 
 
 

κκκκ
εεεε

 = Grad 
 
 
 u

ωωωω
,     (4.1) 

 
such that, from (2.6), one will have: 
 

Rot 
 
 
 

κκκκ
εεεε

 = 0.      (4.2) 

 
In (4.1), uk and ωk mean the vector fields of the infinitesimal displacement and rotation of 
the volume element, and one will have: 
 

 
 
 

ɺ

ɺ

κκκκ
εεεε

 = Grad 
 
 
 

s

v
.     (4.3) 

 
One will find an intuitive interpretation of the tensors εik and κik in [6]. 
 An incompatible continuum is characterized by the fact that (4.1), (4.2), and (4.3) are 
no longer true.  In place of (4.2), one now has [5]: 
 

Rot 
 
 
 

κκκκ
εεεε

 = 
 
 
 

B

D
, Div

 
 
 

B

D
 = 0,   (4.4), (4.5) 

 
in which (4.5) follows from (4.4), due to the fact that Div Rot ≡ 0.  W. Günther [5] has 
called Bik and Dik incompatibility tensors.  They are the roots of the fact that no unique 
field of rotation and translation vectors exist in such a continuum.  In the continuum 
theory of displacements, Bik and Dik are the dislocation densities that one calls 
disclinations and dislocations [7].  Bik describe rotational dislocations (torsional and 
bending dislocations), while Dik describe translation dislocations (screw and edge 
dislocations). 
 (4.5) is analogous to (1.1)2 .  It is known that the two homogeneous Maxwell 
equations (1.1) can be fulfilled by the four-potential A0 , A: 
 

B = rot A, E = grad A0 – 
t

∂
∂

A.   (4.6)(4.7) 

 
 One knows that (4.4) corresponds to the relation (4.6).  From the analogies that have 
been established up to now, we can extend equation (4.3) to the incompatible continuum.  
If one recalls (4.7) then that will come about by way of: 
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 
 
 

S

I
 = Grad 

   
−   

   

s

v

ɺ

ɺ

κκκκ
εεεε

.    (4.8) 

 
Due to the fact that Rot Grad ≡ 0, it will follow from (4.8) and (4.4) that: 
 

Rot 
  

+   
   

S B

I D

ɺ

ɺ
 = 0,     (4.9) 

 
in analogy with (1.1)1 .  We can then speak of the “Maxwell equations” for the theory of 
dislocations.  The tensors Sik and I ik in (4.8) will be called dislocation current densities [8, 
9], which is, I believe, an unfortunate choice of terminology.  A body possesses 
dislocation densities Bik and Dik in the unloaded state.  If a large enough external load is 
applied then the dislocations will be put into motion and will then generate new 
dislocations; the body will deform plastically.  That process will be described Bik and Dik .  
From (4.8) or (4.9), the tensors Sik and I ik are a measure of how many dislocations enter 
or exit a volume element per unit time. 
 
 
 § 5. Discussion of the analogy. – On the grounds of clarity, we shall write down all 
of the equations for the linear theory of dislocations one more time: 
 

Rot 
t

   ∂+   ∂   

S B

I D
= 0,  Div

 
 
 

B

D
= 0,   (4.9), (4.5) 

 

Rot 
t

   ∂−   ∂   

ϕ ψϕ ψϕ ψϕ ψ
Φ χΦ χΦ χΦ χ

 = 
 
 
 

σσσσ
µµµµ

, Div 
 
 
 

ψψψψ
χχχχ

= − 
ρ
θ
 
 
 

v

s
.  (3.4), (3.5) 

 
A Lorentz gauge for the four potential, as one would find in the field theory of 
electromagnetism, is lacking here, since the gradient in (4.8) describes the state of 
deformation velocity of the continuum that actually exists.  sk and vk must then coincide 
in (4.8) and (3.5). 
 The differential operators that were introduced in (2.1), (2.2), (2.3) stem from the 
motor calculus [2].  In that calculus, the scalar product of the two motors a and b is 
defined by: 

a ⋅⋅⋅⋅ b = 

1 1

2 2

   
   ⋅
   
   

a b

a b
= 

1 2 2 1

⋅ + ⋅a b a b = 
1 2 2 1

k k k ka b a b+ .   (5.1) 

 
For that reason, the analogue to the Lorentz force (1.5) can be found as follows: 
 

 Fk  = − kj mji li
klm

kj mji li

S Bv

I Ds

ρ σ
ε

θ µ
      

⋅ + ⋅      
      
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  = − ρ vi Iki – θ si Ski + εklm (σli Dmi + µli Bmi) .    (5.2) 

 
The expression εklm σli Dmi is known as the Peach-Koehler force, which acts upon the 
dislocation Dik , while εklm µli Bmi is the force that acts upon the disclination Bik .  The first 
two summands in (5.2) are the forces on the dislocation current densities [9].  One finds 
the analogue to (1.6), namely, the power density, in an entirely corresponding way [9]: 
 

Λ = 
   

⋅ ⋅   
   

S

I

σσσσ
µµµµ

 = σik Iik + µik Sik .    (5.3) 

 
G. Kluge [9] has shown that σik Iik is precisely the work that is done in a moving singular 
dislocation line by the Peach-Koehler force. 
 The Maxwell equations (1.1), (1.2) of the electromagnetic field must be extended by 
material laws (viz., constitutive equations), whether one is dealing with empty space or a 
material medium.  As one knows, such material laws can be exceptionally complicated 
(think of ferromagnetic bodies). 
 Corresponding statements will be true for the Maxwell equations of moving 
dislocations.  We will be entering into virgin territory when we pose the question of what 
connection exists between, for example, the stress functions and the dislocation densities.  
Let us hope that the analogy that was discovered here might be useful in the context of 
the open, and certainly complicated, problems of the theory of dislocations.  Perhaps 
Mie’s electrodynamics will show the way [10] (*). 
 
 The impetus for this work came from the recently-appearing publication of G. Kluge 
[9], which has been referred to quite often here, and we have adopted his notations here 
throughout.  Without wishing to diminish the value of Kluge’s work, it must be said that 
his interpretation of the tensor Bik as a measure of the “foreign matter” (following the 
example of other authors [8]) is erroneous.  As we said above, Bik represents the density 
of rotational dislocations – viz., disclinations.  Other complications arise from the quite 
correct, but unnecessarily complicated, stress functions.  Moreover, it was not observed 
that the deformation tensor of the Cosserat continuum is asymmetric.  However, all of 
that can be easily repaired, and that should not diminish the meaning of that work as a 
foray into hitherto-unknown territory.  A critical inspection of Kluge’s work would lead 
to the analogy that was presented here. 
 
 
 
 
 
                                                
 (*) Added by the editor: The author permits me to refer to his next-appearing papers: 
  “Maxwell-Gleichungen, Energiesatz und Lagrangedichte in the Kontinuumstheorie der 
Versetzungen,” Acta Mechanica 10 (1970), 59-66. 
 “Eine Feldtheorie der Versetzungen im COSSERAT-Kontinuum,”  Zeit. f. Angew. Math u. Phys. 20 
(1969), 891-899. 
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