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Summary. — The kinematic and dynamical equations ofCasserat continuum with moving
dislocations assume the same formMaxwell’'s equations when one makes use of the differential
operators Grad, Div, and Rot of motor analysis.

1. Introduction. — It is known that in a coherent system of ultexwell’s equations
for the electromagnetic field can be given a form imcolk no constants or parameters
appear any more that would pertain to the propertiespafriégcular medium. With the
conventional notations, one will then have:

rotE +%B =0, divB =0, (1.2)
0~ _ o
rotH _ED =5, divD =p. (1.2)
Furthermore, one has:
f=pE +sxB, (1.3)
A=slE (1.4)

for the four-vector of thd.orentz force f and the power density, or in coordinate
notation:
fk:pEk‘l'e«ImS Bm, (1-5)

A=sE. (1.6)

() Dedicated to Herrn Prof. Dtuigi Sobrero, Trieste, on his 60birthday.
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The impressive elegance of these equations, which encothgasast complex of
macroscopic electromagnetic phenomena, has also ddfeeyardstick for other field
theories of physics, and in particular, it has alsbttethe explanations for complicated
connections in continuum mechanics by drawing upon electyoetie analogies. One
finds a wealth of examples for this in volume 2 of trdliant Feynman lectures on
physics. Hence, in the still-young continuum theorgisfocations and internal stresses,
one also frequently refers to analogies to electroetagphenomena, such as when one
explains the laws of vortices in hydrodynamics as eXxasnpf Ampere’'s law between
current density and the magnetic field. Our present éx@oshall now show that not
only are individual analogies between the theory obdations andMaxwell’s theory
present here and there, but that both theories are matically isomorphic, moreover.
Generally, that isomorphism exists only when one consither theory of dislocations in
a Cosseratcontinuum. In it, any mass “point” has the degreefreaddom of a rigid
body, so it possesses orbital momentum and spin. Albatig force stresses, moment
stresses can appear. The deformations of the contiateigescribed by two asymmetric
tensors §]. However, the kinematic and dynamical equationS@dseratcontinuum are
consistently clearer than those of the classicatiocoum. There are cases in which the
degenerate equations of the classical continuum firstneamderstandable when one
considers the corresponding equations of@bsseratcontinuum.

8 2. Notations.— All indices run from 1 to 3. The summation convemig®observed.
& Is the unit tensor that is alternating in all indic&¥e employ Cartesian coordinates
X1, X2, X3 and the abbreviatiosh =0 / 9% throughout.

The follow presentation will be based upo@@sseratcontinuum. It has been shown
that the kinematical and dynamical equations of thatimaunin can be written quite
clearly when one appeals to the following symbolidn?®][ 3, 4]:

1 1
a 0,8,
Grad| , | = , . (2.1)
a ai & ~ & &
1] a 1
A E ,
Rot| /|=4¢ ™°F A;' . (2.2)
_A_ gikl (ak Am+£mkn Aln’
1] a 1
R i 1
Div |, |=4 Rzk . (2.3)
_R_ ai I%k-+_£klm Rm’

and as one can confirm by a simple calculationjuwleidentities:

Div Rot=0, Rot Gradc=0 (2.4), (2.5)
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exist between those three differential operators.

8 3. Basic dynamical equations and stress functions: The equations of the
continuum read:
Div {a}: {p q 3.1)
y7i s

gk and iy are the asymmetric tensors of the force and montezgses. On the right-

hand side of (3.1)yk andsc mean the velocity and angular velocity, resp., of asmas

element whose density 3 (X1, X2, X3) and whose spin i¢ (X1, X, X3) S. If we restrict

ourselves to linearity (a nonlinear theory of thesseratcontinuum still does not exist)

then we will have to replace the total derivativesind $ with dv / ot andds/ dt, resp.
FromW. Gunther [5], the condition for static equilibrium:

Div {a} =0 (3.2)
U

can be fulfilled identically in the eighteen stressdtionsgy , @i by the Ansatz:

MR

In order to fulfill the inhomogeneous equations (3.1), e sets:
o
et}
H | X
SO the tensor-pawi , Xk must then satisfy the equations:

Div B’j - {Zﬂ (3.5)

The dots in (3.4) again mean partial derivatives witdpeet to time. One already sees
the analogy between (3.4) and (3.5) and the inhomogerdaxaell equations (1.2).
The continuity equation of the charge density:

9\ divs=0 (3.6)
ot

in them corresponds to (3.1) here.
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8 4. The kinematic equations of the incompatible continuum- The deformations
of a Cosseratcontinuum are described by two asymmesic, «x . In a compatible
continuum, they are defined by:

m . Grad{w} (4.1)
€ u

such that, from (2.6), one will have:

Rot m -0, 4.2)

€

In (4.1),uc and cx mean the vector fields of the infinitesimal displaeat and rotation of
the volume element, and one will have:

m . Grad{s] (4.3)
E \Y

One will find an intuitive interpretation of the tems@ix andxi in [6].
An incompatible continuum is characterized by the faat th.1), (4.2), and (4.3) are
no longer true. In place of (4.2), one now I§s [

k] [B 87 _
MUEREEHE 069

in which (4.5) follows from (4.4), due to the fact that Ret= 0. W. Gunther [5] has
called Bix and Dy incompatibility tensors.They are the roots of the fact that no unique
field of rotation and translation vectors exist in sucleontinuum. In the continuum
theory of displacementsBx and Dy are the dislocation densities that one calls
disclinations and dislocations[7]. By describe rotational dislocations (torsional and
bending dislocations), whildDy describe translation dislocations (screw and edge
dislocations).

(4.5) is analogous to (11) It is known that the two homogeneoltaxwell
equations (1.1) can be fulfilled by the four-potentigl A:

B =rotA, E = gradA —%A. (4.6)(4.7)

One knows that (4.4) corresponds to the relation (4/6)m the analogies that have
been established up to now, we can extend equation (418 tocompatible continuum.
If one recalls (4.7) then that will come about by wéy o
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-onf i)

Due to the fact that Rot GradO, it will follow from (4.8) and (4.4) that:

s] [8] _
Rot L }{D} =0, (4.9

in analogy with (1.1). We can then speak of thelédxwell equations” for the theory of
dislocations. The tenso8 andli in (4.8) will be calleddislocation current densitigs,

9], which is, | believe, an unfortunate choice of teroddgy. A body possesses
dislocation densitieBix andDi in the unloaded state. If a large enough external load is
applied then the dislocations will be put into motiord amill then generate new
dislocations; the body will deform plastically. Thabcess will be describdg andDj .
From (4.8) or (4.9), the tenso8 andli are a measure of how many dislocations enter
or exit a volume element per unit time.

8 5. Discussion of the analogy- On the grounds of clarity, we shall write down all
of the equations for the linear theory of dislocations more time:

Rot _S}+i{ B}: 0, Div{B}: 0, (4.9), (4.5)
1] ot|D D

Rot_q’}i{ﬂ - {o] Div {ﬂ:— {pv] (3.4), (3.5)
|| ot X 11 X fs

A Lorentz gauge for the four potential, as one would find in the figldory of
electromagnetism, is lacking here, since the gradient4i8) describes the state of
deformation velocity of the continuum that actuallyséi sc andvk must then coincide
in (4.8) and (3.5).

The differential operators that were introduced in (2(2)2), (2.3) stem from the
motor calculus [2]. In that calculus, the scalar prodiicthe two motorsa andb is
defined by:

E) 1 2 21 1 2 21
alb= , |=a+alb =ab+ah. (5.1)
b

SRR

For that reason, the analogue to ltheentz force (1.5) can be found as follows:

= e
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== pV ki— 05 Si + &m (Gi Dmi + L4 Bmi) . (5.2)

The expressioum gi Dmi is known as thé&each-Koehlerforce, which acts upon the
dislocationDy , while gqm i Bmi is the force that acts upon the disclinatigyn. The first
two summands in (5.2) are the forces on the dislocatiorent densitief9]. One finds
the analogue to (1.6), namely, the power density, enéirely corresponding wag[:

N= Hj DIEIS} = Ok lik + Lk Sk - (5.3)

G. Kluge [9] has shown thati lik is precisely the work that is done in a moving singular
dislocation line by th&each-Koehlerforce.

The Maxwell equations (1.1), (1.2) of the electromagnetic field mustix¥pended by
material laws (viz., constitutive equations), whether isrgealing with empty space or a
material medium. As one knows, such material laws lza exceptionally complicated
(think of ferromagnetic bodies).

Corresponding statements will be true for thExwell equations of moving
dislocations. We will be entering into virgin terrgowhen we pose the question of what
connection exists between, for example, the strgsgibns and the dislocation densities.
Let us hope that the analogy that was discovered higiat tme useful in the context of
the open, and certainly complicated, problems of theryheb dislocations. Perhaps
Mie’s electrodynamics will show the way(] ().

The impetus for this work came from the recently-appgasublication oiG. Kluge
[9], which has been referred to quite often here, andave hdopted his notations here
throughout. Without wishing to diminish the valuekdfige’s work, it must be said that
his interpretation of the tens@&y as a measure of the “foreign matter” (following the
example of other author8]) is erroneous. As we said abo®y, represents the density
of rotational dislocations — viz., disclinations. Qtleemplications arise from the quite
correct, but unnecessarily complicated, stress furstidvioreover, it was not observed
that the deformation tensor of tkBsseratcontinuum is asymmetric. However, all of
that can be easily repaired, and that should not @mithe meaning of that work as a
foray into hitherto-unknown territory. A critical insge®n ofKluge’s work would lead
to the analogy that was presented here.

() Added by the editor: The author permits me to reféismext-appearing papers:
“Maxwell-Gleichungen, Energiesatz und Lagrangedichte the Kontinuumstheorie der
Versetzungen,” Acta Mechanid® (1970), 59-66.
“Eine Feldtheorie der Versetzungen im COSSERAT-KontintGufejt. f. Angew. Math u. Phy20
(1969), 891-899.



10.

Schaefer — Maxwell's equations for dislocations moving Cosserat continuum 7

References

H. Schaefey “Die  Spannungsfunktionen eines Kontinuums  mit
Momentspannungen,” Bull. Acad. Pol. 3&(1967), 63-67, 69-73.

H. Schaefer “Analysis der Motorfelder im Cosserat-KontinuunZAMM 47
(1967), 319-328.

S. Kessel “Die Spannungsfunktionen des Cosserat-Kontinuums,” ZAMW
(1967), 329-336.

S. Kessel“Stress Functions and Loading Singularities for thenitefly-Extended
Linear Elastic-lIsotropic Cosserat ContinuumMechanics of Generalized
Continug ed., E. Krdner, Springer-Verlag, 1968.

W. Gulnther, “Zur Statik und Kinematik des Cosserat-Kontiuum,” Abh. d.
Braunschweig. Wiss. Ge$0 (1958), 195-213.

H. Schaefer “Das Cosserat-Kontinuum,” ZAMMY7 (1967), 485-498.

K. Anthony, U. Essmann A. Seeger H. Trauble, “Dislocations and the
Cosserat Continuum with Incompatible Rotationsléchanics of Generalized
Continug ed. E. Kroner, Springer-Verlag, 1968.

H. Gdinther, Zur nichtlinearen Kontinuumstheorie bewegter Versetzungen
Akademie-Verlag, Berlin, 1967.

G. Kluge, “Zur Dynamik der allgemeinen Versetzungstheorie bei
Berucksichtigung von Momentenspannungen,” Int. J. Eng.7§&B69), 169-182.

H. Weyl, Raum-Zeit-Materie4™ ed., Springer-Verlag, Berlin, 1921, pp. 186.




