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Analysis of motor fieldsin Cosserat continua

By H. SCHAEFER

Translated by D. H. Delphenich

The motor calculus that was developed by R. v. Mises ablisped in this journal more than
forty years ago is extended to motor analysis. Thasstigations were stimulated by the study
of the vector and tensor fields of the Cosserat coantn whose smallest elements are rigid
bodies. All of the displacement, strain, and stress quemtippear to be differential forms that
constitute the six coordinates of a motor in each cade analysis of such motor fields is the
geometry of an affine connection that is based on trelpladisplacement of the moment vector.
An effective tool for the development of the motordi@analysis turned out to be the exterior
calculus of alternating differential forms, the knowled@evhich is not presupposed in this paper.
The concepts of the absolute differential and codiffeardf the connection will lead to a
complete representation of the motor differentiahferin a simple manner, and especially to a
complete representation of stresses and couple stresseeds/functions.

1. Introduction

The infinitesimal displacements and rotations of tleements of a classical point-
continuum may be described by the vector fielti, X, X3) in the form of the
displacement vector, from which one defines the rotatieator (i.e., the position-
dependent infinitesimal mean rotation of the displacgmector field)¢ = (1/2) rotu.
By contrast, in the COSSERAT continuum, whose srsakdements are rigid bodies,
there exists an autonomous rotation vector figltki, X2, X3) that is generally different
from the field (1/2) rotu. (The difference of the two rotation vector fieldside$ a
skew-symmetric part of the deformation tensoy Any point &, Xz, X3) of the
displacement fields of a COSSERAT is therefore @iased with a vector pap, u, and
the infinitesimal deformation state will be describedhmsytensor pairl]:

(1.1) Xap=0a @5, Xap=0aUs— Eapr P .

(We employ Cartesian coordinates is the RICCI tensor that is alternating in all gre
indices.)

A force system on a rigid body may be reduced to atgi- i.e., it may be
represented by a unit ford¢e whose line of action goes throughand by a moment
vector Mg . The infinitesimal displacement field of a rigi@édy is determined by the
rotation vecto and displacement vectarandug at the poin©.
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One calls such vector paigs, up andK, My that are associated with a vector pairs
“screws,” “rods,” or “motors;” the paiK, My is also called a “dyname.” In 1924, in
Band 4 of this Zeitschrift, R. v. Miseg][developed the analogy between vector calculus
and motor calculus, defined a scalar and motor product, eaigdtrthe calculus of motor
dyadics. Today, after a span of more than fortygjeane must admit that this motor
calculus is made use of in only a few cases; it h@estl been forgotten. The reader of
the current publications is advised to browse through thé& wbv. MISES. In it, the
consequent use of the “reduced” scalar product in the ricdtiion of the &6 motor
matrices leads to an unconventional matrix calculug twmplicates the lecture
considerably, which is, however, somewhat mitigated byfalet that in the last decade
processes have been developed for dealing with transiairnces in the dynamics of
frameworks (in which the motor algebra has also beed)usThe motor calculus of v.
MISES is actually only a motor algebra with scalar amdomproducts, and one finds no
analogue there of the field operators grad, div, rot of veatalysis. A true motor field
was considered only in a different place (pp. 199, eq. 19a, thei presentation of the
equilibrium conditions of a continuum — today, we dadl COSSERAT continuum — that
is endowed with force and moment stresses. In faetpeed for a motor analysis first
emerges from the concept of a COSSERAT continuum wghmotor fields. The
objective of this paper is to develop such a thing. Thérgjgroint is the knowledge that
the vectorial and tensorial equations of the statick kanematics of the COSSERAT
continuum, which always appear in pairs, can be friyptidéscribed by the introduction
of the six operators Grad, Div, Gradiv’, Rot in such a way that all calculations would
be simple and intuitive. However, the author firstceacled in finding the basis for this
empirically-discovered calculus by perusing the recentraiire on alternating
differential forms. How they are connected with thetor calculus will be established in
the next sections.

2. Theparallel translation of moment vector s as an affine connection
on themotor field

Let a motor field:
(2.1) V(X)

_| v

V(X)

1
be given on the three-dimensional Euclidian spggtevherev is the first vector of the
2
motorv and v is the second vector, and, as we shall establisrmtimeent vector o¥.
1
In order to stimulate the discussion that follows, weld like to suggest that is the

2
infinitesimal rotation vector andr is the likewise infinitesimal translation vector of a
COSSERAT continuum. If the state of displacemerthexrneighborhooda + dx of the
field pointx is that of a rigid body then one has:
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2.2) V(x + dx) = \2/(x+dx) _| V()

V(X +dx) \2/(x) +\1/(x)><dx

Obviously, no deformation of the continuum in the neighbodhofx is linked with this
particular state of displacement, and we will be inditeregard the motosgx) in (2.1)
andv(x +dx) in (2.2) as “kinematically equivalent” or “equal.”

A second example: Any system of forces on a rigidybedl be “reduced” to the

1 2
point x and will be represented there by the force vestaand the moment vector
and therefore, by the dyname (2.1). A reduction at the pointx is given by (2.2).
(2.10) and (2.2) are “statically equivalent” representatadnbe same dyname.

This concept of the equivalence of motors that is impdirdn rigid bodies defines a
“parallel translation,” in the sense of differentiabgeetry. In the six-dimensional vector
spaceV® (which we also calnotor spack the actual position-dependent change in the
motor field will be described by the absolute differentiadhe translation:

2.3) DV(X) = \2/(x +dx) - v2(x)

1
V(X +dx) —[v(X) + v(X) % dx]
or:
d 1
(2.4) pv=|". |
dv+dxxv

We regard a field witlbv = 0 as “constant;” all motors of the field are “pardildn our
examplesDv is a measure of the deformation of the continuunmerdeviation from the
equilibrium state in the infinitesimal neighborhoodtué field pointx. While preserving
the Cartesian coordinates x,, xs of E3, we give (2.4) the usual form from differential
geometry of an affine (linear) connectionvh

(2.5) DV' = dV +1; d¥ V.

1 2
In this, we have enumerated the coordinates of theorseeat and v from 1 to 6.
Furthermore, in further calculation, the Latin indicein from 1 to 6 and the Greek
indices, from 1 to 3. One thus has:

(2.6) v=(V)=(v) forr=p=123,

2
v=()=(v") forr=4,560= 1,23

We contrast this contravariant indexing with the c@mrone:
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(2.7) Dvi =dv - I, dx’y,

with:

2

v=(v.)=(v,) forr=p=123,

(2.8) ) ’
V=(Vv,)=(V,,) forr=4,560=122

1 2
The sequence of vectowsand v in (2.8) has been switched with respect to (2.6)
There exists a mechanically meaningful scalar peoah V°: thework product

Force motoifdisplacement motor = forda@lisplacement + momeftotation,

so:
1 2 2 1 3
(2.9) VU = Vou+vou =V Uy + V7™ Uy,

is invariant under parallel translation:
D(V u) =u DV +v; DU =d(V' u) + (MY =Ty V) df =d(v u).
We associate the scalar product (2.9) with the sgtrienbilinear form:

(2.10) Adrs v US, s = QAgr,

by whichV° takes on a metric. A comparison of (2.10) witt9}2and (2.8) with (2.6)
yields:

(2.11) asV U= a3 VU + aps o v U,
such that:
(2.12) as=asr=0 upto apw3= s, 8p30= o -
In matrix form:
0'E
(2.13) frs) = {ETE} :

Since deE = 1, one has de&is = — 1, so the metric is indefinitea,s can be brought into
the form:

(2.14) as = & Js,

with & =+ 1 forr =1, 2, 3 and; =— 1 forr = 4, 5, 6 by an orthogonal transformation in
\P. This brief consideration of the geometric stanetof\° will suffice here.

Sinceass = a"°, as one easily confirms, for this metric the cdamtr coordinates of a
motor can be very easily converted into contravdries; e.g.:

(2.15) V=a” 7 Vo3 = Vs, Vo= Apma VI = VA,
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For the determination of the translation quantifies, we compare, e.g.:

(2.16) DV = dV’, DV =dv?*® + 4% dx v/,
with (2.4):
(2.17) Dv = [d\’p }

dv, + e, dX ¥ |’

in which one must observe (2.6) and (2.15). Just like (2.h6)sécond equation of
(2.16) becomes:

(2.18) DV, = dv, + @, ova O 52 dX V/,
and upon comparing this with (2.17), one finds:

F.ovs O = Ep
or:

(2.19) ro°=a’""e,|.

All other '), are zero. The use of the covariant form (2.7) ofabeplute differential,
along with (2.19), likewise leads to (2.17).

The absolute differential of the affine connectioViris given by (2.5), (2.19), and:
1
v=(V)=(v) forr=p=123,
2
(2.20) v=(v')=(v*"?) forr=4,560=1,2,3

=(V,).

As a result of (2.5), a motor field W possesses the covariant derivative:
(2.21) OpV =0pV + TV,
in which, from (2.12), (2.19):

FZA =0 and Fgf =€m -

3. Thedifferential forms of the Cosserat continuum and the alternating calculus.

The deformation state of the continuum will be desctiby the tensor pak;; :
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(3.1) {Eﬂw:)(ﬂm’ (distortion),

E,, =&, (length and angle deformation, relatregation).

E; is the covariant derivative of the displacementamo

v’ = @” (rotation vector),
(3.2) { ¢’ ( )

v, =U, (displacement vectol

According to (2.20) and (2.21), we obtain:

(3.3) {E?’ =X =047,

_ _ _ P
B = €5 =0,5U, — 650"

We denote the differential forms of first degrieg’ = E; d>®, which is the absolute
differential of the displacement motor, by:

(3.4) £ = E;dxX,

and call them thdifferential forms of the deformatiorThe absolute differentif@e will
give the compatibility conditions for the defornaatistate (cf. 4.1). We shall make a few
brief explanations of the required calculus anadhtiefer to the literature [3, 4, 5, 6, 7].

1 1
The differentiald w of a differential form of first degree = az d>¢ is defined by:

1
dd® =0, dw=(day)d¥=d azdx¥ ~d¥.
In this, ~ (wedge) is the sign of “exterior” mulligation. One has:
X A =—d¥ A dx,

and naturallydx” A dx” = 0. The volume element B is dV = dx' ~ d¥ ~ dx’ and the
vectorial surface element @ = (dx¢ ~ dxC, d ~ dx, dx' ~ dxé) = (dFy, dF», dFs), such
that one has:
dFz = 1 eup,dX" ~d¥.
Obviously:
dx A dFy = dX A dF, =dxX A dFs = dV,

and in general:
dx* NdFg=dxs N dF? = Oz dV.

Furthermore, we still require that:
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d ~dx'=e™ dF,.

Thus, what we calculated above becomes:

1
dw = €9, azdF,= (rota)’dF,.

The differential of a form of degree two leads to theidyence map:
2 2
w=adFs, dw=0,adF, =0,& J;dV=0,a"dV=divadV.

3
As a result of the alternating calculus, one das = 0. The forms of degree zero are
defined by:

0
w = h(xy, X2, X3),
such that:

0
dw =0,h d¥ = (gradh), dX'.

p
One of the most important formulas of the calcutidkcwv = 0. It corresponds to the
p p
identity rot grad = 0 fop = 0, div rot = 0 forp = 1. If d w= 0 then one callgv “closed,

p p-1 p
while if w =d w thenw is “exact.” An exact form is closed.
Along with the differential form of degree 1 called theformation that was defined
in (3.4), the differential form of degree 2 that is chltbestress statglays an essential
role:

(3.5) d =T* dF;

with:

(3.53) TP = o (force stresses),
(3.5b) To= 1 (moment stresses).

Dd will yield the equilibrium conditions of the stresatst

We can also always establish later that all of theerkatically and statically
meaningful differential forms of the COSSERAT continuare the coordinates of a
motor.

We will now prove the important theorem:

p
(3.6) DD = 0.

The Frmdx/”: Q in (2.5) are differential forms of degree 1. With thisrabiation,
we have, from (2.5):

p p p p
Do =da+Q Od = (Jd+Q") 0,



Schaefer — Analysis of motor fields in Cosserat continua 8

and furthermore:

p p p
DDW = (4d+Q)) 0 +Q' 0de .

After multiplying out, while observing the order wiultiplication:
p p p p p
DD = ddo/ + Q) 0Q! Do+ d(Q.0ef)+ Q"0 dow’.

p - -
Now, from the usual calculus, one next kv = 0. The second summand is written:

(F22r &, +T22r 40 dx A dy’ A dx,

ay © fPa ax+3

and vanishes due to the fact that:

res,=0, 4, =0.

axy+3

Now, from the usual calculus, one hd®; = 0, because th@ are differential forms of

degree 1 with constant coefficients. While obsegvihe order of the differentiatix”
that appear, one then has:

p p
d(Q 0ef) =- Q" Od o,

from which the proof is complete.

4. The compatibility condition for the deformation state

It reads:
D& =DDV = 0.

From (3.3), it becomes:
(4.1) D& = d(E;) d¥’ +T, B df O d&=(9,E; +I,x,;)dx’ O dxX,
or:
(4.1a) D& =0,x7dx" OdxX’,
(4.1b) D& = (0,5, +€,,x;) dX OdX,
and with:

X A ¥ = &P dF,,
(4.23) D&’ =€ 9, x¢ dF,,

(4.2b) D& =(e“%0,£,,+ 0 x 7 - x}') dF, .
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With the y and ¢ that were defined in (3.3D¢&” andDg, are identically, becausg = DV
is a total differential.
If £ is not a total differential then:

1 2
(4.3) D& = o dF,, D& = a*dF,, De,= at, dF,
are non-zero. However, one now 3¢ = 0. Carrying out this calculation yields:

1 1 1
(4.4a) DD&’ = 0, a*dx’ dF, =d,a*d dV=20,a*dV=0,
1

2 1 2
(4.4b) DDé&y= (0, ab+ey, a®)d¥ OdE, = (0,a4+e,, a*)dV=0.

We recall eq. (4.1b) and (4.3), which we would like to evas:

(4.5) Dg,=I,,,dx” Od¥
or:

2
(4.6) Dg,= &l dF, = af, dF,.

The continuum theory of dislocations and proper stre8ewill be described by an
affine connection in the RIEMANN spaé€ whose translation quantities are:

(4.7) Fgﬂp =0, Eppt € )(3‘ .

Now, as one quickly convinces oneself:

(4.8) QP gl =gk
’ app b

app

2
such thata appears to be the “dislocation density,” as the amhrsetric part of the
connectior", as well ag”. Thus, the deformation tensgy, in (4.7) was assumed to be

symmetric: It gives the metric d¥. Furthermore, the, ,, itself does not enter into

consideration, but only its skew-symmetric (in thetfivgo indices) part. Gunthet] has
already exhibited the fact that dislocation theory usesincompatible COSSERAT
continuum as its geometric model. Our differentialfgetric considerations, which are
based upon the parallel translation of the moment vextd tailored to the COSSERAT
continuum from now on, seem to possess the advantamplicity when compared to
the differential-geometric representation of distaoa theory. However, beyond that,
they likewise simplify the basic equations of the ssatitthe COSSERAT continuum, as
will be shown in the next paragraph.
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5. Equilibrium conditions and stress functions

Let the continuum be impressed with volume forced amoments, which we
summarize in the motox’:

X"'=X? forr=p=12,3,
(5.1) { P

X" =Y, forr=4,5,6,0=1,2,3
With the differential formss of the stress states (3.5), the equilibrium comalit read:
(5.2) DJ + X dv=0.
The calculation runs completely analogous to (4r8) (4.4). The result is:

(5.2a) Dd + X dV= @z 0%+ X’ dV=0,
(5.2b) Da,+ Y, dV= 0 s+ €y 0 +Y,) dV=0.

ForX' =0, one has:
(5.3) DJ =0.

d is now a closed differential form of degree 2. e@an seek to represent it as an exact
form:

(5.4) o = D(SE d¥).

S, is the tensor pair of 18 stress functions. ObsliguS; is analogous to th&; in

(3.4), such that the development of the right-haio@ of (5.4) runs parallel to that of
formulas (4.1) to (4.2).

6. Summary of theresultsup to now:

(6.1) displacement motor: Vv,
(6.2) deformation motor: g =DV,
(6.3) stress motor: d =T* dFz,
(6.4) motor of stress functions: g=5;d¥,
(6.5) compatibility of the deformation state: D& =0,
(6.6) equilibrium of the stress state (in the

absence of volume forces and moments)Dd = 0,
(6.7) satisfaction of the equilibrium conditions

(6.6) by stress functions (6.4): d =Ds.
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7. Introduction of differential operators

p
The coordinates of a mota@p are all differential forms of degrge(p =0, 1, 2, 3). The
application of the absolute differential raises the eegiby one step:

p p+1
(7.1) Dw=w.
Furthermore, one has:
p
(7.2) DDw = 0.

For the differential operators (7.1), we introduce opesatothe following way:

(7.3) p=0: Gradc(:): é)

(7.4) p=1: Rotw =,

(7.5) p=2: Div 2) = 2)

Thus, (7.2) may be written:

(7.6), (7.7) Rot Graaﬁ) =0, Div Roté) =0.

From sectior6, we carry over the idea that:

£=Gradv, from(6.2), Rote=0, from (6.5).
Furthermore:
Divo=0, from (6.6), o=Rots, from (6.7).

8. The absolute codifferential

It is well-known that one needs to introduce formulas potentials and vector
potentials, in which the differential operators grad, dnd rot are related to the
LAPLACIAN operatorA = -0, 0,. Such formulas appear in the calculus of alternating
differential forms combined into the single equation:

(8.1) dow+ddw = - Acw.

Let us briefly explain the codifferentidithat enters into this. Since we have restricted
ourselves to the Euclidian spaE2 with Cartesian coordinates (in the other casis, a
very complicated differential operator), the type mdaxing is irrelevant. We arrange
that only differentials with upper indices shall appieahe differential forms — e.gdx’,

dF. InE3 Sw is defined by:

8.2) Sw=(1P*d* w.
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In turn, the star operator * in this needs to be ¢atif* associates any differential form

p p

w with an adjoint form of degree 3p-that will be written *w. Thus, a form of degrge

— 1 is on the right-hand side of (8.2); the operatdowers the degree of a form by 1.
The following definition of the star operator will sia# for E>:

(8.3) *az ) =agdF”,
(8.4) *(ap dP?) =azd¥,
(8.5) h=hdV,
(8.6) *thdVy) =h.
From (8.3) to (8.6), it follows that:

(8.7) g = @,

Sinced(* h) = 0, one also hagh = 0.
(8.1), when adapted to (8.2), reads:

p p
(8.8) (1P (*d*d—d*d*) w = Aw.
We take the case pf= 1 as an example.

w=azd¥, Frw=azdF’, d*w=d,azdX""dFP=dzazdV, *d*w=0dzag,
dw=0,azdX » d¥ = e,,30,, a5 dF, *dw= €550, ag dX¥,
dcdw:eyaﬂapaaaﬂd)(]Ad)(l:egpyeyaﬂapaaaﬂdlza,
*d*dw= (050585 — 0404 a,) AX’.
Thus, one has:

1 1
ow :—aﬂaﬁ, dow :—agaﬂaﬂdf,
and

1
odw = (-1)%(0,0,80 — 040485 X,
SO:

1 1
dow + ddw = -0,0,a, dx’ =— (Aa,) dX’.
With the differential operators subjected to the ass$oci:
1 1 .
ow - —diva, dow - - grad diva,
1 1
dw - rota, odw - rot rota,
one obtains the known formula:

— grad diva + rot rota=- Aa.
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3-p
From (8.2), it follows that sincdd w = 0O:

(8.9) 5500 =~ (*d¥)(* &) 0 = - *dd @ = 0.

We now pose the problem of constructing the codiffeaérd to our absolute

differential D that was defined in (2.5) with the goal of arriving at a gaization of
(8.1) to the formula:

p p
(8.10) DD +DD)w =-Aw,

p
in which w is a motor whose coordinates are differential forfrdegreep.
We recall (2.17), which we now write as:

p
P d w,
(8.11) Dw = :
p p
dwps+ e, d¥ Dw,

Since we agreed that we would no longer distinguish letweovariance and
contravariance, the difference between (2.5) and (2.ifjelevant, and the codifferential
© must be found by trial and error. We obtain:

p
P ow,
(8.12) Pw=| | )
O wprs—(~1)P ey, *(dX 0* w)
Corresponding to (8.9), one also has, as one confirmassioyple computation:

p
(8.13) DD w = 0.

9. Thedifferential operatorsassociated with the absolute codifferential

The application of the codifferential lowers thegoke of a differential form by one
step:
p p-1

(9.1) Vw=w.

For these differential operators, we introduce th@vatg operators:

1 0
-Div*w = w,
2 1
Rot ‘w = w,

(9.2)
(9.3) p

non
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3 2
(9.4) p=3: - Grad *w = w,
SO

p
(9.5) DDw =0
then gives the identity:

3 2

(9.6), (9.7) Rot *Grad &v =0, Div *Rot *w = 0.

From (8.10), and with the use of the six differentialrap@'s (7.3), (7.4), (7.5), and (9.2),
(9.3), (9.4), it follows that:

(9.8) p=0: - Div *Grad =—A,
(9.9 p=1: - Grad Div* + Rot* Rot = A,
(9.10) p=2: Rot Rot*— Grad *Div =- A,
(9.112) p=3: - Div Grad*=-A.

10. Complete representation of the motorial differential forms
of the Cosserat continuum

It is well-known that a field vector can be representedha sum of a gradient and a
rotor. If the vectora fulfills the condition diva = 0 thena cannot generally be
represented as= rotv. Similarly, one has the case et 0, where the representatian
= grad® is not generally complete. In the calculus ofati#htial forms, the question that

p p
was posed here reads as follows: ketbe a closed form, sdw = 0. Under which

p p p-1
conditions isw exact? Thus, when i@ = d 7? The answer is: Any closed form is
exact in a region that is star-shaped when seen frerartgin; in regions from which the
origin is excluded, this is not true, in general. How dmes obtain representations that

are also true for cavities? We answer this question é@omal differential forms.
p+1
Let ¢ be givenin
p p+l

(10.2) Dw+y=0

p+1
where ¢ shall satisfy the compatibility condition:

p+1

(10.2) Dy =0.

p
We prove that everw that fulfills (10.1) may be represented by:

p-1 p+l

p
(10.3) w=Dm+®r1.

Obviously, due to (10.1), one must have:
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p p+1 p+l

(10.4) Dw=D®r1 =-¢.
For the proof of (10.3), we set:

p-1 P p+l p
(10.5) m=2n, r =Dn,
such that from (10.3), one has:

p p p
(10.6) w=(DO+2D)n =- An.

p p
From potential theory, one can always deterrmn&éom w by way of (10.6). The forms

p-1 p+1 p
T and 7 can then be calculated frorm using (10.5). All that remains is to establish

p+1

that r satisfies eq. (10.4). However, from (10.6), it followvat:

p+1

p p p
(10.7) Dw=-DAg=-ADp=-AT,

because the operatdbsandA commute. Furthermore, from (10.5), one has:

p+1

(10.8) Dr=0,
such that:

p+l p+l p+l
(10.9) (D®+®D) T =DO®Tr=-AT.

However, (10.9) and (10.7) confirm that (10.4) is, in féalfjlled. The representation

(10.3) is therefore proved completely.
p+1
We continue to assume that is the solution of the inhomogeneous problem (10.1)

and has to satisfy the POISSON equation (10.7):

p+1 p+l

(10.10) AT - ¢ =0,

with the auxiliary condition that follows from (10.5):

p+1

(10.11) D7=0.

Of especial significance are the casep sfl andp = 2 in (10.3). Fop = 2, we get,
in fact, the complete representation of the striegs by stress function8]f

2 1 3

(10.12) og=Ds+3r,
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so:
(10.13) o= Rots- Grad 7,

in which, from (10.10) and (5.2F,must satisfy the POISSON equation:
(10.14) At —X dV=0,

and the auxiliary condition (10.11) is fulfilled identiga(the differential of a form of
degree 3 vanishes E). The case of = 1 leads to the problem that was announced in
(4.3) of calculating the incompatible deformatiefrom a given dislocation density.
Here, (10.3) gives the representation:

(10.15) &€= Gradv + Rot *r,
and from (10.10) and (10.11must satisfy the two equations:

(10.16), (10.17) AT =-a, Divr=0.

References

1. W. GUNTHER, “Zur Statik und Kinematik des Cosseratsckentinuum,” Abh.
Braunschweig. Wiss. Ges., Bd. 10 (1958).

2. R. v. MISES, “Motorrechnung: ein neues Hilfsmittet dechanik,” “Anwendungen
der Motorrecchnung,” ZAMM,, pp. 155-181, 193-213 (1924), as well aSe@lected
Papers of Richard von Misgg. 1, American Mathematical Society (1964).

3. R. C. BUCKAdvanced Calculy£™ ed., New York, 1965.

4. F. SOMMER, B. REIMANN, H. RAU, “Alternierende Diffentialformen,” in
Grundzuge der MathematiBd. Ill, Gottingen, 1962.

5. H. FLANDERS,Differential Forms with Applications to the Physical Scienéésw
York, 1963.

6. M. SPIVAK, Calculus on ManifoldsNew York/Amsterdam, 1965.

7. H. W. GUGGENHEIMERDifferential GeometryNew York, 1963.

8. A quick orientation is afforded by the section “Plasit und Versetzungen,” by E.
KRONER in SOMMERFELD,Mechanik der deformierbaren MedieR" edition,
Leipzig, 1964. One also finds an extensive bibliography there.

9. S. KESSEL, Die Spannungsfunktionen des Cosserat-KminZAMM 47, pp. 329-
336 (1967).

Manuscript submission: 4.10.1966

AddressProf. Dr.-Ing. H. SCHAEFER, Technische Hochschule Bsatweig. Institut
fur Technische Mechanik, Lehrstuhl A



