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4. – The second-order stress functions of a continuum with moment stresses. 

 

 In order to keep the following discussion clear and concise, we shall introduce a symbolic 

notation for some differential operators that are completely analogous to the differential operators 

grad, div, rot of vector analysis. 

 We first summarize the most important equations of article [1] in symbolic notation. We write 

the equilibrium conditions (1.1) as: 

(4.1)     Div
X

Y





   
+   

   
 = 0 . 

It follows from (1.2) that: 

(4.2)     




 
  

 = Rot
S

F

 
 
 

 , 

and (4.2) and (4.1) imply the identity: 

 

(4.3)     Div Rot  0 . 

 

(1.3) takes the form: 

(4.4)     




 
  

 = Grad



 

 
 

 , 

 

so, by analogy with (1.4), while recalling (4.1), one will have: 

 

 
 (†) Remark: Since both articles define a whole, the sequence of sections, as well as the sequence of references, is 

common to both parts. 
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(4.5)    Grad



 

 
 

 = 


 
 

 
 = 



 
 

 
 

and 

(4.6)     
X

Y

   
 +   

   
 = 0 . 

As a rule of calculation, we point out: 

 

(4.7)     Div Grad*   . 

 

We now introduce the second-order stress functions ik , ik by setting: 

 

(4.8)    
,

( ) ,

ik i k

ik i k k

S e

F e e

  

    

=  

=   − 
 

or, in symbolic notation: 

(4.9)     
S

F

 
 
 

 = Rot
 

 
 

 . 

Therefore, from (4.2): 

(4.10)     




 
  

 = Rot Rot 
 

 
 

 . 

Explicit calculation yields: 

(4.11)    
( ) ,

( ) ( ).

ik ik i k

ik ik i k k ike e

 

      





 = − +   

 = −  +    +  +  
 

 

In symbolic notation, (4.11) is: 

 

(4.12)    




 
  

 = + Grad Div
    

−    
    

 . 

 

That implies the rule of calculation: 

 

(4.13)     Rot Rot*  −  + Grad* Div , 

 

which, in turn, can emerge by analogy with vector analysis. 

 The introduction of second-order stress functions by way of (4.9) raises the question of whether 

one might perhaps select a subset of the set of stress functions Sik , Fik that would lead to an 

inadmissible restriction on the stress functions ik  , ik . The fact that this question can be answered 

in the negative can be seen from the following argument: The special first-order stress functions: 

 

(4.14)    0

ikS  = i Ak , 
0

ikF  = i Bk − eik A , 
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with twice-differentiable, but otherwise arbitrary Ak , Bk are null stress functions, i.e., they imply 

the stresses ik   0 , ik  0 . In a symbolic representation, we write (4.14): 

 

(4.15)     
0

0

S

F

 
 
 

 = Grad 
A

B

 
 
 

, 

 

and from (4.2), we have the rule of calculation: 

 

(4.16)     Rot Grad  0 . 

 

Now, the introduction of second-order stress functions by (4.9) means that we shall impose the 

following covariant normalization on the first-order stress functions: 

 

(4.17)     S e = 0 ,  F e – ee S = 0 . 

 

Symbolically: 

(4.18)     Div* 
S

F

 
 
 

 = 0 . 

 

That is because one confirms by explicit calculation that: 

 

(4.19)     Div* Rot* = 0  

 

and furthermore: 

 

(4.20)     Div* Grad   . 

 

From (4.2), (4.15), (4.16), 
S

F

 
 
 

 and 
0

0

S S

F F

 +
 

+ 
 both lead to the same stress state. In the event that: 

 

Div* 
S

F

 
 
 

  0 , 

one can always arrive at: 

(4.21)     Div* 
0

0

S S

F F

 +
 

+ 
 = 0 . 

 

That is because from (4.15) and (4.20), (4.21) will read: 

 



Schaefer – The stress functions of a continuum with moment stresses. II. 4 

 

(4.22)     Div 
S

F

 
 
 

 +  
A

B

 
 
 

 = 0 , 

 

and the Ak , Bk can be determined from the known theorems of potential theory in such a way that 

(4.22) is fulfilled. 

 

 

5. – The complete representation of the equilibrium state by stress functions in a 

continuum with moment stresses. 

 

 We have to show that for every solution ik , ik of the equilibrium conditions (4.1): 

 

(5.1)     Div 
X

Y





   
+   

   
 = 0 . 

 

Stress functions ik , ik , k , k exist such that from (1.5), (4.4) and (4.12) will be true, so: 

 

(5.2)   




 
 
 

 = − Grad  Div Grad


 
       

 + +     
      

, 

with: 

(5.3)     
X

Y

   
 +   

   
 = 0 . 

 

The proof proceeds by analogy with the proof that Gurtin presented in section 2 on the 

completeness of his generalized Beltrami representation of the symmetric stress tensor. 

 We next determine ik and ik from the Poisson equations: 

 

(5.4)    ik = −  ik ,  ik = −  ik . 

 

We will then have: 

(5.5)   




 
 
 

 = − Grad  Div Grad  Div 
       

 + −     
       

, 

trivially. If we set: 

(5.6)     − Div
 

 
 

 =


 
 
 

 

 

in the last expression then (5.5) will agree formally with (5.2). 

 Since ik , ik fulfill (5.1), it will follow from (5.4) that: 
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(5.7)    Div 




 
 
 

 = − Div
 

  
 

 = − 
X

Y

 
 
 

 . 

 

However, (5.3) is also fulfilled with that, along with (5.6), and the proof is complete. 

 In the case Xk  0, Yk  0 , one has the following theorem, which is the generalization of Gurtin’s 

theorem to the continuum with moment stresses: Every stress field ik , ik in the equilibrium state 

is composed of: 

ik  = ik ik  + ,  ik = ik ik  + , 

 

in which ik  , ik  is a stress field in total self-equilibrium, while ik  , ik  is a harmonic stress state. 

 

 

6. – Concluding remark. 

 

 In order to put the foregoing arguments – in particular, those of the last chapter – in the proper 

light, we would like to remark that we have proved nothing but the fact that any arbitrary tensor-

pair ik , ik can be represented by: 

 

(6.1)    




 
 
 

 = Rot 
S

F

 
 
 

 + Grad* 


 
 
 

 . 

 

It would be simple to show, in conjunction with our considerations above, that one also has the 

dual possibility: 

(6.2)    




 
 
 

 = Rot* 
S

F

 
 
 

 + Grad 


 
 
 

 . 

 

Naturally, the representation (6.2) is worthless for stress tensors, because ik , ik must satisfy the 

equilibrium conditions (5.1) with prescribed Xk , Yk . However, the representation (6.2) allows one 

to make the transition from the first-order stress functions Sik , Fik to the second-order stress 

functions ik , ik in section 4 more precise. From (6.2), one would have to replace (4.9) with: 

 

(6.3)    
S

F

 
 
 

 = Rot* 
 

 
 

 + Grad 
G

H

 
 
 

 , 

 

in which the functions ik , ik and Gk , Hk can be determined for arbitrarily-given Sik , Fik . 

However. it is clear from (4.15) and (4.16) that (6.3) is in no way more general than (4.9). 

 A further remark to conclude this discussion is concerned with the stress fields that are found 

in total self-equilibrium. Günther [2] has shown that such stress fields can be subsumed entirely 

by the Beltrami representation (2.10); his proof was reproduced in Gurtin [6]. The representation 

(1.2) goes back to Günther [3] and is complete in the same sense as Beltrami’s. From the foregoing 
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considerations of this section, the same thing will apply to our second-order stress functions. For 

that reason, the representation (4.11) or (4.12) is complete for stress fields in total self-equilibrium. 

We then subsume the stress states in bodies that are bounded by only a single surface. However, 

we also subsume the stress states in bodies with cavities (viz., periphractic domains), so in bodies 

that are bounded by multiple surfaces, as long as the resulting dyname of loading vanishes for each 

surface. 

 

 Added in proof. – D. C. Carlson treated the same problem [7]. However, his complete 

representations are more complicated than the ones that were given here. The article contains an 

error insofar as Gurtin’s simpler representation that was derived in eqs. (4.15) to (4.19) was 

communicated by Schaefer in a letter. 
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