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Scheffler – On Gauss’s fundamental law of mechanics 2 

1. – Development of Gauss’s law 
 

 In treatise no. 18 in Crelle’s Journal for Mathematics, vol. 4, pp. 232, our great 
mathematician Gauss enriched mechanics with a general fundamental law that should not 
be missing from any textbook on analytical mechanics, along with d’Alembert ’s 
principle and the principle of virtual velocities, since it alone, without the aid of a second 
fundamental law, suffices completely to determine the motion and equilibrium of any 
system of bodies, and can thus be taken to be the foundation for all of mechanics.  Even 
though the greater simplicity of Gauss’s law, in principle, does not always bring about a 
greater practical simplicity or analytical brevity in the treatment of special problems, 
since in many cases, d’Alembert ’s principle, in conjunction with that of virtual 
velocities, would be easier to implement, nonetheless, there are also cases in which 
Gauss’s law would be more direct and convenient to employ.  However, in addition, it 
reveals a most interesting property of every system of bodies that is found to be in 
motion, as well as every one that is in equilibrium, especially because it expresses a 
criterion for the laws of motion and rest with equal generality. 
 The fact that this law has not enjoyed a general acquaintance is perhaps based in the 
brevity of presentation that the inventor himself gave to it, by which the actual essence of 
that law and its relationship to the usual general fundamental laws of mechanics might 
not seem sufficiently clear to many.  Therefore, it might be advisable to direct the 
attention of the mathematical public to that important law with some emphasis, and to 
that end, to explain the law itself somewhat more thoroughly and illustrate its application 
in some special cases. 
 However, in addition, we will take this opportunity to digress a bit further on the 
basic laws of mechanics and add something new to it. 
 Gauss defined his law, which one can rightly call Gauss’s principle, or from its 
content, the principle of least constraint, as opposed to d’Alembert’s principle, in words 
as follows: 
 
 The motion of a system of material points that are coupled to each other in whatever 
way, and whose motion is likewise constrained by whatever sort of restrictions, will take 
place at each moment with the greatest possible agreement with the free motion, or the 
least possible constraint, in which one considers a measure of the constraint that the 
entire system experiences at each moment in time to be the sum of the products of the 
squares of the deflections of each point from its free motion with their masses. 
 
 If one then has that (Table II, Fig. 1)(†): 
 
 m, m′, m″, … are the masses of the material points 
 
 a, a′, a″, … are their positions at time t, 
 

b, b′, b″, … are the locations that they would assume after the infinitely-small 
time interval dt as a result of the forces (that are applied to them) 

                                                
 (†) Translator: I have not been able to find the cited figures and tables.  
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during that time interval and the velocities and directions that they 
would attain if they were all free, 

 
c, c′, c″, … are the locations that they would actually assume at time interval dt 
 

then, from the principle above, of all of the locations that are compatible with the 
conditions on the system, the actual locations will be the ones for which the expression: 
 
(1)    m (cb)2 + m′ (c′b′)2 + m″ (c″b″)2 + … 
 
is a minimum. 
 Equilibrium is obviously only a special case of the general law of motion, since in 
that case, the actual locations c, c′, c″, … would coincide with the original ones a, a′, a″, 
…, as long as the equilibrium exists in the rest state, so for a system that is found in 
equilibrium, the expression: 
 
(2)     m (ab)2 + m′ (a′b′)2 + m″ (a″b″)2 + … 
 
must be a minimum.  It likewise follows from this that the persistence of the system in the 
rest state lies closer to the free motion of the individual points than any possible way that 
they might emerge from it. 
 Gauss’s law can be derived from d’Alembert’s principle and that of virtual velocities 
as follows. Let (Table II, Fig. 2): 
 

p be the force that acts upon the material point a, which acts during the time 
interval dt, and if that point were completely free then it would go to b 
when one considers the velocity and direction that one achieves at time t. 

 
q be the force that acts upon the point a and is produced by the constraint on 

the system, as a result of which the point would deflect from b to c in as a 
completely-free mass from the rest state during the time interval dt. 

 
r be the resultant of p and q, by whose action, the point a would actually go 

from a to c as a completely-free mass during the time interval dt when one 
considers the velocity and direction that are achieved at time t; hence, it is 
the so-called effective force on the point a. 

 
 Since the point a moves under the action of the force p and the constraints on the 
system as if it were free and merely affected with the force r, it would follow that if the 
force r, which acts in the opposite direction to the force p (so the force – r), were applied 
to a, in addition to p (so it would be subjected to the force – q that is composed of p and 

r− , which would lead the completely-free point through the points in space of cb during 
the time interval dt under the remaining constraints on the system), then the system 
would be found in the equilibrium state.  In fact, the forces – q, − q′, − q″, … represent 
the so-called lost forces, which must keep the system in equilibrium under the remaining 
constraints on the system, from d’Alembert ’s principle. 
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 If we apply the principle of virtual velocities in order to exhibit the condition equation 
for that equilibrium then we let γ, γ′, γ″, … be the locations where the points a, a′, a″, … 
might possibly arrive after the time dt, which are different from c, c′, c″, …, but 
compatible with the conditions on the system.  Now, obviously cγ, c′γ′, c″γ″, … are also 
the virtual motions that the points c, c′, c″, … could assume under the constraints for the 
system that is found in equilibrium under the forces – q, − q′, − q″, … 
 If one drops a perpendicular γβ from each of the points γ, γ′, γ″, … (e.g., from γ) to cb 
then since the force – q acts parallel to cb, − q (cβ) will be the virtual moment of that 
force.  If one lets ϕ, ϕ′, ϕ″, … denote the angles bcγ, b′c′γ′, b″c″γ″, … that cγ, c′γ′, c″γ″, 
… make with cb, c′b′, c″b″, …, resp., then − q (cγ) cos ϕ, − q′ (c′γ′ ) cos ϕ′, − q″ (c″γ″ ) 
cos ϕ″, … will be the virtual moments of the forces – q, − q′, − q″, … 
 Since the force – q is such that it would push the mass m (which is thought to be 
completely free) from the rest state through the points of cb during the time dt, it will be 
proportional to the product m (cb).  If we then set the forces – q, − q′, − q″, … equal to 
the values m (cb), m′ (c′b′), m″ (c″b″), …, resp. (which are proportional to them), then 
their virtual moments will be: 
 

m (cb)(cγ) cos ϕ, m′ (c′b′)(c′γ′ ) cos ϕ′, m″ (c″b″)(c″γ″ ) cos ϕ″, …, 
 
respectively. 
 From the principle of virtual velocities, the sum of those moments must be equal to 
zero.  One will then have: 
 
(3)      m∑ (cb)(cγ) cos ϕ = 0. 

 Now, since: 
(γ b)2 = (cb)2 + (cγ)2 – 2 (cb)(cγ) cos ϕ 

or 
 
(4)     (cb)2  = (γ b)2 − (cγ)2 + 2 (cb)(cγ) cos ϕ , 
 
one will have: 
 

m∑ (cb)2  = m∑ (γ b)2 − m∑ (cγ)2 + 2 m∑ (cb)(cγ) cos ϕ . 

 
It will then follow from equation (3) that: 
 
(5)     m∑ (cb)2  = m∑ (γ b)2 − m∑ (cγ)2. 

 
 The length cb is the actual deviation of the mass m from the free motion, while γ b 
represents any other possible deviation.  Now, since from equation (5), one has that 

m∑ (cb)2 is always less than m∑ (γ b)2, in that, one will find the proof of the principle 

of least constraint that was expressed above, namely, that the sum of the products of the 
actual deflections of the individual points from the free motion of the masses at those 
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point must be a minimum; i.e., it must be smaller than the sum of the products of any 
other deflections of those masses that are possible under the conditions on the system. 
 For equilibrium in the rest state, equation (5) will become: 
 
(5a)    m∑ (ab)2 = m∑ (γ b)2 − m∑ (aγ)2. 

 
 

2. – Explanation for Gauss’s law. 
 

 The foregoing law requires some explanation, and for the sake of applying it in 
certain cases, a transformation of equation (5) or the wording of the principle that it 
expresses might be absolutely necessary. 
 When the force p that acts upon a free mass m is capable of endowing that mass with 
the velocity g in a unit of time, such that g represents the acceleration that the force p 
gives to the mass p, it is known that the following relationship exist: 
 
(6)      p = m g. 
 
 The length s of the path that is that is traversed from the rest state at time t is: 
 
(7)      s = 21

2 g t . 

 
 The path ds = gt dt will be traveled in the time interval dt.  For the first time interval 
that follows the rest state (so the one for which one has t = 0), that path length will be 
equal to zero, from the formula itself.  However, that zero value for ds at t = 0 tells one 
only that for t = 0, the value of ds is no longer an infinitely-small quantity of degree one 
relative to dt, but one of higher degree.  In fact, when one either sets t equal to dt directly 
in equation (7) or when one sets t = 0 in the value of the complete increment of s, so in: 
 

 ∆s  = 
2 3

2 3
2 3

1 1

1 2 1 2 3

ds d s d s
dt dt dt

dt dt dt
⋅ + ⋅ + ⋅ +

⋅ ⋅ ⋅
⋯ 

 
 = gt dt + 21

2 g dt , 

one will get: 
 
(8)   ∆s = 21

2 g dt  
 
for the path that is traversed in the first time interval. 
 Now, if: 
 

− q, − q1, − q2 are the forces that would push the free mass m at the material point 
a from c to γ during the time interval dt. 
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f,  f1 ,  f2 are the accelerations that the forces − q, − q1, − q2 , resp., endow 
the mass m with per unit time 

then one will have: 
 
(9)    − q = m f, − q1 = m f1 , − q2 = m f2 , 
 
(10)  cb = 1

2 f t2,  γ b = 1
2 f1 t

2,    cγ = 1
2 f2 t

2. 

 
 When one substitutes the values in (10), formulas (3) and (5) will assume the form: 
 
(11)     m∑ f f2 cos ϕ = 0, 

 
(12) m∑ f 2 = 2 2

1 2m f m f−∑ ∑ , 

 
and when one introduces the forces q, q1 , q2 from equation (9), those equations will be 
converted into: 
 
(13)  q∑ f cos ϕ = 0, 

 
(14) q∑ f = 1 21 2

q f q f−∑ ∑ . 

 
 If one so wishes, one can also write those formulas as: 
 
(15) q∑ (cγ) cos ϕ = 0, 

 
(16) q∑ (cb) = ( ) ( )q b q cγ γ−∑ ∑ . 

 
 In the form of equation (12), the quantities that one treats in the principle of least 
constraint are freed from the consideration of infinitely-small paths.  In that form, one 
deals with only finite values, since the measure of the constraint for any material point 
now appears as the product of its mass with the square of its acceleration due to the 
deflecting force. 
 In the form of equation (14), the deflecting forces q themselves are introduced in 
place of the masses m.  The measure of the constraint is now the product of the deflecting 
force with its acceleration. 
 In the case where a point has no mass at all, but only represents a geometric position 
in the system upon which the force p acts, eliminating the mass m of a point a by means 
of the formulas will take the form of an unacceptable necessity, because one would then 
have that the mass m = 0 for any point of that kind, but a finite force p would assign an 
infinitely-large acceleration to an infinitely-small mass, so the point b (Fig. 3) would be 
at an infinite distance.  cb and bγ (or also f and f1) would become infinitely large, and in 
that way terms would arise in the formulas above would that take the form 0 ⋅⋅⋅⋅ ∞ or ∞, 
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which would make those formulas unusable.  Only equation (13) would still remain 
useful in those cases. 
 As far as the remaining formulas are concerned, it is clear that it is not at all necessary 
to take the sum ∑ over all points of the system at once.  One could also first take the sum 
S over a certain complex of points and then take the sum S over the remaining points, 

such that one would then have ∑ = S + S.  In that way, equation (3) would then become: 

 
(17)   S m (cb) (cγ) cos ϕ + S m (cb) (cγ) cos ϕ = 0, 

 
and when one splits ∑ m (cb)2 into S m (cb)2 + S m (cb)2 in equation (5) and then 

substitutes the values from equation (4) that correspond to the partial sum S m (cb)2 in it, 

equation (5) will become: 
 
(18)  S m (cb)2 + S m (cb) (cγ) cos ϕ = S m (cb)2 − S m (cγ)2. 

 
 If one would like to eliminate the sum S from equation (18) with the help of equation 

(17) then one would indeed obtain an equation with only the summation sign S, which 
would then refer to only an arbitrary part of the masses of the system.  However, one 
would easily find that this equation was only a result of equation (4), so it is only a 
geometric relationship between the masses that enter into it, but not a mechanical one. 
 If one substitutes the value m(cb) = 1

2 (− q) dt2 for the product m (cb) in the summation 

sign S, by means of the relations (9) and (10), then that will yield: 

 
(19) S m (cb) (cγ) cos ϕ + 1

2 (− q) dt2 S (− q) (cγ) cos ϕ = 0, 

 
(20) S m (cb)2 + dt2 S (− q) (cγ) cos ϕ = S m (γ b)2 − S m (cγ)2, 

 
instead of (17) and (18), resp. 
 Should the sign S refer to only those points of the system that have no mass then one 

would have to observe that for each such point cb that is parallel to ab, the magnitude and 
direction of the lost force – q would have to be precisely equal to the applied force p that 
acts upon the point a (Fig. 2).  One would then have: 
 
(21) S m (cb) (cγ) cos ϕ + 1

2 dt2 S p (cγ) cos ϕ = 0, 

 
(22) S m (cb)2 + dt2 S p (cγ) cos ϕ = S m (γ b)2 − S m (cγ)2, 

 
under that assumption, and infinitely-large or indeterminate quantities would no longer 
enter in those formulas. 
 If one would also like to let the lost force – q appear under the S sign in place of the 
mass m [since that is true of equations (15) and (16)], then one would get: 
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(23) S (– q) (cb) (cγ) cos ϕ + S p (cγ) cos ϕ = 0, 

 
(24) S (– q)(cb) + 2 S p (cγ) cos ϕ = S (– q)(γ b) − S (– q)(cγ) . 
 
 In order to fix the directions and the angle ϕ precisely, one must once more point out 
that – q is the lost force, which acts in the direction cb, so the deflecting force q would act 
in the directly opposite direction bc, but the angle ϕ = bcγ lies between the direction cb of 
the lost force – q and the direction cγ, in which γ refers to any other displaced position of 
the point a that is possible under the constraints on the system. 
 As far as the case in which the system is found to be in equilibrium and at rest is 
concerned, the deflecting force q will be equal to – p or the lost force – q = p.  In that 
case, equations (21) and (22) will assume the form: 
 
(25) S m (ab) (aγ) cos ϕ + 1

2 dt2 S p (aγ) cos ϕ = 0, 

 
(26) S m (ab)2 + dt2 S p (aγ) cos ϕ = S m (γ b)2 − S m (aγ)2, 

 
resp., and equations (23) and (24) will assume the form: 
 
(23)   p∑ (cb) (aγ) cos ϕ  = 0, 

 
(24) S p (ab) + 2 S p (aγ) cos ϕ = S p (γ b) − S p (aγ) . 
 
 If the system were not precisely in the rest state, but in uniform motion, when it is in 
equilibrium then the point c would not in fact fall upon a, but at some other point a1 to 
which the point a would be led during the time interval dt by the velocity, once it has 
been achieved.  However, one would always have q = − p, and the foregoing equations 
(25) to (28) would remain valid under the assumption that ab represents the path that the 
point a would traverse in the time dt as a result of only the force p, but with no 
consideration given to the previously-achieved velocity, and that g refers to another 
location for the point a that likewise does not consider that velocity. 
 
 

3. – Relationship between Gauss’s law and d’Alembert’s principle  
and the principle of virtual velocities. 

 
 Equation (4) expresses only a geometric relationship that prevails in the system, while 
equation (3) expresses a mechanical relationship.  Now, since formula (5) is the result of 
simply combining (3) and (4), it will follow that in a strict mechanical sense, formula (5) 
is equivalent to formula (3). 
 However, formula (3) will represent d’Alembert ’s principle immediately (under 
which, the system will be in equilibrium with the lost forces – q) once one applies the 
principle of virtual velocities, whereas formula (5) is the complete expression for 
Gauss’s principle, in that it does not merely tell one that ∑ m (cb)2 is smaller than any 
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possible 2( )m bγ∑ , and is thus a minimum, but at the same time, it shows by how much 

the former sum is smaller than the latter. 
 One sees from this that Gauss’s principle includes d’Alembert’s, in conjunction with 
the principle of virtual velocities, which are the two fundamental laws that define the 
basis for statics and dynamics in its usual presentation, and when they are taken together, 
one can deem that to be a general or higher principle of mechanics. 
 Gauss himself said, in the aforementioned treatise: 
 

 “The special character of the principle of virtual velocities consists of 
the fact that it is a general formula for solving all static problems, and is 
therefore a replacement for all other principles without, however, 
immediately taking credit for the fact that it already seems plausible by 
itself, to the extent that it was only expressed.  In that regard, the 
principle that I will present here seems to have the advantage.  
However, it also has a second one, namely, that it encompasses the law 
of motion and rest in exactly the same way in greatest generality.” 

 
 The second advantage, namely, that Gauss’s principle characterizes the state of 
motion and rest at once is sufficiently clear from the foregoing.  However, the first 
advantage, namely, that this principle appears to be a fundamental law of mechanics, 
requires more explanation. 
 The general wording of Gauss’s principle, namely, that the motion of a system at any 
moment proceeds with the greatest possible agreement with the free motion or with the 
smallest possible constraint, generally seems to be entirely plausible, and a proof would 
not be required.  However, what is constraint in the strictly-scientific sense?  How does 
one define the mathematical expression for that general concept?  Obviously, for any 
material point a (Fig. 3), the constraint that leads it from the location b of its free motion 
to the location c of its actual motion in the infinitely-small time dt, must initially be 
proportional to the force q that pushed it away from the point b, and in addition, to the 
length of the path bc through which that mass was pushed, so it should be proportional to 
the product q (bc), which represents the work done by the deflecting force.  One can then 
take that product itself to be the constraint in question that the mass m of the point a 
experiences.  Now, should the sum of the constraints that are exerted over the entire 
system be as small as possible then one would be led immediately to the condition that ∑ 
q (bc) must be a minimum. 
 If m denotes the mass of the point a then since the force q is proportional to the 
product m (cb), from equations (9) and (10) one can also impose the demand that ∑ m 
(cb)2 must be a minimum, which constitutes the mathematical expression for Gauss’s 
principle. 
 When one places Gauss’s principle at the pinnacle of mechanics in that way, that will 
imply the remaining fundamental law – namely, the principle of virtual velocities – by 
the following argument: 
 Due to equation (4), on purely-geometric grounds, one has: 
 

m∑ (cb)2 = m∑ (γb)2 − m∑ (cγ)2 + 2 m∑ (cb) (cγ) cos ϕ . 
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 Now, since ∑ m (cb)2 is a minimum, so it is always smaller than ∑ m (γ b)2, the 
quantity 2 ∑ m (cb) (cγ) cos ϕ will either be negative or smaller than 2( )m cγ∑ , when it 

is positive, which is a position that the point γ might also assume. 
 Now let cγ (Table II, Fig. 4) be any infinitely-small motion that the point c is in a 
state to assume according to the constraints on the system, and let cγ1 be the advance 
under the backwards motion that this point would adopt under the return from γ to c.  
That shows that any point γ2 that lies between γ and γ1 can be regarded as the endpoint of 
the motion cγ2 .  Now, if X dx is the analytical expression for c g, in which X is the 
function of any quantity x that has one and the same meaning for all points of the entire 
system, such that X dx, X′ dx, X″ dx, … refer to the material points a, a′, a″, …, resp., or 
c, c′, c″, …, resp., then X dx will obviously represent any infinitely-small motion like cγ2 
that lies between γ and γ1 when one merely replaces dx with the corresponding value, and 
it will be clear that the motions of all points of the system inside the infinitely-close 
limits γ and γ1 increase and decrease proportionally, as well as change signs 
simultaneously. 
 Now, since: 

2 m∑ (cb) (cγ) cos ϕ = 2 dx m∑ (cb) X cos ϕ  

and 
 m∑ (cγ)2 = dx2 2m X∑  

 
from that relation, one sees immediately that for a suitable choice of dx, when the 
quantity 2 m∑ (cb) (cγ) cos ϕ is multiplied by the first power of dx, it will always be 

positive, and also always greater than the quantity m∑ (cγ)2 times the second power of 

dx might be if it possessed any nonzero-values at all. 
 It follows from this, in general, that one must have: 

 
m∑ (cb) (cγ) cos ϕ  = 0, 

 
which implies equation (3). 
 Since m (cb) is thought to be proportional to the deflecting force − q, or also in the 
opposite direction (which one calls the lost force), the foregoing equation will go to: 
 

( )q−∑ (cγ) cos ϕ = 0  or ( )q−∑ (cβ) = 0. 

 
 However, equilibrium must exist under those lost forces – q, as d’Alembert ’s 
principle itself would say, and proof would not be required.  The foregoing formula then 
expresses a fundamental law of the forces that are found to be in equilibrium, and 
recognizes the principle of virtual velocities in it, which gets its foundation from Gauss’s 
principle in that way. 
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4. – Simpler proof of the principle of virtual velocities. 
 

 In the above, Gauss’s principle was derived from d’Alembert’s and the principle of 
virtual velocities.  However, it can also be shown how the principle of virtual velocities 
will follow when one assumes Gauss’s principle. 
 As a rule, one would probably prefer the first path of development, partly because 
d’Alembert’s principle and the principle of virtual velocities are implied by elementary 
intuitions and admit proofs that are free from objections, but partly because in most cases 
the last two principles admit an immediate and simpler application to given cases. 
 In regard to the latter, one must, in fact, observe that since a, a′, a″, …, as well as c, 
c′, c″, …, are positions that the masses m, m′, m″, …, resp., can actually assume 
according to the constraints on the system (namely, the former, at the beginning, and the 
latter, at the end, of the time interval dt), when one applies d’Alembert’s principle and the 
principle of virtual velocities, one can start immediately from the given positions a, a′, 
a″, … of those masses at time t as the point of application of the lost forces ( )q− , (− q′), 
(− q″), …, whereas the application of Gauss’s principle requires the consideration of the 
fictitious positions b, b′, b″, … at which those masses would arrive at time interval dt if 
they were entirely free, as well as the positions c, c′, c″, … at which they would actually 
arrive at that time, as well as the conditions under which 2( )m cb∑  would become a 

minimum, or from equation (5), equal to ∑ m (γ b)2 – 2( )m cγ∑ , which are, as a rule, 

more cumbersome to develop than the conditions under which the sum of the virtual 
moments of the lost forces that act upon a, a′, a″, … would be equal to zero. 
 However, one will always be able to derive some relationships from Gauss’s principle 
more simply and directly than from the other two principles with a suitable handling of 
the formulas in question. 
 Meanwhile, if one starts with those other two principles then the simplest-possible 
proof of the principle of virtual velocities would be desirable.  I shall then allow myself 
to communicate such a thing here. 
 The principle in question reads: 
 
 If the point of application of a system of forces that is found to be in equilibrium is 
displaced infinitely little, and indeed in a way that would be permitted by the constraints 
on the system, then sum of the products of the forces and the lengths of the paths that are 
traversed, which are parallel to the directions of those forces, will be equal to zero. 
 
 Therefore, if the point of application of any of the forces P describes the path δp 
under that motion in a direction that subtends the angle ϕ with the forward direction of 
the force P then: 
 
(29)     P∑ δp cos ϕ = 0. 

 
 We next consider a rigid system of points; i.e., one in which all points are rigidly 
coupled to each other.  At those points, let: 
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X, Y, Z be the components of the force P that acts upon the point a that are 
parallel to the three rectangular coordinate axes, 

 
α, β, γ be the angles of inclination of the forward direction of P with respect 

to those axes, 
 
α1, β1, γ1 be the angles of inclination of the forward direction along which the 

infinitely-small displacement δp of the point of application of P will 
result with respect to those axes, whereas 

 
 ϕ represents the angle of inclination of P with respect to δp, 
 
x, y, z are the coordinates of the point of application a, and 
 
δx, δy, δz are the displacements of that point relative to the three axes or the 

projections of δp . 
 
 Any motion of a rigid body consists of a rectilinear advance and a rotation around 
any axis, as an entirely simple argument that requires no calculation will show (cf., my 
Situationskalkul, pp. 191).  That advance can be resolved into three advancing motions 
that are parallel to three given rectilinear axes, and thus, parallel to our coordinate axes, 
and the aforementioned rotation can be resolved into three rotations about those 
coordinate axes.  Therefore, the equilibrium of the system will require that the forces P 
have no ambition to move in the direction of any axis, so: 
 
(30)   X∑ = 0, Y∑ = 0, Z∑ = 0. 

 
In addition, equilibrium will require that there is also no ambition to rotate about an axis, 
so the moment equations: 
 
(31)  ( )xY y X−∑  = 0, ( )y Z zY−∑  = 0, ( )z X x Z−∑  = 0 

must be valid. 
 If we focus our attention on a motion under which only a rotation about the z-axis 
takes place [so one for which the first of equations (31) is true], and we denote the 
infinitely-small positive angle of rotation from right to left by γ then, as we can easily 
infer from Fig. 5, the ordinate x will change by the quantity an = − ϕ y, and the ordinate y 
will change by the quantity nm = ϕ x.  For a similar rotation around the x-axis through the 
angle ψ, the ordinate y will change by – ψ x and the ordinate z, by ψ y.  Likewise, under a 
rotation about the y-axis through an angle of χ, the ordinate z will change by − χ x and 
the ordinate x will change by χ z .  As a result of all those three rotations: 
 
 the ordinate  x will change by δx = − ϕ y + χ x, 
 ″ ″ y ″ ″ δy = − ψ z + ϕ x, 
 ″ ″ z ″ ″ δz = −  χ x + ψ y. 
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 If one now multiplies the first, second, and third of equations (31) by ϕ, ψ, χ, resp., 
and adds all three then that will give: 
 

∑ [(− ϕ y + χ z) X + (− ψ z + ϕ x) Y + (− χ x + ψ y) Z] = 0 

or 
 
(32)    ∑ (X δ x + Y δ y + Z δ z) = 0. 

 
 It is important to point out that this one equation does not merely replace the three 
foregoing ones, which refer to the rotation, completely, but also the three equations (30), 
which refer to the advance, because depending upon whether one sets δ z or δ y or δ x 
equal to zero, one will get three equations for the relevant rotation about an axis, and 
depending upon whether one sets δ z and δ y or δ x and δ z or δ x and δ y equal to zero, 
one will get three equations for the relevant advance. 
 Equation (32) is then necessary and sufficient for equilibrium. 
 If one now sets: 
  X = P cos α,   Y = P cos β,   Z = P cos γ, 
 
 δ x = δp cos α1 , δ x = δ p cos β1 , δ z = δ p cos γ1  
then one will have: 
 
 X δ x + Y δ y + Z δ z  = P δ p (cos α cos α1 + cos β cos β1 + cos γ cos γ1) 
 
  = P δ p cos ϕ . 
 
 With that, equations (32), which express the principle of virtual velocities (which was 
to be proved), will assume the simplest form: 
 
(33)     P∑  δ p cos ϕ = 0. 

 
 If one now connects that rigid system to a second, likewise rigid, system in such a 
way that it is not a rigid coupling that exists at the contact point, but a moving one, then 
the motion of the former system will be restricted by that in a certain way; i.e., certain 
displacements that were previously possible will now become impossible. 
 Obviously, the first system must be in equilibrium under all forces that act upon it 
when one counts among those forces not merely the P that are applied to it, but also those 
Q that the second system that is coupled to it will exert upon it at the contact point. 
 When one considers all forces P and Q, equation (33) will then be true for any 
remaining displacement of the first system, so obviously, also for any possible one.  One 
will then have: 

cos cosP p Q qδ ϕ δ ψ+∑ ∑ = 0. 

 
 The same thing will be true for the second system, for which one will have: 
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cos cosP p Q qδ ϕ δ ψ′ ′ ′ ′ ′ ′+∑ ∑ = 0 

 
when one puts primes on all of its forces, for clarity.  If one now observes that at each 
contact point between the two systems, the pressure on the one is equal to the counter-
pressure on the other, so Q′ = Q, and that for any possible displacement, the virtual 
motion of the point of application of Q′ will be opposite to that of Q, so δq′ cos ψ′ = − δq 
cos ψ, then that will imply that ∑ Q′ δq′ cos ψ′ = − ∑ Q δq cos ψ .  If one then adds the 
two foregoing equations then all terms in Q will vanish, and only the form of equation 
(33) will remain, which P will now refer to all forces that are applied to the total moving 
system that is composed of the two individual ones, and the displacements are restricted 
to the ones that are still possible under the constraints on both systems. 
 In the same way, one can combine a third and fourth rigid system with previous ones 
by a constraint that is moving, but based upon immediate contact, without the principle of 
virtual velocities ceasing to be valid. 
 Finally, if one ponders the fact that from the foregoing consideration, it is irrelevant 
whether one or more of the systems considered have finite or infinitely-small dimensions 
(so the system would reduce to a material point in the latter case) then it would follow 
that the principle in question will remain applicable to any system at all, as well as 
couplings by rigid, flexible, extensible, compressible bodies, etc., because every non-
rigid, finite body can be decomposed into infinitely-small parts that one can consider to 
be rigid. 
 At this point, I must remark that the proof of the principle of virtual velocities that 
Moseley gave in the book The mechanical principles of engineering and architecture, 
and which I also adapted in my own book that appeared with the title Die mechanischen 
Principen der Ingenieurkunst und Architectur, § 121, pp. 170, is incorrect.  Namely, that 
proof starts from the assumption that the components X, as well as Y and Z, that are 
parallel to the system are in equilibrium by themselves, so ∑ X δ x = 0, ∑ Y δ y = 0, 

Z zδ∑ = 0, from which it would generally follow very simply that ∑ (X δ x + Y δ y + 

)Z zδ  = 0.  However, that assumption is inadmissible, since indeed the sum of the forces 

in each of the three parallel systems is equal to zero, so ∑ X = 0, ∑ Y = 0, ∑ Z = 0, but by 
no means is the sum of the moments of them about any axis always equal to zero, much 
less will each of the three systems reduce to a force-couple, which does not represent 
equilibrium. 
 
 

5. – Special remark by Gauss on the principle of virtual velocities. 
 

 In the oft-mentioned treatise, Gauss made the following remarks about the principle 
of virtual velocities: 
 

“…it is more correct to say that the sum of the virtual moments can never 
be positive, while one ordinarily says that it must be equal to zero, because 
the ordinary expression tacitly assumes that the opposite to any possible 
motion is likewise possible [or that the opposite of any impossible motion 
is likewise impossible], such as when a point is required to remain on a 
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certain surface, when the distance between two points is required to be 
invariant, and the like.  By itself, that is an unnecessary restriction.  The 
outer surface of an impermeable body does not constrain a material point 
that is found on it to remain on it, but merely prohibits it from appearing 
on one side.  A tensed inextensible, but flexible, string between two points 
makes only an increase in distance impossible, but not a decrease, etc.  
Why then would one not wish to express the law of virtual velocities in 
such a way that it would encompass all cases right from the outset?” 

 
 I believe that one could perhaps respond to that remark and question as follows: In 
general, fixed points, lines, and surfaces are often prohibited from executing certain 
motions, but will admit the direct opposite ones.  Now, as long as one actually takes 
advantage of the fixed nature of such points, so an ambition to move in the impossible 
direction will prevail, there will exist forces on those points that take the form of the 
resistance of those points, which are quite necessary for the equilibrium of the system.  
However, whenever a displacement takes place in a possible direction that makes the 
resistance of a point inactive, the forces on the system that represent that resistance will 
vanish, which will generally have nothing but positive virtual moments for such a motion, 
when it persists, and will thus leave a negative sum for the moments of the remaining 
forces by its vanishing.  However, the system will no longer remain the same under the 
vanishing of part of the original forces, and will then leave the equilibrium state.  Such 
motions will also never be suitable to determine the resistance of the fixed points, which 
plays the role of external applied forces entirely, and is necessary for equilibrium, and 
thus for developing the conditions for equilibrium completely.  Accordingly, motions that 
lie directly opposite to the impossible ones will be likewise kept inadmissible if they have 
a change in the given system of forces as a consequence.  The principle of virtual 
velocities will always require the vanishing of the sum of the virtual moments then when 
the forces and resistances that are necessary for the complete determination of 
equilibrium are applied to that principle. 
 For example, if a weight P (Table II, Fig. 6) lies on a fixed surface then it must feel a 
certain force P′ of resistance.  Above all, the whole criterion for a fixed body in a 
mechanical context consists of saying that it must be capable of experiencing the 
resistance that was just required.  The impossibility of displacement is, in itself, a 
corollary to that, and in the spirit of the principle of virtual velocities, one can ignore it 
completely when one substitutes an external force for the resistance of a fixed barrier. 
 However, an essential condition for the foregoing system is that contact between both 
bodies must be preserved by the virtual displacement.  When one performs a common 
displacement upwards or downwards through the path δp, that will lead to the formula 
P pδ  − P′ δp′ = 0, so P = P′.  By contrast, if one would like to perform a one-sided 
motion of the weight upwards from a plane with no displacement in the plane then one 
would indeed get the negative value – P δp for P pδ∑ , as Gauss correctly remarked.  

Only the resistance P′ of the plane would vanish then, while the entire system would 
change, and no more formulas would exist from which one could determine the forces 
that would be required for equilibrium. 
 A similar case occurs when a weight P hangs from a fixed point A on a flexible string, 
as in Fig. 7.  That point must respond with the force of resistance P′ = P.  If one merely 
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raises the fixed point then without displacing the fixed point then that resistance P′ would 
vanish, and the forces that are required for the equilibrium of the system would no longer 
be present. 
 Therefore, in such cases, when one takes the fixed nature of certain points to be 
absolute, as was done here, and one would like to ignore the forces of resistance that 
those points produce completely, the principle of virtual velocities would give a likewise 
incomplete answer, which would consist of saying that the weight P can have any 
arbitrary value, which is indeed correct in itself, but one cannot recognize the essential 
fact that the fixed point must experience a resistance to the force of that weight. 
 Such a purely-extrinsic view of the concept of constraints on a system of material 
points with no rigorous consideration of the resistance of points that are fixed or 
restricted in their motions can, in turn, easily lead to entirely erroneous arguments.  For 
instance, the case of elastic constraints belongs to them.  When considered absolutely, 
such constraints allow arbitrary stretching, compression, and bending, from their 
mechanical properties.  One cannot therefore deny that every motion of a point that is 
coupled with the remaining system by an elastic band will correspond to one of the 
conditions on the system, so it will be virtual.  However, if one overlooks the intrinsic 
resistance that appears in that way and the other necessary changes in the forces that are 
applied to the system then one will get false results. 
 Having assumed that, let the weight P in Fig. 7 hang from the fixed point A by means 
of an elastic string, so a stretching of it is very probable, and thus, a motion of the weight 
P directly downwards, without the fixed point A simultaneously moving with it.  
However, such a virtual motion will produce a virtual moment P δp that would be either 
equal to zero, negative, or rather decidedly positive.  For that reason, the result is 
nonetheless false, because of the fact that stretching of the string cannot happen without 
overcoming the intrinsic elastic forces, and strictly speaking, without an increase in the 
weight P. 
 All of those considerations will lead us to the following rules that must be observed 
when one applies the principle of virtual velocities. 
 
 

6. – Consideration of the variability of forces and the intrinsic resistance  
of a body to a virtual motion. 

 
 From the above, one can, with no further discussion, regard a virtual motion of the 
system to be one that is possible under the constraints on the system; i.e., under which, 
those constraints will not change, except for the geometrically-allowable absolute and 
relative motions, so ones under which no other effort is expended than the one that 
corresponds to the virtual moments of the system of externally-applied forces when the 
virtual moments of the internal resistance between two contact points of the system do 
not mutually cancel, and so, from equation (33), vanish by themselves. 
 That case will always occur when the constraints on the system are independent of the 
forces that are applied to it, such as, e.g., for a system that is composed of nothing but 
rigid bodies that can rotate about certain points or displace on their outer surfaces. 
 However, when, in the opposite case, the constraints depend upon the forces that act 
upon the system, or when the intended displacement of the system is possible at all only 
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under the expenditure of certain quantities of work that are generated in the bonds of the 
system or when the system must be subjected to special external forces, that displacement 
can still be regarded as a virtual one when one takes into account the requisite virtual 
moments that do not cancel by themselves. 
 Hence, if (e.g., in Fig. 7) a weight P hangs from a fixed point A by means of an elastic 
string, and one would like to displacement the weight through δp downwards then one 
would find that a quantity of work would be required to rotate it that has the value W dp, 
as it also would be from the law of elasticity for the string. 
 If the length p of the entire string increases by δp then the length of each element dx 
of the string will increase by (δp / p) dx.  The expenditure of work that would be required 
by that increase in the length of the element dx (which is the differential of the work done 
by the tension P that acts upon the lower end of that element) will then have the value 

( / )P p pδ− .  The sum of those works over all elements of the string will then be: 
 

− 
0

p
p

P dx
p

δ
∫ . 

 
Now, since P depends upon the length p, that tension will always be equal for all 
elements, so it will be independent of x, and one will then have: 
 

− 
0

p
p

P dx
p

δ
∫ = − 

0

p
p

P dx
p

δ
∫  = − P δp . 

 
 The weight P will produce the virtual moment P δp under the motion that we speak 
of.  It will then realize equation (33) in the form of P δp – P δp = 0. 
 Something similar will occur for the system that is represented in Fig. 6 when one 
would like to displace the weight P horizontally through δx on the fixed surface, but one 
makes the assumption that friction exists between the weight and the surface, which has 
the magnitude f P.  In that case, the displacement is, in fact, possible and allowable.  
However, it can be regarded as only a virtual one when one observes that it requires a 
force f P in the horizontal direction that has not been given up to now, and which 
produces the positive virtual moment f P δx, and at the same time, that the resisting 
friction of the fixed surface must be overcome, which would, however, yield the opposite 
moment – f P δx, such that equation (33) will now be fulfilled in the form f P δx – f P δx 
= 0. 
 
 

7. – Correct interpretation of the infinitely-small quantit ies  
in the principle of virtual velocities. 

 
 In the formula for the principle of virtual velocity, δ p is an infinitely-small quantity, 
and therefore a quantity that continually strives to assume the value zero.  Since equation 
(33) will first achieve complete validity for the limiting values of that quantity, but those 
limiting values are all zero, one can see from that fact itself that the ratios of all those 
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infinitely-small quantities δ p to one and the same independent infinitely-small quantity 
(which we would like to denote by δ s) must be determined in such a way that one must 

get the values 
p

s
s

δ δ
δ

, 
p

s
s

δ δ
δ

′
, 

p
s

s

δ δ
δ

′′
, … for the δ p, δ p′, δ p″, …, resp. for equation 

(33), so once one has divided all terms by the common factor δ p, the formula: 
 

(34)     cos
p

P
s

δ ϕ
δ∑ = 0, 

 
which includes only finite quantities δ p / δ s. 
 If, according to the nature of the system, the quantities δ p did not all depend upon 
one and the same basic quantity δ s, but upon several such basic quantities in groups, then 
equation (33) would obviously already decompose into just as many special equations in 
that way, each term of which would contain the terms of one and the same group. 
 The aforementioned finite quantities δ p / δ s will reduce to the first differential 
coefficients of the function p with respect to the independent variable s under the passage 
to their limiting values.  It would then be entirely superfluous to determine the increment 
δ p more precisely than its first differential, which has the form A ds, or to determine the 
quotient δ p / δ s more precisely than the first finite term A, since the lower terms of 
second, third, and higher order are infinitely-small in comparison to them, and from the 
expression: 

p

s

δ
δ

= A + B ds + C ds2 + …, 

 
they would all vanish when one passes to the limiting value. 
 That remark is especially important for those cases in which the first differential 
coefficient A is coincidentally equal to zero precisely, while the higher differential 
coefficients keep finite values.  In such cases, if might seem, on first glance, as if the 
introduction of the next non-vanishing terms (so, e.g., the substitution δ p / δ s = B ds) 
would be necessary in order to determine the actual virtual moment of the force in 
question.  That exchange becomes irrelevant by the foregoing remark that the term B ds 
and all higher terms will be effectively equal to zero under the passage to the limiting 
values, for which only equation (33) will be true. 
 A practical case of the latter kind is represented, for example, in Fig. 8.  In it, one 
assumes that a weight P is affixed to the deepest point of a circular hoop that can roll  on a 
horizontal plane.  For every small enough motion of the hoop, the weight P generally 
seems to always accomplish a certain amount of work, because it lifts somewhat, while 
the work done by the resistance P of the plane remains precisely equal to zero, such that 
equation (33) does not appear to be fulfilled here. 
 That error can be explained when one observes that for a rolling motion through the 
infinitely-small angle δα, the vertical rise of the weight is δp = r – r cos δα, so, up to 
second-order terms, δ p = 1

2 (δα)2, and as a result δ p / δ s = 1
2 δα.  When one passes to 

the limiting value, one would therefore not merely have that the first differential 
coefficient dp / dα is equal to zero, but also that the entire expression δ p / δ α is equal to 
zero. 
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8. – Correct interpretation of the infinitely-small quantit ies in Gauss’s principle. 
 

 The infinitely-small quantities that enter into formulas (1), (5), etc., that relate to 
Gauss’s principle of least constraint require much deeper attention.  As one would learn 
from equations (10), the lines cb, γb, cγ (Fig. 5) are infinitely-small quantities of order 
two, since they are multiplied by dt2.  Nonetheless, in relation to each other, they 
generally behave like finite quantities.  However, in conjunction with the lines ab, ac, 
which are themselves first-order quantities, they are infinitely small.  Nevertheless, with 
no further discussion, they can only be first neglected in comparison to those quantities in 
the end results, where only their ratios to relatively infinitely-large values should be 
considered.  However, it can frequently happen that in the intermediate operations, 
relatively infinitely-large terms can cancel each other under addition and subtraction and 
that another relationship between the infinitely-small quantities might remain as a result, 
such as when one already neglects part of the latter terms prematurely in comparison to 
infinitely-larger ones. 
 In regard to that, we point out the following: In order to construct the point b to which 
the mass m of the point a would move in the time interval dt if it were completely free, 
and the point c to which it would actually move, let (Fig. 9, Table II): 
 

v be the velocity of the mass m at the point a at time t in the direction 
aα, so when one takes aα = v dt, where α is the point at which the 
mass m would arrive without the influence of any force, merely as a 
result of the velocity that is achieved during the time element dt, 

 
f, g, h be the velocities that the applied force p, the deflecting force q, and the 

actual force r, resp., are in a position to impart upon the mass m during 
a unit of time, 

 
ϕ, ψ be the angles pav and rav, resp., that the applied for p and the actual 

force, resp., make with the direction of the velocity v or the path of the 
mass m at time t, where the angle is thought to be positive or negative 
according to whether those directions lie on one side or the other of the 
direction of v, 

 
χ be the angle par between the applied and actual forces (which is then 

ψ – ϕ). 
 
 If one now makes ab parallel to p and equal to 12 f dt2 then b will be the point at which 

the mass m would arrive during the time interval dt if it were completely free. 
 If one takes bc to be parallel to q and equal to 12 g dt2 then c will be the point at which 

the mass actually arrives during that time. 
 One will also get the same point c when one takes ac to be parallel to r and equal to 
1
2 h dt2. 

 Since the mass m must describe a continuous curve for forces that act continuously, 
the smaller that one chooses the time interval dt to be, the more that the line ac will fall 
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along the tangent va to that curve, and its length will become equal to aα + αc ⋅⋅⋅⋅ cos ψ, 
such that this line, which represents the increment ∆s in the path s that has been traversed 
at time, will then have the value: 
 
(35)    ∆s = v dt + 1

2 h cos dt2, 

 
up to terms of dimension two.  In that expression, the quantities of both dimensions are 
carefully kept long enough that one has to compare the line ac with similarly-constructed 
lines, such as ab. 
 It follows form equation (35) that: 
 

s

dt

∆
= v + 1

2 h cos ψ dt . 

 
 If one passes to limiting values then the second term on the right-hand side will 
vanish, and one will get the known formula ds / dt = v.  However, the conclusion would 
become completely false that because the quantity v on the right-hand side of this formula 
is increased by 12 h cos ψ dt, that increase will probably represent the increase that the 

velocity suffers during the time interval dt, so under the passage of the mass m from the 
point a to the point c, such one can set: 
 

s

dt

∆
= v + dv = v + 1

2 h cos ψ dt , 

and therefore: 

dv = 1
2 h cos ψ dt  or 

dv

dt
= 1

2 h cos ψ . 

 
 Moreover, the quotient ∆s / dt expresses nothing but the velocity that the mass would 
take on during the time dt or along the path ac if it traversed that path with uniform 
velocity, and 12 h cos ψ dt is the excess of that fictitious velocity over the one that prevails 

at the point a. 
 Since the motion of the mass m generally accelerates or decelerates, that fictitious 
velocity, which is, to some extent, the mean velocity that exists along the path ac, will 
differ essentially from the one that exists at time interval dt, and thus, upon the arrival at 
the point c.  The latter velocity is: 
 

v + dv = v + h cos ψ dt, 
 

which is its increase over the one that prevails at time t, namely, dv = h cos ψ dt, so it will 
be twice as large as the aforementioned increase, because one has, in full generality: 
 

 s + ∆s = s + 
2

21
2 2

ds d s
dt dt

dt dt
+  + …, 

so 
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 ∆s = 
2

21
2 2

ds d s
dt dt

dt dt
+ + …, 

or 

(36) ∆s = v dt + 21
2

dv
dt

dt
+ …, 

 
so a comparison of this formula with (35) will give: 
 

dv

dt
= h cos ψ . 

 By contrast: 

v + ∆v = v + 
2

21
2 2

dv d v
dt dt

dt dt
+ + …, 

and therefore: 

(v + ∆v) dt = v dt + 21
2

dv
dt

dt
+ … 

 
 However, it would be incorrect for one to regard the line ac, which is actually equal 
to ∆s, to be (v + ∆v) dt, and accordingly, from equation (35), one would have: 
 

v dt + 2dv
dt

dt
= v dt + 1

2 h cos ψ dt 2, 

 
so one would like to set dv / dt = 1

2 h cos ψ, since that says the same thing as assuming 

that the mass m traverses the path ac with the velocity v + ∆v, although v + ∆v represents 
the velocity that the mass s would achieve at the endpoint c of that path. 
 In reality, from the equality of (36) and (35), the line ac has the value: 
 

(38)   ac = ∆s = v dt + 21
2

dv
dt

dt
 = v dt + 1

2 h cos ψ dt 2. 

 
Furthermore, from the above and from (27): 
 

(39)    ac = 1
2 h dt2 = 21

2cos

dv
dt

dtψ
. 

 The line ab is: 
 
(40)     ab = 1

2  f dt2. 
 
Thus, in the triangle bα c, in which the angles are bα c = p a r = c, one has that the square 
of the deflection cb is: 

(cb)2 = (αb)2 + (αc)2 – 2 (α b) (α c) cos χ 
or 
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(41) (cb)2 = 1
4 d t 4 ( f 2 + h 2 – 2 f h cos χ) 

 

  = 1
4 d t 4 

2

2 1 cos
2

cos cos

dv dv
f f

dt dt

χ
ψ ψ

  + −  
   

. 

 
 If one would like, then one can also set: 
 
(42) (cb)2 = 1

4 d t 4 [(f cos ϕ – h cos χ)2 + (f sin ϕ – h sin χ)2] 

 

  = 1
4 d t 2 

2 2

cos sin tan
dv dv

f f
dt dt

ϕ ϕ ψ
    − + −    
     

, 

instead of (41). 
 
 

9. – Transformation of Gauss’s formula for the decomposition  
of the forces along three rectangular axes. 

 
 If one decomposes the force that is applied to the mass m into its components parallel 
to the rectangular axes, so if: 
 

f, g, h are the velocities that those components that might be communicated 
to the mass m, whose coordinates are x, y, z, during a unit time at time 
t, 

 
21

2 f dt , 21
2 g dt , 21

2 h dt  

 
 are the distances in space through which the mass m in the rest state 

would be pushed by those forces during the time interval dt, 
 
u, v, w are the velocities parallel to the three axes that the mass m will actually 

possess at time t 
then: 

u = 
dx

dt
, v =

dy

dt
,  w = 

dz

dt
. 

 
 When one develops the increments ∆x, ∆y, ∆z up to second-order terms (ac in Fig. 
10), the actual advance of the point a in the course of the time interval dt in the directions 
of the three axes will be: 
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(43)   

2
2 2

2

2
2 2

2

2
2 2

2

1 1
,

2 2

1 1
,

2 2

1 1
.

2 2

dx d x du
x dt dt u dt dt

dt dt dt

dy d y dv
y dt dt vdt dt

dt dt dt

dz d z dw
z dt dt wdt dt

dt dt dt


∆ = + = +


 ∆ = + = +



∆ = + = +


 

 
 By contrast, the partial distances that the point a would traverse in the time dt if it 
were completely free (ab in Fig. 10) would be: 
 

(44)    

21
2

21
2

21
2

,

,

.

u dt f dt

vdt g dt

wdt h dt

 +
 +
 +

 

 
 Therefore, the deflections into the direction of the three axes (cb = ab – ac in Fig. 10): 
 

(45)   

2 2 21 1 1
2 2 2

2 2 21 1 1
2 2 2

2 2 21 1 1
2 2 2

,

,

.

du du
f dt dt dt f

dt dt

dv dv
g dt dt dt g

dt dt

dw dw
h dt dt dt h

dt dt

  − = − 
 

  − = −  
 

  − = −  
 

 

 
 Since the square of the actual deflection is equal to the sum of the squares of the 
deflections along the three axes, Gauss’s principle will require that the sum: 
 

(46)   
2 2 2

du dv dw
m f m g m h

dt dt dt
     − + − + −     
     

∑ ∑ ∑  

should be a minimum. 
 As far as equation (5) is concerned, when δ x, δ y, δ z denote the projections of any 
possible displacement cγ (Fig. 3) of the point c, since the projection of any other possible 
deflection γ b of the point b in the direction of the x-axis has the value (cb) – δ x = 

21
2

du
dt f

dt
 − 
 

− δ x , one will then have: 

 

(47)  
2 2 2

4 4 41 1 1
4 4 4

du dv dw
dt m f dt m g dt m h

dt dt dt
     − + − + −     
     

∑ ∑ ∑  
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= 
2 2 2

2 2 21 1 1
2 2 2

du dv dw
m dt f x m dt g y m dt h z

dt dt dt
δ δ δ          − − + − − + − −          

          
∑ ∑ ∑  

 
− 2 2 2( ) ( ) ( )m x m y m zδ δ δ− −∑ ∑ ∑ . 

 
 A development of the squares on the right-hand side leads directly to the known 
fundamental equation: 
 

(48)  
du dv dw

m f x m g y m h z
dt dt dt

δ δ δ     − + − + −     
     

∑ ∑ ∑ = 0, 

 
which enters in place of equation (3). 
 It should be remarked in that regard that when certain forces of the system act, not on 
masses m, but on massless points, and one denotes the components of those forces by X, 
Y, Z, one must convert the Σ sign in equation (47) into an S and add the sum: 
 

dt 2 S X δ x + dt 2 S Y δ y + dt 2 S Z δ z 

 
to the left-hand side, since the summation sign S refers to the material points, and the 
sign S refers to the massless points. 

 
10. – Application of Gauss’s principle to the motion of a pendulum  

and the equilibrium of a lever. 
 
 In order to make the application of Gauss’s principle more intuitive, we would like to 
consider the motion of two ponderous masses m, m′ (Fig. 11) that are fixed at the 
endpoints a, a′ of a lever that rotates about A.  Let: 

a, a′ be the lever arms Aa, Aa′, resp., 
 
ϕ be the angle BAa that the lever subtends with the horizontal at time t, 
v be its angular velocity at that time, 
 
g be the velocity that gravity communicates during the time interval, 
 
p, p′ = mg, mg′, resp., be the weights of the masses m, m′, resp. 

 
 Since the masses can move only along the circular lines in question, the force r that 
acts upon them will fall in the direction of the tangent r a to that circle; the angle will 
then be rap = BAa = ϕ .  The velocity of the mass m is a v.  If one then takes (aα) = a v dt 
then that mass would arrive at α after the time element dt by means of its intrinsic 
velocity.  If one makes the vertical (αb) = 1

2 g dt2 then b will be the point at which that 

mass would arrive during that time interval if it were completely free.  Now, it actually 
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arrives at c, such that the angle will be αAc = dϕ and one will have dϕ / dt = v; therefore, 
let (α c) = x. 
 If one puts primes on the quantities with the same symbols for the mass m′ then one 
will get: 
 (a c)  = (a α) + x  = a v dt + x, 
 
 (a′ c′ ) = (a′α′) + x′  = a′ v dt + x′, 
so 

x′ = 
a

a

′
 x. 

 
Furthermore, in the triangle bca, one has: 
 
 (bc)2 = (α b)2 + (α c)2 – 2 (α b) (α c) cos (bα c) 
 
  = 1

4 g2 dt 4 + x2 – g x cos ϕ dt2. 

 
Since the angle is b′ a′ c′ = π – ϕ here, one will get: 
 

(b′ c′ )2 = 
2

2 4 21
4 2

a a
g dt x

a a

′ ′
+ g x cos ϕ dt2 

 
for the triangle b′ α′ c′.  Thus: 
 

(49)  m∑ (bc)2 = 1
4 (m + m′ ) g2 dt 4 + 

2 2
2

2

a m a m am a m
x

a a

′ ′ ′ ′+ −− g x cos ϕ dt2 . 

 
 In order for that sum to be minimum, as in Gauss’s principle, we must set its 
differential with respect to x equal to zero.  That will give: 
 

(50)    x = 2
2 2

cos

2

am a m a g
dt

a m a m

ϕ′ ′−
′ ′+

. 

 Since the velocity of the mass m at time t is equal to av [so (ac) = x = 21
2

dv
a dt

dt
], 

when one sets that expression equal to the foregoing one for x, one will get: 
 

(51)    
dv

dt
= 

2 2
cos

am a m
g

a m a m
ϕ′ ′−

′ ′+
, 

 

or also, since one has 
dv

dt
= 

2

2

d

dt

ϕ
, one will get: 
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(52) 
2

2

1

cos

d

dt

ϕ
ϕ

= 
2 2

am a m
g

a m a m

′ ′−
′ ′+

= 2 2

ap a p
g

a p a p

′ ′−
′ ′+

 

 
as the fundamental equation for the pendulum motion to be determined. 
 If one would like to introduce the angle ϕ as an independent variable and the angular 

velocity v as a dependent variable then, since 
dv

dt
= 

dv d

d dt

ϕ
ϕ

= 
dv

v
dϕ

, equation (51) will 

give: 

v dv = 2 2

ap a p
g

a p a p

′ ′−
′ ′+

cos ϕ dϕ , 

 
or upon integration, when the angular velocity is v = v0 for ϕ = 0: 
 

(53) 2 21
02 ( )v v−  = 2 2

ap a p
g

a p a p

′ ′−
′ ′+

sin ϕ. 

 
 If one would like to exhibit the conditions for equilibrium of the masses m, m′ or the 
weights p, p′ on the lever aAa′ then, from equation (50), (ac) = x must be equal to zero.  
That will give the known relation: 
 
(54)   ap = a′ p′. 
 
 

11. – Application of Gauss’s principle to the motion of  
a material point on a given surface or line. 

 
 The application of Gauss’s principle takes an especially simple form for the motion of 
a material point on a given surface or line.  We immediately direct our attention to the 
most general case of a given surface.  In Fig. 12, let: 
 

v be the velocity of the point a of the mass m at time t, and 
 
g be the velocity that the force that is applied to that mass (say, gravity) 

communicates to it in a unit time. 
 

 Now, one has aα = v dt, and the line ab is in the direction of the force that acts and its 
length equals 12 g dt2, so b is the location at which the mass m would arrive after the time 

dt if it were completely free, so c will be the location on the surface at which that mass 
would actually arrive, and it will then be the base point of the normal bc that is dropped 
from b to the surface, since that would be the shortest line that one could draw from b to 
the surface, and obviously that shortest line will satisfy the condition of Gauss’s principle 
that ∑ m (bc)2 = m (bc)2 is a minimum. 
 That property will suffice to develop all conditions for the motion of the given point.  
Namely, if: 
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ϕ denotes the angle bα n that the direction α b of the force makes with the 
normal α n, which is an angle that is also equal to α b c, by the infinite 
smallness of the figure that we speak of, and 

 
ψ denotes the angle c α e that the intersection α c of the normal plane n α b 

or α b c with the tangent plane is inclined from the direction a α e of the 
velocity of the mass m at time in question, then: 

 
a α = v dt, α b = 1

2 g t2, α c = 1
2 α b sin ϕ = 1

2 g sin ϕ dt2, 

and 
ac = a α + α c ⋅⋅⋅⋅ cos ψ = v dt + 1

2 g sin ϕ  cos ψ dt2. 

 

 Now, since one also has ac = v dt + 21
2

dv
dt

dt
, one has the fundamental equation: 

 
dv

dt
= g sin ϕ cos ψ . 

 
 

12. – Application of Gauss’s principle to the collision of inelastic bodies. 
 

 In order to apply Gauss’s principle to the collision of inelastic bodies, let the velocity 
of the two masses m, m′, which both move along a straight line, be equal to v, v′, resp., 
before the impact and V after the impact.  If no union of the masses occurred at the 
moment of collision, so there would be no constraint on the motion, then the two masses 
would move through the distances v dt, v′ dt, resp., during the time interval dt if they 
were completely free.  Under the conditions on the system (as a compound body), they 
would actually traverse the distance V dt.  If v < v′ then the deflections will amount to (V 
– v) dt and (v′ – V) dt, resp.  Therefore, the constraint is: 
 

m (V – v)2 dt2 + m′ (v′ – V)2 dt2. 
 
 In order for that expression to be a minimum according to Gauss’s principle, we set 
its differential with respect to V equal to zero.  That will give the known relation: 
 

(56)     V = 
mv m v

m m

′ ′+
′+

. 

 
(Conclusion in next issue) 
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13. – Processes that allow one to always consider the actual displacement  
of a system in an infinitely-small time interval to be a virtual one. 

 
 In Fig. 9 (Table II in the previous issue), α is the position that the material point a 
would occupy at the end of a time interval dt due to its intrinsic velocity at time t if no 
forces at all acted upon it.  b is the position that it would occupy with that velocity under 
the effect of the force p applied to it if it were completely free.  c is the position that it 
would occupy with that velocity under the action of the applied force p and the constraint 
on the system, so the one that it will actually occupy under the under the control of the 
effective force r.  In addition, γ denotes any position besides c that the point in question 
might possible occupy as a result of a virtual displacement of the system. 
 One understands a virtual displacement to be one that corresponds to the momentary 
constraint on the system that exists at time t.  However, in the manner of presentation that 
is found in all textbooks on mechanics, the constraint itself is always regarded as 
completely unvarying during the displacement.  If that constraint is to also depend upon 
time t then it must still be considered to be constant during the time interval dt under the 
virtual displacement.  The infinitely-small path c γ is therefore only the spatial variation 
of the point c that is allowed by the momentary constraints that exist on the system 
without one considering those variations that are produced by the way that the constraint 
might depends upon time t .  In the determination of those variations, one must then treat 
time as constant when the law of dependency of the constraint on the system is to be 
given as a function of time t.  Obviously, just the same thing is also true of the forces that 
act upon the system, as long as they are supposed to be functions of time t or the 
positions of the masses that they act upon, which are themselves functions of time t.  
Those forces must also be considered to be unvarying under the displacement during the 
time interval dt. 
 Accordingly, in general, the actual motion of the system during the time dt (hence, 
the displacement ca), cannot be regarded as a virtual one.  Rather, that can happen only 
when the constraint on the system is independent of time t or the forces that act upon it.  
One result of that consideration, among other things, is that the principle of vis viva is 
only valid for those systems whose constraints do not depend upon time. 
 Obviously, one comes to that restriction of the virtual displacements by the tacitly-
made assumption that among the forces p that act upon the material part of the system, 
only the ones that are considered to be externally-applied, but internal, and which emerge 
as the reaction of the couplings in the system, so ones that are themselves produced as a 
result of the motion that the externally-applied forces bring about in some way, can be 
disregarded.  For the systems with completely independent or unvarying constraints (e.g., 
for the ones in which rigid, inelastic materials exist with fixed constraints, rotatable axes, 
completely-free isolated parts, and similar mechanisms, under which any change in the 
constraint is, in principle, absolutely impossible), the internal reactions within and 
between the couplings in the system will always be of the sort that for any possible 
displacement of the system, the quantity of work done by all of the reactions will be equal 
to zero.  The moments of the internal forces in such system would always vanish then, no 
matter how one might displace the system.  Therefore, that imaginary motion can also be 
regarded as a virtual one here.  By contrast, for the systems with variable constraints 
(e.g., mechanisms with elastic couplings, with compressible or gaseous bodies, and the 
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like, under which certain changes in the constraints are possible, as long as the required 
forces are applied), the quantity of work done by internal reactions in the couplings of 
the system will be equal to zero only for those displacements that produce no change in 
the constraint, but for other displacements under which special forces are developed, that 
work will have a finite, positive or negative value.  Therefore, one restricts the field of 
virtual motions here to the ones that are independent of time t or to the ones under which 
the couplings in the system do not change, because only for those displacements will the 
moments of the internal forces vanish. 
 However, such a vanishing of the internal forces in the equation that expresses the 
principle of virtual velocities would have no particular use whatsoever, because it would 
be a big mistake to believe that one could avoid considering the internal forces (like 
elastic forces) completely in that way.  That is by no means the case, because when the 
aforementioned equation is also free from internal forces under the popular restriction on 
virtual displacements, that will always make their consideration in isolation valid for the 
complete determination of the motion of the system. 
 That sheds light upon the fact that when one takes the internal forces (namely, elastic 
forces) that appear under a certain displacement into account, the concept of the 
constraint on a system can always be extended in such a way that the displacements that 
are even possible under the action of forces will seem to be allowable or virtual, and in 
that way, the difference above between the two types of constraints will vanish 
completely, and in addition, the arbitrary restriction on the virtual displacements will 
drop out for the latter type of systems.  Along with those advantages of the generalization 
in principle, one also has the convenience of the fact that one will be led directly and 
necessarily to all requisite equations in the presentation of the fundamental equations for 
the motion of a system, so those former equations do not have to be extended by auxiliary 
considerations about the internal forces. 
 Under the latter assumption, one can also regard the actual displacement ac as a 
virtual one then in all cases (which is understood to mean systems with mutually-
independent constraints).  One will then have to consider the internal stresses to be 
overcome by the actual motion only in the case of a system with variable constraints. 
 However, the displacement aα will also be regarded in that way under the same 
conditions under which the actual displacement ac will seem to be virtual, since the latter 
arises from the assumption that the material point a will advance uniformly during the 
time interval dt with the velocity that it has gained at time t.  However, the same state will 
also be attained due to the fact that one can assign the completely-allowable value of zero 
to the effective force r on each material point a that arises from all internal stresses under 
consideration, and in that way, the actual displacement ac will go directly to the aα that 
we imagined above. 
 
 

14. – Explanatory example for the process that was just described. 
 

 An example might better explain the foregoing. 
 From Fig. 13 (Table II in the previous issue), let the material point a of mass m and 
weight n be coupled to the disc a′ of mass m′ and weight n′ by a weightless string aα of 
length c.  The system falls vertically downwards through the air, which makes air 
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resistance act upon the disc a′, which can be expressed by k v′ 2, if v′ denotes the velocity 
of the disc at time t, while v is that of the point a. 
 
 1) If the string aa′ is inextensible then one will be dealing with an entirely-unvarying 
system that can be treated in the usual simple way.  Namely, if one denotes the vertical 
abscissas of the points a and a′ from any fixed point by x and x′, resp., and the 
acceleration of gravity by g, and observes that v′ = v, then one will have that: 
 

 the lost force of the mass  a is mg − dv
m

dt
, 

 

 ″ ″ ″ a′ is m′ g − k v2 − dv
m

dt
′ . 

 
Since those forces must be equilibrium, from d’Alembert’s principle, the principle of 
virtual velocities will imply that: 
 

2dv dv
mg m x m g kv m x

dt dt
δ δ   ′ ′ ′− + − −   

   
 = 0. 

 
 From the fixed constraint on the system, one has x = x′ + c, so δ x = δ x′, and that 
illuminates the fact that one can also regard the actual motion during the time interval dt 
as a virtual one here, or δ x = v dt, δ x′ = v′ dt = v dt.  The foregoing equation will always 
yield the relation: 

(m + m′ ) g – k v2 – (m + m′ ) dv

dt
= 0, 

 
from which, the law of dependency between v and t can now be found by integration. 
 
 2). However, if one assumes that the string aa′ is extensible then one will be dealing 
with a system whose constraint depends upon time t.  Namely, c will be a function of 
time t in the equation x = x′ + c that represents that constraint. 
 From the usual prescriptions in the textbooks on mechanics, one would now proceed 
as follows: From the relation x = x′ + c, one has: 
 

dx

dt
 = 

dx dc

dt dt

′
+ , i.e., v = v′ + 

dc

dt
, 

and furthermore: 
dv

dt
 = 

2

2

dv d c

dt dt

′
+ . 

 
One will then have that the lost forces are: 
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 at a :  Q = m g − 
dv

m
dt

 = mg − 
2

2

dv d c
m m

dt dt

′
− , 

 

 at a′ :  Q′ = m′ g − k v′ 2 − 
dv

m
dt

′′ . 

 
 If one expresses the equilibrium of those forces by the principle of virtual velocities 
then one will get: 

Q δ x + Q′ δ x′ = 0. 
 
In order to determine δ x and δ x′ in that equation by the usual procedure, the constraint 
on the system during the time interval dt must be regarded as unvarying, so the quantity c 
in the relation x = x′ + c must be regarded as constant, and as a result, one must set δ x = 
δx′, from which it will follow that: 

Q + Q′ = 0. 
 

That illuminates the fact that in all such situations, it will be impossible for one to set the 
virtual displacements δ x, δ x′ equal to the actual ones during the time interval dt, since 
that would imply that δ x = v dt = v′ dt + dc and δ x′ = v′ dt, so: 
 

Q (v′ dt + dc) + Q′ v′ dt = 0, 
or 

Q + Q′ = − 
1 dc

v dt′
, 

 
which is an equation that contradicts the previously-found correct relation Q + Q′ = 0. 
 One further sees that this ordinarily-applied process does not merely exclude the 
assumption that the actual motion is a virtual one, which seems so natural, but it also 
leaves the solution of the problem incomplete, along with that, because it will imply only 
the single equation Q + Q′ = 0, in addition to the relation x = x′ + c for the determination 
of the three unknown quantities v, v′, c, which will assume the form: 
 

(m + m′ ) g – k v′ 2 – (m + m′ )
2

2

dv d c
m

dt dt

′
−  = 0 

 
under the requisite substitution.  In order to get the third equation that is lacking, one 
must now go further into a consideration of the internal forces on the system (viz., the 
stresses in and between the links). 
 To that end, if one defines the law of elasticity for the string aa′ then the tension in it 
will be equal to zero in its original length a and it will increase in proportion to the 
increase in length under its extension.  The length c at time t will require a force of 
tension that one can set equal to (c – a) q, in which q is a constant.  Since that tension 
must obviously be equal to the lost force Q of the mass a, one will get the third equation: 
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(c – a) q = Q = mg − 
2

2

dv d c
m m

dt dt

′
− , 

 
for which, one can also take the equation: 
 

(c – a) q = − Q′ = − m′ g + k v′ 2 − 
dv

m
dt

′′ , 

since Q = − Q′. 
 
 3) However, if one now generalizes the concept of a constraint on the system in the 
broadest way right from the start, such that each displacement that is possible from the 
physical nature of the system can be considered to be virtual, in which one considers the 
requisite internal forces that might appear, then not only will that unnatural restriction on 
virtual displacements go away, but all equations that are required for the determination of 
the phenomena of motion will vanish entirely in their own right. 
 If one then denotes the tension (c – a) q in the string when its length is c by E then 
one will get the equation: 

E = Q, 
 

and the principle of virtual velocities will imply the equation: 
 

Q δ x + Q′ δ x′ – E δ c = 0, 
 
when one observes that under the lengthening of the string by the length δ c, the elastic 
forces that must be overcome will have the virtual moment – E δ c.  If one now sets δ x = 
δ x′ + δ c then since E = Q, the foregoing equation will be converted into: 
 

Q + Q′ = 0, 
 

which was also found before by means of the usual procedure. 
 
 

15. – Magnitude of the constraint that is exerted upon a system. 
 

 We once more return to Fig. 9, in which b is the location to which the material point a 
would move during the time interval dt as a result of the velocity that it had attained at 
time t if it were completely free, c is the location to which it would actually move, α is 
the location to which it would move if it advanced with uniform velocity that it has 
attained with forces acting upon then, and finally, γ is any location that is allowed by the 
constraints to which that point would be displaced. 
 In no. 13, we saw that cα can always be considered to be a virtual motion.  If the 
constraint on the system is unvarying then no attention at all must be given to the internal 
forces.  However, if the constraint is variable then it will only be necessary for one to 
consider the requisite internal forces that might appear during that motion and that exist 
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within or between the links in the system; i.e., to treat them like the externally-applied 
forces p. 
 Under those assumptions, one can then put α in place of γ in equation (5).  That will 
give the following expression for the total constraint ∑ m (bc)2 that is exerted upon the 
system: 
 
(57)    ∑ m (bc)2 = ∑ m (ab)2 − ∑ m (α c)2.  
 
 Since m (bc), m (ab), m (α c) are proportional to the forces q, p, r, resp., one can also 
write that equation as: 
 
(58)    ∑ q (bc)2 = ∑ p (ab)2 − ∑ r (α c)2. 
 
 That equation teaches us that the effect of the deflecting forces q, or the constraint 
that the system feels as a result of the coupling of its material parts at each moment in 
time, is always equal to the difference between the effect that the forces p that are applied 
to it would provoke if all points were completely free and the effect that the effective 
forces r would actually provoke. 
 Since that constraint is a minimum, from Gauss’s principle, it will follow further that 
the difference between the effect of the applied and effective forces is always as small as 
would be possible with the constraints that are given on the system. 
 Nonetheless, as equation (57) teaches us, that difference will always be positive, so as 
a result of the constraint on the individual material points of a system, there will always 
be a loss to the internal effect of the applied forces that is capable of being produced 
when all material points are completely free; however, that loss is always only as small 
as possible. 
 In that, we must once more emphasize that when the constraint on the system is 
variable, along with the applied forces p, one must also include the internal forces – 
namely, the elastic forces – that might appear because of the motion of a to α in the links 
of the system.  When one ignores those elastic forces, one would generally find that the 
loss that the remaining external applied forces suffer in many states of motion where the 
overcoming of the internal forces requires a certain effort will increase, but in many other 
states where the internal forces support the motion, it will decrease, and in the latter case 
there can, in turn, be a gain in mechanical work. 
 In addition, one must also point out here that when forces are present in the system 
that act upon massless points, not massive ones, equation (22) must be applied, which 
assumes the form: 
 

S q (c b)2 + dt2 S p (cα) cos ϕ = S p (α b) – S r (α c) 

or 
S q (c b)2 = dt2 S p (α c) cos ϕ + S p (α b) – S r (α c) 

 
here, where cα is regarded as a virtual displacement, and ϕ represents the angle α c b = 
raq between the forward directions of the forces r and q. 
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16. – A look back at the fundamental law of mechanics above and a comparison  
of it with the principle of least action of Maupertuis. 

 
 In the foregoing, we saw that one can take Gauss’s principle to be the starting point of 
mechanics, as well as the principle of virtual velocities, in conjunction with d’Alembert’s 
principle.  Since each of those two foundations possesses the generality that is necessary 
if one is to develop the entire study of motion and equilibrium mathematically from it, 
one can already see from the outset, as Gauss also remarked in the aforementioned 
treatise, that when one has expressed the one, there can be no further essentially-new 
basic principle for mechanics that is not included in the former, according to matter, and 
would be derived from it.  In fact, we have seen how both basic principles imply each 
other. 
 However, from Gauss’s further remark, it is not at all true that this new principle 
proves to be worthless due to that situation.  Rather, it is always interesting and 
instructive to arrive at a new and advantageous viewpoint on the laws of nature, if it 
happens that one can solve this or that problem more easily by means of it or if it reveals 
a special suitability. 
 In regard to the latter, we have weighed the two basic principles above against each 
other many times in the foregoing and found that the principle of virtual velocities, in 
conjunction with d’Alembert’s principle, will permit a simpler or more convenient 
application in most cases, but that in many special cases, Gauss’s principle will allow an 
immediately employment, and that the latter possesses greater simplicity, in addition, 
while the former must be composed of two laws in a sense, and that ultimately Gauss’s 
principle, from its content, comes closer to the essence of a self-explanatory fundamental 
law that requires no proof than the principle of virtual velocities. 
 Up to now, no fundamental law with the same profundity has been expressed besides 
the foregoing, since the principle of least action that Maupertuis proposed carries only 
the character of a lemma, but can hardly make any claim to the title of a fundamental law.  
That is because from the statement of that law that was first given correctly by Lagrange, 
the sum over all material points in the system of the integrals of the products of the 
quantities of motion mv and the curve elements ds that are described between any two 
epochs in the motion – so the quantities ∫ ∑ mv ds  − is a minimum (special cases in 
which that quantity can also be a maximum must be dealt with).  That integral sum is 
then smaller for the actual motion of the system than it would be if the material points 
that are pushed by those forces as a result of other constraints that would be necessary to 
reach the same endpoint of the motion were to follow other paths. 
 If one also must concede that it is obvious that the motion of a system in the manner 
that actually results would proceed in the easiest way then it would not be clear, with no 
further discussion, that the product of the quantity of motion and the path element would 
be the proper measure for that quantity that must be a minimum under such situations.  
Therefore, the law is very much in need of a proof.  However, that law loses the property 
of a fundamental law entirely, since it is not completely general, but rather certain cases 
remain excluded in which the integral sum above can be a maximum. 
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17. – New fundamental law of mechanics. 
 

 From the viewpoint that was presented in the foregoing number, it would not be 
without interest to become acquainted with a new, completely-general, fundamental law 
of mechanics that takes the place of the other ones completely.  Permit me to present it as 
follows: 
 From the coupling of material points upon which forces act into a system, those 
forces will indeed define a certain constraint, such that it will be prevented from 
performing the maximum of mechanical work that it would be capable of producing if all 
points were completely free.  By itself, it must be regarded as lying in the nature of things 
or an immediate consequence of the constancy of matter and its forces that the set of all 
works that the applied forces actually perform under the motion of the system will also 
appear completely – i.e., with no loss or gain, since a loss or a gain in work must have a 
cause that might reveal itself to be nothing but an equivalent amount of work that 
appears. 
 That is what our new fundamental law consists of.  It seems that it leaves nothing to 
be desired in simplicity and evidence, and that it can be aptly presented without proof as a 
fundamental law of mechanics, although if one feels that it would be desirable to analyze 
it and reduce it to the elementary theorems of statics and mechanics then one can also 
provide it with a special proof, as one will see shortly. 
 As far as the mathematical expression for that law is concerned, as before, in Fig. 14 
(Table II of the previous issue), let α be the location that the material point a of the 
system would occupy as a result of the intrinsic velocity that it had attained at time t 
acting over the time interval dt, but with no forces at all acting upon it.  Let p be the force 
applied to it, which would lead it from α to b during that time if it were completely free.  
Let r be the effective force, which would actually lead it from α to c, so it would then 
correspond to the actual motion ac when one recalls the intrinsic velocity that it already 
has, and finally, let m be the mass of the material point a. 
 For the sake of brevity, we symbolically let A p a denote the work that a force p 

performs when its point of application traverses the straight path a, so it will have the 
expression pa cos α, in which α represents the angle of inclination between the forward 
direction of the force p and the path a, and the work that is actually developed during the 
motion in Fig. 14 by the applied force p during the time interval dt as it traverses the path 
ac will be equal to A p (a c).  By contrast, the apparent work done on the material point 

by the effective force is r is A r (a c).  Thus, from our fundamental law, we must have the 

equation: 
 
(59)    ∑A r (a c) = ∑A p (a c) . 

 
 On simple geometric grounds, the work that is done by a force p when one traverses a 
broken path whose sides are a1 , a2 , a3 , … will be equal to the work that force does when 
it traverses the straight lines that connect the endpoints of the broken path; i.e., it is: 
 

A p a1 + A p a2 + A p a3 + … = A p a, 
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in which the sum of the projections of the individual line segments a1 , a2 , a3 , … onto the 
direction of p equals the projection of the line a onto that direction. 
 It follows from this that the sum of the works done by the force p, as well as the force 
r, when they traverse the broken path a α c is equal to the work done by the force in 
question when it traverses the diagonal a c.  One can also write: 
 
(60)  ∑A r (a α) + ∑A r (α c) = ∑A r (a α) + ∑A r (α c), 

 
instead of equation (59) then. 
 Now, aα is a motion that the point of the system might exhibit if it had a uniform 
velocity that was consistent with its constraint, but it was not acted upon by forces.  Any 
virtual displacement of the system away from the location a can obviously be regarded as 
such a motion; i.e., one can think that when the virtual displacements over the time 
interval dt are replaced with uniform velocities, those velocities can be considered to be 
ones that the individual points of the system might possibly possess at time t.  In this, as 
in no. 13, it is generally assumed that should the constraint on the system depend upon 
time t or be variable then among the applied forces p, the ones that are considered to be 
required will be the ones by which that variability is required by the constraints. 
 That further illuminates the fact that, no matter how variable the line aα of the 
velocities of the points at time t that are consistent with the constraint on the system 
might be, the line α c will not depend upon those velocities at all, but will merely be 
required by the applied force p, or if one would prefer, the effective force r, when αc 
represents the direction that is given to the deflection of the material point at time t that is 
produced by only those forces.  In order to make the validity of that assertion clearer, 
recall that no matter what the law of dependency between the line αc and the forces on 
the system might be, it can produce no other values for the deflection α c, regardless of 
whether one determines that deflection from the point a or the point α, because no matter 
how variable the line aα might also be, that deflection will still be infinitely small, which 
has the consequence that the forces p on the system will have an effect on the point a that 
differs from the effect on the system at the point a by only infinitely little; i.e., when one 
passes to the limiting state in the sense of differential calculus. 
 There will be even more evidence for this theorem when one imagines that in the 
construction of the actual motion along the diagonal ac, it will not be the piece aα that is 
described with uniform velocity and then the deflection α c, which might give the 
impression that the later component α c can possibly depend upon the earlier one aα, 
but, from Fig. 15 (Table II of the previous issue), it would first describe the path a c1 = 
α c that lies in the direction of the effective force r, so the one that is merely required by 
the applied force p with no concern for any uniform velocity, and then the path c1 c = a α, 
which has a uniform velocity that is given arbitrarily . 
 In order to prevent all misunderstandings, we point out that in a certain sense the 
applied force p, and therefore also the effective force r and the line ac1 can depend upon 
the velocity at time t, and therefore on the line aα, such as, e.g., for motion in resistant 
media, in which the resistance of the medium varies with the direction and velocity of the 
moving mass.  By itself, that fact is irrelevant for the present considerations, because we 
think of the applied forces p as being just the ones that correspond precisely to the actual 
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motion at the end of time t.  If those forces were not, in fact, also required by the 
velocities at time t, and therefore functions of that velocity, then we would assume that 
they do not change when we substitute any other displacement for the virtual 
displacement aα. 
 Under those assumptions, the first terms on the left and right-hand side of equation 
(60) will appear to be included among the arbitrarily-varying quantities that are given by 
the laws of constraint on the system, while the second terms are variable; i.e., quantities 
that are established by the nature of the system and its forces.  On that basis already, and 
also when one considers that the first terms can be equal to zero by the permissible 
assumption that aα = 0 itself, equation (60) will decompose into the following two 
separate equations: 
 
(61)    ∑A r (a α) = ∑A p (a α), 

 
(62)    ∑A r (α c) = ∑A p (α c) . 

 
 Since aα represents any arbitrary admissible virtual displacement of the point a, and 
obviously α c = a c1 is also such a displacement (for aα = 0), equation (62) will be 
contained in equation (61), and thus superfluous. 
 Equation (61), as the immediate consequence of equation (59), which was given by 
our fundamental law, can indeed be likewise replaced with equation (59), but it would 
seem necessary to perform the foregoing derivation and emphasize the remarks that it 
provoked in order to show more clearly that in the expressions for the works done by the 
forces p and r, the path of the point of application of those forces will remain arbitrary 
within the limits of the virtual displacements, which from equation (59), in which ac 
denotes the actual path of the point a, is no more evident than the arbitrariness in that 
path in its resolution into arbitrary components α a and constant components α c proves 
to be, especially since one should not, with no further analysis, overlook that if that were 
true then any virtual motion could be regarded as an actual motion that results from the 
governing forces p, although there is no doubt that every virtual motion can be regarded 
as a motion aα that results with uniform velocity, but without the action of the forces p. 
 From that explanation, if one denotes any virtual displacement of the point a [so the 
line aα in equation (61) or the line α c in equation (59)] by δ s then our basic equation 
will become: 
 
(63)    ∑A r δ s = ∑A p δ s . 
 
 One sees that it can be easily reduced to the formula that represents d’Alembert’s 
principle, with the help of the principle of virtual velocities, because if one denotes a 
coordinate line that is drawn parallel to the direction of the effective force r by ρ, then 

denotes the force r by 
2

2

d
m

dt

ρ
, and further denotes the angle of inclination of r with 

respect to the virtual displacement δ s of the point a by ϕ and the angle of inclination of p 
with respect to δ s by ψ then the work done by the force r under that displacement will be 
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equal to 
2

2

d
m

dt

ρ δ s cos ϕ, and the work done by the force p will be equal to p δ s cos ψ.  

In that way, equation (63) will become: 
 

(64)    
2

2

d
m

dt

ρ
∑ δ s cos ϕ = p∑  δ s cos ψ. 

 
 If one would like to refer all quantities to a rectangular coordinate system, as one 
usually does, then that work done by any force would split into the works done by its 
components, and if X, Y, Z are the components of p and δ x, δ y, δ z are the projections of 
the displacement δ s onto the three axes then (from a derivation that was applied before in 
no. 4): 

2 2 2

2 2 2

d x d y d z
m x y z

dt dt dt
δ δ δ 

+ + 
 

∑  = ( )X x Y y Z zδ δ δ+ +∑ , 

 
which is an equation that is ordinarily presented in the form: 
 

(65)   
2 2 2

2 2 2

d x d y d z
X m x Y m y Z m z

dt dt dt
δ δ δ

      
− + − + −      

      
∑  = 0, 

 
in order to express the equilibrium of the lost forces. 
 It hardly needs to be remarked that our fundamental law encompasses the state of 
variable motion, as well as that of rest, or even equilibrium with uniform motion, since 
only the effective forces r need to be set to zero for there to be equilibrium, which will 
make the entire left-hand side of our fundamental equation reduce to zero. 
 That further illuminates the fact that this, in itself very plausible, fundamental law 
possesses the advantage of greater simplicity over d’Alembert’s, since the former first 
requires the assistance of the principle of virtual velocities in order to put the fundamental 
equations of motion into the form of a mathematical formula, and in addition, requires a 
detour through the concept of lost forces, to which end, certain forces must first be 
applied to the given system that do not exist in reality and only serve to produce a 
fictitious system with the so-called lost forces. 
 In addition, our fundamental law is applicable, with no further analysis, regardless of 
whether certain forces p in it act upon material or massless points, since one only has to 
set m = 0 for the massless points, which one cannot do in Gauss’s law, since that would 
imply infinite quantities for massless points, which, as we showed in no. 2, would make a 
conversion of the formula necessary, and to some extent the fundamental law itself would 
be annulled. 
 If one would like to assign a special name to the new law, for the sake of brevity of 
reference, then since the motion of the system completely realizes or brings to light the 
work done by the forces that are applied to it then the terminology of the principle of the 
realization of work might be suitable. 
 

____________ 


