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1. — Development of Gauss’s law

In treatise no. 18 in Crelle’s Journal for Mathenstigol. 4, pp. 232, our great
mathematiciatGaussenriched mechanics with a general fundamental latsti@uld not
be missing from any textbook on analytical mechanicenglwith d’Alembert’s
principle and the principle of virtual velocities, sintalone, without the aid of a second
fundamental law, suffices completely to determine rti@ion and equilibrium of any
system of bodies, and can thus be taken to be tmeldédion for all of mechanics. Even
though the greater simplicity of Gauss’s law, in ppifei does not always bring about a
greaterpractical simplicity or analytical brevity in the treatment sfpecial problems,
since in many caseg)'Alembert’s principle, in conjunction with that of virtual
velocities, would be easier to implement, nonetheldssre are also cases in which
Gauss’s law would be more direct and convenient to empldgwever, in addition, it
reveals a most interesting property of every systenbaafies that is found to be in
motion as well as every one that is eqguilibrium especially because it expresses a
criterion for the laws ofmotionandrestwith equal generality.

The fact that this law has not enjoyed a general adgumia is perhaps based in the
brevity of presentation that the inventor himself gavi, tby which the actual essence of
that law and its relationship to the usual general fundeahé&aws of mechanics might
not seem sufficiently clear to many. Therefore, ighh be advisable to direct the
attention of the mathematical public to that importam with some emphasis, and to
that end, to explain the law itself somewhat moredatghly and illustrate its application
in some special cases.

However, in addition, we will take this opportunity to dggea bit further on the
basic laws of mechanics and add something new to it.

Gaussdefined his law, which one can rightly c&luss’sprinciple, or from its
content, theprinciple of least constraintas opposed to d’Alembert’s principle, in words
as follows:

The motion of a system of material points that are coupled to eachiotivatever
way, and whose motion is likewise constrained by whatever sorstattiens, will take
place at each moment with the greatest possible agreement with ehadt®n, or the
least possible constraintin which one considers a measure of the constraint that the
entire system experiences at each moment in time to be thef shenproducts of the
squares of the deflections of each point from its free motion withntlasses.

If one then has that (Table I, Fig. 1)(

m, m’; m” ... are the masses of the material points
aa,a’ ... are their positions at tinte
b, b, b” ... are the locations that they would assume afterrtfieitely-small

time intervaldt as a result of the forces (that agpliedto them)

(") Translator: I have not been able to find thedcftgures and tables.
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during that time interval and the velocities and dimithat they
would attain if they were all free,

c,c,c” ... are the locations that they would actually assumienatintervaldt

then, from the principle above, of all of the locatothat are compatible with the
conditions on the system, the actual locations wilthie ones for which the expression:

(1) m(ch)®+m (cb)?+m' (c'b")* + ...

IS a minimum.

Equilibrium is obviously only a special case of the general law dianpsince in
that case, the actual locations', c’, ... would coincide with the original onesa’, a",
..., as long as the equilibrium exists in thest state, so for a system that is found in
equilibrium, the expression:

(2) m(ab)? +m (@b)? +m' (@'b")* + ...

must be a minimum. It likewise follows from this thla¢ persistence of the system in the
rest state lies closer to the free motion of the individual ptinais any possible way that
they might emerge from it.

Gauss’s law can be derived from d’Alembert’s princgohel that of virtual velocities
as follows. Let (Table Il, Fig. 2):

p be the force that acts upon the material painhich acts during the time
interval dt, and if that point were completely free then it wbgb tob
when one considers the velocity and direction thatamigeves at time

q be the force that acts upon the pa@rand is produced by the constraint on
the system, as a result of which the point would deffeenb tocin as a
completely-free mass from the rest state during the thtervaldt.

r be the resultant gf andg, by whose action, the poiatwould actually go
fromato c as a completely-free mass during the time intesivalhen one
considers the velocity and direction that are achiataamnet; hence, it is
the so-callecffectiveforce on the poind.

Since the poina moves under the action of the fongeand the constraints on the
system as if it were free and merely affected withftneer, it would follow that if the
forcer, which acts in the opposite direction to the fgoqso the force +), were applied
to a, in addition top (so it would be subjected to the force that is composed qf and
—r, which would lead the completely-free point through thimggsan space ofb during
the time intervaldt under the remaining constraints on the system), thensystem
would be found in thequilibrium state. In fact, the forcesg: - ¢, — @', ... represent
the so-calledost forces which must keep the system in equilibrium under the nengi
constraints on the system, fraliAlembert’s principle.
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If we apply the principle of virtual velocities in orde exhibit the condition equation
for that equilibrium then we lgt y, y7, ... be the locations where the poiats’, @', ...
might possibly arrive after the timét, which are different front, ¢, ¢, ..., but
compatible with the conditions on the system. Nowjalkslycy, c'y, c"y” ... are also
the virtual motions that the pointsc’, c’, ... could assume under the constraints for the
system that is found in equilibrium under the forces—q', - g, ...

If one drops a perpendiculgh from each of the pointg y, v ... (e.g., fromy) tocb
then since the force ¢ acts parallel teb, — g (cf) will be the virtual moment of that
force. If one letsp, ¢’ @”, ... denote the angldscy; b'c’'y, b"c"y”, ... thatcy, c'y, "y,

. make withcb, c'b’, c'b", ..., resp., ther g (c)) cosg, —q (c'y’) cosg’, —q" (c"y”)
cos¢” . will be the V|rtual moments of the forcesj— ', — ", .

Since the force g is such that it would push the mems(whlch is thought to be
completelyfree) from the rest state through the pointscbfduring the timedt, it will be
proportional to the produeh (cb). If we then set the forcesg:— ¢, — ", ... equal to
the valueanm (cb), m (c'b’), m" (c"b"), ..., resp. (which are proportional to them), then
their virtual moments will be:

m (cb)(cy) cosg, m (c'b)(c y’) cosg’, m' (c"b")(c"y”) cosg”, ...,
respectively.

From the principle of virtual velocities, the sumtbbse moments must legual to
zero. One will then have:

(3) > m(cb)(cy) cosg = 0.
Now, since:
(yb)? = (ch)* + (c)* - 2 €b)(c)) cosy
or
4) €b)* = (¥b)* - (c)® + 2 h)(cy) cosy,

one will have:
> m(ch)* =D m(yb)?- D m(cy®+ 2> m(ch)(cy) cosg .

It will then follow from equation (3) that:

(5) > m(ch)? = m(yh)*~ > m(cy®

The lengthcb is theactual deviation of the mass from thefree motion while yb
representsany other possiblaleviation. Now, since from equation (5), one has that

Zm(cb)2 Is always less thaim(yb)z, in that, one will find the proof of therinciple

of least constrainthat was expressed above, namely, that the sum qirtiseicts of the
actual deflections of the individual points from the fraetion of the masses at those
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point must be a minimum; i.e., it must be smaller ttir@nsum of the products of any
other deflections of those masses that are possible theleonditions on the system.
For equilibrium in the rest state, equation (5) wiltdee:

(5a) > m(ab)’ =Y m(yb)’ - > m(@y’.

2. — Explanation for Gauss'’s law.

The foregoing law requires some explanation, and Her dake of applying it in
certain cases, a transformation of equation (5) ortbeding of the principle that it
expresses might be absolutely necessary.

When the force that acts upon a free masdgs capable of endowing that mass with
the velocityg in a unit of time, such tha represents the acceleration that the fqrce
gives to the magg, it is known that the following relationship exist:

(6) p=mg

The lengths of the path that is that is traversed from the st at time: is:
(7) s=1gt®.

The pathds = gt dt will be traveled in the time intervalk. For the first time interval
that follows the rest state (so the one for which bast = 0), that path length will be
equal to zero, from the formula itself. However, thato value fodsatt = O tells one
only that fort = O, the value oflsis no longer an infinitely-small quantity degree one
relative todt, but one of higher degree. In fact, when one eithsit ®gjual todt directly
in equation (7) or when one séts 0 in the value of the complete incremens,afo in:

As = d—smlwiis[dalt2 +ii‘l$_d13+
dt 12 dt? 1B
=gtdt+igdt’,
one will get:
(8) As=1igdt

for the path that is traversed in the first timeimal.
Now, if:

-0, -0, —Q are the forces that would push the free nmass$ the material point
a fromc to yduring the time intervatt.
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f, fi, f are the accelerations that the foreeg, — g1, — g2 , resp., endow
the massn with per unit time
then one will have:

9 -g=mf —gu=mf, -g=mhk,
(10) cb=1ft, yb=1fit%, cy=1if,t
When one substitutes the values in (10), formulasri@)%) will assume the form:

(11) > mffycosg=0,

(12) dYmff=>mf’-> m#f,

and when one introduces the foragsp , g2 from equation (9), those equations will be
converted into:

(13) > qfcosg=0,

(14) daf=>a f->q,f,.

If one so wishes, one can also write those formata
(15) > d(cy cosg =0,

(16) Daeh) => a()-D a(¥).

In the form of equation (12), the quantities that oeats in the principle of least
constraint are freed from the considerationndinitely-small paths. In that form, one
deals with onlyfinite values, since theneasure of the constraifdr any material point
now appears as tharoduct of its mass with the square of its acceleration due to the
deflecting force.

In the form of equation (14), theeflecting forces ghemselves are introduced in
place of themasses m Themeasure of the constrairg now theproduct of the deflecting
force with its acceleration.

In the case where a point has no mass at all, butrephgsents a geometric position
in the system upon which the forpects, eliminating the mass of a pointa by means
of the formulas will take the form of an unacceptableessity, because one would then
have that the masa = O for any point of that kind, but a finite forpewvould assign an
infinitely-large acceleration to an infinitely-smalliass, so the poirt (Fig. 3) would be
at an infinite distancecb andby (or alsof andf;) would becomenfinitely large and in
that way terms would arise in the formulas above wohdd take the form Qo or oo,
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which would make those formulas unusable. Only equati@) Wwould still remain
useful in those cases.

As far as the remaining formulas are concernedciesr that it is not at all necessary
to take the surll overall points of the system at once. One could also figt the sum
S over a certain complex of points and then take the @wver the remaining points,

such that one would then ha¥e= S +&. In that way, equation (3) would then become:
a7 Sm (ch) (cp) cosg + G m(ch) (c)) cos¢ =0,

and when one split§ m (ch)? into Sm (ch)®> + & m (cb)? in equation (5) and then
substitutes the values from equation (4) that correspor foartial sun® m (cb)? in it,
equation (5) will become:

(18) Sm (cb)? + & m(ch) (c)) cosg = Sm(ch)®> - Sm(cy)>.

If one would like to eliminate the su@& from equation (18) with the help of equation

(17) then one would indeed obtain an equation with onlysthmmation sign S, which
would then refer to only an arbitrary part of the masdethe system. However, one
would easily find that this equation was only a result aqpiagion (4), so it is only a
geometricrelationship between the masses that enter intatitpdt amechanicabne.

If one substitutes the valua(cb) =3 (- q) de for the producn (cb) in the summation

sign&, by means of the relations (9) and (10), then thatyalt:
(19) Sm (cb) (c)) cosg + 1 (- q) df* & (- g) (c)) cosg =0,
(20) Sm(ch)? +df & (- q) (c)) cos¢ = Sm (yb)> - Sm (c))?,

instead of (17) and (18), resp.
Should the sigi® refer to only those points of the system that hawvenass then one
would have to observe that for each such pdirthat is parallel t@ab, the magnitude and

direction of theost force —q would have to be precisely equal to gppliedforcep that
acts upon the poird (Fig. 2). One would then have:

(21) Sm (ch) (c)) cosg + 1df & p (cy) cosg =0,

(22) Sm(ch)? +df S p (cp) cosg = Sm(yb)?— Sm (c))?,

under that assumption, and infinitely-large or indeterteirguantities would no longer
enter in those formulas.

If one would also like to let the lost forceg-appear under the S sign in place of the
massam [since that is true of equations (15) and (16)], thernvamed get:
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(23) S (-0) (cb) (cy) cosg + & p (c)) cosg =0,
(24) S (-a)(cb) + 26 p (cy) cosg = S (—q)(yb) = S (-a)(c)) .

In order to fix the directions and the angl@recisely, one must once more point out
that —q is thelost force, which acts in the directiat, so thedeflectingforceq would act
in the directlyoppositedirectionbc, but the angle = bcylies between the directiarb of
thelost force —q and the directioc); in which yrefers to any other displaced position of
the pointa that is possible under the constraints on the system.

As far as the case in which the system is foundetantequilibrium andat restis
concerned, the deflecting forcewill be equal to- p or the lost force g = p. In that
case, equations (21) and (22) will assume the form:

(25) Sm (ab) (a)) cosg + 1df & p (ay) cosg = 0,

(26) Sm(ab)? + d? & p (a)) cosg = Sm(yb)? - Sm (ay)?,
resp., and equations (23) and (24) will assume the form:

(23) Y p(ch) (ay) cosg =0,

(24) Sp(ab) +2& p (ay) cos¢ = Sp(yb) -Sp(ay) .

If the system were not precisely in the rest staié,inuniform motion when it is in
equilibrium then the point would not in fact fall upom, but at some other poiaj to
which the pointa would be led during the time intervdt by the velocity, once it has
been achieved. However, one would always hl@we- p, and the foregoing equations
(25) to (28) would remain valid under the assumptiondbatpresents the path that the
point a would traverse in the timdt as a result of only the forge, but with no
consideration given to the previously-achieved velocity] #rat g refers to another
location for the poina that likewise does not consider that velocity.

3. — Relationship between Gauss’s law and d’Alembert’s prciple
and the principle of virtual velocities.

Equation (4) expresses onlgaometricrelationship that prevails in the system, while
equation (3) expressesvechanicarelationship. Now, since formula (5) is the result of
simply combining (3) and (4), it will follow that in arst mechanical sense, formula (5)
is equivalentto formula (3).

However, formula (3) will represerd’Alembert’s principle immediately (under
which, the system will be in equilibrium with the Idetces —q) once one applies the
principle of virtual velocities whereas formula (5) is the complete expression for
Gausss principle, in that it does not merely tell one tham (cb)? is smaller than any
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possiblez m(yb)?, and is thus aninimum but at the same time, it showg how much

the former sum is smaller than the latter.

One sees from this that Gauss’s principle includes d’Alet'sbén conjunction with
the principle of virtual velocities, which are ttwo fundamental laws that define the
basis forstaticsanddynamicsin its usual presentation, and when they are takenhege
one can deem that to bgeaneralor higher principle of mechanics.

Gausshimself said, in the aforementioned treatise:

“The special character of the principle of virtual \#ies consists of
the fact that it is a general formula for solving &ditie problems, and is
therefore a replacement for all other principles withohowever,
immediately taking credit for the fact that it a&ldy seems plausible by
itself, to the extent that it was only expressed. that regard, the
principle that | will present here seems to have #uvantage.
However, it also has secondone, namely, that it encompasses the law
of motion and rest in exactly the same way in greaeserality.”

The second advantage, namely, that Gauss’s principdeacterizes the state of
motion and rest at once is sufficiently clear frone tforegoing. However, the first
advantage, namely, that this principle appears to hen@amental lawof mechanics,
requires more explanation.

The general wording of Gauss’s principle, namely, thatmotion of a system at any
moment proceeds with the greatest possible agreementhgitiiee motion owith the
smallest possible constrajmgenerally seems to be entirely plausible, and a prooid
not be required. However, whatdenstraintin the strictly-scientific sense? How does
one define the mathematical expression for that gemeradept? Obviously, for any
material pointa (Fig. 3), the constraint that leads it from the laoab of its free motion
to the locationc of its actual motion in the infinitely-small timedt, must initially be
proportional to the forceg that pushed it away from the point and in addition, to the
length of the patlbc through which that mass was pushed, so it should be papdnto
the producqy (bc), which represents theork done by the deflecting force. One can then
take that product itself to be the constraint in quastimt the mass of the pointa
experiences. Now, should the sum of the constraidts are exerted over the entire
system be as small as possible then one would be leddiiatiely to the condition that
g (bc) must be a minimum.

If m denotes the mass of the poathen since the forcq is proportional to the
productm (ch), from equations (9) and (10) one can also impose therdethat) m
(cb)> must be a minimum, which constitutes the mathematgatession for Gauss's
principle.

When one places Gauss’s principle at the pinnacteechanics in that way, that will
imply the remaining fundamental law — namely, the ppiecof virtual velocities — by
the following argument:

Due to equation (4), on purely-geometric grounds, one has:

> m(ch)* =D m()b)* = D m(cy®+ 2> m(ch) (cy) cosg .
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Now, sinceX m (ch)? is a minimum, so it is always smaller thanm (yb)? the
guantity 2> m (ch) (c)) cos¢ will either be negative or smaller th@ m(cy)?, when it

is positive, which is a position that the poprnight also assume.

Now letcy (Table Il, Fig. 4) be any infinitely-small motion thidite pointc is in a
state to assume according to the constraints osysiem, and let)s be the advance
under the backwards motion that this point would adopt ureerdturn fromy to c.
That shows that any poipt that lies betweewand )4 can be regarded as the endpoint of
the motionc)s . Now, if X dxis the analytical expression farg, in which X is the
function of any quantitx that has one and the same meaningfiopoints of the entire
system, such that dx X" dx, X”dx ... refer to the material poings &, a", ..., resp., or
c, C,c', ..., resp., theiX dxwill obviously represenany infinitely-small motion likec)s
that lies betweepand )4 when one merely replacds with the corresponding value, and
it will be clear that the motions d@ll points of the system inside the infinitely-close
limits y and )4 increase and decrease proportionally, as well as change signs
simultaneously.

Now, since:

2> m(ch) (c)) cosg = 2dxD_m(ch) X cos¢
and

> mep?=d¥d mx?

from that relation, one sees immediately that fosuiable choice oflx, when the
quantity ZZm(cb) (cy) cos ¢ is multiplied by the first power odx, it will always be

positive and also always greater than the quanEyn (cy)? times the second power of

dx might be if it possessed any nonzero-values at all.
It follows from this, in general, that one must have:

> _m(cb) (c)) cosp =0,

which implies equation (3).
Sincem (cb) is thought to be proportional to the deflecting force, or also in the
opposite direction (which one calls the lost fortke, foregoing equation will go to:

Y. (=a)(cy) cosp=0 or > (-q)(ch=0.

However, equilibrium must exist under those lost forces, -as d’Alembert’s
principle itself would say, and proof would not be requir@the foregoing formula then
expresses a fundamental law of the forces that @wadfto be in equilibrium, and
recognizes therinciple of virtual velocitiesn it, which gets its foundation from Gauss’s
principle in that way.
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4. — Simpler proof of the principle of virtual velocities.

In the above, Gauss’s principle was derived from d’Alemd®@nd the principle of
virtual velocities. However, it can also be shown hbes principle of virtual velocities
will follow when one assumes Gauss’s principle.

As a rule, one would probably prefer the first path ofettgoment, partly because
d’Alembert’s principle and the principle of virtual veldes are implied by elementary
intuitions and admit proofs that are free from obgatdi but partly because in most cases
the last two principles admit an immediate and simg@gplication to given cases.

In regard to the latter, one must, in fact, obséne¢ sincea, a’, a” ..., as well ag,

c, c¢', ..., are positions that the massas m', m", ..., resp., can actually assume
according to the constraints on the system (namiedyfdrmer, at the beginning, and the
latter, at the end, of the time interH), when one applies d’Alembert’s principle and the
principle of virtual velocities, one can start immeeig from the given positions, a’,
a”, ... of those masses at tirhas the point of application of the lost fordeqy) , (- '),

(-9, ..., whereas the application of Gauss’s princielguires the consideration of the
fictitious positionsh, b’, b” ... at which those masses would arrive at timerviatiedt if
they were entirely free, as well as the positions, c”, ... at which they would actually
arrive at that time, as well as the conditions unabkich Zm(ct)2 would become a

minimum, or from equation (5), equal 2o m (yb)* — Zm(cy)2 , Which are, as a rule,

more cumbersome to develop than the conditions ruwthich the sum of the virtual
moments of the lost forces that act upga’, a” ... would be equal to zero.

However, one will always be able to ders@merelationships from Gauss’s principle
more simply and directly than from the other twanpiples with a suitable handling of
the formulas in question.

Meanwhile, if one starts with those other two pipies then the simplest-possible
proof of the principle of virtual velocities woulte desirable. | shall then allow myself
to communicate such a thing here.

The principle in question reads:

If the point of application of a system of forckattis found to be in equilibrium is
displaced infinitely little, and indeed in a wayathwould be permitted by the constraints
on the system, then sum of the products of thedand the lengths of the paths that are
traversed, which are parallel to the directionglobse forces, will be equal to zero.

Therefore, if the point of application of any diet forcesP describes the patép

under that motion in a direction that subtendséahegle ¢ with the forward direction of
the forceP then:

(29) D> Pdcosp=0.

We next consider agid system of points; i.e., one in which all pointge agidly
coupled to each other. At those points, let:
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X,Y,Z be the components of the forBethat acts upon the poist that are
parallel to the three rectangular coordinate axes,

a, B,y  be the angles of inclination of the forward directafr® with respect
to those axes,

m, (i, Vi be the angles of inclination of the forward directadang which the
infinitely-small displacementp of the point of application o will
result with respect to those axes, whereas

@ represents the angle of inclinationfFoWith respect tayp,
XY, Z are the coordinates of the point of applicapand

X, oy, oz are the displacements of that point relative to tthree axes or the
projections ofdp .

Any motion of a rigid body consists of a rectilineatvanceand arotation around
any axis, as an entirely simple argument that requioesalculation will show (cf., my
Situationskalkyl pp. 191). That advance can be resolved into three eidgamotions
that are parallel to thregiven rectilinear axesand thus, parallel to our coordinate axes,
and the aforementioned rotation can be resolved inteethotations about those
coordinate axes. Therefore, the equilibrium of theesyswill require that the force
have no ambition to move in the direction of any asts,

(30) >.X=0, >Y=0, >Z=0.

In addition, equilibrium will require that there issalno ambition to rotate about an axis,
so the moment equations:

(31) D (xY-yX) =0, D(yZ-z¥)=0, D (zX-x2 =0
must be valid.

If we focus our attention on a motion under which aalyotation about the-axis
takes place [so one for which the first of equations ({81yue], and we denote the
infinitely-small positive angle of rotation from righd left by ythen, as we can easily
infer from Fig. 5, the ordinatewill change by the quantitgn = - ¢y, and the ordinatg
will change by the quantitym= ¢ x. For a similar rotation around tlkeaxis through the
angley, the ordinatey will change by —« x and the ordinate by ¢y. Likewise, under a
rotation about thg-axis through an angle gf the ordinatez will change by- x x and
the ordinatex will change byy z. As a result of all those three rotations:

the ordinatex will change bydx =— @y + x X,

n n y n n @:_wz+¢x,
Z " "= X+ yy.

n n
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If one now multiplies the first, second, and third qbiations (31) by, ¢, x, resp.,
and adds all three then that will give:

DIy + XX+ (y@z+dXN Y+ xx+yy)Z=0

or
(32) D> (XIx+YJdy+Zd2)=0.

It is important to point out that thane equation does not merely replace these
foregoing oneswhich refer to theotation, completely, but also tharee equations (30),
which refer to the advance, because depending upon wletbesetsd z or dy or J x
equal tozero, one will get three equations for the relevant imtabout an axis, and
depending upon whether one sétsanddy or o x anddzor dx anddy equal to zero,
one will get three equations for the relevant advance.

Equation (32) is thenecessary and sufficiefar equilibrium.

If one now sets:

X =P cosa, Y =P cosp, Z=Pcosy,

OX=0pCcosa;, OX=0pcCosSf, O0z=0pCOoSy
then one will have:

XOXx+YOy+Z 9oz =P op(cosa cosar + COSH COSPH, + COSYCOSH)
=P dpcosy.

With that, equations (32), which express the principleiddial velocities (which was
to be proved), will assume the simplest form:

(33) D P dpcosg=0.

If one now connects that rigid system to a secokdwise rigid, system in such a
way that it is not a rigid coupling that exists at tbatact point, but a moving one, then
the motion of the former system will be restricted battin a certain way; i.e., certain
displacements that were previously possible will noeobge impossible.

Obviously, the first system must be in equilibrium undk forces that act upon it
when one counts among those forces not mereli? that are applied to it, but also those
Q that the second system that is coupled to it willtexxpon it at the contact point.

When one considers all forcés and Q, equation (33) will then be true for any
remaining displacement of the first system, so obwigubo for anypossibleone. One
will then have:

Y Pdpcosp+) Qdqcog = 0.

The same thing will be true for the second systemyfoch one will have:
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D P'dpcosp’+> Qdd cog/'=0

when one puts primes on all of its forces, for claritfone now observes that at each
contact point between the two systems, the pressutheoane is equal to the counter-
pressure on the other, €’ = Q, and that for any possible displacement, the virtual
motion of the point of application & will be opposite to that dP, sody cos¢/’'=- A

cos y, then that will imply thad. Q’ &' cos¢’'=-2 Q &g cosy . If one then adds the
two foregoing equations then all termsQnwill vanish, and only the form of equation
(33) will remain, whichP will now refer to all forces that are applied te tfotal moving
system that is composed of the two individual ones, amdiigplacements are restricted
to the ones that are stbssibleunder the constraints on both systems.

In the same way, one can combine a third and fourith sigstem with previous ones
by a constraint that is moving, but based upon immediat&co without the principle of
virtual velocities ceasing to be valid.

Finally, if one ponders the fact that from the foregotonsideration, it is irrelevant
whether one or more of the systems considered haite dninfinitely-small dimensions
(so the system would reduce to a material point inldtter case) then it would follow
that the principle in question will remain applicableaoy system at all, as well as
couplings by rigid, flexible, extensible, compressible bsditc., because every non-
rigid, finite body can be decomposed into infinitely-dnparts that one can consider to
be rigid.

At this point, | must remark that the proof of the priteipf virtual velocities that
Moseley gave in the booK he mechanical principles of engineering and architegture
and which | also adapted in my own book that appearedtiathitle Die mechanischen
Principen der Ingenieurkunst und Architect&l121, pp. 170, isncorrect Namely, that
proof starts from the assumption that the componintas well asY and Z, that are
parallel to the system are in equilibrium by themselves. X 0x =0,> Y dy = 0,

ZZJzz 0, from which it would generally follow very simplyah}. (X ox+ Y oy +
Z 02 = 0. However, that assumption is inadmissible, sindeed the sum of the forces

in each of the three parallel systems is equal to geflg,X=0,2 Y=10,> Z=0, but by

no means is the sum of theomentf them about any axis always equal to zero, much
less will each of the three systems reduce fore@e-couple which does notrepresent
equilibrium

5. — Special remark by Gauss on the principle of virtual Vecities.

In the oft-mentioned treatis§aussmade the following remarks about the principle
of virtual velocities:

“...it is more correct to say that the sum of theéuat moments canever

be positive while one ordinarily says that it must égual to zerpbecause
the ordinary expression tacitly assumes that thmsife to any possible
motion is likewise possible [or that the oppositey impossible motion
is likewise impossible], such as when a point guneed to remain on a
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certain surface, when the distance between two pa@ntsquired to be
invariant, and the like. By itself, that is an unnecgssastriction. The
outer surface of an impermeable body does not consiranaterial point
that is found on it to remain on it, but merely prolsibitfrom appearing
on one side. A tensed inextensible, but flexible, stretgvben two points
makes only an increase in distance impossible, but ra#ceease, etc.
Why then would one not wish to express the law of virugdcities in

such a way that it would encompass all cases right frenoutset?”

| believe that one could perhaps respond to that remark astiaqquas follows: In
general, fixed points, lines, and surfaces are often prodhilfiten executingcertain
motions, but will admit the direabpposite ones.Now, as long as one actually takes
advantage of the fixed nature of such points, so an amtionove in the impossible
direction will prevail, there will exist forces onase points that take the form of the
resistanceof those points, which are quite necessary for thdiegum of the system.
However, whenever a displacement takes place in abposirection that makes the
resistance of a point inactive, the forces on théesyshat represent that resistance will
vanish which will generally have nothing bpbsitivevirtual moments for such a motion,
when it persists, and will thus leavenagativesum for the moments of the remaining
forces by its vanishing. However, the system will nagler remain the same under the
vanishing of part of the original forces, and will theavle the equilibrium state. Such
motions will also never be suitable to determine #sstance of the fixed points, which
plays the role oexternal applied forceentirely, and is necessary for equilibrium, and
thus for developing the conditions for equilibriwmmpletely. Accordingly, motions that
lie directly opposite to the impossible ones will eWwise kept inadmissible if they have
a change in the given system of forces as a consequenke. principle of virtual
velocities will always require theanishingof the sum of the virtual moments then when
the forces and resistancesthat are necessary for theomplete determination of
equilibrium are applied to that principle.

For example, if a weigtR® (Table Il, Fig. 6) lies on a fixed surface then it nfest a
certain forceP’ of resistance. Above all, the whole criterion forfixed body in a
mechanical context consists of saying that it must hmalda of experiencing the
resistance that was just required. The impossibilitydisplacement is, in itself, a
corollary to that, and in the spirit of the princigévirtual velocities, one can ignore it
completely when one substitutes an external forcéhie resistance of a fixed barrier.

However, aressentiakondition for the foregoing system is that contativeen both
bodies must be preserved by the virtual displacementenvéne performs a common
displacement upwards or downwards through the patithat will lead to the formula
Pop - P &’=0, soP =P’ By contrast, if one would like to performoae-sided
motion of the weight upwards from a plane with no dispment in the plane then one

would indeed get the negative valud®>-¢p for ZPJp, as Gauss correctly remarked.

Only the resistanc®’ of the plane would vanish then, while the entire systenld
change, and no more formulas would exist from which @ndd determine the forces
that would be required for equilibrium.

A similar case occurs when a weighhangs from a fixed poi on a flexible string,
as in Fig. 7. That point must respond with the forceesistancd®’= P. If one merely



Scheffler — On Gauss'’s fundamental law of mechanics 16

raises the fixed point then without displacing the fixethipthen that resistande’would
vanish, and the forces that are required for the equitibof the system would no longer
be present.

Therefore, in such cases, when one takesfideel natureof certain points to be
absolute, as was done here, and one would like to igheréotces of resistance that
those points produce completely, the principle of virugddcities would give a likewise
incomplete answer, which would consist of saying that teght P can haveany
arbitrary valug which is indeed correct in itself, but one cannot reagthe essential
fact that the fixed point must experience a resistantigetéorce othat weight

Such a purely-extrinsic view of the conceptcohstraintson a system of material
points with no rigorous consideration of thesistanceof points that are fixed or
restricted in their motions can, in turn, easily leacgmtirely erroneous arguments. For
instance, the case efastic constraints belongs to them. When considered absolutely,
such constraints allow arbitrary stretching, compressamd bending, from their
mechanical properties. One cannot therefore deny thay evation of a point that is
coupled with the remaining system by an elastic bant aeilrespond to one of the
conditions on the system, so it will be virtual. Heser, if one overlooks the intrinsic
resistance that appears in that way and the other aegedsmnges in the forces that are
applied to the system then one will get false results.

Having assumed that, let the weidghin Fig. 7 hang from the fixed poit by means
of an elastic string, so a stretching of it is veryhadae, and thus, a motion of the weight
P directly downwards, without the fixed poifA simultaneously moving with it.
However, such a virtual motion will produce a virtual motrfér@p that would be either
equal tozerq negative or rather decidedlpositive For that reason, the result is
nonetheless false, because of the fact that stngtdfithe string cannot happen without
overcoming the intrinsic elastic forces, and strigeaking, without an increase in the
weightP.

All of those considerations will lead us to the fallog rules that must be observed
when one applies the principle of virtual velocities.

6. — Consideration of the variability of forces and the intrirsic resistance
of a body to a virtual motion.

From the above, one can, with no further discusgiegard a virtual motion of the
system to be one that is possible under the congtramthe system; i.e., under which,
those constraints will not change, except for the g#ooally-allowable absolute and
relative motions, so ones under which no other efferexpended than the one that
corresponds to the virtual moments of the system areatly-applied forces when the
virtual moments of the internal resistance betweem ¢entact points of the system do
not mutually cancel, and so, from equation (33), vanisthémselves.

That case will always occur when the constraintthersystem arsdependenof the
forces that are applied to it, such as, e.g., for gesyshat is composed of nothing but
rigid bodies that can rotate about certain pointsisplace on their outer surfaces.

However, when, in the opposite case, the constrdepend upon the forces that act
upon the system, or when the intended displacemehieddytstem is possible at all only
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under the expenditure of certain quantities of work #natgenerated in the bonds of the
system or when the system must be subjected to sp&taanal forces, that displacement
can still be regarded as a virtual omben one takes into account the requisite virtual
moments that do not cancel by themselves.

Hence, if (e.g., in Fig. 7) a weigRthangs from a fixed poik by means of an elastic
string, and one would like to displacement the weighiugh & downwards then one
would find that a quantity of work would be required to rotatkat has the valu&/ dp
as it also would be from the law of elasticity foe ttring.

If the lengthp of the entire string increases By then the length of each elemeixt
of the string will increase by)p / p dx. The expenditure of work that would be required
by that increase in the length of the elenm@ngwhich is the differential of the work done
by the tensiorP that acts upon the lower end of that element) wdhthave the value
-P(0p/ p. The sum of those works over all elements of thegstvill then be:

Now, sinceP depends upon the length that tension will always be equal for all
elements, so it will be independent®find one will then have:

p p
—jP@dx:— P@jdx:—Pap.
o P P %

The weightP will produce the virtual momerR Jp under the motion that we speak
of. It will then realize equation (33) in the fowhP o — P = 0.

Something similar will occur for the system thaitrepresented in Fig. 6 when one
would like to displace the weiglft horizontally throughx on the fixed surface, but one
makes the assumption tHattion exists between the weight and the surface, whish ha
the magnitudd P. In that case, the displacement is, in fact, iptessand allowable.
However, it can be regarded as only a virtual oherwone observes that it requires a
force f P in the horizontal direction that has not been givgnto now, and which
produces the positive virtual momeihP J, and at the same time, that the resisting
friction of the fixed surface must be overcome, abhivould, however, yield the opposite
moment - P &, such that equation (33) will now be fulfilled tine formf P ox — f Pdx
=0.

7. — Correct interpretation of the infinitely-small quantities
in the principle of virtual velocities.

In the formula for the principle of virtual veldgj op is aninfinitely-small quantity,
and therefore a quantity that continually strivesa$sume the value zero. Since equation
(33) will first achieve complete validity for therliting values of that quantity, but those
limiting values are all zero, one can see from fhat itself that the ratios of all those
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infinitely-small quantitiesdp to one and the same independent infinitely-small quantit
(which we would like to denote bds) must be determined in such a way that one must

get the valuesé—pés, 5—p53, 5—p53, ... for theop, dp', dp", ..., resp. for equation
o0s o0s o0s

(33), so once one has divided all terms by the commaarfap, the formula:
op

34 P—cosg = 0,

(34) > 5 s¢

which includes onlyinite quantitiesop/ ds

If, according to the nature of the system, the quastdip did not all depend upon
one and the same basic quanéity but upon several such basic quantities in groups, then
equation (33) would obviously already decompose into just ay 8@ecial equations in
that way, each term of which would contain the teofnsne and the same group.

The aforementioned finite quantitiesp / 0 s will reduce to thefirst differential
coefficientf the functionp with respect to the independent variablender the passage
to their limiting values. It would then be entirely superus to determine the increment
o p more precisely than its first differential, whichsh#e formA ds or to determine the
guotientd p / 0 s more precisely than the first finite ter&) since the lower terms of
second, third, and higher order are infinitely-small in panson to them, and from the
expression:

@:A+Bds+0d§+
0s

they would all vanish when one passes to the limitidgeva

That remark is especially important for those casewhich the first differential
coefficient A is coincidentallyequal to zeroprecisely, while the higher differential
coefficients keep finite values. In such cases, ifhingeem, on first glance, as if the
introduction of the next non-vanishing terms (so, e.@,sbstitutiondp / ds=B d9
would be necessary in order to determine the actual viroahent of the force in
guestion. That exchange becomes irrelevant by the fimgegemark that the terid ds
and all higher terms will be effectively equal to zeralemthe passage to the limiting
values, for which only equation (33) will be true.

A practical case of the latter kind is represented.ef@mple, in Fig. 8. In it, one
assumes that a weightis affixedto the deepest point of a circular hoop thatrcdinon a
horizontal plane. For every small enough motionhaf hoop, the weigh® generally
seems to always accomplish a certain amount of wwekause itifts somewhat, while
the work done by the resistanBeof the plane remains precisely equal to zero, such that
equation (33) does not appear to be fulfilled here.

That error can be explained when one observes that ffolting motion through the
infinitely-small angleda, the vertical rise of the weight o =r — r cosda, so, up to
second-order term}p = %(50)2, and as a resulbp / ds = 3 da. When one passes to
the limiting value, one would therefore not merely hahbat the first differential

coefficientdp / do is equal to zero, but also that the entire expres8mho a is equal to
zero.
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8. — Correct interpretation of the infinitely-small quantities in Gauss’s principle.

The infinitely-small quantities that enter into foraw (1), (5), etc., that relate to
Gauss’s principle of least constraint require much dedpeant@n. As one would learn
from equations (10), the lineb, b, cy (Fig. 5) are infinitely-small quantities of order
two, since they are multiplied bgi?. Nonethelessin relation to each otherthey
generally behave likéinite quantities. However, in conjunction with the lingg ac,
which are themselvefgst-order quantities, they are infinitely small. Nevergiss| with
no further discussion, they can only be first neglédh comparison to those quantities in
the end results, where only their ratios to relativieliynitely-large values should be
considered. However, it can frequently happen that inittermediate operations,
relatively infinitely-large terms can cancel eacheotbinder addition and subtraction and
that another relationship between the infinitely-smgakntities might remain as a result,
such as when one already neglects part of the lattes terematurely in comparison to
infinitely-larger ones.

In regard to that, we point out the following: In ortieiconstruct the poirti to which
the massn of the pointa would move in the time intervalt if it were completely free,
and the point to which it would actually move, let (Fig. 9, Table II):

v be the velocity of the mags at the pointa at timet in the direction
aa, so when one takema = v dt, wherea is the point at which the
massm would arrive without the influence of any force, merat/a
result of the velocity that is achieved during the tileenentdt,

f,g,h be the velocities that ttappliedforce p, thedeflectingforceq, and the
actualforcer, resp., are in a position to impart upon the nmassiring
aunit of time

o, be the anglepav andrav, resp., that thappliedfor p and theactual
force, resp., make with the direction of the veloeityr the path of the
massm at timet, where the angle is thought to be positive or negative
according to whether those directions lie on one sideeoother of the
direction ofv,

X be the anglgar between the applied and actual forces (which is then

Y—9).

If one now makeab parallel top and equal ta; f df thenb will be the point at which
the massn would arrive during the time intervdt if it were completely free.
If one takedcto be parallel t@ and equal tG; g df thenc will be the point at which

the mass actually arrives during that time.

One will also get the same pomivhen one takeac to be parallel to and equal to
1h df.

Since the mass) must describe a continuous curve for forces that @direiously,
the smaller that one chooses the time intetvab be, the more that the lirze will fall
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along the tangenta to that curve, and its length will become equahto+ ac [Ocos ¢,
such that this line, which represents the incremsnn the paths that has been traversed
at time, will then have the value:

(35) As=v dt+ 1h cosdt,

up to terms of dimension two. In that expression,qurentities of both dimensions are
carefully kept long enough that one has to compardrtbad with similarly-constructed
lines, such aab.

It follows form equation (35) that:

As
—=v+ihcosydt.
dt 2 e

If one passes to limiting values then the secondh ten the right-hand side will
vanish, and one will get the known formwaa/ dt =v. However, the conclusion would
become completely false that because the quantitythe right-hand side of this formula
is increased by h cos ¢ dt, that increase will probably represent the increhaae the

velocity suffers during the time intervet, so under the passage of the madsom the
pointa to the pointc, such one can set:

%=v+dv:v+ +hcosydt,
and therefore:

dv

dv=;hcosydt or dt:%h cosy.

Moreover, the quotierks / dt expresses nothing but the velocity that the mass would
take on during the timdt or along the patlac if it traversed that path with uniform
velocity, and h cosy dtis the excess of théittitious velocity over the one that prevails

at the point.

Since the motion of the mass generally accelerates or decelerates, that fictitious
velocity, which is, to some extent, theeanvelocity that exists along the padls, will
differ essentially from the one that exists at timervaldt, and thus, upon the arrival at
the pointc. The latter velocity is:

v+dv=v+hcosydt,

which is its increase over the one that prevailsae tj namely,dv = h cos¢/ dt, so it will
betwice as largeas the aforementioned increase, because one had,garfatality:

s+As =s+ Z:—fdﬁ%isdt2 + ..,

dt*
SO



Scheffler — On Gauss'’s fundamental law of mechanics 21

As :d—sdt+%isdt2+
dt dt?
or
(36) As :vdt+%%’dt2+

so a comparison of this formula with (35) will give:

dv
—=hcosy.
dt v

By contrast:

2
V+AV =v+ i/dt+%£/dt2+
dt dt?
and therefore:

(v+Av)dt=v dt+%%’dt2+

However, it would be incorrect for one to regard ihe &c, which is actually equal
to As, to be ¢ + Av) dt, and accordingly, from equation (35), one would have:

v dt+ %dtzzv dt+ 1h cosydt?,

so one would like to setv / dt= 1h cos ¢, since that says the same thing as assuming

that the masm traverses the patic with the velocityy + Av, althoughv + Av represents
the velocity that the masswvould achieve at the endpombf that path.
In reality, from the equality of (36) and (35), the laehas the value:

(38) a\c:As:vdH%%dt2 =v dt+ 1h cosydt>.

Furthermore, from the above and from (27):

(39) ac=1ihdf = L dvye
2cogy dt
The lineabis:
(40) ab=1 fdf.

Thus, in the triangl®éa c, in which the angles at®r c = p a r=c, one has that the square
of the deflectiorcbis:

(cb)? = (ab)* + (ac)* — 2 (@ b) (ac) cosy
or
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(41) Ch?=1dt*(f*+h?-2f hcosy)

1 dv) .. d
=%dt‘{f2+( —"J —of SVEOSK |
dt cog/

If one would like, then one can also set:

(42) (ch)® = 1d t*[(f cosg —h cosx)® + (f sin ¢ —hsin x)?]

. , _ﬂlz . _ﬂ/ 2
=zdt Kfcosqp dtj +(fsm¢ o tarwj]

instead of (41).

9. — Transformation of Gauss’s formula for the decomposition
of the forces along three rectangular axes.

If one decomposes the force that is applied tortassm into its components parallel
to the rectangular axes, so if:

f,g, h are the velocities that those components that tnighcommunicated
to the massn, whose coordinates axey, z, during aunit timeat time
t,

1fdt?, $gdt*,ihdf

are the distances in space through which the mmaissthe rest state
would be pushed by those forces during the timervad dt,

u, v, w are the velocities parallel to the three axestt@mmassn will actually
possess at tine
then:

_dx _dy _dz
u=—, vV=—, w=—.
dt dt dt

When one develops the increments Ay, Az up to second-order termaq(in Fig.
10), theactualadvance of the poirat in the course of the time intent in the directions
of the three axes will be:
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dx 1 d°x 1 du

Ax=at+ =2 Xg¢ = yatr =2 g,
dt 2 dt? 2 dt
2
(43) py= g+ 29 Yge = yaee 2 Vg
dt - 2 dt 2 dt
pr=92 g 18200 g 1AW
dt 2 dt? 2 dt

By contrast, the partial distances that the paimtould traverse in the timet if it
were completely freeap in Fig. 10) would be:

udt+2 f df,
(44) vdt+4 gdf,
wdt+1 hdf.

Therefore, the deflections into the directionted three axexb = ab — acin Fig. 10):

1fdt? ——;% dt* =4 dtz( f—@j,
dt dt

1 _1 Ve _av
(45) Egdtz 2dt dt’ 2d12(g dtj’

1hdt? —%%"dtz =1 dtz( m%vj

Since the square of the actual deflection is etipahe sum of the squares of the
deflections along the three axes, Gauss’s prineydleequire that the sum:

(46) Zm[f—%zir{g‘%ﬁz*z "{ ”%sz

should be a minimum.

As far as equation (5) is concerned, wldeq oy, 0z denote the projections of any
possibledisplacementy (Fig. 3) of the point, since the projection of any other possible
deflection yb of the pointb in the direction of thex-axis has the valuecl)) — ox =

%dtz( f —%) - 0x, one will then have:

2 2 2
(47) %dt“Zm( f—%j +1dtD’ n{ g—%’j +4 dt)’ rﬁ h%’\ﬁ
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s 3pof s3] 2 b o 23]
- 2m(3%*->, md y*->, (o ¥

A development of the squares on the right-hand siddsl@irectly to the known
fundamental equation:

du dv aw) . _
(48) Zm(f—ajéﬁz n{ g—ajé ¥ nE hEJé =0,

which enters in place of equation (3).
It should be remarked in that regard that when certage$oof the system act, not on
masses mbut onmasslespoints, and one denotes the components of those forcés by

Y, Z, one must convert tHesign in equation (47) into an S and add the sum:

dt?’6G X Ix+dt’6G YIy+dt’ G 2oz

to the left-hand side, since the summation sign &gseb thematerial points, and the
sign & refers to thenasslesgoints.

10. — Application of Gauss’s principle to the motion of a pedulum
and the equilibrium of a lever.

In order to make the application of Gauss’s principteemntuitive, we would like to
consider the motion of two ponderous massean’ (Fig. 11) that are fixed at the
endpointsa, a’of a lever that rotates aboiit Let:

a,a’ Dbe the lever armia, Aa’, resp.,

@ be the angl8Aathat the lever subtends with the horizontal at time
v be its angular velocity at that time,

g be the velocity that gravity communicates during the tinterval,
p, P =mg md, resp., be the weights of the massesn, resp.

Since the masses can move only along the circules in question, the foreethat
acts upon them will fall in the direction of the tange a to that circle; the angle will
then berap =BAa= ¢ . The velocity of the masaisa v. If one then takesa@) =a v dt
then that mass would arrive at after the time elemerdt by means of its intrinsic
velocity. If one makes the verticaitf) = 39 df thenb will be the point at which that

mass would arrive during that time interval if it werenpetely free. Now, it actually
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arrives afc, such that the angle will b@Ac = d¢ and one will havelg / dt = v; therefore,
let (ac) =x.
If one puts primes on the quantities with the same eligrior the mass1 then one
will get:
(@ag =(@a) +x =avdt+x,

(@’c’) =@a)+x’'=a’vdt+x;
o)

4

a
X =—X
a

Furthermore, in the trianglaca, one has:
(bo)?> = (a@b)®> + (ac)®* -2 (@b) (ac) cos pac)
= 1g?dt* +x* —g xcosg dt.

Since the angle i8"a’c’= 77— ¢ here, one will get:
(b’c’)>=1g? at' & ><2+—gxcos¢dt2

for the triangleb’ a’c’. Thus:

a’m+d’m , am am
2 X =
a

(49) > m(bg?=1(m+m’) g dt*+ g xcos¢ df.

In order for that sum to be minimum, as in Gauss'sigple, we must set its
differential with respect t&@ equal to zero. That will give:

am-dm ag:os¢olt2
S a@m+d’m 2

Since the velocity of the mass at timet is equal toav [so @c¢) = x :1a— dt’],

(50)

when one sets that expression equal to the foregoinfporeone will get:

dv_ am-dm

51 =
(1) dt a’m+d’m

gcosy,

dv_ d%
or also, since one has-= —
dt dt

, one will get:
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1 d2¢: am-dm _ ap- a|d
cosp dt* a’m+ d’m ap+a|d

(52)

as the fundamental equation for the pendulum mdtidse determined.
If one would like to introduce the angfeas an independent variable and the angular

velocity v as a dependent variable then, sme‘éz dv d¢ , equation (51) will
dt d¢ dt d¢
give:
ap-dp
a’p+d’p

v dv= gcos¢ dg,

or upon integration, when the angular velocity v, for ¢ = 0:

2 __ap-dp

(53) 1V =V) Zpr a,zldgsin .

If one would like to exhibit the conditions feqguilibrium of the masses), m' or the
weightsp, p' on the levemAa’then, from equation (50)a€) = x must be equal taera
That will give the known relation:

(54) ap=a’p’

11.— Application of Gauss'’s principle to the motion of
a material point on a given surface or line.

The application of Gauss’s principle takes an eisflg simple form for the motion of
a material point on a given surface or line. Wengdiately direct our attention to the
most general case of a givemface In Fig. 12, let:

v be the velocity of the poirat of the massn at timet, and

g be the velocity that the force that is appliedthiat mass (say, gravity)
communicates to it in a unit time.

Now, one hagsa =v dt and the lineb is in the direction of the force that acts and its
length equals; g df, sob is the location at which the masswould arrive after the time

dt if it were completely free, so will be the location on the surface at which thass
would actually arrive, and it will then be the basent of thenormal bc that is dropped
from b to the surfagesince that would be trshortestline that one could draw fromto
the surface, and obviously that shortest line satisfy the condition of Gauss’s principle
thaty, m (bc)* = m (bc)? is a minimum.

That property will suffice to develop all conditi® for the motion of the given point.
Namely, if:
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@ denotes the anglea n that the directiorr b of the force makes with the
normal a n, which is an angle that is also equala®d c by the infinite
smaliness of the figure that we speak of, and

7] denotes the anglea e that the intersectiorr ¢ of the normal plane a b
or a b cwith the tangent plane is inclined from the direct@oa e of the
velocity of the mase at time in question, then:

aa=vd; ab=1gt, ac=1absing=1gsingdf,

and
ac=aag+acltosy=vdt+igsing cosy dt.

. dv :
Now, since one also has =v dt+ %a dt?, one has the fundamental equation:

dv

=g sing cosy .
dtg @ cosy

12. — Application of Gauss’s principle to the collision of ialastic bodies.

In order to apply Gauss’s principle to the collisionna#flastic bodies, let the velocity
of the two masses, m’, which both move along a straight line, be equal, to’, resp.,
before the impact an¥f after the impact. If no union of the masses occurtethe
moment of collision, so there would be no constramthe motion, then the two masses
would move through the distanceddt v’ dt, resp., during the time intervdt if they
were completely free. Under the conditions on ty&esn (as a compound body), they
would actually traverse the distan¢edt If v < v’then the deflections will amount t¥ (
—\V)dtand ¢'—V) dt, resp. Therefore, the constraint is:

m(V -y dé + m’(v'— W)? di&.

In order for that expression to be a minimum accgrdanGauss’s principle, we set
its differential with respect t¥ equal to zero. That will give the known relation:

_mv+myv

56 \Y
(56) m+ ni

(Conclusion in next issue)
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13. — Processes that allow one to always consider #etual displacement
of a system in an infinitely-small time interval to be avirtual one.

In Fig. 9 (Table Il in the previous issu&},is the position that the material pomt
would occupy at the end of a time interdhldue to its intrinsic velocity at timeif no
forces at all acted upon.itb is the position that it would occupy with that velgainder
the effect of the force applied to itif it were completely freec is the position that it
would occupy with that velocity under the action of &pplied forcgp and the constraint
on the system, so the one that it waititually occupyunder the under the control of the
effective forcer. In addition,y denotes any position besideshat the point in question
might possible occupy as a result of a virtual displacement of ttensys

One understands\artual displacement to be one that corresponds to the ntanyen
constraint on the system that exists at timeélowever, in the manner of presentation that
is found in all textbooks on mechanics, the constréslf is always regarded as
completely unvarying during the displacement. If thatst@mt is to also depend upon
timet then it must still be considered to be constant duriagithe intervadt under the
virtual displacement. The infinitely-small pathyis therefore only the spatial variation
of the pointc that is allowed by the momentary constraints thatt existhe system
without one considering those variations that are pratibgehe way that the constraint
might depends upon tinte In the determination of those variations, one rthesh treat
time as constant when the law of dependency of thetreamson the system is to be
given as a function of time Obviously, just the same thing is also true offtireesthat
act upon the system, as long as they are supposed fianti#gons of timet or the
positions of the masses that they act upon, which amagélves functions of time
Those forces must also be considered to be unvarying ureleisplacement during the
time intervaldt.

Accordingly, in genera) the actual motion of the system during the tindé (hence,
the displacementa), cannot be regarded awigual one. Rather, that can happen only
when the constraint on the systenindependenbf timet or theforcesthat act upon it.
One result of that consideration, among other thirgyshat the principle o¥is vivais
only valid for those systems whose constraints do notrdiepgon time.

Obviously, one comes to that restriction of the virtdigplacements by the tacitly-
made assumption that among the forgdbat act upon the material part of the system,
only the ones that are considered tekrnally-appliedbutinternal, and which emerge
as thereaction of the coupling®s the system, so ones that #@temselves producexs a
result of the motion that the externally-applied &sdring about in some way, can be
disregarded. For the systems with complet@ifependenobr unvaryingconstraints (e.g.,
for the ones in which rigid, inelastic materials exih fixed constraints, rotatable axes,
completely-free isolated parts, and similar mechanigmder which any change in the
constraint is, in principle, absoluteiynpossibl¢, the internal reactions within and
between the couplings in the system will always be efdart that for any possible
displacement of the system, tipgantity of workdone by all of the reactionsll be equal
to zero. The moments of the internal forces in such systenidvaways vanish then, no
matter how one might displace the system. Thergthat imaginary motion can also be
regarded as a virtual one here. By contrast, for theemgswithvariable constraints
(e.g., mechanisms with elastic couplings, with compresgiblgaseous bodies, and the
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like, under which certain changes in the constraintpassible as long as the required
forces are applied the quantity of work done by internal reactionsha touplings of

the system will beequal to zeraonly for those displacements that produce no change in
the constraint, but for other displacements under wépetial forces are developed, that
work will havea finite, positive or negative valueTherefore, one restricts the field of
virtual motions here to the ones that are independeimet or to the ones under which
the couplings in the system do not change, because orlydee displacements will the
moments of the internal forces vanish.

However, such a vanishing of the internal forces indfpeation that expresses the
principle of virtual velocities would have no particuleze whatsoever, because it would
be a big mistake to believe that one could avoid conegléhe internal forces (like
elastic forces) completely in that way. That is bymeans the case, because when the
aforementioned equation is also free from internaddsmunder the popular restriction on
virtual displacements, that will always make theirsidaration in isolation valid for the
complete determination of the motion of the system.

That sheds light upon the fact that when one tdkesnternal forces (namely, elastic
forces) that appear under a certain displacement astmunt, the concept of the
constrainton a system can always be extended in such a wahthaisplacements that
areeven possible under the action of forga seem to beallowable or virtual, and in
that way, the difference above between the two typesoostraints will vanish
completely, and in addition, the arbitrary restriction the virtual displacements will
drop out for the latter type of systems. Along withshadvantages of the generalization
in principle, one also has the convenience of the fat dne will be led directly and
necessarily t@ll requisite equations in the presentation of the fundameqtadtions for
the motion of a system, so those former equations dbavetto be extended by auxiliary
considerations about the internal forces.

Under the latter assumption, one can also regardat¢heal displacementac as a
virtual one thenin all cases(which is understood to mean systems with mutually-
independent constraints). One will then have to condide internal stresses to be
overcome by the actual motion only in the case ofstesy with variable constraints.

However, the displacememta will also be regarded in that way unddie same
conditions under which thectual displacemenac will seem to be virtual, since the latter
arises from the assumption that the material paintll advance uniformly during the
time intervaldt with the velocity that it has gained at timeHowever, the same state will
also be attained due to the fact that one can agsigeoimpletely-allowable value aéro
to the effective force on each material poiatthat arises from all internal stresses under
consideration, and in that way, taetual displacemengc will go directly to theaa that
we imagined above.

14. — Explanatory example for the process that was just dedoed.

An example might better explain the foregoing.

From Fig. 13 (Table Il in the previous issue), let theemalt pointa of massm and
weightn be coupled to the disxt’ of massm’”and weighin’ by a weightless stringa of
length c. The system falls vertically downwards through the waihich makes air
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resistance act upon the dist which can be expressed by’?, if v’ denotes the velocity
of the disc at time, whilev is that of the poina.

1) If the stringaa’is inextensiblehen one will be dealing with an entirely-unvarying
system that can be treated in the usual simple waamd¥, if one denotes the vertical
abscissas of the poins and a’ from any fixed point byx and x’, resp., and the
acceleration of gravity bg, and observes that =v, then one will have that:

the lost force of the massis mg—m%,
17 17 17 aIIS m'g_k\f_m'il
dt

Since those forces must be equilibrium, from d’Alembeprinciple, the principle of
virtual velocities will imply that:

(mg— m%/jcfﬁ( mg ki- hqg—;/jcf "=0.

From the fixed constraint on the system, onexhasx’ + ¢, so dx = ox’, and that
illuminates the fact that one can also regardattteal motion during the time intervalt
as avirtual one here, obx=v dt ox’=v’dt=v dt The foregoing equation will always
yield the relation:

(m+m’)g—k\/2—(m+m’)%=0,

from which, the law of dependency betweesmdt can now be found by integration.

2). However, if one assumes that the staagis extensiblethen one will be dealing
with a system whose constraint depends upon timBlamely,c will be a function of
timet in the equatiox = x”+ ¢ that represents that constraint.

From the usual prescriptions in the textbooks on mechameswould now proceed
as follows: From the relatioxn=x"+ c, one has:

dx _dX dc . _, dc
— = —+ = ie., v=v'+—,
dt dt dt dt
and furthermore:
av_av, dc
dt dt d’

One will then have that the lost forces are:
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ata: Q=mg- mil:mg— mﬂ—m—OIZC
' dt dt — dt’
ata’: Q' =m'g-kv?- m’dd—\:.

If one expresses the equilibrium of those forces bypttinciple of virtual velocities
then one will get:

Q Jox+Q’dx'=0,

In order to determin@x anddx’ in that equation by the usual procedure, the constraint
on the system during the time interghimust be regarded as unvarying, so the quantity
in the relatiorx = X"+ ¢ must be regarded as constant, and as a result, onsehdst=

ox’, from which it will follow that:

Q+Q’=0.

That illuminates the fact that in all such situatianhsyill be impossible for one to set the
virtual displacement® x, Jd X’ equal to theactual ones during the time intervdt, since
that would imply thabx =v dt=v’dt+ dcanddx’= v’dt, so:

Q(v'dt+dc +Q’v’dt=0,
or
1dc

Q"’Q':_va,

which is an equation that contradicts the previously-foumdect relatiorQ + Q= 0.

One further sees that this ordinarily-applied process dotsmerely exclude the
assumption that thactual motion is avirtual one, which seems so natural, but it also
leaves the solution of the problem incomplete, along Wiat, because it will imply only
the single equatio + Q’= 0, in addition to the relatioxn= x’+ ¢ for the determination
of the three unknown quantitigsv’, ¢, which will assume the form:

dzc:

dv
m+m’)g—-kvZ—m+m’)—-m—:
( )9 (t )dt pve

under the requisite substitution. In order to get thel tquation that is lacking, one
must now go further into a consideration of the intefoeces on the system (viz., the
stresses in and between the links).

To that end, if one defines the law of elasticity the stringaa’then the tension in it
will be equal to zero in its original lengthand it will increase in proportion to the
increase in length under its extension. The lemg#t timet will require a force of
tension that one can set equal ¢0<g g, in whichq is a constant. Since that tension
must obviously be equal to the lost fo@®f the mass, one will get the third equation:
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dv d’c
c— =Q=mg- m—-m—,
(c-99g=Q=mg oo
for which, one can also take the equation:
(€-9q=-Q=-mg+kv?-m

dt’
sinceQ=-Q".

3) However, if one now generalizes the concept ofrestcaint on the system in the
broadest way right from the start, such that eachatisment that is possible from the
physical nature of the system can be considered to belyirtwahich one considers the
requisite internal forces that might appear, thenombt will that unnatural restriction on
virtual displacements go away, but all equations thateayaired for the determination of
the phenomena of motion will vanish entirely in theimaright.

If one then denotes the tensian« g g in the string when its length by E then
one will get the equation:

E=0Q,
and the principle of virtual velocities will imply thejeation:
Qox+Q’'dx’—-Edc=0,

when one observes that under the lengthening of the $lyitige lengthd ¢, the elastic
forces that must be overcome will have the virtual moim-E oc. If one now setdx =
oXx’+ dcthen sincee = Q, the foregoing equation will be converted into:

Q+Q’=0,

which was also found before by means of the usual procedure.

15. — Magnitude of the constraint that is exerted upon a sysi.

We once more return to Fig. 9, in whiglis the location to which the material poant
would move during the time intervdt as a result of the velocity that it had attained at
timet if it were completelyfreg c is the location to which it wouldctually move, a is
the location to which it would move if it advanced lwitniform velocitythat it has
attained with forces acting upon then, and finalis any location that is allowed by the
constraints to which that point would 8esplaced

In no. 13, we saw thata can always be considered to beidual motion. If the
constraint on the system is unvarying then no atteati@i must be given to the internal
forces. However, if the constraint is variable thewill only be necessary for one to
consider the requisite internal forces that might appgeang that motion and that exist
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within or between the links in the system; i.e., to tteaimn like the externally-applied
forcesp.

Under those assumptions, one can thengpatplace ofyin equation (5). That will
give the following expression for the to@dnstrainty, m (bc)® that is exerted upon the
system:

(57) >mbod*=m(ab)?’->m(ac?

Sincem (bc), m (ab), m (a c) are proportional to the forcesp, r, resp., one can also
write that equation as:

(58) > q®o*=Xp@H)*-r (ac)

That equation teaches us that the effect of the diiletorcesq, or theconstraint
that the system feels as a result of the couplingsofmaterial parts at each moment in
time, is always equal to the difference between the effect that the fotbat are applied
to it would provoke if all points were completely free and thecteffeat the effective
forces r would actually provoke

Since that constraint is a minimum, from Gaussisggple, it will follow further that
the difference between the effect of the applied and effeatoesfis always as small as
would be possible with the constraints that are given on the system

Nonetheless, as equation (57) teaches us, that diterell always beositive, so as
a result of the constraint on the individual material points of a sydtere will always
be a loss to the internal effect of the applied forces that is capdldeing produced
when all material points are completely free; however, thatibsdways only as small
as possible.

In that, we must once more emphasize that when d¢hst@int on the system is
variable, along with thepplied forcesp, one must also include the internal forces —
namely, theelastic forces- that might appear because of the motioa wf a in the links
of the system. When one ignores those elastie$rane would generally find that the
loss that theemaining external applied forcesiffer in many states of motion where the
overcomingof the internal forces requires a certain effort imitrease but in many other
states where the internal forces support the motiomi)lidecreasgand in the latter case
there can, in turn, begainin mechanical work.

In addition, one must also point out here that wienels are present in the system
that act upomasslesgoints, notmassiveones, equation (22) must be applied, which
assumes the form:

Sq(cb?+de & p(ca) cos¢g = Sp (ab)—Sr (ac)
or
Sq(ch?*=d S p(ac)cosg + Sp (ab) - Sr (ac)

here, whereqa is regarded as a virtual displacement, gn@presents the angtec b =
raq between the forward directions of the forcesdq.
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16. — A look back at the fundamental law of mechanics above and angparison
of it with the principle of least action of Maupertuis.

In the foregoing, we saw that one can take Gaussisiple to be the starting point of
mechanics, as well as the principle of virtual velocitiesonjunction with d’Alembert’s
principle. Since each of those two foundations possets® generality that is necessary
if one is to develop the entire study of motion and dapiuim mathematically from it,
one can already see from the outsetGasiss also remarked in the aforementioned
treatise, that when one has expressed the one, ¢harbe no further essentially-new
basic principle for mechanics that is not included inftlmener, according to matter, and
would be derived from it. In fact, we have seen how Hatsic principles imply each
other.

However, fromGausss further remark, it is not at all true that this npwnciple
proves to be worthless due to that situation. Ratheis @&lways interesting and
instructive to arrive at a new and advantageous viewpinthe laws of nature, if it
happens that one can solve this or that problem morg égsiheans of it or if it reveals
a special suitability.

In regard to the latter, we have weighed the twocbasnciples above against each
other many times in the foregoing and found that the pimap virtual velocities, in
conjunction with d’Alembert’s principle, will permit ainspler or more convenient
application in most cases, but that in many specia@sc&sauss’s principle will allow an
immediately employment, and that the latter possegsester simplicity, in addition,
while the former must be composedtab laws in a sense, and that ultimately Gauss'’s
principle, from its content, comes closer to theeese of a self-explanatory fundamental
law that requires no proof than the principle of virtuglbeities.

Up to now, no fundamental law with the same profyndiéis been expressed besides
the foregoing, since the principle of least action aupertuis proposed carries only
the character of a lemma, but can hardly make any ¢é@itime title of a fundamental law.
That is because from the statement of that lawtiaatfirst given correctly biyagrange,
the sum over all material points in the system ofitliegrals of the products of the
guantities of motiormv and the curve elementts that are described between any two
epochs in the motion — so the quantities mv ds - is a minimum (special cases in
which that quantity can also be a maximum must be deti).wThat integral sum is
then smaller for the actual motion of the systemmtihavould be if the material points
that are pushed by those forces as a result of othetramts that would be necessary to
reach the same endpoint of the motion were to folldwermopaths.

If one also must concede that it is obvious that theom@f a system in the manner
that actually results would proceed in the easiesttvay it would not be clear, with no
further discussion, that the product of the quantity ofienoand the path element would
be the propemeasurefor that quantity that must be a minimum under sutiasons.
Therefore, the law is very much in need of a proofweleer, that law loses the property
of afundamental laventirely, since it is not completely general, buheatcertain cases
remain excluded in which the integral sum above canrbaxamum
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17. — New fundamental law of mechanics.

From the viewpoint that was presented in the foregoingbew, it would not be
without interest to become acquainted watimew, completely-general, fundamental law
of mechanicshat takes the place of the other ones complefegrmit me to present it as
follows:

From the coupling of material points upon which forces iato a system, those
forces will indeed define a certain constraint, such thawill be prevented from
performing the maximum of mechanical work that it wouldchpable of producing if all
points were completely free. By itself, it mustrbgarded as lying in the nature of things
or an immediate consequence of the constancy of natteits forces thahe set of all
works that the applied forces actually perform under the motion of #tensywill also
appear completely — i.e., with no loss or gaimce a loss or a gain in work must have a
cause that might reveal itself to be nothing but anwvedgmt amount of work that
appears.

That is what our new fundamental law consists ofseems that it leaves nothing to
be desired isimplicityandevidenceand that it can be aptly presented without proof as a
fundamental law of mechanics, although if one feelsithabuld be desirable to analyze
it and reduce it to the elementary theorems of stati@ mechanics then one can also
provide it with a special proof, as one will see shortly.

As far as the mathematical expression for thatisaeoncerned, as before, in Fig. 14
(Table 1l of the previous issue), let be the location that the material poatof the
system would occupy as a result of the intrinsic sigjothat it had attained at tinte
acting over the time interval, but with no forces at all acting upon it. lpebe the force
appliedto it, which would lead it fromar to b during that time if it were completely free.
Let r be theeffectiveforce, which would actually lead it from to ¢, so it would then
correspond to the actual motian when one recalls the intrinsic velocity that itealdy
has, and finally, lein be the mass of the material poant

For the sake of brevity, we symbolically Btp a denote the work that a forqe

performs when its point of application traverses tinaight patha, so it will have the
expressiorpa cosa, in which a represents the angle of inclination between the fawar
direction of the forcep and the patla, and the work that iactually developeduring the
motion in Fig. 14 by thappliedforcep during the time intervaldt as it traverses the path
ac will be equal tad p (a . By contrast, thapparentwork done on the material point
by the effective force isis2 r (a ¢). Thus, from our fundamental law, we must have the

equation:
(59) dAr(@ag=> Ap@Q.

On simple geometric grounds, the work that is done loycep when one traverses a
broken path whose sides ag az, as, ... will be equal to the work that force does when
it traverses the straight lines that connect the eintip of the broken path; i.e., it is:

ApatApat+tApat..=Apa
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in which the sum of the projections of the individuaklsegmenta; , a;, as, ... onto the
direction ofp equals the projection of the limeonto that direction.

It follows from this that the sum of the works donetlhg forcep, as well as the force
r, when they traverse the broken patlar c is equal to the work done by the force in
guestion when it traverses the diagamal One can also write:

(60) dAr(@aa)+ Y Ar(ac) =) Ar(@a) + D Ar (ao),

instead of equation (59) then.

Now, aa is a motion that the point of the system might exhibit had a uniform
velocity that was consistent with its constraint, bwtas not acted upon by forces. Any
virtual displacemenbf the system away from the locatiaan obviously be regarded as
such a motion; i.e., one can think that when the virtisplacements over the time
interval dt are replaced with uniform velocities, those velesitcan be considered to be
ones that the individual points of the system mighsiixhs possess at time In this, as
in no. 13, it is generally assumed that should the constrainthe system depend upon
timet or be variable then among the applied fonqgethe ones that are considered to be
required will be the ones by which that variability iguged by the constraints.

That further illuminates the fact that, no mattewheariable the lineaa of the
velocities of the points at timethat are consistent with the constraint on theesys
might be, the linea ¢ will not depend upon those velocities at all, but wikrely be
required by the applied forge or if one would prefer, the effective forcewhenac
represents the direction that is given todkeéectionof the material point at timiethat is
produced by only those forces. In order to make the tsalafithat assertion clearer,
recall that no matter what the law of dependency betviee lineac and the forces on
the system might be, it can produce no other valuethéodeflectiona c, regardless of
whether one determines that deflection from the poont the pointa, because no matter
how variable the lin@a might also be, that deflection will still efinitely small which
has the consequence that the fozes the system will have an effect on the paitiat
differs from the effect on the system at the paitty only infinitely little;i.e., when one
passes to the limiting state in the sense of diffekcalculus.

There will be even more evidence for this theoremnuwbiee imagines that in the
construction of the actual motion along the diag@aait will not be the piecaa that is
described with uniform velocity and then the deflectiore, which might give the
impression that théater componenta ¢ can possibly depend upon tkeerlier oneaa,
but, from Fig. 15 (Table Il of the previous issue), it wolildt describe the path ¢ =
a c that lies in the direction of the effective fongeso the one that is merely required by
the applied force p with no concern for any uniform velocity, and then thejatha a,
which has a uniform velocity that ggvenarbitrarily .

In order to prevent all misunderstandings, we point batih a certain sens¢he
applied forcep, and therefore also the effective forcand the lineac; can depend upon
the velocity at time, and therefore on the lireex, such as, e.g., for motion in resistant
media, in which the resistance of the medium variés the direction and velocity of the
moving mass. By itself, that fact is irrelevant foe fpresent considerations, because we
think of the applied forces as being just the ones that correspond precisely tactoal
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motion at the end of timé If those forces were not, in fact, also requiredtlvy
velocities at timd, and therefore functions of that velocity, then wauld assumehat

they do not change when we substitute any other displacement for the virtual
displacement a.

Under those assumptions, the first terms on thealadt right-hand side of equation
(60) will appear to be included among the arbitrarily-varyingntjtias that are given by
the laws of constraint on the system, while the sdderms are variable; i.e., quantities
that are established by the nature of the system andatssfoOn that basis already, and
also when one considers that the first terms can bel ¢gusero by the permissible
assumption thata = 0 itself, equation (60) will decompose into the follogvitwo
separate equations:

(61) dAr(@aa)=> Ap(aa),
(62) D Ar(ac)=> Ap(ac).

Sinceaa represents any arbitrary admissible virtual displacéméthe pointa, and
obviously a ¢ = a ¢ is also such a displacement (fae = 0), equation (62) will be
contained in equation (61), and thus superfluous.

Equation (61), as the immediate consequence of equationnbig)) was given by
our fundamental law, can indeed be likewise replaced egthation (59), but it would
seem necessary to perform the foregoing derivation andhasize the remarks that it
provoked in order to show more clearly that in the exgoes for thevorksdone by the
forcesp andr, the path of the point of application of those foraal remain arbitrary
within the limits of thevirtual displacementswhich from equation (59), in whicac
denotes thectual path of the poing, is no more evident than the arbitrariness in that
path in its resolution intarbitrary componentsr a and constant componentsc proves
to be, especially since one should not, with no furdmalysis, overlook that if that were
true then anyirtual motion could be regarded as artual motionthat results from the
governing forces jpalthough there is no doubt that every virtual motion lmamegarded
as a motioraa that resultsvith uniform velocity, but without the action of the forces p

From that explanation, if one denotes any virtualldggment of the poira [so the
line aa in equation (61) or the line c in equation (59)] bys then our basic equation
will become:

(63) D ArIs=) ApJs.

One sees that it can be easily reduced to the forthatarepresents d’Alembert’s
principle, with the help of the principle of virtual velbes, because if one denotes a

coordinate line that is drawn parallel to the directdrihe effective force by p, then
2

d°p

dt?

denotes the force by m , and further denotes the angle of inclinationr ofith

respect to the virtual displaceme¥d of the pointa by ¢ and the angle of inclination f
with respect tads by ¢ then the work done by the forceinder that displacement will be
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d’p

equal tom
g dt?

0scos g, and the work done by the forpewill be equal top ds cosy.

In that way, equation (63) will become:

2
(64) Zm(jjt’f dscosg =Y p Iscosy.

If one would like to refer all quantities to a rectalaglcoordinate system, as one
usually does, then that work done by any force would sytit the works done by its
components, and K, Y, Z are the components pfanddx, dy, dzare the projections of
the displacemendsonto the three axes then (from a derivation that agplied before in
no. 4):

d*x d? &z
Ox+ oy+ ozl = XOox+Yoy+ Z0 2,
Zm(dt2 e Y ae Zj 2. Y 4

which is an equation that is ordinarily presented irfdhen:
(65) > X-mI X el v- Y5 | z s b =0
dt? dt? dt? ’

in order to express the equilibrium of tlost forces.

It hardly needs to be remarked that our fundamentalelacompasses the state of
variable motion, as well as that @ést or evenequilibrium with uniform motionsince
only the effective forces need to be set to zero for there to be equilibriumgchviaill
make the entire left-hand side of our fundamental equeatidunce to zero.

That further illuminates the fact that this, in ifse¢ry plausible, fundamental law
possesses the advantage of greater simplicity over diddms, since the former first
requires the assistance of the principle of virtuabe#kes in order to put the fundamental
equations of motion into the form of a mathematicafniola, and in addition, requires a
detour through the concept tdst forces, to which end, certain forces must first be
applied to the given system that do not exist in realitg anly serve to produce a
fictitious system with the so-called lost forces.

In addition, our fundamental law is applicable, withfadher analysis, regardless of
whether certain forcgs in it act upormaterial or masslespgoints, since one only has to
setm = 0O for the massless points, which one cannot do in Galess, since that would
imply infinite quantitiesfor massless points, which, as we showed irnaould make a
conversion of the formula necessary, and to some tetktefilundamental law itself would
be annulled.

If one would like to assign a special name to the laaw for the sake of brevity of
reference, then since the motion of the system cetelylrealizes or brings to light the
work done by the forces that are applied to it therteéhmainology ofthe principle of the
realization of workmight be suitable.




