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I. – Statement of the problem. 
 

 It is known that the principles of mechanics that A. Voss (1)called principles of the 
“third kind,” can be reduced to ones of a different kind that Voss (loc. cit.) called the 
“second kind,” which are the ones that involve the equations of motion of mechanics 
directly.  Principles of the “third kind” include, e.g., Hamilton’s principle and the 
principle of least action, while one of the “second kind” include the principle of virtual 
velocities, d’Alembert’s principle, and Gauss’s principle of least constraint.  Lagrange’s 
equations, in their first form – that is, the one in which the Lagrange multipliers appear – 
can be counted amongst the “second kind,” while the ones of the “third kind” include the 
ones in which knowledge of the vis viva must be assumed (viz., Lagrange’s equations in 
their second form). 
 For example, Hamilton’s principle can be reduced to that of d’Alembert , and can be 
shown to be completely equivalent to it; i.e., if the one were true then the other would be 
true, as well, and conversely.  Now, as is known, the cited principles of the “second kind” 
are completely equivalent to each other.  On the other hand, the principles of the “third 
kind” are likewise completely equivalent to each other, since they can always be reduced 
to ones of the “second kind.” 

                                                
 (1) A. Voß, “Die Prinzipien der rationellen Mechanik,”  Encykl. der math. Wiss. IV, 1, pp. 10. 
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 Such considerations prompted Herrn Prof. Dr. A. Wassmuth to remark in a seminar 
on mathematical physics in Graz that there must be a principle that has the form of a time 
integral between fixed time limits and can be reduced to Gauss’s principle of least 
constraint in a manner that is analogous to the way that Hamilton ’s principle or the 
principle of least action reduces to d’Alembert’s principle.  With the terminology that 
was given above, a principle of the “third kind” should be given that relates formally to 
Gauss’s principle of least constraint, which belongs to the “second kind,” in perhaps the 
way that Hamilton’s principle relates to d’Alembert ’s.  Elaborating upon that formal 
analogy is the goal of the present article. 
 
 

II. – Generalities concerning the variational principle and  
the associated variational conditions. 

 
 The proof of the equivalence of a principle of the “third kind” with one of the “second 
kind” will be accomplished with the help of an identity that has the form: 
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in the special case of the equivalence of Hamilton’s and d’Alembert’s principles. 
 [In this, L means the vis viva, and A means the virtual work done on the system, 
which is thought of as consisting of n mass-points.  (There are therefore 3n rectilinear 
coordinates for a point in it.)  xɺɺ  means an acceleration, X means an explicit force, t1 and 
t2 are fixed time limits (viz., the starting point and end point of the motion), and δ is the 
symbol for a variation.  (For more details, see below.)] 
 In the case in question, in order to prove the equivalence of an integral that is 
presented with Gauss’s principle of least constraint from this, one must start by finding 
an identity that is expressed analogously to equation (1) and whose right-hand side is 
obviously composed of the expression: 
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since that is the form of Gauss’s principle that is analogous to d’Alembert’s principle. 
 If the identity, thus-found, can lead to that conclusion in a manner that is analogous to 
the way that one concludes the equivalence of Hamilton’s principle and d’Alembert’s (1) 
from the identity (1) then the left-hand side of that new identity will yield the desired 
integral form. 
 The considerations to be made shall be referred to a system of n discrete mass-points, 
so one will be dealing with 3n independent variables in the case of rectilinear 
coordinates.  However, the number of degrees of freedom in the system can be 
diminished by the condition equations that are imposed on the system.  The same 

                                                
 (1) Boltzmann, Mechanik, pp. 7, et seq.  
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assumptions shall be made about those condition equations that Boltzmann (1) drew 
upon in order to represent the equivalence of Hamilton’s principle with d’Alembert’s by 
analogy.  The 3n rectilinear coordinates will all be denoted by the symbol x with indices 
added [likewise following Boltzmann (2)].  Each of the n masses will then enter into only 
three of the notations in different forms, and indeed mi , mi+1 , mi+2 (i = 1, 4, 7, …, 3n – 2) 
will always be regarded as identical.  The dots over the symbols xi will mean derivatives 
of the coordinate values with respect to time, and indeed, one dot will mean the first 
derivative, or the velocity in the direction of the coordinate in question, two dots will 
mean the second derivative (i.e., the acceleration in that direction), and so on.  The Xi 
refer to the explicit forces that correspond to the coordinates with the same indices, that 
is, the forces that do not arise form constraints that are expressed by the condition 
equations.  The so-called variation of a quantity will be suggested by the operation 
symbol δ ; i.e., a fully-general arbitrary increase in the quantity in question that is 
“infinitely small,” as one says in the customary terminology of mechanics.  The demand 
that is expressed in that way can be posed more precisely by saying that the absolute 
values of the variations must all lie below a positive quantity that is regarded as 
arbitrarily-small, but well-defined.  Now, those variations are not by any means identical 
to the increases in the coordinates or other variables that actually occur in the course of 
motion.  The latter increases will be referred to as differentials of the quantities in 
question, in the sense that they should be the changes in the quantities in question that 
actually take place in a time interval dt.  One will further require that the variations must 
be compatible with the conditions on the system.  Should the value of a variable – e.g., − 
always remain smaller than a well-defined quantity, then the “varied” value of that 
variable could not be greater than or equal to that quantity, either. 
 If the three coordinates of a mass-point were to take on values that are “varied,” with 
the meaning that was just given to that term, then one would have to refer to the position 
of the mass-point that is established in that way as a varied position.  One must once 
more note in that regard that the varied values of the coordinates must also satisfy the 
condition equations.  For example, if a mass-point is to remain on a given surface then 
the varied coordinates must also fulfill the equation of the surface; i.e., the varied position 
must belong to the surface.  Corresponding statements will be true for the “varied 
position” of several mass-points.  Any motion that consists of a series of positions that 
are compatible with the condition equations will be called a possible motion of the 
system.  Any of those possible motions will be distinguished as unvaried, and the values 
of the variables at each time point that belong to that special motion will be called 
unvaried values of the variables for that time point.  Those values are only to be regarded 
as arbitrary zero-points of the variations (3).  The remaining possible motions are called 
varied motions, and correspondingly, the term varied value of a variable at a time point 
will now mean each possible value that is different from the unvaried value. 
 It is known that the principles of the same kind (in the terminology that was used in 
the introduction) differ from each other by the individual variational conditions that are 

                                                
 (1) Mech., II, pp. 2, et seq.  
 (2) Mech., II, pp. 228, et seq. 
 (3) The unvaried motion is often referred to as “actual,” which is, however, premature and unclear.  
Indeed, it is only by means of the principle in question that one can first show which of all possible motions 
are actual, since one can choose any possible motion to be unvaried at the outset. 
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associated with each of them, that is, by well-defined instructions for isolating certain 
manifolds of narrower scope from the infinite manifold of all motions of the system that 
are compatible with the conditions from which the variations are to arise, and which must 
still be infinite in order to justify the necessary arbitrariness.  For example, only those 
variations of the coordinates should be employed in Hamilton’s principle that do not 
include a variation of the time; i.e., each state of a varied motion will be assigned to a 
state of the unvaried motion that are each passed through simultaneously, while the 
general case is the one in which a state of unvaried motion is assigned an entirely 
arbitrary state varied motion.  Another case of variational conditions is this one: For 
Gauss’s principle of least constraint, the so-called “Gaussian variation” will be employed, 
whose variational conditions read: For the state of motion in question, the variations of 
all coordinates and velocities will vanish, and only the variations of the acceleration 
should be non-zero.  Now, the latter variational conditions are the ones that must be set 
down in order to succeed in exhibiting the desired identity for the case in question, 
because the right-hand side of the identity to be exhibited includes only variations of the 
accelerations [(2)]. 
 
 

III. – The variational conditions in special cases. 
 

 In what follows, Gauss’s method of variation shall be considered more closely by 
using Boltzmann’s representation (1). 
 A motion that is varied in the Gaussian manner shall be characterized by the fact that, 
just as the coordinates are certain functions of time: 
 

xi = fi (t), i = 1, 2, 3, …, 3n   (3) 
 
for the unvaried motion, here, they will be somewhat different functions ϕi (t) of time that 
likewise fulfill the condition equations of the system, and one further requires of them 
that at a well-defined time (which can be chosen arbitrarily), the values of the functions 
themselves and their first derivatives of the coordinates with respect to time (so, the 
velocities) are all equal to the corresponding values for the unvaried motion.  Only their 
second derivatives with respect to time (i.e., the accelerations) at that time point shall 
have somewhat different values from the ones in the unvaried motion, and indeed, the 
increases that the accelerations experience under the transition from the unvaried motion 
to the varied one shall be denoted ixδ ɺɺ , which is consistent with the previous conventions.  

All δxi and ixδ ɺ  shall be equal to zero for any arbitrarily-chosen, but well-defined, time 

point, while the ixδ ɺɺ  should be non-zero.  Naturally, that is true for only the precise 

moment in time considered, but for, say, a finite time interval, since otherwise all also 

ixδ ɺɺ  would have be zero during that interval.  That type of variations is therefore point-

wise; i.e., it initially makes no sense to speak of a global variation of the motion.  In that 
regard, however, there exists no fundamental distinction from the variational method that 
appears for Hamilton’s (d’Alembert’s, respectively) principle, because in the latter, an 

                                                
 (1) Mech. I, pp. 209, et seq.  
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arbitrary, but well-defined, point in the unvaried motion is initially associated with a 
point of the varied motion for which the variations of the coordinates have certain non-
zero values.  Now, in both cases, one therefore treats the transition from the variation of 
the motion at one time point to the global variation of the motion (1).  In the case of 
Hamilton’s (d’Alembert’s, respectively) principle, that will be effected as follows (2): 
One advances from one moment of time to the next and applies the aforementioned point-
wise variation everywhere.  One will then obtain values of the variations δxi that are 
arranged with no connection to time, such that the integral ∫ δxi ⋅⋅⋅⋅ dt would make no sense, 
since the quantity δxi under the integral sign is an absolutely-discontinuous function of 
time.  However, one can always select infinitely many arrangements of variations from 
the infinite manifold of those variations that are subject to the restriction that all δxi 
should be continuous, but otherwise arbitrary, functions of time, so ones that might be 
represented in the form: 
 

δxi = ε fi (t),  i = 1, 2, 3, …, 3n,   (4) 
 
in which the fi (t) represent arbitrary, but continuous and finite functions of time, and ε is 
a positive quantity that is common to all coordinates and all times, and which can be 
made arbitrarily small in order to correspond to the requirement that was imposed above 
that the variations should be “infinitely small.”  Now, one can call the temporal sequence 
of those varied positions a “varied motion” and then the integral that was defined above 
will make sense as an integral of a continuous function. 
 However, if one would like to take advantage of the same notions for the variations 

ixδ ɺɺ  in the Gaussian method of variation then one would find that this process would not 

be possible, because when the variations of the accelerations are continuous functions of 
time, the variations of the velocities, and therefore those of the coordinates, as well, 
would not be continually zero or “infinitely-small” of higher order than the variations of 
the accelerations, as one must have for the corresponding advance from one moment in 
time to the next in the case of the Gaussian method of variation.  Namely, if one ixδ ɺɺ  is a 

continuous function then it must be always positive or always negative in a time interval 
that is chosen to be correspondingly-small (as long as it is not, say always zero, which 
must be excluded here, however).  As a result of the relation: 
 

ixδ ɺɺ = id x

dt

δ ɺ
,      (5) 

 
the ixδ ɺ  that belongs to that time interval must increase or decrease, so it must be distinct 

from the value zero.  However, as was mentioned expressly here already, the tacit 
assumption is made in that (3) that time is not varied, which was just expressed by 
equation (5). 

                                                
 (1) The variational method for the principle of least action also behaves in precisely that way, since the 
variation of the time will first become essential when one considers (exhibits, respectively) the globally-
varied motion. 
 (2) Boltzmann, Mech., II, pp. 3, et seq.  
 (3) Boltzmann, Mech., II, pp. 4, remark. 
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 One must then look for another method in order to make it possible to construct 

integrals of the type ix dtδ∫ ɺɺ  in order to go from the point-wise variations of the motion 

to global ones, respectively. 
 To that end, the aforementioned advance from one moment in time to the next in the 
motion shall be subjected to a more detailed consideration for the case in question.  A 
mass-point will be considered that traverses a given path with a given velocity at each 
point under the unvaried motion.  The motions that are varied in the Gaussian manner in 
this case can be exhibited as follows: One imagines a second path that has a point in 
common with the original one and whose tangent at that point coincides with the tangent 
to the original path at that point.  Hence, if the mass-point at the point common to both 
paths advances simultaneously under the two motions (namely, the unvaried motion and 
the one that arises by traversing the varied path) with velocities that have the same 
absolute value and the same direction then one will, in fact, be dealing with motion that is 
varied in the Gaussian manner, which is generally the case, so the acceleration of the 
mass-point at the common point to the paths will not be the same for the varied and 
unvaried motions.  That can be ensured, e.g., in such a way that the accelerations in the 
common direction of the path are equal and the varied path possesses a different 
curvature from the original path at the common point.  Now, Gauss’ principle of least 
constraint says that for every individual point that is considered in that way, of the 
infinite manifold of possible motions that are varied in that way, the motion that actually 
takes place will be the one for which the relation: 
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=
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exists. 
 The advance from one moment in time to the next in the motion shall now be carried 
out.  As was suggested, one should not regard the path as being globally varied, but 
rather, one should regard it as composed of very many pieces that always deviate from 
the paths that arise from the point-wise variation that was just described, and which one 
represents at each point of the unvaried path.  Geometrically, that is expressed by saying: 
One thinks of each point of the original path as being endowed with a family of paths that 
are varied in the Gaussian manner (those paths shall also be referred to in that way now).  
In that way, one will get a doubly-infinite manifold of curves that possesses an envelope, 
however (say, when they are all represented in a plane), that is just the original path.  
Now, the motion of the mass-point at any point of that path is to be varied in such a way 
that the state of motion is taken, not from the unvaried motions, but from the simply-
infinite manifold of motions that are varied in the Gaussian manner whose motions at that 
point are appropriate.  However, the mass-point should continually remain on the original 
path and possess the prescribed velocity at each point.  One can see from this that the 
choice of varied path, from which, the state of motion shall be taken will no longer be 
entirely arbitrary, since the acceleration of the varied motion (i.e., now that would be the 
motion that is assembled, so to speak, from the individual motions that are varied in the 
Gaussian manner) must not be always greater than or always less than the unvaried 
motion in any small enough time interval, since otherwise the mass-point would reach a 
velocity that is different from the prescribed one.  If one now lets the pieces that are 
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associated with the individual point-wise-varied paths decrease without limit then the 
variations of the acceleration when one traverses the path that one thinks of as composite, 
which now represents the globally-varied path, cannot be always positive or always 
negative in any sufficiently-small time interval.  If they are not to be constantly zero then 
they can only be represented by a function of time that changes its sign arbitrarily often 
in any sufficient small time interval.  However, such a function is not integrable, and that 
is, in turn, the same result that Boltzmann considered in his remark. 
 As was mentioned before, this argument is true only for the case in which time is not 
varied.  If one were to introduce a variation of time [i.e., one would no longer compare 
the acceleration of the unvaried motion at any well-defined moment in time t with the 
acceleration of the (globally) varied motion that takes place at the same moment in time, 
but with an acceleration that belongs to the moment in time t + δt of the varied motion] 
then one could no longer justify the statement that was just made about the variation of 
the acceleration as a function of time, and that suggests the idea of seeking to exhibit the 
varied motion with the help of the variation of time. 
 
 
IV. – Exhibiting the variational conditions that are suitable to the case in question. 

 
 It shall now be shown that one can always arrive at a varied motion for which the 
variations of the accelerations are integrable and which likewise correspond to the other 
requirements that were just imposed by introducing a variation of time. 
 The argument will proceed along the following train of thought: 
 
 1. It will be shown that there are always infinitely many different system of ixδ ɺɺ  that 

are defined with no variation of time, yield a Gaussian variation, and therefore, as was 
shown, are not integrable. 
 
 2. It will be shown that for each such arrangement of ixδ ɺɺ , there is a variation of time 

(which will be denoted by δt) by whose introduction, the distribution of variations of the 
accelerations in time will become integrable, which shall be suggested by the notation 

ixδ ɺɺ . 

 
 3. It will be shown that the time variation δt can be chosen in such a way that the 
variations of the velocities and coordinates that it produces will become infinitely small 
of higher order than the variations of the accelerations when the latter decrease without 
limit. 
 
 4. It will be shown that, in addition, the variation δt can be chosen in such a way that 

the integral of the form iF x dtδ∫ ɺɺ  will not always be zero, regardless of the function F, 

which will be important for our later conclusions. 
 
 It will then follow that: 
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 1. It was already recognized to be necessary that the variations of the accelerations 
should be functions of time that change their signs arbitrarily often in any sufficiently 
small time interval. (From now on, in this argument, a single function will be considered 
by which the variations of a single acceleration can be represented.  The results will then 
be valid for all accelerations directly.)  Such a function can be given in the following 
way: One divides the interval ta to tb in which that function is to be regarded into an even 
number n of equal pieces τn and then determines that: The values of the functions ixδ ɺɺ  at 

a point of the subdivision that is separated from the starting point ta of the interval by an 
even number of sub-intervals τn , and thus, at those points that are determined by: 
 

t+ = ta + µ τn ,  µ = 0, 2, 4, …, n, 
 

have finite, positive values that are taken from an arbitrarily-given function f (t) that is to 
be continuous. [f (t) must then have values that are always positive.]  In that, one can 
ignore a constant that can be made arbitrarily small and which multiplies the all values of 
the function.  Furthermore (with the same addendum), the values of the function shall be 
negative at the remaining “odd” points of the subdivision, namely: 
 

t− = ta + ν τn ,  µ = 1, 3, 5, …, n – 1, 
 
which will be (up to absolute value) the arithmetic mean of the values of the function at 
the two neighboring “even” points of the subdivision: 
 

( )ix νδ ɺɺ  = 1 1( ) ( )

2
i ix xν νδ δ− ++ɺɺ ɺɺ

. 

 
 One now lets n get bigger and bigger, which will make τn become smaller and 
smaller.  The arrangement of values that arises in that way when lim n = ∞ or lim τn = 0 
will then represent a function with the required properties.  However, due to the arbitrary 
choice of the positive values of the function, there will obviously be infinitely many such 
functions.  Such a function can be represented graphically as two quasi-curves that are 
reflected in the axis ixδ ɺɺ  = 0 ; i.e., the t-axis. 

 
 2. The variation δt, which is to be regarded as a function of time, shall be chosen in 
such a way that it has the value zero for all t+ = ta + µ τn , for which ixδ ɺɺ  is positive, by 

assumption, and has the value τn for all t− = ta + ν τn , for which ixδ ɺɺ  is negative.  In that 

way, one will find that all points of the subdivision will be assigned a positive value of 
the function now.  In the lim τn = 0, the new assignment of values (which is not expressed 
by ixδ ɺɺ ) will go to the positive quasi-branch of the function ixδ ɺɺ , which is, however, an 

actual curve now.  As is immediately clear, the function ixδ ɺɺ  is continuous, and therefore 

integrable.  It should be remarked here that this time variation δt has no connection 
whatsoever to the accelerations ixδ ɺɺ , and indeed should not be put on the same level as 

them in that regard. 
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 3. Naturally, the velocity ixɺ  of the unvaried motion will be associated with another 

velocity of the varied motion, which will be denoted by i ix xδ+ɺ ɺ , point-by-point, by the 

introduction of a variation δ t of time, as long as δ t is not just equal to zero.  Whereas 

ixδ ɺ  would be equal to zero at any time (which is an assumption of the Gaussian 

variation), that is not the case for ixδ ɺ .  One has the relation: 

 

ixδ ɺ = ix tδ⋅ɺɺ .      (7) 

 
One now remarks that: The variations ixδ ɺɺ  (and naturally, the variations ixδ ɺɺ , as well) 

shall be infinitely small; i.e., they shall be represented by: 
 
  ixδ ɺɺ = ε ϕi (t), 

 
in which ε is a constant that can be made infinitely small.  Likewise, one has: 
 
  ixδ ɺɺ = ( )i tε ϕ . 

 
Now, the arguments that were presented in 1. and 2. are also true for finite values of ixδ ɺɺ , 

since the constant ε is virtually absent from it.  In contrast to those finite values of the 
function, the quantity τn , which converges to zero, is infinitely small.  There is therefore 
nothing that prevents one from assuming that in the case where the ixδ ɺɺ  themselves 

become infinitely small upon multiplying by the constant ε, the τn = δ t will become 
infinitely small of higher order than the ixδ ɺɺ  (say, finite functions that are multiplied by 

ε 2), since no special assumptions at all were make about the type of passage to the limit 
lim τn = 0.  As a result of the relation (7) and the further one: 
 

ixδ = ix ⋅ɺ δt,      (8) 

 
the variations ixδ ɺ  and ixδ  will now also be infinitely small of higher order than the 

variations ixδ ɺɺ  (the variations ixδ ɺɺ , respectively), since ixɺɺ and ixɺ  are finite. 

 

 4. One can see immediately that an integral of the form iF x dtδ∫ ɺɺ  will certainly not 

be zero, in general, since the function ixδ ɺɺ  is positive over the entire interval. 

 
 It should be added that, as is immediately clear, one can also impose the condition on 
the functions ixδ ɺɺ  that their values should be zero at two well-defined fixed time-points, 

which might be called t1 and t2 . 
 With that, it is shown that, as predicted, there are always infinitely many different 
systems of motions that will yield a global variation of the motion when they are varied 
(point-wise) in the Gaussian manner and that correspond to the following conditions on 
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the variations: The variations of all coordinates and velocities are equal to zero at all 
times, and the variations of the accelerations are non-zero, integrable functions of time. 
 One can add yet another condition on the variations arbitrarily that is expressed by: 
 

ixδ ɺɺɺ= id x

dx

δ ɺɺ
.      (9) 

 
The justification for it will become clear immediately, since that convention implies no 
consequences for the variations of the derivatives of the coordinates with respect to time 
of order less than three. 
 It is now possible to address the formal calculation, and indeed on the grounds of the 
following four variational conditions: 
 

δxi = 0 for all times,     (I) 
 

ixδ ɺ = 0 for all times,      (II) 

 

ixδ ɺɺ  will be non-zero and integrable,             (III) 

 

ixδ ɺɺɺ= id x

dx

δ ɺɺ
.      (IV) 

 
 

V. – Formal implementation. 
 

 We shall now address the problem of establishing the identity that was mentioned in 
section II, whose right-hand side is given already. 
 To that end, we shall first establish the assumptions of a mechanical nature.  The vis 
viva of the system of n mass-points will be considered to be a quadratic form in the 
velocities ixɺ : 

L ≡
3

21
2

1

n

i i
i

m x
=
∑ ɺ .     (10) 

 
The virtual work of the explicit forces Xi shall be denoted by δA : 
 

δ A ≡
3

1

n

i i
i

X xδ
=
∑ .    (11) 

 
(From now on, for the sake of brevity, only the indices will be written in the summations, 
without specifying the range over which they vary, since it will always be 1 to 3n.) 
 One now forms the following expressions: 
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dL

dt
 = i i i

i

m x x∑ ɺ ɺɺ , 

 

 
2

2

d L

dt
 = 2[ ]i i i i

i

m x x x+∑ ɺɺ ɺ ɺɺɺ , 

 

 
2

2

d L

dt
δ = [2 ]i i i i i i i

i

m x x x x x xδ δ δ+ +∑ ɺɺ ɺɺ ɺ ɺɺɺ ɺɺɺ ɺ ,    (12) 

and furthermore: 

 
d A

dt

δ
 = i i

i i
i

dX d x
x X

dt dt

δδ + 
 

∑ , 

 
2

2

d A

dt

δ
 = 

2 2

2 22i i i i
i i

i

d X dX d x d x
x X

dt dt dt dt

δ δδ
 

+ + 
 

∑ .    (13) 

 
Those relations will be valid in full generality when the operation on a function of several 
variables that is suggested by the symbol δ is performed according to the rule: 
 

δF (x1, x2, …) = 1 2
1 2

F F
x x

x x
δ δ∂ ∂+

∂ ∂
 + …   (14) 

 
 When one brings the variational conditions (I) to (IV) into play, one can see that one 
can calculate formally as if the time were not varied at all.  Namely, one must first 
perform the operations of differentiation and variations according to the rule in equation 
(14), which implies the results in equations (12) and (13) in a completely general way.  

One then replaces the differential quotients id x

dt

δ
(

2

2
id x

dt

δ
, respectively) with ixδ ɺ  ( ixδ ɺɺ , 

respectively) in the right-hand side of equation (13), since they are considered to have no 
time variation, corresponding to equation (5).  One now carries out the time variation that 
was described thoroughly above by setting the variations δxi and ixδ ɺ  equal to zero, 

which means that the ixδ ɺɺ  must be replaced with the ixδ ɺɺ , and from 3. in section IV, that 
must produce no variations in the values of the velocities and coordinates.  To abbreviate, 
the variations ixδ ɺɺ  will once more be denoted by ixδ ɺɺ  now.  That will legitimize the 

aforementioned formal method of calculation. 
 One also gets equations (12) and (13) by performing the aforementioned operations: 
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 If one subtract equation (16) from equation (15) and integrates the difference between 
fixed, but arbitrary, time limits t1 and t2, for which, as was suggested above, the 
convention is made that: 
 

1
( )i txδ ɺɺ = 

2
( )i txδ ɺɺ  = 0,  i = 1, 2, 3, …, 3n,  (V) 

then one will get: 
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If one integrates the second term with the help of partial integration then it will give: 
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The first sum is equal to zero, as a result of the condition (V).  One will then get: 
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That is the desired identity.  It shows the complete equivalence of the principle that 
corresponds to setting the left-hand side equal to zero: 
 

2

1

2 2

2 2

t

t

d L d A
dt

dt dt

δδ 
− 

 
∫ = 0    (VII) 

 
and Gauss’s principle of least constraint under the assumptions that were made here.  
That requires that one must prove that the principle in equation (VII) follows from 
Gauss’s principle, and conversely.  The first part of that proof is obvious.  If one starts, 
conversely, from the validity of the form (VII) then one must reason as follows: The 
integral is a definite integral between fixed, but arbitrary, limits, so it must assume the 
value zero for all pairs t1 and t2 that correspond to the condition (V), which can happen 
only when the integrand itself is zero; i.e., Gauss’s principle of least constraint will be 
true. 
 That proves the equivalence of the form (VII) and Gauss’s principle of least 
constraint, and the form (VII) now represents the desired integral form of that principle. 
 One can also arrive at an extension of that result to the case of generalized 
coordinates, as well as the inclusion of non-mechanical processes, on the basis of lengthy 
and cumbersome developments by introducing the kinetic potential in a manner that is 
analogous to what A. Wassmuth (1) did for the principle of least action. 

                                                
 (1) “Die Bewegungsgleichungen des Elektrons und das Prinzip der kleinsten Aktion,” Wien. Ber. CXX, 
Abt. IIa (1911). 


