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|. — Statement of the problem.

It is known that the principles of mechanics tAatVoss (Y)called principles of the
“third kind,” can be reduced to ones of a different kindt toss (loc. cit) called the
“second kind,” which are the ones that involve the equoatiof motion of mechanics
directly. Principles of the “third kind” include, e.g.,ahtilton’s principle and the
principle of least action, while one of the “seconddkimclude the principle of virtual
velocities, d’Alembert’s principle, and Gauss’s principfeleast constraint. Lagrange’s
equations, in their first form — that is, the one inethithe Lagrange multipliers appear —
can be counted amongst the “second kind,” while the ohdge “third kind” include the
ones in which knowledge of thas vivamust be assumed (viz., Lagrange’s equations in
their second form).

For example, Hamilton’s principle can be reduced & tfid’Alembert, and can be
shown to be completely equivalent to it; i.e., if thee were true then the other would be
true, as well, and conversely. Now, as is known, itiegl principles of the “second kind”
are completely equivalent to each other. On the dthed, the principles of the “third
kind” are likewise completely equivalent to each otls@ice they can always be reduced
to ones of the “second kind.”

() A. VoR, “Die Prinzipien der rationellen Mechanik,” Encykl. deatm Wiss. IV, 1, pp. 10.
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Such considerations prompted Herrn Prof. MrWassmuthto remark in a seminar
on mathematical physics in Graz that there must benaiple that has the form of a time
integral between fixed time limits and can be reduced tas&s principle of least
constraint in a manner that is analogous to the waty Hlaailton’s principle or the
principle of least action reduces to d’Alembert’s prineiplWith the terminology that
was given above, a principle of the “third kind” should beeg that relates formally to
Gauss'’s principle of least constraint, which belongdh&“second kind,” in perhaps the
way that Hamilton’s principle relates wAlembert’s. Elaborating upon that formal
analogy is the goal of the present article.

Il. — Generalities concerning the variational principle and
the associated variational conditions.

The proof of the equivalence of a principle of thertttkind” with one of the “second
kind” will be accomplished with the help of an identihat has the form:

t

[POL-Aydt= [ i (X, —m %) &xOdi, (1)

in the special case of the equivalence of Hamitt@mid d’Alembert’s principles.

[In this, L means thevis vivg and A means the virtual work done on the system,
which is thought of as consisting nfmass-points. (There are thereforer8ctilinear
coordinates for a point in it.)X means an acceleratiod,means an explicit forcé;, and
t, are fixed time limits (viz., the starting pointdaend point of the motion), ardlis the
symbol for a variation. (For more details, se@he)]

In the case in question, in order to prove theivadence of an integral that is
presented with Gauss’s principle of least constrom this, one must start by finding
an identity that is expressed analogously to egnaftl) and whose right-hand side is
obviously composed of the expression:

J 2 = m 0 85 @

since that is the form of Gauss’s principle thainalogous to d’Alembert’s principle.

If the identity, thus-found, can lead to that doson in a manner that is analogous to
the way that one concludes the equivalence of Haml principle and d’Alembert’s'Y
from the identity (1) then the left-hand side oattmew identity will yield the desired
integral form.

The considerations to be made shall be referredsigstem oh discrete mass-points,
so one will be dealing with B independent variables in the case of rectilinear
coordinates. However, the number of degrees oddven in the system can be
diminished by the condition equations that are isgabon the system. The same

() Boltzmann, Mechanik pp. 7et seq.
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assumptions shall be made about those condition egsati@nBoltzmann (*) drew
upon in order to represent the equivalence of Hamiltonrsiple with d’Alembert’s by
analogy. The Brectilinear coordinates will all be denoted by the symbalth indices
added [likewise followingBoltzmann (%)]. Each of thex masses will then enter into only
three of the notations in different forms, and indeedm.;, ms«2(i=1,4, 7, ...3n—2)
will always be regarded as identical. The dots ovesymebolsx will mean derivatives
of the coordinate values with respect to time, and indeeé,dot will mean the first
derivative, or the velocity in the direction of tkheordinate in question, two dots will
mean the second derivative (i.e., the acceleratiahah direction), and so on. Thé
refer to the explicit forces that correspond to ¢herdinates with the same indices, that
is, the forces that do not arise form constraints Hra expressed by the condition
equations. The so-called variation of a quantity will duggested by the operation
symbol o ; i.e., a fully-general arbitrary increase in the qugnin question that is
“infinitely small,” as one says in the customary terotagy of mechanics. The demand
that is expressed in that way can be posed more pretigedpying that the absolute
values of the variations must all lie below a positiyeantity that is regarded as
arbitrarily-small, but well-defined. Now, those vaigais arenot by any meanglentical

to the increases in the coordinates or other varigh&sctually occurin the course of
motion. The latter increases will be referred toddgerentials of the quantities in
guestion, in the sense that they should be the changbe puantities in question that
actually take place in a time intervdt. One will further require that the variations must
be compatiblewith theconditionson the system. Should the value of a variable —€.g.,
always remain smaller than a well-defined quantity, tten “varied” value of that
variable could not be greater than or equal to that gyaatiher.

If the three coordinates of a mass-point were to tekealues that are “varied,” with
the meaning that was just given to that term, thenweould have to refer to the position
of the mass-point that is established in that way aar@d position One must once
more note in that regard that the varied values ofctwedinates must also satisfy the
condition equations. For example, if a mass-point isetoain on a given surface then
the varied coordinates must also fulfill the equatiothefsurface; i.e., the varied position
must belong to the surface. Corresponding statementsbeitrue for the “varied
position” of several mass-points. Any motion thatsists of a series of positions that
are compatible with the condition equations will beleghla possible motion of the
system. Any of those possible motions will be distisgad asunvaried and the values
of the variables at each time point that belong ta Hpeecial motion will be called
unvariedvalues of the variables for that time point. Thodeesare only to be regarded
asarbitrary zero-pointsof the variations. The remaining possible motions are called
varied motionsand correspondingly, the tewaried valueof a variable at a time point
will now mean each possible value that is differenitrfitheunvariedvalue.

It is known that the principles of the same kindtfia terminology that was used in
the introduction) differ from each other by the individwatiational conditions that are

() Mech, II, pp. 2,et seq.

() Mech, Il, pp. 228 et seq.

() The unvaried motion is often referred to as “actuakiich is, however, premature and unclear.
Indeed, it is only by means of the principle in questiat one can first show which of all possible motions
are actual, since one can choose any possible motlz unvaried at the outset.
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associated with each of them, that is, by well-defimedructions for isolating certain
manifolds of narrower scope from the infinite manifoldall motions of the system that
are compatible with the conditions from which the aaons are to arise, and which must
still be infinite in order to justify the necessaryitnariness. For example, only those
variations of the coordinates should be employed in iltams principle thatdo not
include a variation of the time.e., each state of a varied motion will be asgigteea
state of the unvaried motion that are each passed threiaglitaneously, while the
general case is the one in which a state of unvaried madi@assigned an entirely
arbitrary state varied motion. Another case of temmal conditions is this one: For
Gauss'’s principle of least constraint, the so-calledu$3ian variation” will be employed,
whose variational conditions read: For the state ofion in question, the variations of
all coordinates and velocities will vanish, and only theatmms of the acceleration
should be non-zero. Now, the latter variationaidibons are the ones that must be set
down in order to succeed in exhibiting the desired identitytlie case in question,
because the right-hand side of the identity to be exdibiicludes only variations of the
accelerations [(2)].

lll. — The variational conditions in special cases.

In what follows, Gauss’s method of variation shall donsidered more closely by
usingBoltzmann's representation').

A motion that is varied in the Gaussian mangkall be characterized by the fact that,
just as the coordinates are certain functions of time:

x=f(@®, i=123, ..,8 3)

for the unvaried motion, here, they will be somewh#i¢nt functionsg; (t) of time that
likewise fulfill the condition equations of the systeamd one further requires of them
that at a well-defined time (which can be chosen arbyyathe values of the functions
themselves and their first derivatives of the coornd®avith respect to time (so, the
velocities) are all equal to the corresponding valeeshe unvaried motion. Only their
second derivatives with respect to time (i.e., the acagbns) at that time point shall
have somewhat different values from the ones inuthearied motion, and indeed, the
increases that the accelerations experience undératigtion from the unvaried motion
to the varied one shall be denot@y , which is consistent with the previous conventions.

All ox and 0% shall be equal to zero for any arbitrarily-chosen, but-eefined, time
point, while the o0X should be non-zero. Naturally, that is true for otfig precise

moment in time considered, but for, say, a finite timerval, since otherwise all also
o% would have be zero during that interval. That typeasfations is thereforgoint-

wise i.e., it initially makes no sense to speak of a glafaaiation of the motion. In that
regard, however, there exists no fundamental distimdt@mm the variational method that
appears for Hamilton’s (d’Alembert’s, respectively) piibe, because in the latter, an

() Mech. | pp. 209et seq.
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arbitrary, but well-defined, point in the unvaried motisninitially associated with a
point of the varied motion for which the variationstbé coordinates have certain non-
zero values. Now, in both cases, one therefoedgdrine transition from the variation of
the motion at one time point to tligobal variation of the motionj. In the case of
Hamilton’s (d’Alembert’s, respectively) principle, thaill be effected as follows?):
One advances from one moment of time to the next ppliea the aforementioned point-
wise variation everywhere. One will then obtainues of the variationgx; that are
arranged with no connection to time, such that tregiwat| J« [Ht would make no sense,
since the quantityx, under the integral sign is an absolutely-discontinuounstfon of
time. However, one can always select infinitely mamarggements of variations from
the infinite manifold of those variations that are subgecthe restriction that albx;
should be continuous, but otherwise arbitrary, functoinime, so ones that might be
represented in the form:

& = £f (1), i=1,2,3, .., 8 (4)

in which thef; (t) represent arbitrary, but continuous and finite functointsme, andgs is
a positive quantity that is common to all coordinades all times, and which can be
made arbitrarily small in order to correspond to the reguent that was imposed above
that the variations should be “infinitely small.” Now@ne can call the temporal sequence
of those varied positions a “varied motion” and thenitiegral that was defined above
will make sense as an integral of a continuous functio

However, if one would like to take advantage of the saat®ns for the variations

o0% in the Gaussian method of variation then one would fhat this process would not
be possible, because when the variations of thdematiens are continuous functions of
time, the variations of the velocities, and thereftinose of the coordinates, as well,
would not be continually zeror “infinitely-small” of higher order than the variatis of
the accelerations, as one must have for the corrdsgpadvance from one moment in
time to the next in the case of the Gaussian methodr@ition. Namely, if on®X is a
continuous function then it must be always positivel@ags negative in a time interval
that is chosen to be correspondingly-small (as lang & not, say always zero, which
must be excluded here, however). As a result of thtiosl

dox
oX = —, 5
" (5)
the o% that belongs to that time interval must increasdemrease, so it must be distinct
from the value zero. However, as was mentioned esiyrdwere already, the tacit
assumption is made in thal) (that time is not varied which was just expressed by
equation (5).

() The variational method for the principle of leastian also behaves in precisely that way, since the
variation of the time will first become essentighem one considers (exhibits, respectively) the glgball
varied motion.

() Boltzmann, Mech, II, pp. 3,et seq.

() Boltzmann, Mech, II, pp. 4, remark.
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One must then look for another method in order to miak®ssible to construct
integrals of the tyqu OX dt in order to go from the point-wise variations of thetion

to global ones, respectively.

To that end, the aforementioned advance from one mimeéime to the next in the
motion shall be subjected to a more detailed consider&diothe case in question. A
mass-point will be considered that traverses a giveln wah a given velocity at each
point under the unvaried motion. The motions that arnedian the Gaussian manner in
this case can be exhibited as follows: One imaginescansl path that has a point in
common with the original one and whose tangent atgbait coincides with the tangent
to the original path at that point. Hence, if the sAasint at the point common to both
paths advances simultaneously under the two motions (yatine unvaried motion and
the one that arises by traversing the varied path) welbcities that have the same
absolute value and the same direction then one wilgat, be dealing with motion that is
varied in the Gaussian manner, which is generally the, caséhe acceleration of the
mass-point at the common point to the paths will nothee same for the varied and
unvaried motions. That can be ensured, e.g., in such @ahabayhe accelerations in the
common direction of the path are equal and the varied patsesses a different
curvature from the original path at the common poinbwNGauss’ principle of least
constraint says that for every individual point thetconsidered in that way, of the
infinite manifold of possible motions that are variedhat way, the motion that actually
takes place will be the one for which the relation:

> (%= X)5%=0 ©)

exists.

The advance from one moment in time to the nekhéenmotion shall now be carried
out. As was suggested, one should not regard dbie s being globally varied, but
rather, one should regard it as composed of venyyméeces that always deviate from
the paths that arise from the point-wise variatlwat was just described, and which one
represents at each point of the unvaried path.n®&daally, that is expressed by saying:
One thinks of each point of the original path asmdgpendowed with a family of paths that
arevaried in the Gaussian mannghose paths shall also be referred to in that may).

In that way, one will get a doubly-infinite manifbbf curves that possessesemvelope
however (say, when they are all represented inaae] that is just the original path.
Now, the motion of the mass-point at any pointhaittpath is to be varied in such a way
that the state of motion is taken, not from theard motions, but from the simply-
infinite manifold of motions that are varied in tBaussian manner whose motions at that
point are appropriate. However, the mass-pointishcontinually remain on the original
path and possess the prescribed velocity at eaich. pOne can see from this that the
choice of varied path, from which, the state of iomotshall be taken will no longer be
entirely arbitrary, since the acceleration of tlheied motion (i.e., now that would be the
motion that is assembled, so to speak, from thevighehl motions that are varied in the
Gaussian manner) must not be always greater thaaways less than the unvaried
motion in any small enough time interval, sinceeotVise the mass-point would reach a
velocity that is different from the prescribed on#.one now lets the pieces that are
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associated with the individual point-wise-varied pathsrelese without limit then the
variations of the acceleration when one travernsegath that one thinks of as composite,
which now represents the globally-varied path, cannotlb&ays positive or always
negative in any sufficiently-small time interval. thfey are not to be constantly zero then
they can only be represented by a function of timedhanhges its sign arbitrarily often
in any sufficient small time intervaHowever, such a function mot integrable and that

is, in turn, the same result that Boltzmann consideréds remark.

As was mentioned before, this argument is true onlyhercase in which time is not
varied. If one were to introducevariation of time[i.e., one would no longer compare
the acceleration of the unvaried motion at any wellrgefi moment in time with the
acceleration of the (globally) varied motion thdtes place at the same moment in time,
but with an acceleration that belongs to the momemimet + & of the varied motion]
then one could no longer justify the statement that st made about the variation of
the acceleration as a function of time, and that sugdlkestidea of seeking to exhibit the
varied motion with the help of the variation of time.

IV. — Exhibiting the variational conditions that are suitable to the case in question.

It shall now be shown that one can always arriva aaried motion for which the
variations of the accelerations an¢egrableand which likewise correspond to the other
requirements that were just imposed by introducing a vaniati time.

The argument will proceed along the following traintafught:

1. It will be shown that there are always infiniteiany different system odX that

are defined with no variation of time, yield a Gaussianation, and therefore, as was
shown, are not integrable.

2. It will be shown that for each such arrangemendof there is a variation of time

(which will be denoted byX) by whose introduction, the distribution of variatiarfsthe
accelerations in time will become integrable, which Ishalsuggested by the notation

% .

3. It will be shown that the time variatiak can be chosen in such a way that the
variations of the velocities and coordinates thairdaduces will become infinitely small
of higher order than the variations of the acceleratiwhen the latter decrease without
limit.

4. 1t will be shown that, in addition, the variatidihcan be chosen in such a way that
the integral of the fornjr Fo X dt will not always be zero, regardless of the funcfon
which will be important for our later conclusions.

It will then follow that:
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1. It was already recognized to be necessary thatatations of the accelerations
should be functions of time that change their sigrstrarily often in any sufficiently
small time interval. (From now on, in this argumensjragle function will be considered
by which the variations of a single acceleration canepeesented. The results will then
be valid for all accelerations directly.) Such a fiowctcan be given in the following
way: One divides the interval to t, in which that function is to be regarded into an even
numbern of equal pieces, and then determines that: The values of the functisat

a point of the subdivision that is separated fromsthaeting pointt, of the interval by an
even number of sub-intervafs, and thus, at those points that are determined by:

th=tat+ U, H=0,24,..n

have finite, positive values that are taken from antrandy-given functionf (t) that is to
be continuous.f[(t) must then have values that are always positive.]hadh, tbne can
ignore a constant that can be made arbitrarily smadlivehich multiplies the all values of
the function. Furthermore (with the same addendum)yalues of the function shall be
negative at the remaining “odd” points of the subdivisiamely:

t=tatvrmn, M“=1,3,5 ..n-1,

which will be (up to absolute value) the arithmetic meathefvalues of the function at
the two neighboring “even” points of the subdivision:

(0%), 4 + (%),
> .

|(@%),] =

One now letsn get bigger and bigger, which will make become smaller and
smaller. The arrangement of values that arisesanwhay when liim = o or lim 7, = 0
will then represent a function with the required prapert However, due to the arbitrary
choice of the positive values of the function, theiéobviously be infinitely many such
functions. Such a function can be represented graphiaaltwo quasi-curves that are
reflected in the axi®¥ =0 ; i.e., tha-axis.

2. The variationX, which is to be regarded as a function of time, gbalthosen in
such a way that it has the value zero fott.a#f t, + 1 7, , for which o0X is positive, by
assumption, and has the valaefor allt- =ty + v 1, , for which % is negative. In that
way, one will find thatall points of the subdivision will be assignegasitivevalue of
the function now. In the ling, = 0, the new assignment of values (which is not expdesse
by Sx) will go to the positive quasi-branch of the functio® , which is, however, an
actual curvenow. As is immediately clear, the functid is continuous, and therefore
integrable It should be remarked here that this time variadbmas no connection
whatsoever to the acceleratiods , and indeed should not be put on the same level as
them in that regard.
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3. Naturally, the velocityx of the unvaried motion will be associated with another
velocity of the varied motion, which will be denoted ky+d % , point-by-point, by the

introduction of a variatiordt of time, as long a®t is not just equal to zero. Whereas
ox would be equal to zero at any time (which is an assumpgitfothe Gaussian

variation), that is not the case fdix . One has the relation:
o%= % [dt. (7)

One now remarks that: The variatiod¥, (and naturally, the variationd% , as well)
shall beinfinitely small i.e., they shall be represented by:

0% =& @i (V)
in which € is a constant that can be made infinitely small. Wwike, one has:
OX =€ (t).

Now, the arguments that were presented in 1. and 2.saréraé for finite values odX ,

since the constart is virtually absent from it. In contrast to thosaité values of the
function, the quantity, , which converges to zero, is infinitely small. Thes¢herefore
nothing that prevents one from assuming that in the edwe thedX themselves

become infinitely small upon multiplying by the constanthe 7, = ot will become
infinitely small of higher ordethan thedX (say, finite functions that are multiplied by

£?), since no special assumptions at all were make aheuype of passage to the limit
lim 7, = 0. As aresult of the relation (7) and the furitvee:

5x= X [4& ®)

the variationsdx and dx will now also beinfinitely small of higher ordethan the
variationsd% (the variationsd % , respectively), sincé and x are finite.

4. One can see immediately that an integral ofdmanij 55§ dt will certainly not

be zero, in general, since the functid® is positive over the entire interval.

It should be added that, as is immediately clear, onals® impose the condition on
the functionsd % that their values should be zero at two well-defingdditime-points,
which might be called; andt; .

With that, it is shown that, as predicted, there aveays infinitely many different
systems of motions that will yield a global variatwinthe motion when they are varied
(point-wise) in the Gaussian manner and that correspotitetllowing conditions on
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the variations: The variations of all coordinates amtbcities are equal to zero at all
times, and the variations of the accelerations arezeom-integrable functions of time.
One can add yet another condition on the variatidmiganily that is expressed by:

<o 035
5=t 9)

The justification for it will become clear immedigtesince that convention implies no
consequences for the variations of the derivativebetbordinates with respect to time
of order less than three.

It is now possible to address the formal calculatéon indeed on the grounds of the
following four variational conditions:

ox = 0 for all times, ()
J% = 0 for all times, (D)
o% will be non-zero and integrable, (1)
= _ do%
oX = : \Y

X (V)

V. — Formal implementation.

We shall now address the problem of establishing the tge¢htit was mentioned in
section I, whose right-hand side is given already.

To that end, we shall first establish the assumptidress mechanical nature. Thes
viva of the system ofi mass-points will be considered to be a quadratic fornhen t
velocities X, :

3n
L=3>mx. (10)
i=1
The virtual work of the explicit forcexs shall be denoted A :

3n
IA=D X 0% . (11)

i=1

(From now on, for the sake of brevity, only the indiaglt be written in the summations,
without specifying the range over which they vary, sineeli always be 1 to 8.)
One now forms the following expressions:
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=2.m XX,

dt2 —Zm[

d L

dtz-Zm[2x5x+ XTI K+ X0 'A], (12)

and furthermore:

d5A (dx £ X déxj

Tdt dt
d?0A _ Z d?* X, 5 +2d>§ d§x+x do x (13)
a2 a2 a0 ae )

Those relations will be valid in full generality e the operation on a function of several
variables that is suggested by the symbis| performed according to the rule:

F (X, %o, . )_—5><1+6_F5x2 . (14)
%,

0%,

When one brings the variational conditions (I(I¥) into play, one can see that one
can calculate formally as if the time were not edriat all. Namely, one must first
perform the operations of differentiation and vamias according to the rule in equation
(14), which implies the results in equations (18§l §13) in a completely general way.

2
One then replaces the differential quotien%S—dix (OI dfz)g

, respectively) withdx, (J% ,

respectively) in the right-hand side of equatioB)(Eince they are considered to have no
time variation, corresponding to equation (5). @oe carries out the time variation that
was described thoroughly above by setting the tiana ox and d% equal to zero,
which means that thé% must be replaced with thé% , and from 3. in section 1V, that
must produce no variations in the values of theaiiés and coordinates. To abbreviate,
the variationsd% will once more be denoted bgx now. That will legitimize the

aforementioned formal method of calculation.
One also gets equations (12) and (13) by perfayithia aforementioned operations:

d2

e —Zm[2x5><+x5‘?<] (15)
2

998 - v x, 5% . (16)

dt? i
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If one subtract equation (16) from equation (15) and integtéie difference between
fixed, but arbitrary, time limitst; and t;, for which, as was suggested above, the
convention is made that:

(%), = (%), =0, i=1,2,3,..,8, V)
then one will get:

of 2L dBA) . o do¥ .

7]

If one integrates the second term with the helpaotial integration then it will give:

- -[*Y mxaod.

1

‘Zm % %

The first sum is equal to zero, as a result otthdition (V). One will then get:

of (d°L_d°SA) (o ) )
'[ (5 a2 dt? jdt _J.tl Z(m X = X)ox0dt. (V1)

7]

That is the desired identity. It shows tbempleteequivalence of the principle that
corresponds to setting the left-hand side equaéto:

of .d’L d’5A), _
L (5 R jdt—O (V1)

and Gauss’s principle of least constraininder the assumptions that were made here.
That requires that one must prove that the priacipl equation (VII) follows from
Gauss’s principle, and conversely. The first gdrthat proof is obvious. If one starts,
conversely, from the validity of the form (VII) theone must reason as follows: The
integral is a definite integral between fixed, lawbitrary, limits, so it must assume the
value zero for all pairy andt; that correspond to the condition (V), which cappgen
only when the integrand itself is zero; i.e., Gagsinciple of least constraint will be
true.

That proves the equivalence of the form (VII) a@G@uss’s principle of least
constraint, and the form (VII) now representsdisired integral form of that principle.

One can also arrive at an extension of that retulthe case of generalized
coordinates, as well as the inclusion of non-meiahprocesses, on the basis of lengthy
and cumbersome developments by introducing thetikipdtential in a manner that is
analogous to whak. Wassmuth (%) did for the principle of least action.

() “Die Bewegungsgleichungen des Elektrons und das Prinziglelasten Aktion,” Wien. Ber. CXX,
Abt. lla (1911).



