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As is known, it was first in the year 1834 that Haomlpublished a new method for
treating some mechanical problems by reducing the detdiomnaf the motion to the
integration of a first-order partial differential eqoat and in that way arrived at an
especially simple form for the differential equatioasthe elements of a motion that was
acted upon by so-called perturbing forcefacobi summarized the basic ideas of that
theory in a simpler form and generalized the applidgolf the method, and in that way
established a complete reshaping of the approach to thobéemps in that broader
context, to whictRichelot, Liouville, Bertrand, Donkin, andLipschitz have added new
discoveries.

In the present pages, | will present that method in auoinm that | will consider the
starting point for the problem to be the introductiorotifer variables that one can base
the known differential equations of motion upon, which apeh that the equations
between them take on a simple form that is analogoubketmne that they possessed
originally. The condition equations for such a substitutcan be represented in an
especially simpler form when one generally appealsfterdnt types of differentiation
for the complete differentiation with respect to timdyich represents an actual motion,
and the variation, which represents a virtual motionwas in my academic lectures in
the Summer semester of 1862 that | first communicatedhé@y of these canonical
substitutions and their application to the integratiorihef equations of motion for the
effects of forces whose measure depends upon not onlyntibeal positions of the
bodies, but also upon their changes in position, as agethe properties of the general
equations for the variations of elements that are predent Article 1X, and then the
equations that prove to special cases of the ones #ratfaund byLagrange, Poisson
Hamilton, andJacobi.

In addition to those investigations, the following pageslude a derivation of
Hamilton’s equations fronGausss principle of least constraint. Another treatisgl w
address the proof of the existence of a normal formafor canonical substitution in
terms of only partially-given substitutions and the ddfgial determinants of the
canonical variables.
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l. — Principle of least constraint.

Among the various fundamental laws of mechani@gusss principle of least
constraint possesses several advantages. It take$/gka same form for motion that it
does for rest and for those conditions and restrictoonsotion that might or might not
possibly oppose any motion. It also suffices completielgetermine the motion in all
spaces in which the square of the element of lengthpiesented by a homogeneous
expression of degree two in the coordinate differenti@s correspond to the element of
length.

Gaussexpressed his principle in the following form (v. 5 of Werkg:

“The motion of a system of material points that acupled in
whatever way and whose motion is, at the same timestained by
whatever sort of external restrictions will occur atle moment with the
greatest possible agreement with the free motion, @rlg¢ast possible
constraint, when one considers the measure of thatraosthat the
entire system experiences at each point in time tdahbesum of the
products of the squares of the deviation of that point fiterfree motion
with its mass.”

The application of that fundamental law to the deteation of the motion of bodies
of stated kind then requires knowledge of the motionmoifsalated free mass particle.
The laws that are true for that come from the natdréhe bodies and the effect of the
forces that are present, so they are essentiallyiqgatysThe assumptions that are most
generally valid and most closely connected with the usoatept of force are the
following two:

A free, isolated moving mass particle on which forces act that ratvas a shortest
line in space with unvarying velocity will describe equally-large patgneents in
equally-large time intervals.

A free, isolated moving particle with mass m that momentarily hasation, but is
under the influence of a force R will begin to move in the directidimecforce R with an
acceleration that is equal to R / m, so it will cover a patB @& / m) dt? in that direction
during the next time element dt

Those two laws, in themselves, still do not determiree rtiotion of a free mass
particle under the assumption of an initial motion areddimultaneous effect of one or
more forces, but those cases can be resolved withstistance of the principle of least
constraint in its most general interpretation. Ia tletermination of the motion of a
system, when one adds that principle, one will alsgustified in replacing any given
group of free motions with any other fictitious motionsdahe given conditions and
restrictions for the motion of the system with athenceivable conditions such that the
conditions will collectively continue to exist, and th@tions of the total system that
result from those fictitious free motions will be teame as the motions of the total
system that result from that group of free motionsne @f the most fruitful types of
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application of that process consists of imagining thatindividual mass-particles are
once more decomposed into small mass-partiolesy, ... such tham=my +my + ...,
and one can add the new condition to the existing onésrihan, ... must remain
inseparably coupled to each other. Any free motionishamanent in the mass-particle
m can then be replaced with an arbitrary well-define@ fmotion that can be ascribed to
the particle — for exampley, .

Let the position of a point in space through which tlegion goes be given by the

values of the mutually-independent variabtgsx, ..., X,, ... Let the shortest lines be
drawn from the poink, Xz, ..., X, ... to the pointk; + dx, X2 + dx, ..., Xy + d%,, ... and
to the pointx; + 0%, Xo + 0%, ..., Xn + 0%, ..., and then construct the shortest line from

the latter point to the first line, or by extensidme point at which it meets the latter. The
shortest line that is drawn from the pointo that point of intersection is called the
projectionof the line that is drawn fromto x + dx onto the line that is drawn frorto x

+ dx and will considered to be positive when the projectiod that line lie on the same
side and negative when they lie on opposite sides. pfbeuct of the length of the
projection times the length of that line will be dendbgd® and set equal to:

D Xy d%, I,
h,k

in which theX;x depend upon the nature of the space and the chosen caesginzat, ...
and will generally satisfy the condition thétx = Xk, and they are functions af, x,, ...
alone, but notlx, dx, ..., &, o, ..., and in which the summati@nis further extended
over as many values 1, 2, 3, ... of the indieesdk as the space has dimensions. If the
point x + dx coincides withx + Jx then that expression will go to:

D X, dx, dx,
h,k

which will be denoted by, and shall mean the square of the length of the liaeish

drawn from the poink to x + dx, so it will always take on a positive value for arbgrar
dx

The length of a line whose points are given by the vadfigsexs, X2, ..., X, ... S
functions of one independent variable is equal to:

I [ Xy dx, d,
hk

so that integral must become a minimum for a sholirestthat goes through two fixed
points that correspond to the constant limiting valuethe integral. If the variatio®d
denotes an arbitrary change in the functignsc, ..., X, ... then a relation must exist

between those variables for a shortest line such di&E will reduce to a complete
differentiald. Now when one takes th&differentiation in the expressidg above to
have the same sense as this variation:
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so that expression, which depends upondh@nd no longer on its differentiadgx, and

differs from Jﬁ by only a total differential, namelyjﬂ, must vanish for a shortest

NG
line.

If that is the path of freely-moving mass-particéed one considers time to be the
only independent variable in tlhidifferentiation, while its differentialt is constant, then

J T will be equal to the velocity timedt, and d,/T will be equal to the acceleration
timesdt, so when the mass-particle moves freely withoatittiluence of forces, from
the fundamental law, one must had/ﬁ =0, and as a result of the equation above, one

must then also have:
10T-d® =0

for any arbitrary system of values for the&;, dx,, ..., OX, ..., and among others, fdxk;
=d x, & =d X%, &, =d %, as well, such that foregoing equation = 0 wilhi;garise as
a special case.

From the fundamental law, one can consider theéomaif a mass-particlen that
starts from rest and is provoked by a foRcduring the first time-elememit to initially
coincide with the shortest line that is drawn fréme pointx to x + dx when it has the
same direction as the forée It would emerge easily from the meaning of tb¢ations
that we have chosen here that this condition careesented analytically by saying that

D/, % shall denote the length of the projection of acatted virtual motion from the
point X1, X2, X3, ... t0 an arbitrary infinitely-close point + i, X2 + Ko, X3 + Kz, ... In
the direction of the force, so the motion that oages to call the virtual motiodr that is

performed from the mass-partiake in the direction of the forcR. If one again takes
time t to be the independent variable of the differeitiaid and dt to be constant,

moreover, then,/¥ will mean the product of the velocity time#f, so from the
fundamental law, it will be zero at the onset & thotiont = to , which can only happen

when the derivatives?j—);i, O(Ij—)% ... vanish at that time-point. Under the same

assumptions,d,/T will be the product of the acceleration timeg, so from the
fundamental law, it will be equal to the value Bf/(m) df. If one multiplies the general
equation for a shortest line above Yy& then one will get:

10T-dD +-2dT =- T X, ddxﬂ?)ﬁcﬂ% de=0,
h,k

NG
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and arbitrarydx;, ox, ... as the equations that determine the motion thasdtam the
state of rest at timé =ty and is provoked by the forde acting on the freely-moving
mass-particle.

We now turn to the investigation of an arbitrary systd mass-particles and denote
the coordinates of the isolated mass-partitieby x;, X2, X3, ... and consider the
differentiationd to be with respect tdt, and indeed the change in the quantities that
would actually arise as a consequence of motion. Any-peas&lem might possess an
intrinsic motion by means of which, it would move frore fhointx, to the point:

1
+doXn +2do do X + ——dg X, + ...
T X T2 T Tt

if it were free at that time-poirttand did not feel the effect of any force, and for which
one has:

%510— do @o =0

for a Ox, that is now arbitrary, namely, whég and®, denote the same expressions that

arise when the differentiatiod is taken to mean, , and indeed is again taken to be
arbitrarily different for the different mass-partisi®. A special group of forceR , R,
... acts upon each mass-partioi¢hat would move to the point:

1
+d; +d d + d3x + ...
Xh Xh Xh 1238 X
or
1
+dn X0 +dn Oy X0 + d3x + ...,
Xh n Xh n On Xh 123 n X
etc., in which:
15T —d D + ol d./% :—thkd.d.xﬁﬂﬁﬁéri df =0,
2 1 \/?I 1 1 o~ i |m

D, R,
30%,~ th Dn +de/ T, =- ;th d,d, Xh@_)&+5rnﬁ dt=0,

when those forces act individually am and the latter is instantaneously in the rest state,
but freely moving, and corresponding statements will bbe for the remaining forces.

Any mass-particlen will be decomposed into smaller mass-partiakes m, ...
arbitrarily for each individuaim, such that one must add to the original conditions the
new one that they, my, ... that make up the components of a nrasswust be rigidly
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coupled to each other. We would like to assume that thetijes (m my), are
determined in such a way that it would make no differemcéhe total motion whether
the mass-pointm possessed an intrinsic motion that would be given to the
aforementioned point if it were free and exposed tooncek, or whether the components
m, m,, ... possessed no intrinsic motion, but the compomgmossessed one such that
if it moved freely then it would arrive at the point:

1
1[2[B

m+0nm%{%&+%%%%+ ®x+w}

and furthermore,ng, m)n, (M, My)n, ... might be determined to be such that the effetts
the forcesR , R, on the masses could be replaced with forces thatpon the individual
componentsn, m,, ... alone, such that it would arrive at the point:

m+«nm»{q&+%qu+ﬁiiﬁx+w}

and the point

1
+ (m, d x+3id d x+—— +-
Xn + w)h{ X% *3 0o o X, }
under free motion.
The motion that is actually performed then takeshecomponent,, m, m, of the

massm from the pointx, to:

1
+dx +id dx + d3x + ...,
Xh % +4d by 120 X,

SO we can then represent any other position ofsylstem that is compatible with the
internal coupling of the masses and with the camatand external restrictions in such a
way that the mass, and therefore each of its componangsm, my, ..., will assume the
position:

1
+ 0%, +dx, +1d d + d3x + ...,
Xn + 0% +0x +1d dx¥ 1208 X,

such that becaus®andd mean infinitely-small changes, the position:

Xn + O X

will also be compatible with the conditions for theassm. Those differentials of the
coordinates that correspond to any possible devidtom the free motion of the particle
will then be:

(M, M) (dy X, +3dy d x+--) = (O %+ dy+3 ddyt-)
for my, and:

(m mn (d x,+3d d x+-)=(dx+ dx+3 ddx+--)
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for m , and so forth, so from the assumption that was madespgace and those
coordinates, the square of that deviation will be:

D X A(m, mo)n (dy x, +3 &y cy %, +++) = (9 %+ dy+3 d -}

x {(m, mo)x (dy X, +3d, d x+-)—(F %+ dy+3 ddx+---)}}
for mp, and:

D X d(m,mn (d X, +3d d x+-)=(0 %+ dx+3 ddx+-)}
x{(m M) (d X +3d d x+-) (9 x+ dx+3 ddx+-)}}

for m, so the measure of the constraint for that moti@gusal to:

DM X A(m, o) (dy %, +3d, dy % +--) = (3 x+ dy+4 ddyt+--)}
x {(m, mo) (dy X +1d, d, %+--)—(d %+ dx+1 ddx+--)}}

+ MY Xy {(m m)n (d %, +3d d x+-)= (0 %+ dx+1 ddxt--)}

x{(m M) (d X +3d d x+-) (9 x+ dx+3 ddx+--)}}
+ etc.]

FromGausss principle, thedx, andddx,, ... are to be determined in such a way that
among all possible values of tldex, , this expression will assume its smallest value fo
X =0, =0, ..., = 0, so when one develops that expression in powkdX, the
sum of the linear terms that this yields, namely:

=22" 3 Xy {Mo (M, Mo)n (dg %, +4 d, o, X% +-+)
+m (m m) (d % +3d g x+-)= n{dx+3 ddxt--)}o ph,

in whichmy + m +m, + ... is replaced witm, will never be negative.

One obtains the still-unknowmn( my)» , (M, M)n, ... by considering the fact that if
the mass-poinm, which consists ofrp , m , m, , ..., were free and acted upon by no
forces then it would move to:

1
+dx, +1d dgy +——d3x + ... =X, + +1d + d3x + ...,
Xn + y +5d dx 1 X, Xn + CoXp +5 do do X 0 X,

1[2[B

and if mp, along with its rigidly-coupled components, movye=ely from there then it
must also arrive at:

dox + ...),

1
+ (m, doxn +1d +
Xn + (M, My) (doXn +3do doXn 120
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while none of the remaining components possess freemsp$o one must have:

1
dix, +1d dx, + d3x+..=0 for allh .
Xh 2 Xh 1@[3 i >%

From the principle of least constraint:

=23 Xy {mo (M, mo)n (dy %, +4dy dy X +---) — m(dx +4 ddy+--)}J x

cannot become negative for any system of value®; , ..., = o , ..., SO it must be
equal to zero. The factor &fx Ox« in it is only a special value a¥xs, so it must be
equal to zero, since the sum is proportional tostheare of a length-element in space for
that special case, so when one refers to the equaltove, that will imply the relation:

m(dx + ddx+-)
m(d, % +3 ¢ d X+,

Mo (M, M) (dy %, +3dy &, % +--7)

so one will have:

(m, my)n = ﬂ_
m
The same argument will imply that:
(m, m)h:m, (m, m)h:m,
m m,

When one substitutes those values, the sum ofatmstthat are linear idx in the
measure of the constraint will assume the form:

—2)"mYy Xy {(dy %, +3dydy x+-)+ (d %, +3d d x+-) + ...
| - (dx +2ddg+- )0,

One still hasd‘d?‘ =0, d:j;(“ = 0 for all indicesh in that expression. If there are no

such internal couplings of the masses and exteesalictions on the motion that would
give rise to a discontinuity in the magnitude aediion of motion then one will have:

do Xn = dXq

for all indicesh and all mass-particles.
The part of the measure of the constraint thiesar in o x will then reduce to:

“2mY X G dx+iddxrd ddye—3 ddxd

m hk
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or when one considers that, from the above, one has:

30T -dD,= 3> X dyx, % -> & X, 0d X6 x=> X ¢ ¥d ;=0
h,k h, k h k

D R
10% -do +—d./% =- E X d D x+0r— df=0,
2 i i |+ (zlq {Z o hk |q)ﬂ )&+ rm
fzn

\/?n dn\/?n == ;thdn dn)%wx;}-drn

R, gt=o,

30T, -d D + —
m

10T -dD= 1) oX,, dx [Hx = > dx,0dy@d x-> X, ddxd ;
h,k h k

h k
=13 0X,, dyx [0 %= d X, 0d x00 x=> X, ddxd
h,k h, k h k
it will reduce to:
S mEST-d)-> RSy dt

or

_5z%mhz;, Xy oot Ll + (E E X dxo %_Z Wira"

m h k

which is an expression that must never be neg#étse for a continuous motion of the
mass-particlen, namely, ifx, are the coordinates of at timet, while:

Xp + dxy + 2d d + d®x +

1[2[8

are the coordinates aof at timet + dt, and:
Xn + O

mean the coordinates of that determine a position of that mass-particé th possible
under its given internal couplings and the extecw@iditions and restrictions on the
motion of the system. TH& mean all of the forces that act upon the massetest and
the & mean the virtual motion that the point of appimatof R would describe in the
direction of that force for the virtual motiodg; , oz, ..., K, ...

For a space with the property that undendald extension, the length element in it
can be represented by th® root of an irreducible expression that is homogeseof
degreevin the differential of theé coordinates, namely:
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YT = K/Zhlx,m_,_ndxn Celx, -+ o

the way that one determines the motion will have ldsest analogy with the one that
was just considered when one denotes the actual fordgsaby lets® denote the-fold

sum:
Zhlxhlhz-~-n5xn [olx, -+~ dx;

which extends over all indicds, ..., h, that are taken from the sequence 1, 2, 3n,..,
and one does not let the expression:

- > mEsT-do)-Y Ry dt 1)

become negative for any virtual moti@r, , o, , ..., &, of the mass-particlen that is
compatible with the given restrictions. Here adl,wiee free motion of a mass-particie
on which no forces act would take place with eyeddbcity along a shortest line, because
one has:

[T -d@EF" Y= (253 -dD)T + (v -D)DF T .

If the conditions on the motion that are given aueh that the opposite of any
possible motion is also possible then the exprasgip above, which contains opposite
signs in the two cases and can never be negatus, e equal to zero.

Il. — Force function.

The first two terms in the expression [1] abowe r@lated to each other in such a way
that the first term, taken with the opposite sigdX , contains the complet@ variation

that appears in the second tetr® after one performs the suggested differentiatonal

conversely, the second term contains the comgledéferentiation that appears in the
first term (when taken with the opposite sign) afire performs thé variation. Each of
the two terms is already determined by the otherwith that rule for forming the terms.
If one denotes all coordinatgsof all mass-particlemmby &, &, ..., &, ..., and one
sets:
dx, _ dé _

- g

in general, and sets the quantity thatbnitz called thevis vivafor the cases = 2 equal

to:
%mZh R Xy Xy %=V T
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then the basic equation will be:

d . 9T
—or+ Ayl S RIp=0,
+dt.195,'5‘(' ZRP

when the partial differentiatiog? of a function considers the quantitiésand &' to be

mutually independent, and tifein the sum have been set equal to all coordinated of al
mass-particlem, in succession.
The basic equation for motion will then take on goeegglly simple form when the

last termZR or dt’ can also be represented in the form of the differeeteden a

total variation and a total differential. Asgrange first pointed out, for most of the
forces in natureZ R dr is the total variation of a function that depends upoxy tré

coordinates of the mass-partiecte and not on its state of motion, so either theatam
of that function will not contain any differential @will be set equal to zero.

Gaussfirst considered forces whose measure depends upon Igatherposition of
the mass-particlen, but also on its state of motion. For our furtharestigations, we
would like to assume that this dependency is such that:

2. ROy

is the difference between a total variation and d tieevative with respect to time. |If
the total variation is:

=
then the total derivative must be:

d SV AV
TR L

in which ' = % etc. The quantity might be called the “potential’ for the given

forces under the motion of a system, as a genat@iz of the name thaGauss
introduced, or the “force function,” as a generalizatid Hamilton’s terminology. We
would like to restrict our examination to the case ol V contains no derivatives that
are higher than the firsf , such that we will then have:

_y oAy
DY ROr= dt.zef.'d‘(’

and the fundamental equation (1) of motion will assumeefdarm:
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HT+V)

—5(T+V)+—Z|: 5€ & = (2)
The expression:
HT +V)
Z‘ 9 i

in this equation possesses the property that lteevaill remain unchanged, which can
also be based on coordinatéghat are fixed or moving in space and dependent or
independent of each other.

Namely, ifq:, g2, ...,0x, ... denote mutually-independent variables thenroust be
able to represent ..¢ , ... as functions afand theg, so one must have:

dé, _ 9¢ 0¢ dq, . 65'
—Y =+ — 1 or -
dt ot Zh"aqh dt ' z q“
0§, 04
in which d denotes the partial differentiations with respecdt and theq, and — '3
O
are independent of all ..q;, ..., such that one will have:
94 _ 94
dq, 0q,
in general, and in that way one will have:

HT +V HT+V 65 (T +V HT+V
Z( )52( )Z Z( )Z Z(,)fqu
| Ié | | I Jq
as will be proved.

If we now set:

T +V
Shall @3)
Jq

followinh the path that was first taken bggrange, then equation (1) will become:

_ dF(T+V)
= 5(T+V)+dtZ|: 5q q

__vo2(T+V) o A(T+V) o v d T+ J( T+ VY doq
T MLy 5q+zdt{ 24 }mﬁz 54 dt
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ST +V) , d[S(T+V) dy _[9(T+V)
—Z{ 59 dt{ 5q Héq' z{dt { 5q }(Sq"
(a)

in which the summations extend over all values,13,2..., n of the only indeX that
appears in the expression, and in which we shalbigethe number of variable quantities
g byn from now on.

lll. — General differentials.

The study of many remarkable properties of thection T + V will be simplified
considerably when one introduces the concept oéreei@l differentiaD, in the sense
that it represents any sort of changes in a funciad the quantities that enter into it that
are required by the form of that function such théen the integral equations for the
function and its argument that the given differanequations satisfy are added, the
integration constants must also be subjected tagdtzeral differentiation.

The variationdthat was used up to now, which means an arbitriginyal motion, is a
more general differentiation then the so-called plete differentiation with respect to
time t, but of the general differentiations, it encomgasenly the ones for which the
coordinates experience an infinitely-small chanpat tis compatible with the given
conditions.

After one introduces the quantitigswhich determine the position of the system of
moving masses at the tinheand might be called the coordinates in the gésenmrsse for
that reason, the functioh+ V, which will be initially given as a function of ..., q , ...,

g , So when we once more denote partial differeotmatiith respect to those quantities

by q, the general differential will become:

DU+W:£%;QM+22%$thZﬁg&w Dq

or when one recalls the differential equationsf@d)thep and the equation of motion (4)
that was just found:

D(T+V):$Dt+2p,’ Dg +> p Dd,

in which the Dg' andDt mean completely-independent differentials, wbi, Dap, ...,
Dqg, must satisfy the restrictions that are given f@r tnotion.

The two differentiation® andd that enter here are mutually independent in their
sequence, so then can be switched, and in thathedgst equation will imply that:

HT +V)

D (T+V) ==

Dt+—z p Dq .
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If one takes the general differentiatibnin this to have the special sense of complete
differentiationd with respect td, and one divides the equation that arises in that way b
the factordt, which is constant for the complete differentiat@mwith respect to time
then one will have:

d(T+V) _9(T+V), d ,
= — D ,
dt It dtzp' a

and when one substitutes the value of the partiaVatere of T + V with respect td that
this yields, the general equation will go to:

d
D(T+V):a{(T+V—qu) Dt+>" p Dg (5)
or
d
D(T+\/):a(T+V—qu|) D+’ p Dg+>’ p Dg, (6)
and under special assumptions on the general diffatemsDt, ..., Dq , ..., Dq, ...,

the defining equations above (3) for thevill yield the equations of motion [4] and the
value ofZ (T +V) / £t that was found before.
If one subtracts from the two sides of that equatibe,corresponding sides of the

identity equation:
D> md =>aDp+> pDd,
then that will give:
d
DT+V-2,pd) = (T+V-3 pd)ODt+3 p DG->, ¢ Dp,

or, when one sets:
AT +V) _

_T_V+Zp|q:_(T+\/)+zq| 79q, H (7)
I
and
d_H =H ’,
dt
to abbreviate, that will give:
DH=H’'Dt-) p Dg+>.q Dp. (8)

For the case in which the variablgsare mutually independent in regard to the
internal couplings and the given external restiitdj when one thinks of the quantitegg's
in the expression above fét, which Jacobi called theHamiltonian function, as being
determined by, ..., q, ..., p, ... with the help of the defining equation (3) tbep, and
one denotes the partial differentiation with respecthe latter variables by, those
equations will contain the following equations thimilton presented:
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a_H = q’ dq
op = dt’
_OH _  _dp_d(T+V) +V) )
dq ot J0
OH _ ,,_dH __ ST +V)
ot dt 2t

as special cases under special assumptions thatnper how they are defined here.

The general differential of + V is represented by a complete derivative with retspe
to t in (6) above, but if one now restricts the mearmfighat general differentiation to
that of a variation then that will imply the geneed Hamilton theorem:

0:5'[(T+V)dt:5'[(2p,?j—?—det,

namely, when the values of the quantities at tmitdi of thisHamiltonian integral are
assumed to be unvarying. Upon performing the tianaone will get:

0:51(T+V)dt:j%[ ﬁ(;qV) jdt jz{ﬁ(T+V) dt{ﬁ(;;\q}éq at.

such that the equations of motion that were extubiiefore will once more follow from
the condition of the vanishing of the variation.

In his “Untersuchung eines Problem der VariatieoBnung, in welchem das
Problem der Mechanik enhalten ist” Borchardt’s dalrBd. 74,Lipschitz took that
generalization oHamilton’s theorem to be the basis for determining the emWwhen
the motion takes place under the influence of ferttat depend upon the position, and
not the evolution, of the system and possess & forecctionV, and when space is further
thought of as being constructed in such a wayithalement of length is represented by
the V" root of a homogeneous expression of degrieethe coordinate differentials.

If follows from the equatlonO(Ij—T = _H(T;V)

that whenT + V does not contain the
guantityt explicitly along with the quantitiegandq’:

> p g - (T+V)=H=const.
will be an integral of equations {8for the motion of the system, and that will defia

generalization of the principle of the conservatidivis vivathatJohann Bernoulli first
found.
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If the q are fixed coordinates in space thewill not contain timet explicitly, so in
that case, one needs only for the poteitiab not contain timeé explicitly in order for
the integral above to be valid.

If the potentialV is independent of the motion (so it does not corggithen ...,q,

.. will be fixed coordinates in space, and when one apglidser’'s theorem toT as a
homogeneous function of degreén the quantities|’, one will get:

o AT +V) 9T
> =g =>q- =vT.
: R d - 4 3q - 4 3q

If the potentialV does not contain timeexplicitly, either, sctH = constant, then one
will have:

Jz(pl o - H) dt= '[det— HJ dt
= [>mydt- Hf dt= > my*ds- H d,

whends or v; dt means the path that is traversed by the massieartiduring the time
dt. Since the variation of the first term in thisuation vanishes, from the

aforementioned generalizéthmilton theorem, the variation qfme v'ds must also

become zero with the aid of the integral equation const., adaupertuis’s principle
of least effort would require far = 2.

Under the assumptions that were made here, and 12, one will also get the
principle of the conservation efs viva

const. H=> pqd -T-V=(n-1)T-V=T-V.

One can add two more systems of differential eqostto the two systems that were
exhibited above. If one subtracts equation (6)eraintroducing the functiod in
equation (7), namely:

D(T+V)=-> pDa+> pDg+> ¢ Dp+> qDp,
from the identity equation:
D%Zp.FZp{ Dg+2, p Dd+> ¢ Dp+> @ Dp

then that will give:

D(%Zp, q —T—Vj:H'Dt+Zq,’ DR +>.q Dy,
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SO %Z p g - T — Vwill be represented as a function of the variablgs, ..., pn, P,

..., Pp,, and its partial derivatives with respect to thosealdes will be equal té1’, g,

.y Oy, Qu, ..., On , respectively.
If one subtracts the same equation (6) from the ideatjuation:

DY pq=> pDg+Y q Dy

then that will give:
D(Z p{q _T_V) =H’[Dt + qu DIQ'—Z R Dq’

SO Z p g — T-Vwill then be represented as a function of the variableg, ..., p,,

!

q. ..., 0,, and its partial derivatives with respect to those éegmwill be equal to:
Hl ql, sy qn y pll ey pn .

IV. — Substitution function. Integration. Perturbation theory.

The especially simple form of the differential equas that are presented by a
mechanical problem comes from the fact that a suitsygéem of variables ..p , ...

was introduced for a system of independent coordinatesj.,.,.., and indeed the
original ...,q, ... can be chosen entirely arbitrarily, so there aillays be associated
..., b ... However, systems of associated variables canb@dound in an even more

general way that have the property that they give shaple form to the differential
equations, and for that reasalacobi gave them the name cfnonical variables In
fact, the equation:

D(T+V):%{(T+V—Z pdd_o:) Dt+>  p D¢ ,

which includes all of the remaining ones, shows thatef@ and ¢ are to define a new
system of independent canonical variables, instead qf #rm&l g, then it would only be
necessary for the functioh+ V to either be the same function, but expressed in tefms o
t, ¢, Y after replacing the andq with the ¢ and ¢ in that equation, or set equal to a new
function. We can give that new function the fofm+ V — S in which S remains to be
determined more precisely, and we will then get:

D(T+V—S’)=%{(T+V—S—Z¢,%) Dt+> ¢ Y}

and after subtracting that equation from the foregoingwilget:
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DS'= L{(S+ X4 -3 pSh D=3 g oy + Y p DR

Should that equation for the substitution of canonieaiablesg, , ¢ for thep, g be
true in general, that is, independently of the specjahBons for a certain mechanical
problem, then since the one side is a complete derivaitherespect to time¢, the other
oneDS’, and therefor&’, must also be so. There must then be a fun&itrat fulfills
the equations:

dS_

dt

( +Y4—t Dw' ->.n th—ZﬂDlﬂﬁZp Dq, 9)

4
H

DS=-EDt+Y p Dq->¢4 Dy,

in which one sets:

-Zm -9 '—dS- (10)

Conversely, if equation (9) is satisfied for arbitrapndtions S and E then the
variablesy and ¢ that were introduced will be a canonical system, setqeation (10)
will follow from (9) as a special case Df differentiation, and the fundamental equation
that was exhibited above for . , @, ... will arise from both of the fundamental
equations (6) for ...q, ..., p, .- WhICh can also be presented in the form:

D(T+V-% ——t(T+V—S—Z¢,t//|')DDt+Z¢|' oy +> ¢ Dy
or

DT+V-S-Y g )= LT+v-S-F gy g oy - o
dt

=-D(H-B=H-E)Dt-Y.¢/Dg +> ¢ Dy . (11)

It follows from the first of those two equations theltenT + V — S’ is regarded as a
function oft, ¢, ¢, its partial derivatives with respect to those quastidl be equal
to-H'+E’ @, ¢ . If one consider$ + V—S’—Z¢, ¢, or —H + E to be a function of

t, ¢, ¢, and denotes the partial derivatives with respect teetlariables by’ then one
will obtain from the second (11) of those two equatidias:

SH-B)_ , -9
3¢, g dt
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_SH-B)_ . _dg
50 ) el (12)
ﬁ(H—E):H,_E, _d(H-F)
St d

The fundamental equation of motion, the equation oftgutien, and the equation of
motion that is transformed in that way agree in famsuch a way that the general
relations that exist between the quantiaes ..., On, P1, --s Pns YA, ooy Uh, P1, ..., &1
alone, and which will be developed more thoroughly in thleviong articles, will also

U

exist between the quantities , ..., o, P, ---» Phs &%, ---» O, — P1, .-, — Pn, @nd
likewise betweemny, ...,0n, P, ---s» Phs P1s --s Pny G4 ..., G, @and furthermore between

Wy s, @y B P, B0, WL, ., ), and so forth,

The general equation of substitution includes the speassl m which the quantities
¢, like theq, have the meaning of coordinates in such a formShas well ass’, will be
zero, and that furthermore the quantigpwill be given as functions dfand they, and
indeed in such a way that they will be independent of hawyttare represented as
functions oft and g, and that finally, the quantitieE and ¢ are determined by the
equation of substitution.

Another very general, and especially important, typesudfstitution is the one for
which the relations between the two systems of vaisatéa be represented in such a
way that thep will become functions of the quantitiesg, ¢. All remaining quantities
can also be determined by the latter then when one substithe expressions that are
obtained forp, . Due to the importance of that kind of representatd the various
variables, we would like to introduce a special symbolth@ partial derivatives with
respect td, g, ¢, namely,o, since that differentiation will include the variatithat was
considered above as a special case. The general egoiasiabstitution will then give:

5S 5S 5S ds dy, dg
— = , _=— , —=-E=—- X+ —_—,
q " w " A eIl

and it is clear from this howhen the g ..., py are given as functions afdy, ..., gn, ¢,
..., Yn in such a way that they can be the partial derivatives of one arghthe function
with respectto g ..., 0., the remaining variables can then be determined as a canonical
system of variablegx, ..., ¢h, @1, ..., In.

If H — Eis independent of one or more, or even all, of the dtiesty and ¢ under
such a substitution then it will follow from equatiqid®) for the partial derivatives &f
— Ethat the quantities that correspondsiq ..., @n, ¢4, ..., ¢h and are provided with the
same index will be integration constants in each célsél — E were zero or also only
independent ol , ..., ¢h, #1, ..., §n, then the latter would all be integration constants
and define a complete system of integrals of the éiffeal equations:
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oH _dq
op dt’
_O0H_dn
dg dt

The problem of integrating these equations completelyatso be expressed in such
a form that the quantitiesH, pa, ..., p, are represented as functiong,af, ..., gn, and a
number of quantitiegx , ..., ¢ that is equal to the number @Buch that they can be the
partial derivatives of a single function, and indeed th&gdalerivatives with respect o
01, ---, Oh, respectively. The multi-termed quadrature:

J(Zﬂ Dqg - H DY,

whose lower limits are absolute constants or depgrah the quantitieg, which are
regarded as constant for only the integration, théin yield a substitution functio@

whose partial derivatives with respectgptogether with they, will define a complete
system of integrals of the given differential equas.

A special form of that solution consists of repming the quantitieg as functions of
theg and an equal number of quantitgsuch that they can be the partial derivatives of
a common function, as before, and at the same tihoan reduce to a function band ¢
alone, so the multi-term quadrature:

[ nDg-HDY
will then give the same sort of substitution fuantthat it did before.
The problem can also be expressed in the formHhatilton andJacobi employed:

In the given equation:

H=funct. ¢, qi, ...,q, .., On, P2y -» Py ---y Pr)s
one substitutes:

ow
-H=—, p=—
ot oq,
and converts it into a partial differential equatio
0 :M+funct. t,q ... .0 M 5—W :
ot og, oq,

whose general integrélV is a function of the quantiti¢saqs, ..., g, that depends upon one
additive constant anch other integration constants , ..., ¢ . That functionwW will
then be a substitution function likeé and the remaining integrals of the equations of
motion will come about when one s&4// oy = const.
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In the study that is being carried out here, the féwoetionV can depend upon the

quantities%—%, O(Ij—ci“ in an arbitrary way, and therefore so danV, as well agd = -

oW _OW . . .

Ecan depend uporp —5—| in an arbitrary way, so the following general
developments will be directly applicable to any firstier partial differential equation
when one further observes that, followidgcobi, one can reduce a differential equation
that includes not only the independent variables and thilpderivatives of the desired
function W', but also the functioWV itself, to a differential equation that includes the
functionW without differentiations by the substitution:

Wo W W 1w SW°_1 W
or’ ot 1ot oq 199

W=r1W, o)

If the principle of conservation @fis vivais valid thenH will be a constant, and the
partial differential equation:
O=-H+ funct.[oﬂ,...,q“M Mj
oq, oq,

will give a general integral that takes the formaofunctionW that depends upon an
additive constant and— 1 other constantg, ..., ¢»-1, and:

wW-HO

will be a substitution functio8, in whichH appears in place af or a function ofy, ...,
l//n—l, l//n .

The first form of the problem that was given hevijch coincides with the complete
integration of 2 equations:

oH _ dq
op dt’
_O0H_dn
dg dt’

then includes the entirely-special case, which @netheless capable of many
applications, in which each of the quantitigsis, in a sense, to be determined as a
function of thegy (if that is even possible) that are equipped whitn $ame index, and a
system ofn quantities¢a, ..., ¢, In such a way that the functidd will become
independent of thg when one substitutes those expressions fop th&he integrals in:

'[pqu1+-~-+'[g Dq]—'[ HDt=S
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will then become simple quadratures for unvaryig ..., ¢ , and when one takes the
integrals of the functions of thg with fixed limits, Swill become a substitution function,

and i, ..., ¢h oS O oS will define a complete system of integration consgtdot
the given differential equations.

oy Y,

In that form, one can determine the motion of a freess-particle, which can be
inferred directly fronNewton's laws for one or two fixed mass-particles, or alse that
is constrained to remain on an ellipsoidal surface omithihe action of forces when one
introduces ellipsoidal coordinates as independent varisdddacobi did.

The Hamilton-Jacobi form of perturbation theory is obtained from the caranic
substitution in the following way: IH denotes thédamiltonian function (7) for the
completely-mechanical problem §8 so when one includes the so-called perturbing
forces, whileE is the Hamiltonian function for the motion that would arise if the
perturbing forces were not present, and furthermgie..., ¢, ¢, ..., ¢» are the
canonical integrals for the latter problem, so forzhequations:

OB _ 99
op S’
O9E_Jp
og Mt

and finally, if:

is the associateldamiltonian integral, so:
DS=-EDt+>» p Dq-> ¢ Dy,

then, as in equations (12), the elemgptand ¢ that are altered by the perturbing forces
will be determined by means of the Qifferential equations:

S(H-E) _ dy

94, dt
_S(H-E)_ dg

Sy, dt ’

in whichH — Eis thought of as representing a function,af, ..., ¢, @1, ..., ¢n.
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V. — Forces whose measure depends upon motion.

In the year 1835Gauss (as would emerge from his handwritten notes that were
published in volume five of his complete works, which | ed)itwas the first to think of
determining forces that would depend upon not only the mutualigosif the
interacting bodies, but also upon the motion itselfis Hvestigations, which were
directed along those lines on many occasions, had tHeofeaplaining forces such as
the ones that appear in the phenomena associatedgahtanic currents. Under the
assumption that the interactions between the galvanrerdsrand its carrier would be
such that every force that acts upon the current woallttdnsmitted to the carrier, and
that furthermore the two forces that act in opposttections upon two different types of
electrical particle at the same place would provoke gadveurrents whose intensity is
just as large throughout the entire linear current condactd is proportional to the sum
of the two forces, in my prize essay “Zur mathemagscTheorie electrischer Strome” in
the year 1857, | was the first to prove rigorously how #tectrodynamical and
electromotive laws that were discovered Bynpere, Faraday, Lenz, and Franz
Neumann could be explained by the sort of forces tBalissexamined. Unfortunately,
Gausss handwritten notes were still not available to mehat time, since otherwise |
would have been spared some investigations, although a prdbe demma of the
coincidence of the potential for the interaction betwegatvanic currents with the
potential for the interaction between magnetic sudaadich | gave in that essay, was
still not found in Gauss but only the proof of the coincidence between the force
components that were parallel to the coordinate azaagss Werke Bd. V, pp. 624).

The very incisive investigations that were most regecdiried out byHelmholtz
into the nature of electrodynamical forces have shoahwinen one does not determine
the interaction between the electrical bodies aed ttarriers completely (which is what
has been done up to now), the assumption that thereom@es fthat depend upon the
motion must lead to phenomena that contradict oureqiimn of the nature of the forces
that provoke the motions.

At this point, | would like to determine the forces tHapend upon the motion only
in regard to the fact that their analytical treatmagtees with the treatment of the forces
that depend upon the mutual positions of the bodies thaipan each other as much as
possible. The principle of action and reaction isaiyeapplicable then. The principles
of the conservation of the motion of the center ofsya®l the conservation of the areal
velocity will then persist when the force betweei twass-particles is proportional to the
mass, its direction lies along the connecting line betwthe two masses or its extension,
and the magnitude of the force depends upon only the destetween the two masses,
moreover, so when the distance between two massipanvith intensitieg’, £”isr, the
sum of the virtual moments of the two reciprocal fertieat are exerted upon the mass-
particles will be represented by:
dt ' dt? T dt T

2
o o (r dr ddr d?r jc?

In the derivation of the equation of motion abovehdwed that the simplicity of its form
was essentially based upon the fact that the virtual entanof the forces, can be
represented as the sum of a total variation of a ifmand the total derivative with
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respect to time of a sum of functions, multiplied bg variation of the coordinates. If
that simple form for the equation of motion for tleeces that are considered here is to

remain valid then:
2
e e'F rﬂﬂﬂ lo
dt dt? ' dt

dr ddr d?r d dr ddr d?r
=N|r—,—,—.,.. |+ —{V ———,—— ... |} O
[r dtdE "t j at 1[r dt dE "t j}

SN 5 OV pdr, OV pddr, vidr OV ddr L doT
o~ pdr Tdt, ddr or dt T, dr dt
dt dr dt?

can be an identity, and therefore:

ov oV, dr oV, ddr

ge’FOx =—or+——or+ — o+
or ot dt adf dt
dt
0= 59,y
adr dt dt
dt
_ 0V _ddr
0——ddr5W,
00—
dt
2
0= ao\l/ 53!,
i
dt?
SO one has:
V = function ¢, dr / dt),
V==
00—
dt
gg”F( dr ddrj oV _a| oV r 0 | oV Dddr
dt'df )" o ar aﬂ dt Hdr| gdr i de*’

dt dt\ dt
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e (r 8 g V8OV
dt’ df or dt adlr

dt
If, for example:

V=Vor 3V, [éi';j ,

in whichVy andV, are independent alf / dt, then one will have:

, (. dr ddr dr)", d dr)™

£E F( dtzja'r o{Vo +ZV [éaj } E{va{aj @r},

29V ddr
( j “on (_1)V(dtj ae "

and forn = 2 and constant values oY, andr V,, that will imply the law thaw. Weber
published in the year 1852.

L ( dr ddrj YA
£ e"F —0
dt’ de or

VI. — Two free mass particles.

In order to keep in mind the complete determimatbthe motion under the action of
forces that depend upon the motion of the bodiesould like to work through two
simply-soluble problems using the special methaat thas given in Art. 1V, and first
consider two mass-particles that move invefold extended flat space.

If:

m, X4, ..., X, are the inertial mass and rectangular rectilimeardinates
of a mass-point

M, Xy, ..., X, are the corresponding things for the other point

then the distancebetween the two points will satisfy:

= ZV_:(XA _Xa)za

and by assumption, the force functidrnlepends upon oniy, M, r, anddr / dt. The total
vis vivawill be:

2T=m> %%+ MY X, X .

If we set:
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m+ M

m+M=L7>
mM

= NN,

to abbreviate, and introduce the quantiges..., gpn by the equations:

1
mx =mL Qu +qu COosQg ,
1 . .
m X =m L Qs +N 01 SINQ2 COSQs ... SINQ, COSQi+1
1 . . .
myx =mL g, +N 1 Singp COSQs ... SiNg,-1 Singy,
1
MX: =ML Qu1 _N 01 COSQ2 ,
1 . .
M X, =ML gui _N O SiNQ COSQs ... SiNQ,) COSU +1

MX, =ML —% 01 SinQp COSQs ... SiNQ,-1 Sinqy,

then we will have =N ¢ , and the totalis vivawill be:

2V

2T= g+ (asing-sing, 4+ > ¢ 4,

26

forl<A<v

forl <A<y,

A=2 v=r+1
SO
_HT+V) ., N
Pr=—F7—=0qt—=,
Jq Jq,
94,
HT +V) ,
g S forv+ 1< u<?2y,

and therefore:

2V
H=>pd-T-V=T-V+q
1=1

22
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. 79\/ , v ) . 2V
=-Vr g st dr 32 (Gsing, .. sing,, )" B B+ 3 > p.p,.
q1 A=2 H=v+1
If we set:
2PuPu= Yu forvs u<2v
%pgpgﬂ,lqﬂcscqf:tm forl<A<v
N Y
SV g =,
Jq ° G G
in analogy with thelacobi process, then:
2V
H=w+ > w,,
H=V+1l

and when we represent the quanpiyn the equation:

S=-pt-3 wr+| pldq+vij(2¢u ~ 2, cseq? 2dq +5 4. 7,
A=2 =

H=V+l

as a function of;; and they with the help of the introductory equation gy, all of the
integrals in that equation will become quadratwbsse upper limits are once magg
g, for constaniy.

The Hamiltonian function H can then be represented in terms of the mutually-

independent quantitiag alone, so the differential expressi@ p Dg will then become

a complete differential for unvarying by that substitution, and the functions that are
determined by the equations above and are set to:

oS
4[4 = const., —=- ¢| = const.
oY,

for all indicesl = 1, 2, 3, ..., B will be the 4 integral equations by which one determines
the motion of the free, mutually-interacting, massticlesm andM in v-fold extended
space according to the law of the force function

For the special case in which the force functias the simple form:

dr dr?
V= Vo + Vla-kVZW’

andVo, V1, V; are functions of only, one will have:
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1/2
Pr=NVi+ (2 +N N /)™ [vo— 2 +w1j :
G G

VII. — Two mass particles in multiply-extended Gaussian andRiemannian spaces.

If one finds that a mass-particle is fixed at the cowid origin and the radius vector
r is drawn from that point to the moving point, the skgirienes are drawn from its
midpoint to thev mutually-rectangular coordinate axes that are composeshatest
lines, and one measures out the segméntsé, , ..., & along those axes from the
coordinate origin in well-defined directions, measured pa@dytj then from my
investigations into the multiply-extended Gaussian andmBmnian spaces in the
Nachrichten von der Koniglichen Gesellschaft der Wisdeadtern zu Goéttingen 1873
January, no. 2, Lehrsatz IV, one will have:

D tani &)
1+) tanié?’

sindir?=

and the square of the element of length will be equal to:

4 Y (dtani&,y
i @+> tari &2 F

namely, when the summations are extended gwverl, 2, 3, ...,v, andi means the
reciprocal value of the absolute unit of length for a Rienian or homogeneous finite
space, while it means the reciprocal value of the alesainit of length, multiplied by

J —1 for Gaussian or infinite space.
If one now sets:

tani & =taniiqgcosqy,

tani &, =taniig; Sing, cosqs,

tani {, =taniiqgising sings... singy cosq1 for <,
tani é,-1 =tanii g sing sings... sing,-1 cosqy,

tani {, =tanii g sing; sings... sing,-1 sinqy

then one will have:



Schering — Hamilton-Jacobi theory of least constraint 29

> tani &7 = taniq,’, L=,
-1

and when one assumes that the mass of the movinglg@rsaunity, thevis vivawill be

equal to:
2T = g o +-siniq? d, d,+ = siniq? Csingg 0, 6,
i I
+ ismlql [sinq,’ sing,’ Usirg,”, [, d,
i
+ %siniql [sing,’ Csingy’ Osing 2,04, ¢,
i
so:

_3T+V) _N@.d),
pl - ! - !
Jq Jq
_ (T +V) ,
= —s n :
2 = 4, i iq,” (e,
(T +V
Pu= —(ﬂq ): WSIanl ESlnq2 [tsmq3

1]
and therefore:

n N
H= —T-V=T-V+q -
;nd o

2

:—V+q1ﬂ,+%q; q+z Liicsciq) OcséqZ Oesbgl -

Jq, 4=2

The substitution:

zpvpv l/’v,

1Py P+ Y cscq,l = Y,

imm+ yacscq,’ = ¢

-V+ q}%%qidﬁii Ypcsciq? = ¢

yields:
H=u,
and for constang :

- simy?, [,

forl<u<vy,

csg, [P, p,-

forl <A<y,
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DS=-HDt+ > p Dq.
1=1

The substitution function is:
v-1
S=-yit+ [p Do+ [, -2, o507 Y7 dg + g 7,
H=2

since p; will be a function ofg, and the quantitieg/ alone, when one consults the
equation forgs . The upper limits of the integrals ajg.

The motion of a free mass-patrticle in a homogeseefold extended space when a
force-functionV (r,dr/dt) acts according to a fixed law is then determinechmletely

by the equations:

= const., g—S: - ¢| = const.,
|

in whichl means the indices 1, 2, 3, ...in succession.

VIIl. — General differential equations for the substitutions.

In the theory of general perturbations, the pédtion formulas thakagrange and
Poisson found assume an important position. They relateéhe variations of those
guantities — viz., the so-called “elements” — thatuld be integration constants for the
unperturbed motion. A3acobipointed out, they take on especially simple valoeshe
canonical integration constants th&tmilton employed.

Those relations, along with the new equations Heamilton and Jacobi added to
them, are obtained very simply from the substitugguation (9) that was given above:

DS=) p Dq-) ¢ Dy - EDt.

If one differentiates this using a general difféi@mon A, which is nonetheless
independent of thB differentiation, then that will give:

ADS= )" p ADq -) ¢ ADy - EADt+> Ap Dg-> A¢ Dy ~AEDI

However, if one imagines that the general diffeedk was used in the first equation
then:

AS= > pAq-) ¢ Ay - EAt,

and if one then differentiates Bythen that will imply:

DAS= ) pADq -) ¢ DAy - EADt+> DpAg-)> Df Ay — DEAL
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The two differentiation® andA are independent of each other, so the sequence in which
they are performed will have no influence on the vaduel when one subtracts the two
second-order differential equations from each otherwolhget the equation:

> (Dq Ap -Aq Dp)=>_(Dy,A¢ —Ay; D)+ DtIAE - At[DE, (13)

or, when one calls the expressiddg Ap —Aq Dp a differential determinanbf the
function-pairg, andp;, one can express that in words:

If the q, ...,grand p, ..., pn define a system of canonical variables then in order for
the quantitiess, ..., ¢h and ¢, ..., @, that are introduced by the substitution equations
to also define a system of canonical variables, in general, it isseageand sufficient
that the sums of the general two-parameter differential determinardf atsociated
pairs g and p should differ from the sums of thlg and ¢, that are formed in the same
way by only the two-parameter differential determinant of the variablaad any
function E.

That theorem will also be true when one restridie ttoncept of general
differentiation in such a way that the timeemains unchanged. The two sums of the
differential determinants will be equal to each otlaed there will always be a function
E that fulfills the conditions for that complete lara.

We will prove that the differential equation (13) isalsufficient for the quantities
@ and ¢ to stay a system of canonical variables by distingugshix cases:

1. Thep andq are given as functions of tlgg ¢, andt. Then let:

X=p, Xt =— @i, Xone1 = Ym = — E,
X=q, Xnol = U, Xon+1 = Xm = t.

2. Iftheq andg are given as functions of tipe ¢, andt then let:

X=-q, Xl =— @i, Xone1 = Ym = — E,
= P, Xnol = U, Xon+1 = Xm = t.

3. Ifthep andy are given as functions of tle ¢, andt then let:

m:p|1 Xn+I:¢41 X2n+1:)(m:_E,
X =q, Xntl = @1, Xone1 = Xm= 1.

4. If theq andy are given as functions of tipe ¢, andt then let:

X=—0, Xo+l =, Xonv1 = Ym=—E,
X= P, Xntl = @1, Xon+1 =Xm= L.

5. Iftheq andp are given as functions of thi ¢, andt then let:
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24,
-q, N 1= Xm = — - E,
Xi= thwl a Xo thwl Xon+1 = Xim Zh‘,phﬁt
X=p, Xl = @1, Xon+1 =Xm = L.
6. Iftheyandg are given as functions of tigep, andt then let:
Y, Y, WY,
=q - , i =— , 1= = - -E,
Xi=q Zh‘,¢h 9 X Zh‘,¢h o AeiTAm Zh‘,¢h o
X=p, Xl = @1, Xon+1 =Xm = L.
In all cases, the condition equation (13) goes to dheecform:
> (DX Ay, —Ax Dx,) =0,
k=l
so if one now takes thé, ..., & to be any functions of the that do not make the

expressioréy y1 + & xe + ...+ &n Ym Vanish, and one imagines that the equations:

are integrated completely them integration constantg, Yo, ..., ym Will appear in that
way, one of which — say, — is coupled withy by addition, and the variablescan be
considered to be functions of the quantitieg, v, ..., ym. That will then imply:

0x, Xy _
+ +oet y —M =
ay, Yoy, Aoy,

X =, 0%

0
% =X

Xl_+X26_X2+...+Xm
oy oy oy

so for a general differentiatidd:
x1Dxi+ o Dxo + ... + YDXn=D (Y +VYm) + Y1 Dy2 + ... + Y1 Dym,

in whichj, ..., Ym1 are functions oy, yi, o, ..., ym that must fulfill the equation:

m-1

Y. (Dy,AY, —Ay, DY) =0
k=l

between they andx. In the special case in which all quantityeare constant for thB
differentiation, except foy;, where 1< | <m- 1, and all quantitieg are constant for the
A differentiations, with the exception gf in one case, and them , the equation will
become:
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Dy, ﬂAy =0 Dy, GaiAym =0,
oy Yo

so for every indek between 1 anth— 1,Y, will be independent of andy,, . Therefore:
Y1 Dys + Y2 Dys + ... +Ym1 Dym1

will be a differential expression with onlyjn — 1 independent variables, and the
coefficientsYi, ..., Ym1, along with their independent variablas ..., ym-1, will satisfy
the corresponding condition as the coefficients ..., xm in the linear expression with
them independent variables The differential expression with — 1 terms can then be
decomposed once more by the same process into a difkér@mnd a linear differential
expression withm — 2 independent variables, and with a corresponding comditidy
carrying out that process, one will then arrive a¢@esentation of the linear expression
as the differential of a single function:

X1 Dx1+ 2 Dxo + ... + Xm Dym = Dw.

If we denote the functions that arise each time endix cases that were distinguished
above byw, w,, ..., W, respectively, in the application of that theorem aor
investigations then we will have:

D> pDq-> ¢ Dy —EDT=Dw,
->.qDp-Y>.4 Dy ~EDT=Dw,,
Y. b Dg+> & Dg —EDT=Dws,

- > DR +> ¢ D —E DT=Dw,

oq, 0 0 _
Z[Zh: pha_zll_¢|j Dy, +Z|:Zh: na_q: D¢ +[Zh: ﬁl,a—?q— Ej Dt = Dws ,

0 h 0 h 0 h _
Z(n-za%]oa-gzafior{galtecloron

or with the assistance of the identity equations:

DY pa=>pDa+> qDp, DY 4 =2 4Dy +> ¢ Dg,

when one adds them together, the partial differentials:
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Zp| Dq _Z¢| Dy - E dt=Dw = D(W2+z 3] q): D(W3—2¢|l//|)
=D(W,+3, P g-2 ¢4 ¢) =Dws =Dws

will exist in all cases, so one will have a substitmtfunctionS which couples the two
systems of variables (namely, thep and they), ¢ in such a way that when the one is a
canonical system, the other one will also be so.

If one restricts the definitions of the general d#faialsD andA in such a way that
one leaves timeunchanged then for a canonical substitution:

> (Dp Ap -Aq Dp)= > (Dy, Ag —Ay; Dg), Dt =0, At = 0.

That form satisfies the condition equation that woulkenthe substitution a canonical
one. In fact, if one assumes tit= 0, At = O in the foregoing proof then that will yield

the result that there exist functions , w» , ..., W that satisfy the equations that were
found before under the assumption tBat= 0, and will then be completely independent
of E. If one then sets:

- _ 5\Nl E:_azwz E:_63W3 E:_64W4
ot 0,t 0.t 0,t
dw, Jq, ow, oY,

E=- 5+ — E=-—"6_- h,
St 2P St ot 24 ot

in which the partial differentiationg 9, , 03, 04, J, 0 refer to those systems of variables
that are considered to be mutually independent and by whectethaining quantities in
each of the six cases are represented as functi@mSthill be determined in the same
way as before.

IX. — Jacobi’s perturbation formulas.

The general differential equation (13):
> (Dg Ap -Aq Dp) =D (Dy, Ag —Ay, Dg) + Dt AE — At DE,
when one performs the differentiations in the spesgakes:
all Dg =0, Dp =0 for | #h, Dt=0,

Ay =0 forl #h, all Ay =0,At =0,
will become:

J4q, 9P,
- Ay, [Dp, =— Ay, —Dp, ,
S, ¢, Dp, /N 9p, P

so one will have:
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Jq, _ 99,

Y, Ip,

If one imposes various special assumptions on thergliffations in such a way that one
assumes that all of the quantitips g, t, except one, are unvarying under tbe
differentiations, and likewise all of thg, ¢, t, except one, are unvarying under the
differentiations, then one will get the new systdreguations:

Jh _ 99, 9% __O¢  I4,_ OE
ﬂwk aph 79¢k aph St aph
m = _% 79ph - al/lk 79ph - _ aE (14)
Y, ¢, 79, oq, Ht aq,

JE - 90 JE_ . JE_ O

Y, ot 96, ot 9t ot

that Jacobi exhibited, which are valid for all indicésandk. In order to give a common
form to those various systems, we would like to introdbheenbtations:

q—l/:pl/1 q+0:E1 q—0:t1
w—l/: ¢V1 w"'O:E! w—0:t1
[h] =+1 forh=+0, [h]=-1 forh <0,

so the common form will become:

2% = (g 2 h=+0+1,+2, ...4n k=+0,+1,+2, ..+n  (14)
Y, 79,

Conversely, one also has the theorem that whedabebi equations are fulfilled, that
substitution of the quantitieg, p with the ¢, ¢ will be canonical, because when one
performs the summation over the stated valudsasfdk, one will have:

ST {-g 2% aq, Dy, = Y[ Dg,Aq, - ST~ Ay, Dy,
bk Y, Jq., h K

identically, so the two sides of this equation va# zero, with which the differential
equation (13), which is true for the canonical $itaoigon in general, will arise when one
reintroduces the original notations.
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If the functionE is not given then one needs to assume onlyDhat O = At in the
development that was just carried out. The diffeagmtguation that then arises will not
contain the functioie, and it can be determined in the way that was doaticie VIII.

X. — Poisson’s perturbation formulas.

If g, p can be represented as functiongpfg, t, and converselyy, ¢ can also be
represented as functions @fp, t, and® denotes a function of then4 1 quantitiesy, p,
Y, ¢, t, and¥ is a function ofb, then one will have:

IV _0Y, g 0¥ s 0¥IR

50 00 Lag o0 op 5

ow_ W zﬂw oY, +zz9w L)
D 9P Sy, 0 9¢, 0P’

identically, when the summations are extended ovemnthieesl = 1, 2, 3, ...n. If one
takes théV and® in these equations to be any two of the quantgjeg, t, in succession,

and replaces theg% and Zg)‘ with the analogous derivatives then one will get the

following conditions for a canonical substitution:

5[ 94 000y, wkj _
~(0dgq dp op d¢

oY, 09, _0y,0¢, | _| 0 hzk
dg dp Jp 9q 1 h=k,

-

(15)

08, 94, _ 04, amj _
dg op 0dp 09

-

OE 0y _OE 0y, | _ 9Y,
dg dp 0p dq ot

-

Z OE 09, 6E 09, _ 09,
~\dq op ap aq ot
forl=1,2,3,...n.
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If we employ the same notations as in the previouslaréind use[:ﬂj and

-k
[%j to mean that:

0q,

9 =4 forh = -k,
oy_,
9 | 9, forh=+0
oY, ot ’

but in all other cases:
al//h — 0
oy_,

and that:
%jzl forh=A=+0,
0q,

but in all other cases:
0q, 0g,

and we setf] = + 1 for a positivel, while [A] = — 1 for a negative value af and [+ O]
[- 0] = + 1, then we can give the five systems of equstédiove the common form:

oy, \_ & (0w ) 0w, ) _
()

A=+0 aq) GQ-A

and on the other hand, it will follow that this equatremains valid for all systems of
valuest 0,+ 1,+ 2, ...,+ n of theh andk, with the exception di =-k=-0.

Poissonwas the first to exhibit differential expressionglud type that appear above
in the summations in (15) that relatel tm his “Mémoire sur la variation des constantes
arbitraires dans les questions de Mécanique,” 16 October 180&alale I'Ecole
polytechnique, Cah. 15.

If one excludes the system of valdes + 0 andh = -k = - 0 then the term for= +
0 will always vanish in the summation, and equation)(dl assume the simpler form:

o0, oy, 0w, _
[k](aw_ j Azﬂ[’“ 59, 99,

If equations (15) or (I5 are fulfilled then conversely, the substitution Wil a
canonical one, because when one lets:
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[ﬁ =1 forv=h=+0,
Y,

but:

ﬂ_qj _ 99,
sw, ) ow,

for all other systems of values foandh in the expression:

Jq, 0¢/_+h _ « [0y, | oy,
h%[k][.z] [Wakjm” w’k% R[aw_kj Az[o 4 [6% j[acp ]}

then if one deals with the individual cases in vahilse bracketed terms have a different
sense from the derivatives separately and themqesfthe summations ovérfor the
valuest 0,+ 1,+ 2, ...,£ n, and the summations ovaér v, k for the values 0,+ 1, + 2,

., £ n, except for the combinatidn= -k = - 0, then that will imply:

- Y[vlAq, Da, + 3[-R DY, A,

That expression must then become zero and in thgat ence more imply the differential
equation (13) that is true for a canonical substitu If the functionE is not known then
one needs only to sBt = At = 0 in that development and exclude the indie8s and the
equations that includE will not enter into the calculations then, andtthmction will
first be determined from the substitutiSmhat was calculated before in article VIII.

XI. — Lagrange’s perturbation formulas.

If one takes the differentiation® andA in the general differential equation (13) for
the canonical substitution to have the special nngatihat any two of the quantities ,
ceey Uh, @1, ..., §n, andt vary independently, but the remaining ones caodosidered to
be unvarying, then one will get:

s[4 90 _9n ﬂquo,
T\, Y Y Y

s[4 90 _9n ﬂqj:{ 0 h#k
-\, 9, Iy, 99, 1 h=k’
(16)

s(%4.9n 20 ﬂqj — o,
T\ 98, Ib. 99, 99,
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5 99 9p IR ﬁqj _ JE
C\ It Ay, St Sy, ) FY,

Zﬁq,ﬁp_ﬁpz?q :19E.
-\ ot 9, St 8¢, ) Sy,

Conversely, those five systems of equations charaetdghat substitution as a
canonical one, because when one multiplies those eqadiy:

Dynh D,

Dy Ag — Ayh D,
—Dynh Ay,

Dt Ayn —At Dy,

Dt Agn —At D¢y, ,

respectively, and then sums over all indices, addsd¢ouations obtained together and
assembles the sums of partial differentials, oné aghin get the general differential
equation (13) that is true for the canonical substitution.

The first three systems also satisfy the equatidk®) that would make the
substitution canonical, as one will find when one assuthasDt = 0 = At in the
foregoing investigation and determines the functBasdE as in article VIII.

If one applies the general differential equation (13 dase in whicly, ..., ¢,
@1, ..., ¢n, are integration constants and represents them nmstef functions of any
other 2 integration constants , c;, ..., Cn, and the takes the differentiatioDsandA to
mean that onlyc, varies forD and onlyc, varies forA, while the remainingc and t
remain unchanged, then when one multiplies both sidetheo general differential
equation (13) by the product Bic, Ac, with a function of the integration constants, one
will get Lagrange’s theorem:

Z{dq dp __dp dgjzconst.

|\ dc, d¢g dg dg

XIl. — Hamilton’s perturbation formulas.

If the quantitie and ¢ can be represented as functions ofdghe, andt then one
can take:

> (Dg Ap -Aq Dp) = Y (Dy, Ag —Ay; D@) + Dt AE —At DE,

Dg =0 forl # h, all Dy=0, Dt=0,
Ag =0 forl £k, all Ay=0, At=0
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in the general equations, which will make:

D @A -A @D =0,
On 59, G —AGq, 54, G

so that will imply:

op, _9op
og, o4,
if the partial derivatives with respect to the varialgeg, andt are again denoted ky
If one sets:
Dg =0 forl £ h, all Dy=0, Dt=0,
Ay =0 forl £k, all Aq =0, At=0

then equation (13) will go to:

Dg, 22 Ay, = -2y, 22 Dg,,
G o, D &, 54, Qw

So:
by _ _ %
a,  oq,
If one sets:
Dg =0 forl # h, all Dy=0, Dt=0,
all Ag=0 all Ay=0

then the general equation will imply that:

Dq, @At =-At Gé—E Dq, .,
ot oq,

SO
op __ °E
ot oq,

If one carries out the examination of all permissigbecial assumptions of that kind for
the D andA then one will get the five systems of equation thammifton presented under
special assumptions:

op, _9p. 0P, __% 99, _ P,
Q. oG, A oG, . o,

17)
dp,__OE Jp, _ OE
o og, o Ay,

which are true for all indices tfandk.
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However, if, conversely, those equations are satisfiedri arbitrary functioie then,
as before, it will follow that the assumed represémadf theq andp as functions of the
Y, ¢, andt will then define a canonical substitution, so those eguuswill be the known
condition equations for the existence of a funct®®nvhose partial derivatives with
respect tay, ..., n, ¢, ..., Y, andt are equal t@y, ...,pn, — @1, ...,— ¢n, and-E.

If we set:

Qv:q, Q—v:l//lm QO:t,
Pv:pv, P—v:¢v1 PO:E,

for a positivev then the five systems éfamilton equation can be written in the common

form:

OP OP,
h — [_k] k

forhandkequalto O 1,+1, ...,+n.  (17)
oQ, oQ,

il

If we multiply the two sides of that equation @k andAQ, and sum over all values of
h andk then we will get:

2. [-N DR AQ, = > [-kI DQ, AR,

which is once more the general differential equatar a canonical substitution.

The five systems of equations above are completidie sense that arbitrarily many
of the functiongy, ..., pn, &1, ..., §n, E that are expressed in termsgef ..., On, &, ...,
Uk, andt can be given such that only the equations betwesse given functions that are
valid for that system are fulfilled, and the remagnfunctions can then be determined in
such a way that they collectively define a candrsoéstitution.

In fact, in the last equation, one needs onlydsuae that thosBg, andAqg,, D)
andAy, are equal to zero for which the respectiweand ¢, that are provided with the
same index are not given. Likewidst andAt are set equal to zero whEris not given,
so thepn and ¢,, and perhap&, as well, that are not given will not enter inteat
equation, and for just the given ones:

P1, P2, <y Pmy P2, ...y $u, and possiblE,

one will get the equation:
m H
0= (Dg Ap -Aq Dp) - ( Oy, Ag, —Aw, Dp,) + Dt [AE —At [DE,
=1 A=1
and from article VIII, no. 1, that is the conditifor the expression:
m H
>.pDg-> ¢,0Dp,-EDt
1=1 A=l

fgr constantms1, ..., 0, Y1, ..., Yn, to be the complete different®IS of a function
S whose partial derivatives are:
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oS’ os” os” -4 5SD__
5qm+1_pm+1’ 5qn_pn’ W, e sy,
and to set:
585__
o

whenE is not given.

XIll. — New differential equations for the canonical subsitution.

Three different systems of independent variables conaer consideration in the
JacobiandHamilton differential equations: first of all, the quantitigs, t, theny, ¢, t,
and finally theqg, ¢, t ; we have denoted the three different correspondifeyentiations
byd, 4, andd. Now, even more groupings of the independent varialéeseguired for
many investigations.

If we set:

pv:q—lm E:4[/+0 or E:CI+0,
o=y, t= o or t=0q-o,

for ease of understanding, then we would like to imaghmosing 2 of the quantities
Ot1y -ovy Qen,y 1, ..., Yhn, and one of the-o, ¢ o as a system ofr2+ 1 independent
variables, and denote them with:

Oyo oor Gy s Pig o oo P s

L

while their partial derivatives are denotedopyguch that one will then have:

PP 0P oy,
dq 0oq oy, 0q

P _ oP +ZDP oq, |
Y Y, Fog, 0y

P _§IP Y
00, Ty, o0q, ’
P _ 0P 2g
oY, T oq oy,

identically for every functior®, in which the summations ovhrandk are extended over
all g andyk that appear as independent variables, and the sumnoaeohis extended
over all values — G 1, 2, ...,£n.
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From the first of the two formulas, the equation:

0P P [ I | _
Zzoqhwk[[ ]ﬂw_ mﬂw-hj o

which follows immediately from thé@acobi equations (14), art. 1X, will go to:

Z[h]acb[aP an S - K (ﬁcb _ acbjzo_ (18)

0g,\ 0, 04,) & . Y-,

That equation includedacobi's equation as a special case when one take$ the

differentiation to mean that the independent varialdtes among others, e.gy,and ¢, ,
but notg- and ¢, , and that one then sets=q, P = ¢4 . Equation (18) goes to the
secondHamilton equation (17) when one refers thelifferentiation to the independent
variablesqi, ..., On, ¢, ..., Yh, t, and setP =p , d = ¢, . With the help of the
equation that is obtained in that way, equation (18) abtseeimplies the firsHamilton
equation when one ses=p, , ® =p,, as well as the third when one sBts ¢, , ® =
#,, and one can also derive the fourth equation directhenvone refers the
differentiation to the quantities, ¢, ...,¢h, th, ..., Ox as the independent variables, and
one sets:

o=t P=p =0, h=E, o =1

in equation (18) above; one would then have:

ot op_ ot JE Jp ot

oq 0E aEch 5t oE

0=-

One gets the fifthkHamilton equation in an analogous way.

We would not like to examine the general form for ¢l@ation in the case whege
proves to be the independent variables in (18) here.

What is remarkable about the general relation (18) alsoti it will also arise from
the expression above for thogdhat appear to be independent underntddferentiation

and thosey that enter intab when one performs the summation olvir.

A R

over they that come under consideration. In regard to tihatn the general equation
(18) above, one can choose the quantities:

A1, Gy -+ On,s 4[/1, 4[/2, ...,1/4, Pi+1, Pi+2, «-+y Pn
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to be independent for thedifferentiation, and sd® =p, , ® = funct. 4, ..., &) =f, and

derive the equation:
0:—i+i(bf op,  of apﬁj,
00, n=a\0G, 0p, 0R 0q,

which is valid for everyd < i, that Jacobi presented in his treatise “Nova methodus,
aequationes differentiales partiales primi ordinis intemerum variabilium quemcunque
propositas integrandi,” Borchardt’s Journal, Bd. 60, sgexial case of (18).




