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Quater nions and semi-vectors

By W. SCHERRER, Bern
Translated by D. H. Delphenich

The theory of spinors has been founded in a vergfaatory way by Einstein and
Mayer ') with the help of new quantities: semi-vectors. Besstors mediate the
transition from vectors to spinors in the followiegnse: One the one hand, they have a
natural connection with the group of Lorentz transforomest and, on the other hand, they
include spinors as a special symmetry type.

The algebraic basis for the Einstein-Mayer theorgiened by a statement that we
make in the form of:

Theorem 1. Any real Lorentz transformation ¢ can be represented uniquely, up to
sign, as the product of two special Lorentz matrices 2l and 5 that possess the following

properties:
a) Any arbitrary 2 commutes with any arbitrary 93.

b) 2 and B are complex conjugates.

From this theorem, it follows immediately that teeorem in question belongs to
Hamilton’s theory of quaternions and can thereforeffogtiessly derived from it.

We carry out the examination, as far as possiblehanréalm of complex orthogonal
matrices by recalling the known fact that any orthogorstis

aOO a‘Ol aOZ a'O
alO all a'12 al
(1)
aZO a21 a'22 a'2
aSO a3l a32 a3

can be associated with two Lorentz matrices:

iaiO all a'12 a'13 (2)
iaZO a21 a'22 a 23
ia?;O a3l a32 a33

) A. Einstein and E. Mayer, “Semivektoren und SpinoreSitzungsberichte der preussischen
Akademie de Wissenschaften, 1932.
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and conversely.

Hamilton’s quaternion algebra defines the appropriateuim&nt for the treatment of
four-dimensional orthogonal matrices. For the readamlightenment, | will summarize
the basic properties of quaternions, and indeed in suchyatlvat nothing beyond the
complex case shall be considered.

Let quaternions be denoted by small German symbols, ¢, ..., ¢z, 1, 3. An

individual quaternion is defined to be a linear combination:
a=a taier +azex +ages, (3

where the “componentsl, ai, a, az can be arbitrary complex numbers, while the units
that appear along with the usual unit 1 obey the followingjiptication rules:

2 _ 2 _ 2 _ _
e; = e, =e; =—1,
€2 €3 = ey, €3 €1 = €, €1 €2 = e3, 4)

€3 €2 = — ¢y, €1 €3 =~ ¢y, €2 €1 =—¢3.

The rules of ordinary algebra are required for addjtwith the extension that the
zero will be represented by:
O+0[ +0>+0[25.

Along with the rules (4), the distributive law of mplication shall be valid. With these
assumptions, one finds the following expression for telyct of two quaternions and

b:
ab=  abp-abi-axb—azbs
+(@bo+agb—aghy+axbs) ex (5)
+ @ bo+aghy +ap by —asbs) e
+ (@gbo—ax by +a; by +ap bs) es.

One now easily verifies the fundamerdsdociative law.
(ab) ¢ = a (be). (6)

From (4), the commutative law does not enter in.
Let the quaternion that is “conjugate”d¢de denoted by :

0 =a —aje;— e~ azes. (é)
One easily confirms the validity of the importariat®ens:

(ab)* =b a, (7)
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aad = a2+a’+a’+a’ =daa = scalar. (8)

A scalar and a quaternion whose last three componenishvare obviously equivalent
concepts in the algebra of quaternions. For the sakeswaity if we refer to the quantity
aa” as the “length” of the quaternion then we have:

Theorem 2: If an arbitrary quaternion ¢ is multiplied on the left or the right by a
guaternion of length 1 then its length remains unchanged.

The assertion thus follows from the fact that = 1 andy = ar imply the equation:
by =r
On the basis of (7), (8), (9), calculation yields:

by = (ar) (ax)
= (@) 'a’)
=a(r)a
=aa Or =11

The corresponding proof for right multiplication prodeaaturally in an analogous way.
If we now regardr as variable then, from the theorem that was jusvqutpthe
multiplication:
n=ar

seems to be a special orthogonal transformation evbomplete expression, as given by
(5), is:

Yo=agXo—ay X1 —R X2 —a3 X3

Yi=arXotapXi—agXe +az2 X3 9

Vo= XptazXg tapXe—a1 X3

Ya3=azXp—@X1tar X2 +apXs.

An analogous statement is true fo¥ tb, and we obtain the result:
The two quaternion products:

y =ag, p=zb (10)
are, when:

*

aa’ =1, bb =1, (11)
equivalent to the orthogonal transformations:

y = Az, y =By, (12)
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respectively, whose matrices are given by:

8 —a —a, a4 bo _bl _bz —b

9 = & a, a4, az, B = b1 bo ba_bzl (13)
a a; a4, —a bz_b3 bo b
8 —a, a ay bs bz _bl bo

As aresult of (11), these matrices depend upon threelenpgrameters. In addition, as
one establishes immediately, both of them can beregosly transported to the identity.
From this it follows that the product:

b =arb (14)

encompasses a 6-parameter family of orthogonal tnanafens that is continuously
connected to the identity, and thus all proper orthogwaakformations. We cannot go
into the details here of this and similar “completenesslts” that follow with the help of
infinitesimal transformations.

We now prove conversely that the representation of patiper orthogonal
transformations by means of (14) is unique; i.e., thanfro

arb =cro (15)
and

aa =bb =cc =00 =1, (16)
it follows that either:
a=c and b=0
or
a=—-cand b=-0.

To this end, we multiply the identity (15) on the lejtc and on the right by’, and
from (16), we obtain: ) )
caxr=r00.
From this, it follows that:
¢a=00 =scalar.
We can also set:

ca=Aaq,
whereA/ is a suitable scalar, or: ) )
(c —Aa)a=0.
Right-multiplication bya” yields:
¢ —-Aa =0,

and from this, it follows that:
c—A0a=0.
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One then has:
cc* = A2 aa* or P==+1,

and we ultimately obtain = £ a, and in an analogous way,= £ b, from which the

uniqueness of the representation (14) — except for a Sgjlows.

We now go from the quaternionic representation (14) tontagix representation,
and must therefore pay special attention to the ad$aty of the composition in the
productarb. The equivalence of the representations (10) and (12%,gi@ a notation
that is simple to understand:

a (rb) =2ABr,
(ax) b = BAL.

From the associative law (6), it then follows that:

ABr = BA,
or
AB =B (17)
On the other hand, we can set:
arb = ¢y,

and thus deal with any proper orthogonal matrix
We express the results that we have arrived at as:

Theorem 3: Any proper orthogonal matrix ¢ can be represented uniquely, up to
sign, as the product of two special proper orthogonal matrices 21 and 98 that possess the
following property:

Any arbitrary 2l commutes with any arbitrary 5.

The types foRl and*B that come into consideration are given explicitlydoypations
(13) and must then fulfill, in addition to the conditg(11), only the equations:

o val+al+al = b +bf+bi+bl= 1. 1y

Obviously, Theorem 3 agrees with Theorem 1, up to readityglitions, to which we
would now like to turn.

The reality of the matrices (13) is evidently sufficidor the reality of the proper
orthogonal transformations, as a result of the cetepkess and uniqueness of the
representation (14) that is likewise true here, andrasessary.

As far as the complex Lorentz transformations aomcerned, a completely
corresponding theorem follows immediately from Theordmwith the help of the
transition from (1) to (2), and conversely. Thus, ftiilowing matrices enter in place of
the matrices (13):
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a, la ia, iay b, ib, ib, ib,

9 = _ia1 qQ —a; 4, , B = -ibl bo b3 _bz . (18)
ia, a;, a, -a ib, b, b, b
ias a8, a a, ibs bz _bl bo

In contrast to the matrices (13), these matrices lmarmassumed to be complex
conjugate to each other, but the individual matrices ceadepend upon three complex
parameters. In this way, one obtains a proper and re@ntzo transformation that
depends upon 6 real parameters as a product. We thersioreage a representation
here of all real proper Lorentz transformations. nfhm turn, it follows from the
uniqueness of the product representation that the factersnecessarily complex
conjugate. Thus, the Einstein-Mayer theorem that idhatfdrefront of their work is
proved completely.

Quaternion algebra also seems to offer certain adyastéor the construction of
invariants. For this, it is generally sufficient foreoto carry out all developments for
orthogonal transformations, and then go over to Loreatisformations at the conclusion
with the help of the transformatiog = it.

We shall explain this process to the extent thegntains in the realm of orthogonal
transformations. As is known, by restricting to orthwag coordinates the difference
between upper and lower indices goes away. We now reprase transformatiop’ =

¢r quaternionically by’ = arb and define:

1. Avector r = (X, X1, X2, X3) IS @ quaternion that transforms according to the
equation:
' =agb. (19

2. Aleftvector r = (X5, %;,%,,%;) is a quaternion that transforms according to:

r =ar. (1%)
3. Aright vector 1 = (X, %, %;,X;) is a quaternion that transforms according to:
g = gb. (1%)

Naturally, thea andb that enter into (19), (8, (1%) must always arise from one
and the same orthogonal mateix

One can now define mixed tensors of arbitrarily higher ekegn the usual way by
component-wise multiplication and addition of the vee¢ypes that were defined above.
In particular, one then has:
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Theorem 4: If:
Fr. 9,3, )= a. XYz

isan invariant multilinear form then its coefficients a define a tensor of the type that

KT
isindicated by the indices, and conversely.

Quaternionic multiplication obviously defines a process denerating invariants.
From (19), (19), and (1®), in conjunction with (7), one immediately finds the inaat
guaternions that are fundamental to the Einstein-Maygenryh

'y, v’ (20)

rhs

|

and
0. (21)

|t

Any of these quaternions produces four invariant forms, ag@fibre, from Theorem 4,
just as many numerically invariant tensors. From (2d)(2t), one thus obtains the four
tensors of typea, , -, a -, &, The two types that arise from (21) are, however,
equivalent, as one sees from the equaion’s)” = ' 3".

The calculation of the first expression in (20) yields tlee basis of (3 and (5), the
invariant bilinear form:

X Yo T X1 Y1 T XYt XY
X Yo T XYt XY T XY
X Yo T XY T XYLt XY
X Yo T XY T XYt XY

(22)

Comparison of this with the Einstein-Mayer formulas (44l (41a), after performing a
substitution x; = ix,, y, = iy,, shows that the left-vectors correspond to the semi-
vectors of the second kind. The overbar on the @zdwould then have to be doubled.

As we remarked already, the coefficients of the ®rif22) define special
numerically-invariant tensors. One arrives at thessors that correspond to the tensors

c;; of Einstein and Mayef) from them by linear combination. Analogously, one

obtains the general third-rank tensors from the invagiézi).
However, the application of Theorem 4 to (22) alsmitglthe conclusion that the
four rows:

(%, X, %, X) (23)
X, X% X, —%) (23)
(=%, =%, %5, =%) (23)
(=%, %, =%, %) (23)

% A. Einstein and W. Mayer, “Die Diracgleichungen fiem8vektoren,” Amsterdamer Berichte, 1933.
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simultaneously define a system of left-vectors. Tdmesthing is therefore also true for

all linear combinations of the rows. If one then adidémes the second row to the first
one then one obtains the special left-vector:

(X5 +iXg, X —iXg, X, —iX,, X +iX;)
= (X HiXg, =1 (% +iX;), X, =X, 1 (X, —iX;)) (24)
=(%,%.,2,,7,),

whose components fulfill the relations:
z, =-liz, z; =liz,.

Therefore, two components suffice for the descriptbhis left-vector. Analogously,
by addingi times the second row to the first one, one obt&iadetft-vector:

(X5 =Xy, 1 (% =Xy ), % +iXg, =1 (X, +iX;)) = (Ug,Ug,Us,Uy), (25)

with the relations:

(U

. =iy, Us

L =i,

The independent components of the left-vectors (24) abjl thus constitute two 2-
component quantities — so-callgpinors — that are determined by the left-vector )23
and, in turn, determine it.

(Received on 8 September 1934)



