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 The principle of virtual displacements is as old as mechanics itself. In his Elementaren 

Mechanik (1), Hamel made note of the fact that Aristotle’s “Golden Rule” included the basic idea 

of the principle of virtual displacements. Johann Bernoulli (2) was the first to express the principle 

in the year 1717, and Lagrange (3) made an extended form of it the foundation for all mechanics 

in 1788. 

 One might think that it would be pointless to write about a principle that old in this day and 

age. However, experience has shown that despite the century-long application of the principle and 

its ever-increasing significance, and despite the classical shaping of the concept by Lagrange, 

ambiguities have emerged that cause confusion, and especially in the application of the principle 

to the problems of the theory of elasticity. 

 In the Eighteen-Eighties (1883 to 1886), a sharp rift appeared between Mohr and Müller-

Breslau. At the start of the century, the discussion was revived in connection with a paper by 

Weingarten in the year 1901 (4), and took on a form that was, in some cases, quite vehement and 

unfriendly. At the time, Weingarten, Weyrauch, Hertwig, Müller-Breslau, Koetter, Mohr, 

Mehrtens, Föppl, and others tossed it around between themselves in various journals for about a 

year. In a paper in May 1914, Domke (5) presented the crux of that discussion clearly and 

consistently on the basis of variational principles. By contrast, some other questions in that paper 

remained open. Föppl (6) had also considered all of the points of contention in detail in Drang und 

Zwang. Trefftz (7) presented the majority of the problems that were connected with those questions 

in the Handbuch der Physik thoroughly and rigorously. 

 
 (1) Hamel, Elementare Mechanik, pp. 471. Leipzig and Berlin 1912. 

 (2) Varignon, Nouvelle mécanique, 1725. – Cf., Hamel, loc. cit.  

 (3) Lagrange, Mécanique analytique, 1788.  

 (4) Weingarten, “Rezension der Vorlesungen über technische Mechanik von A. Föppl,” Archiv der Mathematik 

und Physik (1) 3 (1901), pp. 342. 

 (5) Domke, “Über Variationsprinzipien in der Elastizitätslehre nebst Anwendungen auf die technische Statik,” 

Zeit. Math. u. Phys. (1915), pp. 174, et seq. 

 (6) Föppl, Drang und Zwang, Munich and Berlin, 1920, v. I, pp. 58, et seq. 

 (7) Trefftz, Handbuch der Physik, Bd. VI., Chap. 2.  
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 In recent years, a new discussion of the principle of virtual displacements has developed. In 

May 1936, Pöschl published a paper (8) with the goal of giving a clear interpretation of the minimal 

principles of the theory of elasticity. In it, Pöschl came to the conclusion that the principle led to 

fundamentally-different conclusions “according to whether one was dealing with ordinary 

problems of elastic equilibrium or problems of buckling.” Domke proved the untenability of that 

conclusion in his response to that (9). Marguerre proved that from a completely-different 

viewpoint in an article that is complete in its own way (10). That paper was especially valuable for 

its application of the principle to finite deformations. 

 How strongly that the old principle has been once more addressed recently is shown by the fact 

that the agenda of this year’s meeting of the Society for Applied Mathematics and Mechanics in 

Göttingen included a talk by C. Weber, Dresden, on those questions. Kammüller has also recently 

taken up a particular aspect of that topic (11). That prompted me to do some basic research (12) that 

led to a brief discussion between Kammüller and myself (13). That discussion convinced me of 

the necessity of an attempt to present a summary that is as brief as possible of the applications of 

the principle to the problems in elasticity that are most fundamental. Of especial interest to me was 

the represented the various forms in which the principle is applied and their reciprocal relationships 

and differences, and to show the limits within which each of those forms can be applied. 

Unfortunately, I must forgo including the effects of heat, since they would greatly expand the 

scope of the paper. The assumptions that I am stating from are briefly the following ones: 

 We consider an elastic body under the action of external forces that are applied to its surface. 

In order to simplify the equations, we shall ignore body forces, say the weight of the body. 

Assuming that all of the body is found in a state of rest, i.e., that is it supported in the required 

way. If we then calculate the reactions to the external forces at the supports and clamping points 

then they will be found to be in equilibrium with each other. Thus, when we speak of the 

occurrence of equilibrium or its perturbation in what follows, we will always mean only the 

equilibrium of internal forces (i.e., stresses) with the external forces. 

 If the material that the body is made of is given, i.e., if the stresses ,  are known as functions 

of the elongations  and shears , and if the magnitudes, directions, and points of application of the 

external forces are further given then each point of the body will generally (i.e., when we exclude 

the case of so-called branching points of the elastic equilibrium) assume a uniquely-determined 

equilibrium configuration. The problem is then to determine it. 

 We assume that the loads are applied gradually, so they increase continuously from zero to 

their final value. We further assume that this process proceeds so slowly that the acceleration terms 

can be neglected in the expression for energy. For simplicity, we shall likewise avoid considering 

all effects of heat and temperature and assume complete elasticity for the material that the body is 

 
 (8) Pöschl, “Über die Minimalprinzipe der Elastizitätstheorie,” Bauing. v. 17, issue 17/18 (1936), pp. 160, et seq. 

 (9) Domke, “Zum Aufsatz ‘Über die Minimalprinzipe der Elastizitätstheorie’ von Th. Pöschl,” Bauing. 17 (1936), 

pp. 160, et seq. 

 (10) Marguerre, “Über die Behandlung von Stabilitatätsproblemen mit Hilfe der energetischen Methode,” Zeit. 

ang. Math. Mech., 18 (1938), pp. 57, et seq. 

 (11) Kammüller, “Das Prinzip der virtuellen Verschiebungen. Eine grundsätzliche Betrachtung,” B. u. E. 37 (1938), 

pp. 363, et seq. 

 (12) Schleusner, “Zum Prinzip der virtuellen Verschiebungen,” B. u. E. 27 (1938), pp. 252, et seq. 

 (13) Letter from Kammüller, response by Schleusner, rebuttal by Kammüller. B. u. E. 37 (1938), pp. 271, et seq. 
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composed of, so we shall ignore internal and external frictional losses, although some of our 

equations will also remain valid when we consider such situations. 

 We shall further appeal to St. Venant’s principle, namely, that the external forces are treated 

as isolated forces, so the integration over the surface tractions is replaced by the summation over 

the isolated forces (14). 

 

1. – The derivation of the main principle. 

 

 We consider a point-mass that is acted on by forces. We denote the forces (which can also 

include moments) as vectors by Fraktur symbols, and their magnitudes by the corresponding 

Antiqua symbols. Since the point-mass is coupled with other ones into a body, the applied forces 

can be either a force P that acts on the body from the outside or internal forces Qm inside the body. 

The condition for the equilibrium of the forces at the point in question is: 

 

(1)  P + m

m

Q  = 0 . 

 

 Geometrically, that says that the starting point and endpoint of the polygonal path defined by 

the sequence of successive vectors P, Q1, Q2, … 

must coincide (cf., Fig. 1). Eq. (1) will remain 

correct when it is scalar-multiplied by a 

completely-arbitrary displacement vector  s 

that we only assume to be infinitely small, as will 

be justified later. However, since it not 

functionally coupled, but arbitrary, we shall also 

not denote it by the differentiation symbol d, but 

with the variational symbol . We then get: 
 

(2)  P   s + m

m

Q   s = 0 . 

 Eq. (2) admits two interpretations according to how one combines the three factors in the scalar 

product Qm   s = Qm   s  cos (Qm ,  s). First of all, one can write that as [Qm  cos (Qm ,  s)]  

 s. Thus interpreted, eq. (2) expresses only the trivial fact that when a closed polygonal path is 

projected onto an arbitrary direction, the projections of the initial and final points will also coincide 

(Fig. 2). Secondly, one can write Qm   s = Qm  [ s  cos (Qm ,  s)] . If we then introduce a 

special notation for the projection of the displacement vector  s onto the direction of the force Q: 

 s  cos (Q,  s) = q then eq. (2) will assume the following form: 

 

(3)  P  p + m m

m

Q q  = 0 . 

 
 (14) Cf., the article by Tedone-Timpe in the Enzyklopädie der Mathematischen Wissenschaften, IV, 25, no. 15.  

Starting point 

Endpoint 
Figure 1. 

P Q1 

Q2 



Schleusner – Virtual displacements and the variational principles of elasticity. 4 

 

 
 If the point-mass in question, along with the forces P, Q1, Q2, … that are applied to it, are 

displaced by the vector  s then the point of application of the force Qm will be displaced through 

the line segment qm in the direction of the force (Fig. 3). That is: Under that displacement, the 

force Qm will do work Qm  qm , just as the force P will do work P  p. (In the example that is 

illustrated in Fig. 3, the forces P and Q1 do positive work, since they experience a displacement 

in the same sense as the force direction. The force Q2 would do negative work since it experiences 

a displacement in the opposite sense to the direction of the force.) One can also interpret eq. (2) in 

the form (3) then as follows: Under a displacement of the point in question through the arbitrary 

vector  s, the sum of the works done in that way by all of the forces that act on the point must 

vanish. Since the point does not, in fact, experience that displacement, because the displacement 

is only an imaginary one and arbitrary, to boot, it will be called a virtual displacement. Likewise, 

the works done P  p and Qm  qm are not the works that are actually being done, but only 

imaginary works, and they will therefore be referred to by the classical expression that Lagrange 

coined (3) of virtual works. 

 

Projection of the 

Starting point 

Projection of 

the endpoint 

Figure 2. 

P Q1 

Q2 

Figure 3. 
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 Eq. (3) was derived as a necessary consequence of the equilibrium condition (1). If one 

demands that (3) must be true for not just any, but for each arbitrary displacement d s then eq. (1) 

will also follow conversely as a necessary consequence of eq. (3). We can the summarize the result 

as follows: 

 

 A necessary and sufficient condition for a point to be found in equilibrium under the action of 

applied forces is that the virtual work that is done by the applied forces must vanish for each 

arbitrary virtual displacement. 

 

 Lagrange (3) referred to that theorem as the principle of virtual displacements. However, one 

observes that this principle is nothing but an arbitrary interpretation (and as we saw, not the only 

one possible!) of an arbitrary mathematical operation on the equilibrium condition (1) that has no 

actual physical meaning. 

 From now on, we shall consider a volume element dV = dv dy dz of a body that is found to be 

elastic equilibrium under the action of external forces. Normal stresses  and shear stresses  will 

act upon the volume element as a consequence of the deformation. If we choose the volume 

element to be small enough then the stresses x, …, z will determine the internal forces Qm in eq. 

(3). As a virtual displacement, we choose an associated system of elongations x, y, z and 

shears x, y, z. Those virtual elongations and shears are then in addition to the actual 

elongations x, y, z and x, y, z that are produced by the deformation of the body. We assume the 

compatibility of the x, …, z, i.e., they can distort the volume element, but not break it apart. 

 
 

 The force y  dx dz then acts on the left and right faces of the volume element in Fig. 4. When 

we think of the left face as fixed, the path-length of the displacement will be zero on the left and 

equal to y  dy on the right, so the virtual work done will be: 

 

(y  dx dz)  (y  dy) = y y  dV. 

 

dy 

dz 

y  dy 

y  dx dy y  dx dy 

 

z 

y 

x Figure 4. 
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By contrast, the sum of the virtual works will vanish under a total displacement of the volume 

element in the y direction since the contributions that come from the left and right faces will cancel 

each other. 

 
 x  dx dz acts on the left and right faces as a shearing force in Fig. 5. If we imagine that the 

lower left edge is fixed then the displacement path-length of the shearing force will be zero on the 

left face and 1
2

x  dy when the total shear is x . The virtual work is then: 

 

 ( )1
2

( )x xdxdz dy     = 1
2

x x  dV . 

 

The shearing force x  dx dy acts on the upper and lower boundary faces. Their displacement path-

length is zero below and 1
2

x  dz above, so the virtual work done will be: 

 

( )1
2

( )x xdxdy dz     = 1
2

x x  dV . 

 

 Since the various components of the virtual work will cancel each other under a total rotation 

of the volume element, the total virtual work that is done by the shearing stress x will be: 

 

x x  dV . 

 

 Corresponding statements are true for the other four stress components. That work is done by 

the deformation of a body under the action of external forces. Its share of the work is then regarded 

dy 

d
z 

x  dx dy 

 

z 

y 

x 
Figure 5. 
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 
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z 
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 
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as positive. By contrast, that deformation work will be done against the resistance of the internal 

forces. Its share of the work must then be given a negative sign. Eq. (3) will then go to: 

 

(4)   P p – dV  (x x + y y + z z + x x + y y + z z) = 0 

 

in our case. In that way, from our assumption, we can have P  0 only for volume elements on the 

surface of the body. 

 An eq. (4) is true for every volume element in the body. If we would like that all of those 

equations should be able to exist simultaneously then we must merely take care that virtual 

displacements of the individual volume elements, which are mutually-independent, by their nature, 

should not have any breakdown in the connectivity of the body as a consequence. In order for that 

to be true, it is first necessary that the ,  must be infinitely small. Secondly, they must be 

continuous functions of the position coordinates that satisfy the compatibility equations, and 

thirdly, that they agree must with the support conditions on the body. Other than that, they are 

arbitrary. The corresponding statement for the dp that they are determined by the virtual 

deformations of those volume elements on which the external forces P act will then follow 

automatically. 

 Under the assumptions that were made, we can integrate eq. (4) over the entire body. If we 

multiply by – 1 then we will finally get: 

 

(5)   ( )x x y y z z x x y y z z n n

n

dV P p            + + + + + −   = 0 . 

 

 That is the principle of virtual displacements for elastic bodies in its most general form, but it 

is also valid when the material in the body is not completely elastic, as well as for arbitrary laws 

of elasticity, and for finite deformations of the body. As we said, in that way, x, …, z are 

displacements and shears that are infinitely small, continuously-dependent upon the position 

coordinates, and satisfy the compatibility and support conditions, but can otherwise be chosen 

arbitrarily. 

 In the special case of complete elasticity for the material in the body, the work done by the 

internal forces under the deformation that actually occurs will be: 

 

(6)   Ai = 

,

0

( )x x y y z z x x y y z zdV d d d d d d

 

           + + + + +   . 

 

 Therefore, the first term in eq. (5) will be the variation of the deformation work with respect 

to the displacement quantities v Ai in this case. Likewise, the second term is the variation of the 

sum n nn
P p  with respect to the displacement quantities pn that appear in it, so it can be written 

as ( )v n nn
P p  . We shall then introduce a special notation for the expression n nn

P p . That 

quantity is not, say, the work that is done by external forces Pn by the deformation that actually 

takes place, because the forces Pn increase from zero to their final value Pn during the deformation. 
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Rather, 
n nn

P p  is the work that the forces Pn would have done under the deformation if they 

had acted with their final value Pn during the entire displacement pn from the outset. I have 

therefore chosen the terminology final-value work done by external forces for that quantity (15): 

 

(7)      Aea = n n

n

P p . 

 

 As opposed to that, the work that is actually done by external forces under the deformation is: 

 

(8)      Aa = 
0

nP

n n

n

P dp  . 

Finally, the virtual work done by external forces under the arbitrary virtual displacements x, …, 

z, pn [cf., eq. (5)] is: 

 

(9)      Ava = n n

n

P p  = v Aea . 

 

 We shall correspondingly refer to the quantity: 

 

(10)   Avi = ( )x x y y z z x x y y z zdV            + + + + +  = v Ai 

 

as the final-value work done by internal forces (15). The work actually done by internal forces 

under the deformation is given by the quantity Ai in eq. (6). For complete elasticity and in the 

absence of heat effects of any sort, from the energy principle, we must always have: 

 

(11)      Ai = Aa . 

 

Finally, from eq. (5), the virtual work done by internal forces under the arbitrary virtual 

displacements x, …, z is: 

 

(12)   Avi = ( )x x y y z z x x y y z zdV            + + + + +  = v Ai . 

 

 One then notes that, in particular, only the quantities (5) and (8) represent actual physical works 

done. By contrast, the quantities (7), (9), (10), (12) are only quantities for calculation that one can 

interpret as imaginary works due to the fact that they have the dimensions of kg  cm. 

 
 (15) Engesser [Zeit. d. Architekten- u. Ingenieur-Vereins zu Hannover, 35 (1889), pp. 733, et seq.] and Domke 

[loc. cit., footnote (5)] referred to the quantities (7) and (10) as “virtual works” with no restricting qualifiers. That 

terminology cannot be justified, because since the time of Lagrange, the concept of virtual work has been established 

in the sense of eqs. (9) and (12). It is only for a special system of virtual displacements (that we shall have more to 

say about) that (9) and (12) will formally look like (7) and (10). 
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 On the basis of the latter discussion, we can give the principle of virtual displacement [eq. (5)] 

the following form in the case of complete elasticity: 

 

(13) v (Ai – Aea) = 0 . 

 

 The index v means that each of the quantities in the parentheses is varied with respect to the 

displacement quantities that appear in it, so Ai is varied with respect to the  and , while Aea is 

varied with respect to the pn . Moreover, eq. (13) is nothing but a mathematically-derived 

prescription for calculation. It will also be true in that form when the deformations x, …, z have 

finite magnitudes in the equilibrium configuration, and it will be true for an arbitrary law of 

elasticity. 

 

2. – The interpretation of the main principle as a condition  

for the minimum of potential energy. 

 

 In eq. (13), the expression in parentheses is the potential energy of the total system, because if 

we denote the deformation work per unit volume by 
iA : 

 

(1)  
iA  = 

,

0

( )x x y y z z x x y y z zd d d d d d

 

           + + + + +  

 

then the expression under the integral sign will be a complete differential for completely-elastic 

bodies, and it will follow that: 

 

+ i

x

A






 = x , + i

y

A






 = y , + i

z

A






 = z , 

(2) 

+ i

x

A






 = x , + i

y

A






 = y , + i

z

A






 = z . 

 

The plus sign says that an increase in 
iA  means that the capacity of the internal forces to do work 

has increased. Ai is then the total potential energy of the internal forces: 

 

(3)  Ai = i . 

 

 Likewise, (1.7) implies that: 

− 
( )ea

n

A

p

 −


 = Pn . 
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The minus sign says that an increase in Aea (corresponding to work that has already been done by 

the external forces Pn) means that the capacity of the external forces to do further work has 

decreased. Hence, − Aea is the potential energy of external forces: 

 

(5)  − Aea = a . 

 

 It follows from (3) and (5) that the potential energy of the total system is: 

 

(6)   = i + a = Ai – Aea , 

 

and eq. 1.(13) can now be written: 

 

(7)  v  = 0 . 

 

 The vanishing of the first variation of an expression means that this expression will be an 

extremum. We can then express the principle of virtual displacements for completely-elastic 

bodies in the following form: The state of deformation that occurs in the equilibrium configuration 

is the state in which the potential energy of the total elastic system is a minimum. 

 That formulation is also nothing but an interpretation of a purely-mathematical operation. That 

formulation has the advantages of brevity and memorability. It has the further advantage that it 

subordinates the appearance of elastic equilibrium to a general physical axiom that is always being 

confirmed by experiments, namely, the axiom of the minimum of potential energy. However, that 

interpretation (and not with the computational Ansatz!) implies a complication in our case that has 

already led to much confusion. 

 If one speaks of a minimum of the potential energy then that means: In the desired equilibrium 

state, the potential energy of the total system is smaller than it is in any other (neighboring) state 

of displacement. If we consider a pendulum that swings about its equilibrium state, or any other 

oscillating system, then it will, in fact, assume a comparison state in which the potential energy is 

greater than it is in the equilibrium configuration during its oscillation. The comparison state is 

then a physically-possible state in its own right. In our case, we have expressly excluded oscillatory 

processes in order to obtain no acceleration terms that would depend upon time in the energy 

theorem. Indeed, the loading shall result so gradually that the acceleration components can be 

neglected. Every transitional state up to a state of complete loading will be itself an equilibrium 

state, namely, the one that corresponds to the degree of loading that has been achieved at that time. 

Since only a single state of displacement is possible for a given material (i.e., a given law of 

elasticity) and a given loading Pn, namely, just the desired equilibrium state x, …, z, pn, out 

comparison states are not physically possible under the conditions on the system. In order to be 

able to speak of comparison states at all, we must remove any of the geometric and physical 

conditions that were imposed on the problem. In our case, we have already made that decision: 

Among all of the displacement states that are compatible with the geometric conditions on the 

system, we seek the ones that correspond to equilibrium between internal and external forces with 
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the law of elasticity that is valid. We thus remove the condition of equilibrium for the comparison 

state (16) and characterize it by saying that it is not, in fact, a physically-possible state. 

 Mathematically, that is not the most serious complication. We must simply replace the , , 

p in eq. (1.5) with any quantities that lie between the aforementioned limits. However, for the 

interpretation in the sense of eq. (2.7) [(1.13), resp.], the complication arises that we must define 

the concept of potential energy, so the capacity to do work, for a state of our system that is not 

even physically possible at all. That definition cannot be a physical one, accordingly. It is a 

mathematical one, and indeed an arbitrary one, with the single restriction that it must lead to the 

mathematical operations in eq. (1.5, 13) [(2.7), resp.] when one establishes the minimum. In the 

present case, the solution is obvious: We define the potential energy formally using eq. (6) when 

we make the comparison state: 

 

(8)   

,

0

( )

( ).

i x x y y z z x x x x x x

ea n n n

n

A dV d d d d d d

A P p p

   

           



+ +
 = + + + + +


  = +


 


 

 

 Since we have assumed the reversibility of the deformation process, the path of integration can 

always be continued beyond the equilibrium state x, …, z. Since the law of elasticity, which 

determines the ,  as functions of the , , is also assumed to be valid for the comparison state, 

that definition will then be unambiguous, and when it is substituted in eq. (1.13), it will again lead 

back to eq. (1.5) in the neighborhood of the equilibrium state. The difference consists of the fact 

that according to our definition, the x, …, z in the comparison states no longer correspond to their 

values x, …, z in the equilibrium state, but to the quantities that correspond to the displacements 

x + x, …, z + z under the law of elasticity. However, the difference is a second-order 

infinitesimal, while eq. (1.5) represents a relation between first-order quantities. 

 If one chooses the arbitrary displacements in such a way that the points of application of the 

external forces are not displaced, so pn = 0 for all n, then one will get the equation v Ai = 0 from 

(1.5), instead of (2.7), so a law of minimum deformation work, instead of a law of minimum 

potential energy. 

 

3. – The second variational principle. 

 

 Under the restricting assumption that the displacements , , p that actually occur in the 

equilibrium state are infinitely small, one can introduce them as a system of virtual displacements 

in eq. (1.5), since they certainly satisfy the remaining necessary assumptions for the , , p 

 
 (16) Kammüller erred when he said [loc. cit., footnote (13), pp. 272, last paragraph] that with the Ansatz x x , 

“x is not compatible with the connectivity of the body.” Precisely the opposite is true! We require that the x, … 

must be compatible with the connectivity of the body. However, the stresses that correspond to the varied state of 

deformation x + x, …, z + z, pn + pn under the law of elasticity that is valid can no longer be in equilibrium with 

the external forces. 
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(viz., compatibility and the fulfillment of the support conditions). When one recalls (1.10) and 

(2.7), (1.5) will then become: 

 

(1)   
( ) 0,

0.

x x y y z z x x y y z z n n

n

ei ea

dV P p

A A

             + + + + + − =

 − =


 

 

 That equation (17) is true only in the case of equilibrium, since eq. (1.5), from which it was 

obtained, is the mathematical formulation of the equilibrium condition. On the other hand, (1.5) is 

also true for an arbitrary, neighboring system of external forces Pn + Pn and the equilibrium 

system of stresses x + x, …, z + z that corresponds to them: 

 

[( ) ( ) ( )

( ) ( ) ( ) ] ( ) 0.

x x x y y y z z z

x x x y y y z x z n n n

n

dV

P P p

        

          

+ + + +

+ + + + + + − + =




 

 

 We can replace the , , p in that with an arbitrary system of compatible displacements, so 

in particular the system x, …, z that belongs to the stresses and forces x, …, z, pn, as long as we 

assume that those quantities are infinitely small: 

 

[( ) ( ) ( )

( ) ( ) ( ) ] ( ) 0.

x x x y y y z z z

x x x y y y z x z n n n

n

dV

P P p

        

         

+ + + +

+ + + + + + − + =




 

 

 If one subtracts eq. (1) from that equation then it will follow that: 

 

(2)   ( )x x y y z z x x y y z x n n

n

dV p P            + + + + + −   = 0 . 

 

 With that, we have arrived at the second variational principle of the theory of elasticity, in 

which it is not the displacements that are varied, but the forces (stresses). One can then contrast 

the principle of virtual forces with the principle of virtual displacements. In that equation, the , 

, P are stresses and forces that are infinitely small, continuously dependent upon the position 

coordinates, and found to be in equilibrium with each other, but can be otherwise chosen 

arbitrarily. 

 The second variational principle is valid in the form of eq. (2) for an arbitrary law of elasticity, 

and indeed even when the material that the body is composed of is not completely elastic. By 

 
 (17) That is the aforementioned special system of virtual displacements under which the virtual work will be 

formally equal to the final work, and which led Engesser and Domke [loc. cit., footnote (15)] to employ the concept 

of virtual work in a way that was not generally consistent with Lagrange’s classical definition. 
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contrast, it is not valid for finite deformations, in general, since we must assume that the x, …, z, 

pn are infinitesimal in its derivation. 

 Here, we already see a crucial difference between the second principle and the first one, which 

shows that despite the formal similarity between eqs. (3.2) and (1.5), they are essentially different. 

 In the special case of complete elasticity, the quantity in parentheses in eq. (2) will be a 

complete differential. In that case, we introduce a new quantity Bi by the following definition: 

 

(3)   Bi = ( )x x y y z z x x y y z xdV            + + + + +  . 

 

Bi has the dimension of work and will be referred to as the extension work done by internal forces, 

following Engesser (18). We correspondingly definition the extension work done by external forces 

by: 

(4)      Ba = 
0

nP

n n

n

p dP  . 

 

 One obtains from (1.6), (1.10), and (3.3., as well as (1.8), (1.7), and (3.4), by partial integration: 

 

(5)      Ai = Aei – Bi , 

(6)      Aa = Aea – Ba , 

 

in full generality, and even for finite deformations. From (1.11) and (3.1), that will imply that Bi = 

Ba . However, that equation is true only when (3.1) is true, i.e., it is true for only infinitely-small 

deformations, in general (18). If one introduces (3) into (2) then one will get the second variational 

principle in the form: 

 

(7)      k (Bi − Aea) = 0  

 

in the case of complete elasticity and for an arbitrary law of elasticity. 

 The index k in that means that each of the quantities in parentheses is varied with respect to 

the forces (stresses, resp.) that appear in it, so the extension work with respect to the ,  and the 

final work with respect to the external forces Pn ; eq. (7) corresponds to eq. (1.13) formally. 

Nonetheless, the meaning of the two equations is completely different, which would follow from 

their derivation. (1.13) was the condition for the quantity (Ai – Aea) to be a minimum. By contrast, 

(3.7) is the condition for the quantity (Bi − Aea) to be a maximum. One convinces oneself of that 

most simply when one derives (3.2) directly by the complete variation of Aei and Aea using (1.5). 

From (3.1), the complete variations of Aei and Aea will then cancel each other out when one imposes 

the condition that only equilibrium systems of forces should be considered. That is because (Aei − 

Aea) is constantly equal to zero then, and as a result, the variation of that expression will also 

 
 (18) Engesser, [loc. cit., footnote (13), pp. pp. 743] still did not distinguish between the extension work done by the 

internal and external forces, since he restricted his considerations to infinitely-small deformations, and both quantities 

will be equal to each other in that case. Cf., also Domke [loc. cit., footnote (5), pp. 177]. 
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vanish. One then gets the result that when (− Bi + Aea) is varied with respect to the forces (stresses), 

it must be a minimum, so (Bi − Aea) must be a maximum. 

 Furthermore, the expression (Bi − Aea) is by no means equal to the potential energy in the total 

system. Therefore, the second variational principle, like the first one, cannot be subordinate to a 

general law of nature that is confirmed by experiment. It is nothing but a mathematical conversion 

of the first principle, which was valid only under severely-restricting conditions, to boot, namely, 

the assumption that the deformations of the body were infinitely small. Above all, it completely 

absurd to speak of a “minimum of potential energy” with the second principle (which is applied 

much more often than the first one, in practice), since on the one hand, the expression to be varied 

is not the potential energy, and on the other, it is not its minimum that is sought, but its maximum. 

 One then sees that despite the formal analogy between eqs. (3.2) and (1.5) [(3.7) and (1.13), 

resp.], there is no analogy at all between the domain of validity and the interpretation of those 

equations, and one will also see the reason why (19). In particular, it is expressed by the fact that 

the second principle admits no transition to eq. (2.7) or an equation that is analogous to it that can 

be interpreted physically. However, that is further expressed by the fact that one cannot derive the 

second principle directly from physical foundations in a way that would correspond to section 1. 

It is a rule of computation that cannot be interpreted physically. 

 Nothing in that is altered by the fact that in the most-frequently-occurring case in practice, one 

will have Bi – Ai = 1
2

 Aea by the validity of Hooke’s law. One will indeed make no computational 

error then when one replaces the extension work in (3.7) with the deformation work, and in so 

doing, make the analogy to eq. (1.13) complete. However, one would violate the spirit of that 

equation if one referred to the expression thus-obtained as “potential energy.” Above all, it would 

be simply false if one stated that one then seeks the minimum of that “potential energy” with eq. 

(7). That is because (7) determines the maximum of the expression in parentheses in all 

circumstances, regardless of whether Hooke’s law is true or not. The fact that this mix-up also 

leads to no error in calculation is merely due to the fact that the necessary condition for the 

occurrence of a maximum is mathematically the same as it is for the occurrence of a minimum, 

namely, the vanishing of the first variation. The two cases are distinguished by only the sufficient 

conditions that pertain to them, namely, the sign of the second variation, and the practical 

calculator probably never cares to test it, and with good reason, since that question has practically 

no definitive meaning, in general. 

 However, at this point [as before, loc. cit. (20)], I would like to stress that it seems pedagogically 

dubious and inconsistent with the foundations of a science in this era to express theorems whose 

assumptions and limitations one knows precisely in a form that indeed produces correct results in 

its domain of validity that is most important today, but will lead to false results in a different part 

of its domain of validity and will not reproduce the actual content of the theorem in question in 

each case. 

 It still remains for us to examine the type of comparison state under which eq. (7) will single 

out the unique state that actually occurs. Even in that case, the comparison states are not physically 

possible under the conditions on the system, on the grounds that were cited in Section 2. 

 
 (19) Kammüller, [loc. cit., footnote (13), pp. 271, rebuttal, no. 4].  

 (20) Schleusner [loc. cit., footnote (12), pp. 254 and loc. cit. footnote (13), pp. 271].  
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Corresponding to eq. (2.8), we define the extension work and the final work for the comparison 

state by: 

(8)   

,

0

( )

( ) .

i x x y y z z x x x x x x

ea n n n

n

B dV d d d d d d

B p p p

   

           



+ +
 = + + + + +


  = +


 


 

 

 In that, we assume that the law of elasticity that determines ,  as functions of ,  is also valid 

for the comparison states. Moreover, in the derivation of the second variational principle, we 

assumed that the varied stresses and external forces were also in equilibrium with each other. We 

must necessarily abandon the condition of compatibility, i.e., the consistency with the geometric 

conditions on the system, for the comparison states. That is, we must imagine that the connectivity 

of the body is lost, or the support conditions are abandoned at one or more places along one or 

more surfaces. The result is then: 

 

 In the application of the second variational principle, among all systems of forces and stresses 

in equilibrium, we seek that one of them that corresponds to a compatible state of displacement 

(i.e., consistent with the connectivity of the body and the support conditions) under the law of 

elasticity that is valid. 

 

 Indeed, the second variational principle has a narrower domain of validity than the first one. 

However, its domain of validity generally overlaps with that of the first. That is because with the 

condition of equilibrium of the forces that is required by the second principle, it is generally easier 

to mathematically formulate it in a complicated system than with the condition of the compatibility 

of displacements that is required by the first principle. An especially-important realm of 

applications of the second principle is the calculation of statically-indeterminate quantities. One 

can calculate them with either a direct application of the second principle in the form of eq. (3.2) 

or (3.7) or with the help of Castigliano’s theorem that can be derived most simply from the second 

principle. 

 The deformation state depends on external forces, among which we also include the support 

forces, as remarked before. We can then represent the extension work done by the internal forces 

Bi as a function of the external forces: Bi = Bi (Pn) . By varying that function with respect to the 

forces, we will get: 

(9)      k Bi = i
n

n n

B
P

P






  . 

 

On the other hand, it follows from (3.2) with (3.3): 

 

(10)     k Bi = n n

n

p P . 

 

If we substitute (10) in (9) then it will follow that: 
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(11)      i

n

B

P




 = pn . 

 

 We now choose the variations of the forces in such a way that the given external loads are not 

varied. One will then have Pn = 0 for those quantities in (9) and (10). By contrast, we imagine 

that the connectivity of the body is broken at the points or surfaces of application of statically-

indeterminate forces and that those statically-indeterminate forces (which we will denote by Xn in 

the usual way) act as external forces. Eq. (11) will then go to: 

 

(12)      i

n

B

X




 = xn , 

 

when xn means the displacement of the force Xn in the direction of the force. In that way, from the 

assumptions of the second principle, the functional dependency of the extension work Bi on the 

statically-indeterminate forces Xn must be understood in the following way: If the connectivity of 

the body is lost in the way that was described above then one chooses the Xn to be an arbitrary 

system of forces that is in equilibrium with the given external forces Pn . One then determines the 

system of stresses in equilibrium x, …, z that is associated with the extended system of external 

forces Pn, Xn . Bi will then be determined uniquely as a function of the Xn by eq. (3.2) from the law 

of elasticity, and with that, the sense of eq. (12) is also established uniquely. The condition of 

compatibility is that all of the cuts made on the body close, so all of the displacement path-lengths 

xn vanish. (12) will then be: 

 

(13)       i

n

B

X




 = 0   (n = 1, 2, …). 

 

 One can once more interpret the system in equilibrium (130 as the condition for the occurrence 

of an extremum, and indeed one can show that one is dealing with a minimum. One can then 

express the content of eq. (13), namely, Casitgliano’s theorem, as: 

 

 The statically-indeterminate quantities do, in fact, assume the value that would make the 

extension work done by internal forces be a minimum. 

 

 In that way, Bi is regarded as a function of the Xn in the sense that was described above. 

Castigliano’s theorem, like the variational principle from which it was derived, is true in that form 

only for infinitely-small deformations and only under the assumption of complete elasticity of the 

material that the body is composed of, but for an arbitrary law of elasticity. 
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4. – A third form for the variational principle. The work equation. 

 

 We have referred to the fact that the principle of virtual displacements, in its original form that 

was treated in sections 1 and 2 (viz., varying the displacements), is true for not only arbitrary laws 

of elasticity, but also for finite deformations x, …, z, pn . Now, in practical statics, very often (but 

not by any means always) the following assumptions are fulfilled, at least approximately: 

 

 1. The displacement quantities x, …, z, pn are regarded as vanishingly-small in comparison 

to the dimensions of the body. 

 

 2. The elongations and shears ,  are proportional to the stresses ,  (Hooke’s law of 

elasticity). 

 

If those two assumptions are fulfilled then it is not necessarily true, but true in the majority of cases 

that occur in practice, that: 

 

 3. The displacement path-lengths pn of the external forces Pn are proportional to the 

magnitudes of those forces. 

 

One can easily verify that the third assumption does not necessarily follow from the first two in 

some examples. For instance, it is not true for a straight rod with a center joint that is fixed, but 

articulated, at the ends and loaded transversely to the axis of the rod at the center joint. It is also 

not true for an axially-compressed straight rod after it exceeds the limits of buckling (21). 

 If all three assumptions are fulfilled simultaneously then (and only then, in general) one can 

formally substitute finite quantities for the , , p in (1.5), in which one imagines that a common 

infinitely-small proportionality factor has been dropped from the equations. If one replaces the 

notations , , p with the notations , , p in (1.5), in that spirit, then one will get the equation: 

 

(1)  ( )x x y y z z x x y y z z n n

n

dV P p           + + + + + −   = 0 . 

 

 That is formally the same equation as (3.1). However, the meaning of the quantities is 

essentially different in the two equations. The , , P means the stresses and forces that are actually 

present in the equilibrium state in both equations. However, the , , p in (3.1) mean the ones that 

correspond to the , , P under the law of elasticity that is valid, so the displacement quantities 

that actually occur. By contrast, in (4.1), they mean an arbitrary, but compatible, system of 

 
 (21) It was perhaps this fact that led Pöschl to the strange conclusion that one required a special form for the 

variational principle for the buckling problem [cf., footnote (8)]. Of course, for the buckling problem, it is not the 

special, much-used forms of the variational theorems that we derived conceptually that are valid, but probably the 

generally-valid first form of the principle (1.5) [(1.13) or (2.7), resp.], from which all other forms are first derived by 

introducing restricting special assumptions. If one restricts oneself to infinitely-small deflections then the second 

variational principle (3.2) [(3.7), resp.] will still be true for the buckling problem. 
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displacements that does not need to have any relationship to the actual stresses and forces x, …, 

z, Pn . 

 If the first of the three aforementioned conditions is fulfilled then the second variational 

principle will also be applicable. If the other two conditions are fulfilled, in addition, then one can 

formally replace the , , P in (3.2) with finite quantities, when one imagines that a common, 

infinitely-small proportionality factor has been dropped from the equation. If one replaces the 

notations , , P in (3.2) with , , P, accordingly, then that equation will formally assume the 

same form as (4.1). However, the meaning of those quantities in this case is, in turn, completely 

different from before. That is because the , , p now mean the displacement quantities that actually 

occur in the equilibrium state, while the , , P mean an arbitrary system of stresses and forces in 

equilibrium that does not need to have any relationship to the displacements x, …, z, pn that 

actually occur. 

 This third form of the principle of virtual displacements is the form that is applied most often 

in practical statics (22). Müller-Breslau introduced the term “work equation” for the elastic system 

being investigated for it (23). That third form is, as its derivation shows, not an autonomous 

variational principle, but according to whether one couples the actual stresses and forces with 

imaginary displacements or one couples the actual displacements with imaginary stresses and 

forces, it will be a modified form of the first or second variational principle, respectively, with a 

strongly-restricted domain of validity (e.g., infinitely-small deformations, Hooke’s law, 

proportionality of forces and displacements, and even for the external forces). One can then express 

the double meaning to the content of eq. (1) as: 

 

 We either seek, among all compatible systems of displacements, the unique one that 

corresponds to system of stresses and forces that actually occurs under Hooke’s law or we seek, 

among all systems of forces stresses in equilibrium, the unique one that corresponds to the system 

of displacements that actually occurs in the equilibrium state under Hooke’s law. 

 

 The usefulness of this simple combination of the two variational principles, in a slightly-

modified form, into a single equation is beyond question. However, one must not forget that its 

domain of applicability is restricted considerably in comparison to the domain of validity of the 

two variational principles and that the combination is a purely-formal one. In that form, the 

principle is not even capable of being given a unified, intuitive interpretation. It says things that 

are intrinsically quite different according to whether one applies it in the spirit of the first principle 

(actual stresses and forces, imaginary displacements) or in the spirit of the second principle 

(actually displacements, imaginary stresses and forces). 

 The work equation can be employed in practice only when one is dealing with the 

determination of a finite number of unknown quantities (say, the displacements of isolated points 

or the magnitude of isolated statically-indeterminate support forces and clamping moments). The 

work equation will become unusable in practice as soon as one deals with the determination of 

 
 (22) Kammüller also started from this form of the principle. [Loc. cit., footnote (11), pp. 363, eq. (1)]  

 (23) Müller-Breslau, Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen, Leipzig 

1904, pp. 23, eq. (6). 
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unknown functions (say, of bending lines or deformations of two or three-dimensional structures), 

or as soon as one of the aforementioned assumptions is no longer fulfilled. One would then have 

to revert to the variational Ansätze (3.7) [(1.13), resp.].  

 

 

5. – The concept of virtual work and its relationship to the variational principles  

of the theory of elasticity. 

 

 We proposed to the combine two variational principles, namely, the principle of virtual 

displacements and the principle of virtual forces, under the generic term of “principle of virtual 

works” (24). I have already remarked (25) that this proposal does not seem felicitous, and I would 

like to base that claim rigorously here. 

 Obviously, that proposal was inspired by the third form of the principle, namely, the work 

equation (4.1), in which the fundamental difference between the two variational principles seemed 

formally blurred. In order to avoid any error in our consideration of the principles in the form of 

the work equation, we must always revert to the explicit form of the first (second, resp.) variational 

principle then, according to which sense of the work equation we are applying at the time. 

 The first objection to the aforementioned proposal is based on the different domains of validity 

of the two principles and the work equation. The first principle is true in general. The second one 

is true only for infinitely-small deformations, i.e., only for a subset of the domain of validity of the 

first principle. The two principles are not on an equal par with each other, but the second one is 

subordinate to the first, so it is only a consequence of the first one that is connected with a special 

assumption. Finally, the work equation is true for only a subset of the domain of the second 

principle, so it is subordinate to both principles. It is therefore impossible to build a new generic 

theoretical concept that subsumes both principles and is based on the domain of validity of the 

work equation, since it would not encompass either of the two principles completely. However, 

the practical desire to have a simplest-possible union of the principles into a form that would be 

sufficient for the vast majority of cases that arise in daily requirements suggests that eq. (4.1), with 

the simple name of “work equation” that Müller-Breslau gave to it, should suffice. 

 If the first objection was directed against the basis for the proposed new generic concept then 

the second one is directed against its terminology. Since the time of Lagrange, one understands 

virtual work to mean the work that is done by the forces or stresses that are actually present in the 

equilibrium states of a system (so in our case, the quantities x, …, z, Pn) under a displacement of 

the equilibrium configuration that is thought to be small (so for the present problem [cf., (1.9) and 

(1.12)], the quantities ( )x x x xdV    + +  and n nm
P p ). In that representation, we have 

learned of a whole series of other quantities that likewise have the dimension of work and are 

likewise-imaginary quantities, so imaginary works: 

 

 
 (24) Kammüller [loc. cit., footnote (13), pp. 271, letter, section 5] “Instead of the principle of virtual displacements, 

one would be more correct in saying the principle of virtual works, which would then subsume the variation with 

respect to deformations, as well as with respect to forces, from the theoretical standpoint.” Cf., also, loc. cit., pp. 272, 

rebuttal, last sentence.   

 (25) Schleusner [loc. cit., footnote (13), pp. 271, reply, last paragraph]. 
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( ), , ( ), , ( )x x n n x x n n x xm m
dV P p dV p P dV d       + + +

      . 

 

If one would also like to refer to those quantities as “virtual works” (26) then one would succeed 

in only blurring a concept that has been uniquely and clearly delineated for 150 years, and causing 

confusion in so doing. 

 The equations of the first principle, viz., (1.5) and (1.13), and likewise the work equation (4.1), 

when one applies it in the spirit of the first principle (i.e., actual stresses and forces, imaginary 

displacements), are then equations between virtual works done on the system being investigated. 

However, they are the equations of the second principle, viz., (3.2) and (3.7), or those of the work 

equation (4.1), when one applies it in the spirit of the second principle (i.e., actual displacements, 

imaginary stresses and forces)! 

 The quantities ( )x xdV   +  and 
n nm

p P  that appear in the second principle [cf., (3.2)] 

indeed have the dimension of work and are imaginary quantities. However, they are not imaginary 

works done by the stresses and forces that are actually present in the equilibrium state. 

 Naturally, one can also interpret the quantities in the second principle as virtual works if one 

would even like to do that. Since the deformations x, …, z that actually occur in the second 

principle must be assumed to be infinitely small, one can regard them as a special system of 

displacements (as we did in the derivation of the work equation). With that assumption, the 

quantities ( )x xdV   + , 
n nm

p P  are also virtual works in the classical sense of the 

concept. However, they are not virtual works done by the system of forces x, …, z, Pn that are 

actually present in equilibrium, but a completely-different system of forces x, …, z, Pn . That 

system of forces is not only different from the one that is actually present in equilibrium, it is not 

even close to it. That is because even when one assumes that the deformations x, …, z, pn are 

infinitely small, (as is known) the associated stresses and forces x, …, z, Pn can definitely have 

finite magnitudes. (One needs only to imagine a one-axis stress state that corresponds to the 

relation  =   E under Hooke’s law and the appreciable magnitude of E in the units of 

measurement that one uses.) By contrast, the stresses and forces x, …, z, Pn must be assumed 

to be infinitely small. If one would then like to already interpret the quantities in the second 

principle as virtual works then they will not, in any event, be the virtual works that are done by the 

forces that are actually present in the equilibrium state of the system in question, but a system of 

forces that is completely different from it, even in terms of orders of magnitude. Even when one 

completes the transition from the second principle to the work equation (4.1), nothing will change 

in that. Properly speaking, one must indeed imagine that all of the stresses and forces are multiplied 

by a common infinitely-small proportionality factor when one applies the work equation in the 

sense of the second principle. The wording of the arguments up to now will then be preserved. 

However, if one imagines that the proportionality factor has been dropped then the imaginary 

 
 (26) Kammüller, loc. cit., footnote (13), pp. 272, last sentence.  
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stresses and forces (which are now formally finite in size) will likewise be by no means close to 

the actual system of forces (27). 

 If one would then like to interpret the second principle as the “principle of virtual work” in the 

classical sense then one would have to apply it, not to the forces that are actually present in 

equilibrium, but to any arbitrary system of forces in equilibrium that is not even close to it, which 

would lose the character of a variation of the forces that are actually present under that 

interpretation. 

 Whereas one then obtains equations between the virtual works in the system being examined 

from the first principle, the second principle will yield equations between the virtual works in the 

virtual replacement system that are basically different from the actual system and merely selected 

in such a way that that the mathematical operations produce the desired results for the actual 

system. 

 It seems to me that there is nothing to be gained in theoretical clarity by constructing a new 

theoretical concept on such a foundation (which is the only one on which one can justify the 

concept of virtual work for the quantities in the second principle). 

 Moreover, we suspect that this interpretation of eq. (3.2) also contradicts its interpretation as 

an extremal condition. We have already mentioned the fact that with eq. (3.2), and therefore the 

work equation (4.1), as well, when we apply them in the spirit of the second principle (actual 

displacements, imaginary stresses and forces), we can no longer speak of a minimum of the 

potential energy, because first of all it is a maximum, and secondly it is not the potential energy 

that we seek. However, if we interpret eq. (3.2) as an equation between virtual works then we will 

no longer be dealing with either a minimum or a maximum, nor will we be dealing with either the 

potential energy or any other quantity. That is because the interpretation of eq. (3.2) as an extremal 

condition is expressed mathematically by (3.7). However, the Bi and Aea in that equation are not 

the extension work (final work, resp.) of the arbitrary system of forces x, …, z, Pn, but the 

system of forces that is actually present in the equilibrium state x, …, z, Pn, the systems of forces 

that is immediately-close to it x + x, …, z + z, Pn + Pn . 

 There are only three possibilities then: Firstly, one might refer eq. (3.2), and correspondingly 

eq. (4.1), in the one case, to an interpretation as the actual system being examined, and in the other, 

to a virtual replacement system that no longer has anything to do with the actual system, by an 

application in the spirit of the second principle. I cannot imagine that this would contribute to the 

clarity of the theoretical concept. Second, one gives weight to the intuitive and memorable 

interpretation as an extremal condition. One would probably need to have compelling reasons for 

introducing a new theoretical concept that also seems untenable (according to the first objection). 

Thirdly, one abandons the artificial interpretation of the quantities in the second principle as virtual 

works, as one desires, and in that way also abandons the combination of both principles into a 

general term for a principle of virtual works. The result is then: 

 There is only one principle that subsumes all phenomena: It is the principle of virtual 

displacements, which can be interpreted as the condition of the minimum of potential energy in 

 
 (27) If one has a simple statically-indeterminate system then one might care to choose the system of virtual forces 

to be the system P1 = 0, P2 = 0, …, X = − 1, and the system of stresses that is in equilibrium with external forces. It is 

obvious that this system is not at all close to the system of forces P1 = P1, P2 = P2, …, X = X that is actually present in 

equilibrium. 
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the case of complete elasticity. A second principle can be derived from it under severely-restricting 

assumptions: It is the principle of virtual works, which can be interpreted as the condition for the 

maximum of the expression (Bi – Aea) in the case of complete elasticity. Both principles can be 

formally combined into single equation by repeated gross restrictions on the domain of validity, 

namely, the work equation, which does not admit a consistent interpretation, but can be interpreted 

in different way according to whether it is applied in the spirit of the first or second principle. For 

practical applications, the work equation is still the most important equation of all of them. 

However, whoever would like to appeal to the theoretical clarity of variational principles could 

find no object more unsuitable as a foundation than the work equation. It must always revert to the 

basic form of the two principles, and eventually it always reverts to the first principle, namely, the 

principle of virtual displacements. 

 

_____________ 

 

 

 

 


