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On the kinematics and dynamics of the nonlinear cdmuum
theory of dislocations

By H.-A. BAHR and H.-G. SCHOPF

Translated by D. H. Delphenich

Abstract. — The fundamental kinematical equation of the notibdislocations will be derived and
explained within the context of continuum theory. Infation about the forces that act upon dislocations
will be obtained with the help of a variational principle

Introduction

An essential problem in the current state of therthebdislocations is the extension
of the static continuum theory][ by way of kinematics and dynamics. Along with
general arguments that extend the differential-geaen@tethods that are known in
statics to four-dimensional processed, [one is, above all, interested in physical
consequences that are implied by the introduction ofacise field for the dislocations.
Here, one should cite the papers of KOSEVICH, which started by considering
isolated dislocations in the linear theory and adapting résellts to the continuum
description. In addition to the investigations of MURA), [we would especially like to
stress the work of FOX5]. In it, among other things, a nonlinear kinematics wa
developed that referred to the continuum from the outéée consider the result, which
we call the “fundamental kinematical equation,” to betegimportant. Therefore, we
shall first derive it briefly. In it, we shall plaggeat value on an intuitive understanding
of the equation by first treating the velocity fielfitbe dislocations by analogy with the
velocity field of a material medium, and then derivitg fundamental equation as a
generalization of KRONER's formulation of statics tmay of the demand that the
BURGERS vector should be conserved. In addition,rdia bf reasoning and physical
understanding will require the use of a time derivathat was introduced for the first
time by OLDROYD p]. Finally, we can confirm the validity of the kinetical equation
by additional arguments.

In the second part of the present paper, we will enterthe dynamics of moving
dislocations in continuum theory by presenting and discgsa suitable variational
principle. We first present it for conventional cowtiim mechanics and then generalize
it to the case that is of interest here. In thaywthe fundamental kinematical equation
will be considered to be an auxiliary condition. Thealgof this study is to obtain
information about the structure of the forces thatugmn dislocations. We will then
obtain the PEACH-KOEHLER force for the nonlinear tonum theory, but extended by
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a term that can be interpreted as a generalizatidreaine that is found in KOSEVICH’s
linear theory B] for isolated dislocations.
It should be mentioned that we shall adopt KRONER'stimot41] throughout.

1. — Kinematics.

1.1. — Basic kinematic notions— We denote the LAGRANGE coordinates of a
matter-point byX - such that the course of motion will be described by:

X< =3 (X" 1), 1)

if X are the coordinates in the laboratory system. Withoss of generality, they can be
assumed to be rectangular-Cartesian ones. In the cabes that follow, it is reasonable
to assume that partial derivatives are covariant ones.

According to the usual axioms of continuum mechanics,ddfermation gradients

will exist:
ox*-
A= 2
k an ( )

as well as higher derivatives, to the extent thaecessary. The velocity field of matter
will then be given by:

k

Vk _ ox

= Ex (3

L= const.

Corresponding formulas will be true when a seconck tgp matter comes under

consideration and has the LAGRANGE coordina$. It is preferable to formulate
those equations four-dimensionally by additionally considering:

x'=Xx'= X* =t, (4)
and writing:
X« oxH
w=2X W= 5
ox* ox* ®)

in which the three-dimensional velocities fo= k have now been extended by:

V=0t =1
We then get the relative velocity:
aX | _ XX _ ax* ax“
at .. oX*  ax* axX*
_oX"(axt ox
G (afc‘ ax“j

)'(2
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—axK(vk—vk). (6)

T oxK

It will prove to be extremely useful to employ natlypthe substantial time-derivative of
a tensor:
ez D ypie v, ™)
dt ot
but also a time derivative (convected time derivative} thas first introduced by
OLDROYD [6]. It has a very intuitive meaning, namely, the terapahange in the
tensor components that would be established by an obskatenoves with the matter:

0 K- Koo A Lee 0 Ko

R =7 9

ST = ACAT TS (9)
:ET'E T VP TS VR = TR V-

The tensor character of OLDROYD’s derivative is clear the basis of (9). One
generally arrives at a deeper understanding of it in adonensional consideration (see
[7] on that).

As an important example of an application, we mentiat the so-called
“deformation velocity tensor” is the OLDROYD derina of the deformation tensor:

0
Vi, K :ﬁ &k » (10)

&= 5 (A —bw), (11)
with

0
by = AA&B@\B = E bk = 0.

The substantial (OLDROYD, resp.) time derivative treates to the velocity field will
be denoted byl / dt (3/dt, resp.) in what follows.

1.2. Consequence of the constancy of the BURGERS vecterlt is known that a
basic idea of the continuum theory of dislocatim® extend the lattice vectors and their

reciprocal to fields of triadsAf,, and A", in order to adapt the crystalline structure to

the continuum description in a rudimentary way.d{des in parentheses serve to
enumerate the various vectors.) The main problekmmmatics consists of making some
statement about the time evolution of those vectdiisat will not be determined by just
the velocityV of matter. Among other things, it will depend rsfegcantly upon the
motion of the dislocations, moreover.
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In order to be able to work with the notations tha&trevprovided in the previous
section, the following intuitive argument shall be puttio

We consider a system of moving dislocation lines tlminot intersect each other.
They might be specified by, say, being given the coordinatés X? of the points at
which they go through some surface at the tirsety . Furthermore, a curve parameter
X?® might be defined on it. With that:

X< = XK (XL, X2, X3 9) 1)

will be a parametric representation of such a dislosdine at timet when X*, X? are
constant. The transition to the continuum descniptial come about when one allows
X*, X? to take on a continuum of values. THe& might be chosen in such a way that
(1) is soluble in a certain neighborhood of them. They @een be interpreted as
LAGRANGE coordinates of the dislocations, and thdt i fact, exhibit the connection

to the considerations above. In particuldr,can now be regarded as the velocity of the
dislocations. In general, it will also contain a gmment in the directions tangent to the
dislocation lines. Naturally, that component has no ighysneaning, so it can be
defined arbitrarily. However, in what follows, we dhadfrain from making such a
definition in order to not perturb the symmetry in our folas. In addition, let it be
pointed out that in the context of continuum theorg, @an imagine a superposition of
systems of dislocations of the kind being treatedhhbsé varying velocities].

The time evolution of the distribution of dislocasoshall be determined by its
motion alone; i.e., their creation and annihilation wiit be considered explicitly in this
paper. In that way, we can begin with the further ictemation of the important
convention that the BURGERS vects? is constant in time:

d
—p¥=0 2
o 2)

for observers that move with the distribution of adsitions. In that condition, it is
essential thab® should be defined originally in an ideal crystalline corigoar state in
which the lattice vectors suffer no temporal variatidn order to evaluate (2), we note
the following known formulas:

b® = - fax AP, 3)
b =~ o, “df " (4)

= [a"¥df, = [a"®“dfy,
with which the dislocation density:
alm(k) = (k) = _% ‘glmn an(k), (5)

m, 1]
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a"® == g a ®

will be a measure of the number of dislocation lifes pierce the surface elemeifit™
and have the glide direction k).
With the use of (3) and:
id)&*1 =dxX V", (6)
dt ’

after a simple conversion, one will see that thiwhg expression must be a gradient:

0 -
A T2V AT, =T (7)

An application of the operatorel™ 9, , along with (5), will imply that:

Imn 0 (k) — 0 n(k) — [n(K) v Al
- __q =—ag"=-20_(@"™Yv"). 8
at Im at p( ) ( )

That equation can be regarded as the continuity equatiothdodislocation density,
which has its roots in the demand that the BURGERS weatist be constant. One will
also get (8) when one calculates (2) by means of (4pbserves that:

d
—df,==-v" df +v™ df 9
dt n n Uim m “Y'n ( )

in so doing. One can then likewise conclude (7) from (8)hay process. If one now
substitutes (7) in:

0 0

EAS:): EAETI:) + (k)p VP + A;) Vl?rT (10)
:%Agnkuzvp (9 (A9 V) |
then it will result that:
%A‘rp = 2P - ) AV, + ¥ (11)

[O® = A© P +TH]

From (7), the OLDROYD derivative oA with respect to7® must also be a gradient

[cf., (10)]:
d )

LAY =G AT 2V AT (A1),

=9+ AN =W 0. (12)
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In analogy with the CLEBSCH transformation thatkisown in hydrodynamics, that
relation allows one to show that in the represemtabf the covariant vector by the
MONGE potential:

AV=c® +ERGHO (13)

one will have the relations:

FO-FOKY)  gW=gOxRY,
(14)

@EFW):O gG(k):o.
dt ’ dt

Namely, one integrates the equation:

A=W, (AY= ADAD),

which is identical to (12), and gets:

0
oX

AW = AW (1) + 9njwdt.

(14) follows directly from:

AR (t,) = 0,C' (X" + F9(X%)a,, G¥( X
and

t
C(k):C'(k>+jwdt.

to

1.2 Fundamental kinematical equation — Our goal of determining the time
evolution of the lattice vectors will be attained whee define the gradien®® . ,
which have been undetermined up to now, in a suitable Wiayhat end, we first write
(1.2.11) as:

OAY JOAY | L 0K o, g
xX* |, 2557 Trn F P, (1)
in which we have recalled (1.1.8), (1.1.9), (1.1.8he left-hand side obviously describes
the temporal change in the (reciprocal) latticetmecfrom the standpoint of the observer
that moves with the matter. Now, according to Fsjxit is very physically reasonable to
require that this gliding velocity should be nomezeonly when a relative velocity
(0XR/0X*) exists between the dislocations and the mattdre Simplest Ansatz is to

set:
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o® y=0. ()
The fundamental kinematical equation will then read:

0

gAS:) =2 -v") AD,, (3)
0 o N
aAﬁP +20P AV +(AXV) =0, (4)

in an equivalent formulation, or when expressed in teomthe MONGE potentials
(12.13), (12.14):
Ho=z9cw,pwdgw_g (5)
dt dt

There is a certain heuristic merit to briefly purguielationships for an isolated
dislocation. In that case, one can wrig [

AP =39 -p%ng (3
(6)

Q_ x'Q
= o - [ dfy pro X = X7) i X7)
F

as a generalization of the linear theory. In tRamjeans an arbitrary surface with normal
Nk that is based upon the dislocation logps a coordinate in the direction of , A =
\ det(A, A J,), anddf; is the surface elementssgc dX’® dX’ €. Left-multiplying by

("M /) 8, and employing the properties of tBdéunction and STOKES's theorem will
yield:

£KLM . M (K
— 9, A =a™M®

= g SX=XD), ™

If one now calculates the temporal change in (6)neyely adding the lateral surfaceRo
that arises from the motion of the dislocation lologn that will yield:

N
ox*

, OX™M 4y O(X2= X9
= <J5dx LE i D < g

A
6XM O’L(k) —_ 26XM K)

X ot T

= &ukL A
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That is our formula (1), but without the gradie®® « . We can arrive at it, in addition,
when we let the surface vary in time, as well, but Wauld be physically absurd.
2. — A path to dynamics

2.1. Balance of energy— It is known from the theory of dislocations thae t
compatible total deformatiog can be decomposed into two incompatible pieces:

ik = ‘giil +‘gikpl 1)
namely, the elastic part:
Ex =3 (A — 0w (2)
and the plastic one:
&0 =4 (g — hw) - 3)
in which:
gik = A" AY Qs - (4)

In order to arrive at the balance of energy, we pattulhe existence of a potential
energyU (£5;,) with the known property:

ou
o"® = P (5)
AB
in which:
Eo= AuAey, 0= ARRLON (6)
If we left-multiply the dynamical equation:
av
,OE = Olk,k (7)
by vi then we will get:
p%\/zlz_(a.ikvi)k — UikVi,k
=—0*(%£ii'+%a£'j 8)
dU ik D pl
=—p— -0 —&.
Pt ot “

In this, (1.1.10), (1), (5) were used in succession. &henbe of energy will then read:

d 2 d i ik D |
—V2 2+ p—U = (V) - —¢&". 9
PV 12+ p gV = (0 W) o G (9)

The sum of the kinetic and elastic energy of a matealume element will then change
as a result of the work done on the outer surface amdldstic energy dissipation.
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Obviously, the local time derivative that is employedti® linear theory in this
dissipative term will be simply replaced with the OLORD derivative in the nonlinear
theory.

It follows from (3), (4), (1.1.12), (1.3.3) that:

K 0 ik ?
—og*—gl =—¢7' Al — AP 10
or 5 Ao A .OtAk (10)

_ ik () AS) (P _ Py _ ik (D (9
==20" Qe A A (VP = V) —07G 9 AV D

The appearance of such dissipation must be physicatlyaed from our model, since
the dislocations do not move relative to the mattére consider that to be one more
reason to seb® , = 0.

The term:

kP = - 20%g

() A(S)
(r)(s)Ai (11)

k. Pl

that appears in (10) is obviously the nonlinear generalizatiathe PEACH-KOEHLER
force to the continuum theory; i.e., the force tisaexerted on the dislocations. The
dissipative term:

k5 (vP = V) (12)

can now be interpreted as fO||0Wk§'K'\7p Is the power that the matter transfers to the

dislocations, and as a restk’“ v” will be the power that the dislocations transfer to

matter. Dissipation will then take places when thegter transfers more power to the
dislocations than the opposite process.

2.2 Heuristic considerations— According to (2.1.12), energetic considerations will
produce the force that acts upon the dislocations only agéom that is perpendicular to
the relative velocity of matter and dislocations. uMally, little can be said about such a
term in the context of a purely-phenomenological thediowever, the use of variational
principles has proved to be a heuristic tool in electroahyos, for example, for gaining
information about the forces that appef}. [ In principle, one reduces the known
equations to a variational problem in order to arrive at t&ms by suitable variation of
the initially-unvaried quantities. That process makesasensofar as the LAGRANGE
function includes the coupling between the interactingesyst

KOSEVICH [3] applied already such a method to the isolated distocat the linear
case and adapted to the results to the continuum tasehat follows, we would like to
give a variational principle that refers directly tloe nonlinear continuum theory of
dislocations. KOSEVICH's procedurg]|will then prove to be unsuitable.

Since a suitable variational process for pure elastcamechis largely unknown, we
shall first give such a thing in order to then generatiZzer our own purposes. In it, we
will treat the NEWTONian approximation to the generddtigistic method that
SCHOPF published9]. It can be characterized by saying that the LAGRANGE
coordinates can be employed as field variables. Inélpiit adapts the techniques that
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one encounters in point mechanics to continuum mechaiicthe same time, we shall
give the necessary relationships in the context AMIBNian mechanics.

2.3 Variational techniques in continuum mechanics= In the particle description,
the position of th&™ point-mass¢ (K, t) will be displaced through a segmelit (K, t)
according to: _ _ _

X (K1) - X (K t)+X (K,1). D)

The corresponding variation in the field descriptiodascribed analogously:
X X1 - X XK )+ K K1) . (2)

Here, the point-mass (XK t) that belongs to the initial positiox will be displaced
through a segmenk (x t). Inthat, it is desirable for the transition fr¢f) to (2) that
the field descriptiorX can be regarded as a functlorx‘blby means of (11.1).

One gets the variation of the velocity field(X:, t) with the help of (2) when one
reverts to its definition (1.1.3). After the variatiomth (2), one will have:

V K+ O ) + (K + o t):%(xk+5xk(x'), (3)

for the velocity field/' + 3V (due to the shift in dependency to the argunientdx). If
one neglects higher powersaﬁi(k in this then it will follow that:

5\/:%5xi+v'6| OX — oX 9 V. 4)

One likewise gets the variation @ by solving:

i [— a
Al (X + X 1) + OA = X
in the form:
OA, =A, 0, 0X —o%0, A . (5)

The variation of the mass densiny(X, t) is implied by the conservation of mass that one
must require:

3(pdn) =0

Jp=-0(3Xp) (6)

and gives:

and corresponds to the continuity equation for actuplatiement®x‘ =v' ot.
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2.4 Application to conventional continuum mechanics— In the conventional
theory of elasticity, we start from the LAGRANGIAdensity:

L=1puV-pU (&) (1)

and employ (2.1.5), in which we must observe that in thie ave will haves?, = 0.
Therefore, we must employ:
EnB = %(Ai/-\AkB O ~ 5AB) : (2)

The variation can be performed immediately with bedp of (2.3.4), (2.3.5), and
(2.3.6). After performing the partial integrations, oné get:

n a j
&= {0,00-2(p)-0, (Y V).
It will then follows with the continuity equatioif mass that:

p%vi =9, 0" (3)

2.5 Variational principle for the continuum theory of moving dislocations.— In
the presence of dislocations, one must substihgectastic deformation in (2.4.1) and
write (2.1.2) as:

‘SZIB = %Ai/-\NB(Jik - Ai(i) A(<k)5(i)(k)) . (1)

The quantities A" are regarded as new field quantities. Due to ftmelamental

kinematical equation (1.3.4), they cannot be vafiiedly. We consider the latter to be an
auxiliary condition with the help of LAGRANGE muyitiers A With that, our

(k)"
generalized LAGRANGE density will now read:

; e 0 <
L= %pvi v —pU(gA'B)—/](';) {a A&k) +2 Aft,)l] v+ ( Ak) \ll)k} (2)
The variation ofp, v ', A, results as it did ir2.3. Furthermore, the quantitieﬁkk) and

A" are varied independently. The additional velocitynponentss' that appear will be
treated by analogy with (2.3.4) by varying the aisition position according to:

57 =9 5% +70 0% 3%, V. 3)
at | |
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The use of (2.3.4), (2.3.5), (2.3.6), and (3) yields thieviahg expressions for the

. . k ~ .
coefficients ofdx‘, %, A, AN, :

d i r s i
5Xk{_pavk +0,,=0,(0" AV AY) Oy + 0" A A Oy

0 j i
- a(/](lk)JAEk)) _ai (VIAEk),I Aék)) _Azk),l Aisk)ak V} ) (4)
- 0 - .

298 {Za()l(lk) (:(,I)<])+2()l(lk) A V) m+ 2y £ \ink} (5)

i r a Y
OAY {Ukpﬁ( L +a)|?k) +2( A5V, +)|ék),l\}<} : 6)

0 -
o { 2 A0+ 20,7+ (A0V), . ™
With:

A(IT(),k =pAw (8)

and the continuity equation for mass, one can lpaittérm in (4) that is independent of

Ajy into the form:

d 0
- (pa/](k)A(kk) +,0/](k) a A‘(li()j (9)

In advance of a later discussion, we require jhixtdr L must be stationary, such that all

coefficients (4), (5), (6), (7) will vanish. In geular, (6) will imply a determining

equation for)l('j() . Taking the divergence will imply that:

d i r
pd_/](k) = (UI A )),I k) - (10)
With that and (8), (4) will go to:
EN d L yogt A A g 1 0 11
X _pavk+0-k,l+ T A ROy —P (k)a Ak - (11)

In a similar way, after a somewhat-lengthy caldalat(5) can be brought into the form:

- 0 i A AS
5% {Mmg A9 - 20" A A, 5“)(3)}. (12)
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Without going into the details, we mention that wé arrive at the same result when
we consider the fundamental kinematical equation in ¢ {1.3.5) and thus put the
LAGRANGIAN density into the form:

L=1pvV-pU (&5)-pAnH®. (13)

In that way, the A¥that are included insf; (1) can be expressed in terms of the
MONGE potentials according to (1.2.13) and (1.2.14). Inreshtto the previous
procedure, one must then vary the poten@af8 independently, while the potentidis®,
GY¥ are regarded as functions of only ti&® in the variation of those LAGRANGE
coordinates of the dislocations, which will once masuit in (12).

2.6 Discussion of the results= From (2.5.12), the variation of the position of the
dislocation will then yield the expression:

— 0 i r S
ke=pAw &A(kk) _Zala-(r)(s)A(i ) (I,)k] : (1)

The second term is, as expected, the nonlinear genémlizd the PEACH-KOEHLER
force for the continuum theory, which is now extende@myydditional term:

0 o
,0/](k) & A(kk) = ZIOA(k)'Atk, 1 (VI -V ) . (2)

As we likewise expect, it is orthogonal 8-V . Furthermore, it proves to be the
generalization of the force term that extends the ®EAOEHLER force for moving
isolated dislocations in KOSEVICH'’s theory. Nameiy, the linear approximation,
(2.5.10) will simplify to:

0

d
ZA=-p2y,. 3
P k== PocV (3)

In so doing, we have considered:
AP=50-p0  p2=0,

in particular. If we integrate (3) to:
/]k =— W

and consider that* > \* then the term that KOSEVICH gave will follow. Sineve

required the stationarity of the action integkalwill vanish here precisely as it did for
KOSEVICH. We will then obtain the fundamental dynamhiequations from (2.5.11) in
the form (2.4.3).
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From 2.1, the vanishing ok has the consequence that no dissipation will appear.
That is understandable insofar as a variational priaagahn yield only a conservative
theory. In reality, one must naturally go over tooa-gonservative theory in which the
k« does not necessarily need to vanish and in which no fuidhess will be considered
either (e.g., the resistance of the crystal lattacéhe motion of dislocations). However,
we are convinced that our procedure will yield the corstcicture forkg , since the path
that was taken here in order to consider the fundamkiniiatical equation (1.3.4) by
means of LAGRANGE multipliers is correct. It is pitds that we might want to impose

additional conditions on the\, as is the case in, e.g., hydrodynamics, in which we
cannot simply vary the density and the velocityp freely while we consider the

continuity equation to be the auxiliary conditiak0]. Work along those lines is still in
progress.
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