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 Abstract. – The fundamental kinematical equation of the notion of dislocations will be derived and 
explained within the context of continuum theory.  Information about the forces that act upon dislocations 
will be obtained with the help of a variational principle. 
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Introduction  
 

 An essential problem in the current state of the theory of dislocations is the extension 
of the static continuum theory [1] by way of kinematics and dynamics.  Along with 
general arguments that extend the differential-geometric methods that are known in 
statics to four-dimensional processes [2], one is, above all, interested in physical 
consequences that are implied by the introduction of a velocity field for the dislocations.  
Here, one should cite the papers of KOSEVICH [3], which started by considering 
isolated dislocations in the linear theory and adapting the results to the continuum 
description.  In addition to the investigations of MURA [4], we would especially like to 
stress the work of FOX [5].  In it, among other things, a nonlinear kinematics was 
developed that referred to the continuum from the outset.  We consider the result, which 
we call the “fundamental kinematical equation,” to be quite important.  Therefore, we 
shall first derive it briefly.  In it, we shall place great value on an intuitive understanding 
of the equation by first treating the velocity field of the dislocations by analogy with the 
velocity field of a material medium, and then deriving the fundamental equation as a 
generalization of KRÖNER’s formulation of statics by way of the demand that the 
BURGERS vector should be conserved.  In addition, the train of reasoning and physical 
understanding will require the use of a time derivative that was introduced for the first 
time by OLDROYD [6].  Finally, we can confirm the validity of the kinematical equation 
by additional arguments. 
 In the second part of the present paper, we will enter into the dynamics of moving 
dislocations in continuum theory by presenting and discussing a suitable variational 
principle.  We first present it for conventional continuum mechanics and then generalize 
it to the case that is of interest here.  In that way, the fundamental kinematical equation 
will be considered to be an auxiliary condition.  The goal of this study is to obtain 
information about the structure of the forces that act upon dislocations.  We will then 
obtain the PEACH-KOEHLER force for the nonlinear continuum theory, but extended by 
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a term that can be interpreted as a generalization of the one that is found in KOSEVICH’s 
linear theory [3] for isolated dislocations. 
 It should be mentioned that we shall adopt KRÖNER’s notation [1] throughout. 
 
 

1. – Kinematics. 
 

 1.1. – Basic kinematic notions. – We denote the LAGRANGE coordinates of a 
matter-point by X L such that the course of motion will be described by: 
 

xk = xk (X L , t) ,    (1) 
 
if xk are the coordinates in the laboratory system.  With no loss of generality, they can be 
assumed to be rectangular-Cartesian ones.  In the other cases that follow, it is reasonable 
to assume that partial derivatives are covariant ones. 
 According to the usual axioms of continuum mechanics, the deformation gradients 
will exist: 

k
LA  ≡ 

k

L

x

X

∂
∂

, L
kA  ≡ 

L

k

X

x

∂
∂

,     (2) 

 
as well as higher derivatives, to the extent that is necessary.  The velocity field of matter 
will then be given by: 

vk = 
const.L

k

X

x

t =

∂
∂

.    (3) 

 
 Corresponding formulas will be true when a second type of matter comes under 
consideration and has the LAGRANGE coordinates Xɶ K .  It is preferable to formulate 
those equations four-dimensionally by additionally considering: 
 

x4 = X4 = 4Xɶ  = t,    (4) 
and writing: 

vµ = 
4

kx

X

∂
∂

,  vµ
ɶ = 

4

x

X

µ∂
∂ ɶ

,   (5) 

 
in which the three-dimensional velocities for µ = k have now been extended by: 
 

v4 = 4vɶ  = 1. 
We then get the relative velocity: 

 
K

X

X

t

∂
∂

ɶ L

= 
4

KX

X

∂
∂ ɶ

= 
4

KX x

x X

µ

µ
∂ ∂
∂ ∂ ɶ

 

 = 
4 4

KX x x

x X X

µ µ

µ

 ∂ ∂ ∂− ∂ ∂ ∂ ɶ
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= ( )
K

k k

k

X
v v

x

∂ −
∂

ɶ .       (6) 

 
It will prove to be extremely useful to employ not only the substantial time-derivative of 
a tensor: 

k
l

d
T

dt
⋯

⋯
≡ ,

k k p
l l pT T v

t

∂ +
∂

⋯ ⋯

⋯ ⋯
,     (7) 

 
but also a time derivative (convected time derivative) that was first introduced by 
OLDROYD [6].  It has a very intuitive meaning, namely, the temporal change in the 
tensor components that would be established by an observer that moves with the matter: 
 

k
lT

t
⋯

⋯

d

d
= k L K

K l LA A T
t

⋯ ⋯ ⋯

⋯ ⋯ ⋯

d

d
       (9) 

 = , , ,
k k p k p p k

l l p p l l pT T v T v T v
t

∂ + + + −
∂

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯
⋯ − … 

 
The tensor character of OLDROYD’s derivative is clear on the basis of (9).  One 
generally arrives at a deeper understanding of it in a four-dimensional consideration (see 
[7] on that). 
 As an important example of an application, we mention that the so-called 
“deformation velocity tensor” is the OLDROYD derivative of the deformation tensor: 
 

v(i, k) =
t

d

d
εik ,     (10) 

 
εik = 1

2 (δik − bik),    (11) 

with 

bik ≡ A B
i k ABA A δ  ⇒

t

d

d
 bik = 0. 

 
The substantial (OLDROYD, resp.) time derivative that relates to the velocity field will 

be denoted by /d dtɶ  ( / tɶd d , resp.) in what follows. 
 
 
 1.2. Consequence of the constancy of the BURGERS vector. – It is known that a 
basic idea of the continuum theory of dislocations is to extend the lattice vectors and their 
reciprocal to fields of triads ( )

k
kA  and ( )l

lA , in order to adapt the crystalline structure to 

the continuum description in a rudimentary way. (Indices in parentheses serve to 
enumerate the various vectors.) The main problem in kinematics consists of making some 
statement about the time evolution of those vectors.  That will not be determined by just 
the velocity vk of matter.  Among other things, it will depend significantly upon the 
motion of the dislocations, moreover. 
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 In order to be able to work with the notations that were provided in the previous 
section, the following intuitive argument shall be put forth: 
 We consider a system of moving dislocation lines that do not intersect each other.  
They might be specified by, say, being given the coordinates, 1Xɶ , 2Xɶ  of the points at 
which they go through some surface at the time t = t0 .  Furthermore, a curve parameter 

3Xɶ  might be defined on it.  With that: 
 

xk = 1 2 3( , , , )kx X X X tɶ ɶ ɶ      (1) 
 

will be a parametric representation of such a dislocation line at time t when 1Xɶ , 2Xɶ  are 
constant.  The transition to the continuum description will come about when one allows 

1Xɶ , 2Xɶ  to take on a continuum of values.  The kXɶ  might be chosen in such a way that 
(1) is soluble in a certain neighborhood of them.  They can then be interpreted as 
LAGRANGE coordinates of the dislocations, and that will, in fact, exhibit the connection 
to the considerations above.  In particular, kvɶ  can now be regarded as the velocity of the 
dislocations.  In general, it will also contain a component in the directions tangent to the 
dislocation lines.  Naturally, that component has no physical meaning, so it can be 
defined arbitrarily.  However, in what follows, we shall refrain from making such a 
definition in order to not perturb the symmetry in our formulas.  In addition, let it be 
pointed out that in the context of continuum theory, we can imagine a superposition of 
systems of dislocations of the kind being treated that have varying velocities [5]. 
 The time evolution of the distribution of dislocations shall be determined by its 
motion alone; i.e., their creation and annihilation will not be considered explicitly in this 
paper.  In that way, we can begin with the further consideration of the important 
convention that the BURGERS vector b(k) is constant in time: 
 

d

dt

ɶ

b(k) = 0     (2) 

 
for observers that move with the distribution of dislocations.  In that condition, it is 
essential that b(k) should be defined originally in an ideal crystalline comparison state in 
which the lattice vectors suffer no temporal variation.  In order to evaluate (2), we note 
the following known formulas: 

b(k) = − ( )m k
mdx A∫� ,     (3) 

 

b(k) = − ( )k lm
lm dfα∫      (4) 

 

  = ( )n k
ndfα∫  = ( )N k

Ndfα∫ , 

with which the dislocation density: 
 

( )k
lmα  = ( )

[ , ]
k
m lA  = − 1

2 εlmn α n (k),   (5) 
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  α n (k) = − εlmn 
( )k

lmα  

 
will be a measure of the number of dislocation lines that pierce the surface element df lm 
and have the glide direction (− k). 
 With the use of (3) and: 

d

dt

ɶ

dxm = ,
l m

ldx vɶ ,    (6) 

 
after a simple conversion, one will see that the following expression must be a gradient: 
 

( ) ( )
[ , ]2k p k

m m pA v A
t

∂ +
∂

ɶ  = T (k)
, m .    (7) 

 
An application of the operator – ε lmn ∂l , along with (5), will imply that: 
 

– ε lmn ( )k
lmt

α∂
∂

 = ( )n k

t
α∂

∂
= − [ ( ) ]2 ( )n k p

p vα∂ ɶ .  (8) 

 
That equation can be regarded as the continuity equation for the dislocation density, 
which has its roots in the demand that the BURGERS vector must be constant.  One will 
also get (8) when one calculates (2) by means of (4) and observes that: 
 

d

dt

ɶ

dfn = − , ,
m m

n m m nv df v df+ɶ ɶ ,    (9) 

 
in so doing.  One can then likewise conclude (7) from (8) by that process.  If one now 
substitutes (7) in: 

( )k
mA

t

d

d
= ( ) ( ) ( )

, ,
k k p k p

m m p p mA A v A v
t

∂ + +
∂

   (10) 

  = ( ) ( ) ( )
[ , ] ,2 ( )k p k k p

m m p p mA v A A v
t

∂ + +
∂

 

then it will result that: 

( )k
mA

t

d

d
 = ( ) ( )

[ , ] ,2( )p p k k
m p mv v A− + Φɶ     (11) 

  [Φ(k) = ( )k p
pA v  + T (k)] . 

 
From (7), the OLDROYD derivative of ( )k

mA  with respect to pvɶ  must also be a gradient 

[cf., (10)]: 

 ( )k
mA

t

d

d
 = ( ) ( ) ( )

[ , ] ,2 ( )k p k k p
m m p p mA v A A v

t

∂ + +
∂

ɶ ɶ  

= (T (k) + ( )k p
pA vɶ ), m ≡ Ψ, m .        (12) 
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In analogy with the CLEBSCH transformation that is known in hydrodynamics, that 
relation allows one to show that in the representation of the covariant vector by the 
MONGE potential: 

( )k
mA ≡ C (k)

, m + F (k) G (k)
, m ,     (13) 

one will have the relations: 
 

F (k) = F (k) ( )Xɶ K , G (k) = G (k) ( )Xɶ K , 
(14) 

⇔  
d

dt

ɶ

F (k) = 0, 
d

dt

ɶ

G (k) = 0. 

 
Namely, one integrates the equation: 
 

( )kA
t

∂
∂ M

 = Ψ, M  ( ( )kA
M

= ( )k m
mA A

M
), 

 
which is identical to (12), and gets: 
 

( )kA
M

 = 
0

( )
0( )

t
k

t

A t dt
X

∂+ Ψ
∂ ∫ɶM M

. 

(14) follows directly from: 
 

( )
0( )kA t

M
 ≡ ( ) ( ) ( )( ) ( ) ( )k k kC X F X G X′∂ + ∂ɶ ɶ ɶK K K

M M
 

and 

C (k) = C′ (k) + 
0

t

t

dtΨ∫ . 

 
 
 1.2 Fundamental kinematical equation. – Our goal of determining the time 
evolution of the lattice vectors will be attained when we define the gradients Φ(k)

, m , 
which have been undetermined up to now, in a suitable way. To that end, we first write 
(1.2.11) as: 

( )

4

k
MA

X

∂
∂

≡ 
( )

L

k
M

X

A

t

∂
∂

= − ( )
4

2
R

k
RM

X

X
α∂

∂
+ Φ(k)

, M ,    (1) 

 
in which we have recalled (1.1.8), (1.1.9), (1.1.6).  The left-hand side obviously describes 
the temporal change in the (reciprocal) lattice vectors from the standpoint of the observer 
that moves with the matter.  Now, according to Fox [5], it is very physically reasonable to 
require that this gliding velocity should be non-zero only when a relative velocity 

4( / )RX X∂ ∂ ɶ  exists between the dislocations and the matter.  The simplest Ansatz is to 
set: 
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Φ(k)
, M = 0.      (2) 

 
The fundamental kinematical equation will then read: 
 

( )k
mA

t

d

d
 = ( )

[ , ]2( )p p k
m pv v A− ɶ ,      (3) 

 
( ) ( ) ( )

[ , ] ,2 ( )k p k k p
m m p p mA v A A v

t

∂ + +
∂

ɶ ɶ = 0,     (4) 

 
in an equivalent formulation, or when expressed in terms of the MONGE potentials 
(12.13), (12.14): 

H (k) ≡ 
d

dt
C (k) + F (k) d

dt
G (k) = 0.     (5) 

 
 There is a certain heuristic merit to briefly pursuing relationships for an isolated 
dislocation.  In that case, one can write [8]: 
 
 ( )k

KA = ( )k
Kδ − b (k) nK δ (ζ) 

(6) 

 = ( )k
Kδ − ( ) ( )Q Q

k
K

F

X X
df b

δ ′−′
∆∫  

 
as a generalization of the linear theory.  In that, F means an arbitrary surface with normal 
nK that is based upon the dislocation loop, ζ is a coordinate in the direction of nK , ∆ = 

det( )i k
R S ikA A δ , and Kdf ′  is the surface element ∆ εABC dX′ B dX′  C.  Left-multiplying by 

(ε KLM / ∆) ∂L and employing the properties of the δ-function and STOKES’s theorem will 
yield: 

 ( )
KLM

k
L KA

ε ∂
∆

 = α M (k) 

= ( ) ( )Q Q
M k X X

dX b
δ ′−′

∆∫� .    (7) 

 
If one now calculates the temporal change in (6) by merely adding the lateral surface to F 
that arises from the motion of the dislocation loop then that will yield: 
 

 
( )

4

k
KA

X

∂
∂

= ( )
4

( )M Q Q
L k

MKL

X X X
dX b

X

δε
′ ′∂ −′ ∆

∂ ∆∫ ɶ�  

 

 = εMKL ∆ 4

MX

X

∂
∂ ɶ

α L(k) = − 2
4

MX

X

∂
∂ ɶ

α 
MK

(k) . 
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That is our formula (1), but without the gradients Φ(k)
, K .  We can arrive at it, in addition, 

when we let the surface vary in time, as well, but that would be physically absurd. 
 
 

2. – A path to dynamics 
 

 2.1. Balance of energy. – It is known from the theory of dislocations that the 
compatible total deformation εik can be decomposed into two incompatible pieces: 
 

εik = el pl
ik ikε ε+      (1) 

namely, the elastic part: 
el
ikε  = 1

2 (δik – gik)    (2) 

and the plastic one: 
pl
ikε  = 1

2 (gik – bik) .    (3) 

in which: 
gik =

( ) ( )r s
i kA A δ(r)(s) .     (4) 

 
In order to arrive at the balance of energy, we postulate the existence of a potential 
energy ( )el

ABU ε  with the known property: 

σ AB =
el
AB

Uρ
ε
∂

∂
,     (5) 

in which: 
el
ABε = i k el

A B ikA A ε , σ AB = A B ik
i kA A σ .   (6) 

 
If we left-multiply the dynamical equation: 

idv

dt
ρ  = σik

, k     (7) 

by vi then we will get: 

 2
,/ 2 ( )ik

i k

d
v v

dt
ρ σ−  = σ ik vi, k  

= − σik el pl
ik ikt t

ε ε + 
 

d d

d d
    (8) 

 = − dU

dt
ρ  – σ ik pl

ikt
εd

d
. 

 
In this, (1.1.10), (1), (5) were used in succession.  The balance of energy will then read: 
 

2 / 2
d d

v U
dt dt

ρ ρ+  = (σik vi), k – σ ik pl
ikt

εd
d

.   (9) 

 
The sum of the kinetic and elastic energy of a material volume element will then change 
as a result of the work done on the outer surface and the plastic energy dissipation.  
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Obviously, the local time derivative that is employed in the linear theory in this 
dissipative term will be simply replaced with the OLDROYD derivative in the nonlinear 
theory. 
 It follows from (3), (4), (1.1.12), (1.3.3) that: 
 

– σ ik pl
ikt

εd
d

 = – σ ik δ(r)(s)
( ) ( )r s
i kA A

t

d

d
       (10) 

 = – 2σ ik δ(r)(s)
( ) ( ) ( ) ( )

[ , ] ( )( ) ,( )r s p p ik r s
i k p r s i kA A v v Aσ δ− − Φɶ . 

  
The appearance of such dissipation must be physically excluded from our model, since 
the dislocations do not move relative to the matter.  We consider that to be one more 
reason to set Φ(s)

, k = 0. 
 The term: 

. .P K
pk  = − 2 ( ) ( )

( )( ) [ , ]
ik r s

r s i k pA Aσ δ      (11) 

 
that appears in (10) is obviously the nonlinear generalization of the PEACH-KOEHLER 
force to the continuum theory; i.e., the force that is exerted on the dislocations.  The 
dissipative term: 

. .( )P K p p
pk v v− ɶ       (12) 

 
can now be interpreted as follows: . .P K p

pk vɶ  is the power that the matter transfers to the 

dislocations, and as a result − . .P K p
pk v  will be the power that the dislocations transfer to 

matter.  Dissipation will then take places when the matter transfers more power to the 
dislocations than the opposite process. 
 
 
 2.2 Heuristic considerations. – According to (2.1.12), energetic considerations will 
produce the force that acts upon the dislocations only up to a term that is perpendicular to 
the relative velocity of matter and dislocations.  Naturally, little can be said about such a 
term in the context of a purely-phenomenological theory.  However, the use of variational 
principles has proved to be a heuristic tool in electrodynamics, for example, for gaining 
information about the forces that appear [9].  In principle, one reduces the known 
equations to a variational problem in order to arrive at new terms by suitable variation of 
the initially-unvaried quantities.  That process makes sense insofar as the LAGRANGE 
function includes the coupling between the interacting systems. 
 KOSEVICH [3] applied already such a method to the isolated dislocation in the linear 
case and adapted to the results to the continuum case.  In what follows, we would like to 
give a variational principle that refers directly to the nonlinear continuum theory of 
dislocations.  KOSEVICH’s procedure [3] will then prove to be unsuitable. 
 Since a suitable variational process for pure elastomechanics is largely unknown, we 
shall first give such a thing in order to then generalize it for our own purposes.  In it, we 
will treat the NEWTONian approximation to the general-relativistic method that 
SCHÖPF published [9].  It can be characterized by saying that the LAGRANGE 
coordinates can be employed as field variables.  Intuitively, it adapts the techniques that 
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one encounters in point mechanics to continuum mechanics.  At the same time, we shall 
give the necessary relationships in the context of NEWTONian mechanics. 
 
 
 2.3 Variational techniques in continuum mechanics. – In the particle description, 
the position of the Kth point-mass xi (K, t) will be displaced through a segment δxi (K, t) 
according to: 

xi (K, t) → xi (K, t) + δxi (K, t) .      (1) 
 
The corresponding variation in the field description is described analogously: 
 

xi (XK, t) → xi (XK, t) + δxi (xk, t) .      (2) 
 
Here, the point-mass xi (XK, t) that belongs to the initial position XK will be displaced 
through a segment δxi (xk, t).  In that, it is desirable for the transition from (1) to (2) that 
the field description δxi can be regarded as a function of xk by means of (11.1). 
 One gets the variation of the velocity field vi (xk, t) with the help of (2) when one 
reverts to its definition (1.1.3).  After the variation, with (2), one will have: 
 

vi (xk + δxk, t) + δvi (xk + δxk, t) = ( ( ), )
K

k k l

X
x x x t

t
δ∂ +

∂
,  (3) 

  
for the velocity field vi + δ vi (due to the shift in dependency to the argument xi + δ xi).  If 
one neglects higher powers of δ xk in this then it will follow that: 
 

δ vi = 
t

∂
∂

δ xi + v l ∂l δ xi − δ xl ∂l v
i.    (4) 

 
One likewise gets the variation of iKA  by solving: 

 
i
KA (xk + δ xk, t) + i

KAδ = 
KX

∂
∂

(xi + δ xi) 

in the form: 
i
KAδ = l i l i

K l l KA x x Aδ δ∂ − ∂ .     (5) 

 
The variation of the mass density ρ (xk, t) is implied by the conservation of mass that one 
must require: 
 δ (ρ dτ) = 0 
and gives: 

δρ = − ∂i (δ xk ρ)       (6) 
 
and corresponds to the continuity equation for actual displacements δ xk = v i δ t. 
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 2.4 Application to conventional continuum mechanics. – In the conventional 
theory of elasticity, we start from the LAGRANGIAN density: 
 

L = 1
2 ρ vi v

i – ρ U (εAB)    (1) 

 
and employ (2.1.5), in which we must observe that in this case we will have pl

ABε  = 0.  

Therefore, we must employ: 

εAB = ( )1
2

i k
A B ik ABA A δ δ− .    (2) 

 
 The variation can be performed immediately with the help of (2.3.4), (2.3.5), and 
(2.3.6).  After performing the partial integrations, one will get: 
 

δL = δxl ( ) ( )n i
n l l i lv v v

t
σ ρ ρ∂ ∂ − − ∂ ∂ 

. 

 
It will then follows with the continuity equation for mass that: 
 

id
v

dt
ρ  = ∂i σ il.     (3) 

 
 
 2.5 Variational principle for the continuum theory of moving dislocations. – In 
the presence of dislocations, one must substitute the elastic deformation in (2.4.1) and 
write (2.1.2) as: 

el
ABε  = ( ) ( )1

( )( )2 ( )i i i k
A B ik i k i kA A A Aδ δ− .    (1) 

 
The quantities ( )i

iA  are regarded as new field quantities.  Due to the fundamental 

kinematical equation (1.3.4), they cannot be varied freely.  We consider the latter to be an 
auxiliary condition with the help of LAGRANGE multipliers ( )

k
kλ .  With that, our 

generalized LAGRANGE density will now read: 
 

L = ( ) ( ) ( )1
( ) [ , ] ,2 ( ) 2 ( )i el k k k l k l

i AB k k k l l kv v U A A v A v
t

ρ ρ ε λ ∂ − − + + ∂ 
ɶ .  (2) 

 
The variation of ρ, v i, i

AA  results as it did in 2.3.  Furthermore, the quantities ( )
k
kλ  and 

( )k
kA are varied independently.  The additional velocity components lvɶ  that appear will be 

treated by analogy with (2.3.4) by varying the dislocation position according to: 
 

lvδ ɶ = i l i l i
l lx v x x v

t
δ δ δ∂ + ∂ − ∂

∂
ɶ ɶ ɶ ɶ ɶ .    (3) 
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 The use of (2.3.4), (2.3.5), (2.3.6), and (3) yields the following expressions for the 
coefficients of δ xk, kxδ ɶ , ( )k

kAδ , ( )
k
kδλ : 

 

 δ xk ( ) ( ) ( ) ( )
, ( )( ) . ( )( )( )l il r s il r s

k k l l i k r s i l k r s

d
v A A A A

dt
ρ σ σ δ σ δ− + − ∂ +


 

− ( ) ( ) ( )
( ), ( ), ( ),( ) ( )l k i l k l k i
k l k i k l k k l i kA v A A v

t
λ λ λ∂ − ∂ − ∂ ∂ 

,  (4) 

 

( )( ) ( ) ( )
( ) [ , ] ( ) [ , ] , ( ) [ , ] ,2 2( ) 2k l k l k m l k m
k l k k l m m k l m kx A A v A v

t
δ λ λ λ∂ + + ∂ 
ɶ ɶ ɶ ,      (5) 

 

( )( ) ( ) [ ]
( )( ) ( ) ( ) ( ),'

2k ik r k k l l k
k i r k k k k ll

A A v v
t

δ σ δ λ λ λ∂ + + + ∂ 
ɶ ,       (6) 

 

( )( ) ( ) ( )
( ) [ , ] ,

2k k k l k l
k k k l l k

A A v A v
t

δλ ∂ + + ∂ 
ɶ .         (7) 

With: 

( ),
k
k kλ  ≡ ρ λ(k)       (8) 

 
and the continuity equation for mass, one can put the term in (4) that is independent of 

( )
k
kλ  into the form: 

− ( ) ( )
( ) ( )

k k
k k k k

d
A A

dt t
ρ λ ρλ + 
 

d

d
.    (9) 

 

In advance of a later discussion, we require that dt d Lτ∫  must be stationary, such that all 

coefficients (4), (5), (6), (7) will vanish.  In particular, (6) will imply a determining 
equation for ( )

k
kλ .  Taking the divergence will imply that: 

 

( )k

d

dt
ρ λ  = − ( )( )

( )( ),

il r
i r kl

Aσ δ .    (10) 

With that and (8), (4) will go to: 
 

( ) ( ) ( )
, [ , ] ( )( ) ( )2k l il r s k

k k l i l m r s k k

d
x v A A A

dt t
δ ρ σ σ δ ρ λ − + + − 

 

d

d
.  (11) 

 
In a similar way, after a somewhat-lengthy calculation, (5) can be brought into the form: 
 

( ) ( ) ( )
( ) [ , ] ( )( )2k k il r s
k k i l k r sx A A A

t
δ ρ λ σ δ − 

 
ɶ

d

d
.     (12) 
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 Without going into the details, we mention that we will arrive at the same result when 
we consider the fundamental kinematical equation in the form (1.3.5) and thus put the 
LAGRANGIAN density into the form: 
 

L = 1
2 ρ vi v

i − ρ U ( )el
ABε – ρ λ(k) H (k).    (13) 

 
In that way, the ( )k

iA that are included in el
ABε  (1) can be expressed in terms of the 

MONGE potentials according to (1.2.13) and (1.2.14).  In contrast to the previous 
procedure, one must then vary the potentials C (k) independently, while the potentials F (k), 
G(k) are regarded as functions of only the Xɶ K  in the variation of those LAGRANGE 
coordinates of the dislocations, which will once more result in (12). 
 
 
 2.6 Discussion of the results. – From (2.5.12), the variation of the position of the 
dislocation will then yield the expression: 
 

kk ≡ ρ λ(k) 
( ) ( ) ( )

( )( ) [ , ]2k il r s
k r s i l kA A A

x
σ δ−d

d
.   (1) 

 
The second term is, as expected, the nonlinear generalization of the PEACH-KOEHLER 
force for the continuum theory, which is now extended by an additional term: 
 

ρ λ(k) 
( )k
kA

x

d

d
= ( ) [ , ]2 ( )l l

k k lA v vρ λ − ɶ .    (2) 

 
As we likewise expect, it is orthogonal to l lv v− ɶ .  Furthermore, it proves to be the 
generalization of the force term that extends the PEACH-KOEHLER force for moving 
isolated dislocations in KOSEVICH’s theory.  Namely, in the linear approximation, 
(2.5.10) will simplify to: 

kt
ρ λ∂

∂
= − kv

t
ρ ∂

∂
.      (3) 

 
In so doing, we have considered: 
 

( )k
kA = ( ) ( )k k

k kδ β− , β 2 ≈ 0. 

 
in particular.  If we integrate (3) to: 

λk = − vk 
 
and consider that kvɶ ≫ vk then the term that KOSEVICH gave will follow.  Since we 
required the stationarity of the action integral, kk will vanish here precisely as it did for 
KOSEVICH.  We will then obtain the fundamental dynamical equations from (2.5.11) in 
the form (2.4.3). 
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 From 2.1, the vanishing of kk has the consequence that no dissipation will appear.  
That is understandable insofar as a variational principle can yield only a conservative 
theory.  In reality, one must naturally go over to a non-conservative theory in which the 
kk does not necessarily need to vanish and in which no further forces will be considered 
either (e.g., the resistance of the crystal lattice to the motion of dislocations). However, 
we are convinced that our procedure will yield the correct structure for kk , since the path 
that was taken here in order to consider the fundamental kinematical equation (1.3.4) by 
means of LAGRANGE multipliers is correct.  It is possible that we might want to impose 
additional conditions on the ( )k

kA , as is the case in, e.g., hydrodynamics, in which we 

cannot simply vary the density ρ and the velocity v freely while we consider the 

continuity equation to be the auxiliary condition [10].  Work along those lines is still in 
progress. 
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