“On the nonlinear continuum theory of point defects,” ARhys. (Leipzig) (723 (1969), 228-236.
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With two figures

Translated by D. H. Delphenich

Abstract. — Point defects are described directly by means of quastieptiistortion in the context of
nonlinear continuum theory. Considering that fact iSscafit for one to derive the equations of motion of
both the medium and the foreign matter when one sfats the LAGRANGIAN of conventional
elasticity theory.

Introduction

The treatment of lattice defects in the continuum appration has proved to be
sufficient for many problems, as well as being preferahlenathematical grounds.

The perturbation of the phenomena that happen in thatyiof a lattice defect can
be described most simply by the introduction of an ineghiate state in a continuurh, [
2]. It will be established by comparing it with an idetdts, namely, the so-called
“initial state.” In that sense, the lattice defewat be characterized by the initial state-
intermediate state transition — i.e., by the cowadmg distortion. The exhibition of the
connection between those distortions on the one handhendensity of the lattice
defects and their properties, on the other, is the otablem that must be solved in any
description of lattice defects in a continuum. That probie explained in the case of
dislocations: The rotation of the plastic distortisrset equal to the dislocation density.
In contrast to that, one cannot satisfy the descnpbiocontinuous distributions of point
defects completely?] 3].

Now, it will be shown in the first section of the peat paper that following through
on the ideas that were pointed out above will efisdly lead to the relationship between
the density of point defects and quasi-plastic distortidence, it will be possible in the
second section to conclude the equations of motion forhtist matter and the extra
matter from the LAGRANGIAN function of ordinary elasty theory. The third section
contains a glimpse of the differential-geometric dgsion of the quantities that point
defects introduce. They will be reduced to distributiongaot defects with the help of
the connection that was presented in Section 1.



H.-A. BAHR, et al — On the nonlinear continuum theory of point defects 2

1. — Description of point defects

One can think of the transformation that takes aarggtal from an initial state that is
free of stresses or defects to a final state thahawed with lattice defects and internal
stresses as being decomposed into a plastic (quaseplestp.) deformation with no
reaction forces and an elastic one in a known wayntgrposing an intermediate state
that is still stress-free, but no longer defect-fréle [One describes the deformations by
means of distortion tensors that associate the cangectctor between two mass-points
in one state with the connecting vector betweendahssmass-points in another state:

dX = A dx = AS dxt, dX = AL X< = A dX . (1.1)

In this, K, «, k refer to the initial, intermediate, and final statesp. In general, only the
total distortion A", can be represented as a gradiit 9x“.

In what follows, we would like to attribute the quasastic distortions to the physical
properties of point defects, and in that way, define themgéuc structure of the
intermediate states that correspond to those pointtdefdn order to do that, we first
consider an isolated point defect. On the basis afetgating interaction potential, when
it is embedded into the ideal lattice, it will cause spliicement of the atoms that are
immediately closest to it. The following figures shliistrate that state of affairs in the
example of a substitution atom. The figure on the daftws the ideal lattice. If one
thinks of the middle atom as being replaced with an atba different sort then the
distance to the immediately-close atoms will changgrhaps as is represented on the
right in the figure. However, corresponding to the rdgén of the (stress-free)
intermediate state, all of the other distances to rthighboring atoms must remain
preserved. That means that the volume elements imtdrenediate state will no longer
fit together with no gaps or overlaps.

Figure 1. Change in the atomic distances by the insesfiarpoint defect.

In order to adapt this argument to the continuum pictare first lays a closed
surfaceF through the atoms that surround the point defect. Now,aan arrange the
generation of the intermediate state from the ingtate in such a way that the surface
will be displaced through the (position-dependent) segi®edtring the transition from
the left-hand side of the figure to the right. Secondlye must specify the changes in
distance inside of the surface. They will be arbitraaycept for the fact that the
(physically-given) displacement must carry along théeseS".

In order to do that, one imagines that all of thanges in distance that are required
by that displacement take place only in the immediatghberhood of the surface. The
finite displacemens8” will then take place over an infinitesimal segmenmt ffoe surface).
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That means: The relative position of two arbitraryghboring points will remain
unchanged, with the exception of the ones that araaepom the surfac&, which
will be displaced with respect to each other by preciSelyOne then has:

dx = JXdx< +S  whendx" is rotated througF,
dx* = g, dx“ otherwise. (1.2)

Corresponding to this construction, infinitesimal amstes will go over to finite ones
in the first case. Accordingly, those conditions d¢enfulfilled identically when one

considers (1.1) by way of the following Ansatz for the dpéesstic distortionAy :

AL(X) = 88+ BE(X) = 58 +{pfy S, (X - %) (1.3)
F
[J,(X" = x") = three-dimensionadfunction in the initial state]

In order to see that, one substitutes (1.3) iit@)( If one now considers that one is
dealing with apoint defect (i.e., that its measurements are smallomparison to the
separation distances being considered) then onwictm approximately:

BX) = 8,(¢ — )P dfy = 5,(¢ ~%) Q, (1.4)

in the sense of a formal development of &enction, in whichQ, is the displacement
dipole that KRONER introduced];

Since J,(x" — %) is equal to the density of point defects in thidghstate i, in the
case considered of a singular distribution, onégeiherally set:

B =0, Q. (1.5)

The two special case of para-elastic (dia-elas&sp.) point defects2] are then
characterized by the conditions:

Qg = const.
and
Qc = Q (o) with  Q/(0)=0,
respectively.

The desired connection between point defects aedgeometric structure of the
medium is exhibited by (1.5): The point defectsedeine the quasi-plastic distortion:

A= 9 +h, Q (1.7)

by their density of point defects, Q; (i.e., the usual density of point defects, muibigl
by the strength of the individual point defects)n contrast to that, onlyA) , is
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established for dislocations. That is based upon theHatin the first case, the surface
of intersectiorF means the boundary surface of the point defect, whilbeinatter case,
only the boundary line of an intersection surface thait closed will have any physical
meaning.

2. — Equations of motion for a medium with point defects

The starting point for the derivation of the equati@fismotion is defined by a
variational principle. The LAGRANGIAN function of aglasto-plastic mediunb] 6]
coincides with that of a purely-plastic one. Corresfwog to the split in the total
deformation, one must observe that the potential engeggnds upon only the elastic

deformation £5" that refers to the intermediate state. From tlguraent that was

presented in the foregoing section, that is determinedhby point defects. The
LAGRANGIAN function L will then prove to be:

L:T—U:jdr{%pVV+—;,Z)i}\/—pu(£;j")}, (2.1)

in which3 oV can be regarded as the additional contribution of thet pigifect to the
kinetic energy density. In that expressigm,= mn represents the mass density of the
extra matter (i.e., the point defeghjs the mass density of the host matter (i.e. toked
density minusp), andm is the mass of a point defect.

The variation ofL comes down to the variation of the positions & thasses and
point defect and dX', resp. In that process, we restrict ourselvgsata-elastic point
defects of only a well-defined type, and thusx6 = constant.

That implies (cf., Appendix 1):

{p%vi -0, +p(o, Qm),i}f”f' +{f)5v—f)(a,'n Q“),i}“: 0, 2

with Q™ as in (A.1.10). In thisd / dt (d / dt, resp.) are the substantial time derivatives
relative to the point defects (host medium, resp.).

The termoa;, Q" represents the force on a para-elastic point t@fean elastic stress
field that is known from the linear theor§][ In contrast to the theory of dislocations,
the equation of motion for point defects posseasesertial term. If one then eliminates
the supplementary term in the first equation ofiarothen the inertial term will represent
the change in the total impulse of the matter (on@dplus point defect) that is contained
in a volume element due to a force that acts ufoouter surface. Here, we shall avoid a

more precise discussion and establish only #fatan be identified with the total stress

field to a high degree of approximation due to theak concentration of the point
defects.
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Since the equations of motion are derived from a tranal principle, they will be
purely reversible. When one considers thermal intemss; the equation of motion for
the point defect will be replaced with a diffusion equatf FOKKER-PLANCK type,
in which the force on the point defect that appearssidrift term will, in turn, be given
by the corresponding term in (2.2).

3. — Differential-geometric description of point defects

Whereas it was shown above how point defects cadeberibed very simply by
quasi-plastic distortions, all of the previous attempta aonlinear description (cf., e.g.,
[2]) started from differential-geometric methods.

In those methods, the fact was employed that anrampiaffinity for an arbitrary
metric ¢ will admit the following decompositiorvT:

r:m: %Cksa{n Csmp + %Cks Qnsny — e Shsn} » (3.1
with
Apam = Adm + Anidi — Amk,  Sim = C,kr[';m] , Qnm=-U CGm.

Various metric can be used to describe the geometrctste. We first consider the
“lattice affinity” (cf., A.2):

[ EACAS,. (3.2)

It is symmetric in the case of point defects, due to dlse that AX= ax* / ax. S¥ will

then vanish identically.
If:

b = A<K AL5KL ’ (3.3)

o =A‘A'S,, (3.4)

and o, denote the metrics in the initial, intermediateg dimal states, resp., then the
elastic deformation:

&5 =4 (A — %) (3.5)
and quasi-plastic deformation:

£q=% (g — ha) (3.6)
will be defined with their help.

If one now chooses the metric of the intermedsitte in the decomposition (3.1)
then the first sum will be established by the elastiomieétions. The second sum must
be determined essentially by the point defects, stneél vanish in their absence, due to
the fact that:

QInmE_ljkgmn:_2|jk‘§mn' (37)

In this equation, the fact was used that one must have:
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0b,.=0, (3.8)
by definition.
The lattice affinity f:m (which is non-metric forgy) determines an everywhere-
single-valued parallel translation. By contrast,dta#e connection that is defined by:

k _

F:m E%gksg{nsn} = fmn %gks Qqnsn} (3.9

(which is metric with respect tgy) does not exhibit any teleparallelism. As a reshé, t
RIEMANNIian curvature tensor cannot vanish in all ofcga

I:iqkrm ) = Romi* (f -Q) = Qnmlk, (3.10)
with
Romi* = r:ﬂ,n'*'rrlw(sr T El m T EL' e

The term “matter tensor” has been acceptedrl far®, since it must, in turn, include the
influence of the point defects.
In the sense of the differential-geometric methode can conside®inm, &,

T X as being given and determined by just the poifitade. However, that is not

mnl

strictly true, since it is only in the initial seathat the quantities:

or

éMN = 1 (gwn — ),
QMmN = =5 &y k » (3.11)
Tawe - =R (29°° 0pn Gsm),
which are defined by:
own = ACA'O,, (3.12)

are given in terms of only the quasi-plastic disbms A that characterize the point

defect, and for (1.7), they can generally be exgm@sn a rather complicated way in
terms of the density of point defects and dipotersgth. By contrasQum &m andTmm
will first follow from (3.11) by converting them wi the total distortionAf=A*“ A,
which contains the elastic distortion, as welllas quasi-plastic one.

d’ X

dy¥ dy* +d (dy)*

dx¢
Figure 2. The definition of ZORAWSKI's parallelspilacement.
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ZORAWSKI [3] sought to exhibit a direct connection between the ena¢nsor and
point defects when he attempted to attach an immeitiatéive meaning to the parallel
translation that is defined by the state connectiog. @. The displacement of a vector
dy¥, which is regarded as infinitesimal, shall result by ldisipg the end (starting, resp.)
pointdx’* (dx, resp.) through the same number of lattice steps:

d(dy = -T* dx"dy' = dx’ - k" (3.14)

By definition, the lattice vectors in the intermdedistate in this are of equal length and
mutually parallel, which would correspond to an interpietabf A* as a lattice vector
(cf., A.2). Correspondingly, one will gei’* from dx* by displacing alongly by means
of F{,=AAL,, and as a result:

dx’“—dxX'== T dxX"dy" (3.15)

The affinity that is defined by the parallel displacentbat was described above:

Dk ~k
r mn = rnm’

(3.16)

is, in contrast to the state connection, neitherdarfiiee nor metric relative tgy, and as
a result, that affinity cannot be identical to theestainnection.

O
In particular, the RIEMANNian curvature tens®_ “ that is defined by means of

O
¥ was introduced as a “density of holes tensor,” spéals, that described the density

of point defects, which ZORAWSKI identified with the re&attensor. In analogy with
the BURGERS circuit of a dislocation that is deteraa by the CARTANIan torsio&nnk

O
(dislocation density), a point defect will be charsizeel by means oR_ S using a

closed circuit of a vectd®™ around a surface elemedf™" that yields a lack of closure:

]
dBk=R_*dF™B'

mnl

O
However, R cannot be expressed in terms of only the quasi-plaisticrons in any
state, and is therefore unsuitable for the descriptigoimt defects.

Appendix 1
Variation of the Lagrangian function

The variation of the kinetic energy yields the inérte&xm, as usual, and only the
variation of the potential energy needs to be caledlaWith:
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ouU

poU= p—2k, = 0" A O, 0K == 00K, (1)

SKA

that will come down to varying the reciprocal lattiextors A" . Due to (1.7), however,
it is not 5A, but the variation of the density of point defects:

OA(| = Qon, (2)

XL

that is the immediately relevant quantity. (The A¢ vary, despite the mass-poiXt"

being fixed, since the position of the point defect varies.
A line of reasoning that is analogous to the derivatioth@® continuity equation will
imply that:

oh, == o, (A, 0% ) 3)

o) == A9 (X"

in which 0X"| .. means the shift of the point defeck &” along the segmendX " in the

XS
system that moves with the matter. From now @X,L‘XS will be calculated from the
variationsdx' (X , resp.) of the positions of the masses (pointalefesp.) in the rest
system. That will make:

oX*

; o ©

L
.= oX*|, +66L|5>d
X X

The first term in this means the variation of thedtionX - (X) for a fixed argument.
The second term means the variation of the argisnefinalogously, foiX - (X (X X)),

oX* L« = 0 will imply that:

ax*t
OX e =3 e ®)
The quantitiesox < (OX oy resp.) mean the shift in the mass-point (poirfecte

resp.) that is characterized by" (XL, resp.), which was denoted By (JX' , resp.)
above. Therefore, one will get:

OA = -A Qo (R A(d%-3%) (6)

for (2). OAS

can be converted into the desiréd,

~with A% = A“AL:

XL

() For the sake of clarity, the coordinates in theahistate will be denoted by upper-case letters in
what follows.
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OA:| .= ALOAY|  + A OA. .

With
ox* | 0
oA =0 = ox| = A9, X
Al = 09w oo XK T T

and

5A<K XL = 5A<K XK +5)€ aI AkK’
it will follow that:

OA = ALOA" +OX 3 A + KO8 X), (7)
and with (1) and (6):

SU=-0} A" A AL, Q A(0%-3 K] ,+J Soko, A+al 19,5 b (8)

After partial integration, when one considers thaateim of p, in addition, one will get
(up to outer surface terms that will vanish under volumtegration):

3(pU) =0x 9,0, +[(of A), ) @ A% -3 X
) 9)
= 0X 0,0, +[oy, B Q —oc T, ) FUI%-0K),
with I} as in (3.2).
The expression [...] can be converted as follows:régmrdQ, to be something that
is assumed to be constant and the expresQjfon’ to represent a scalar, so the partial

derivative can be replaced with the covariant dgie that relates to thé -affinity.
Furthermore, we can get the densityof point defects in the final state frof, upon

multiplying by /| b, [/4/||a]. and finally, we define the transformation of the
displacement dipole into the coordinate systenheffinal state by:

n n aAK ||ak| ”
Qn = AA —— Q. (10)
b |

[laa || (I|bw ||, resp.) denotes the determinant of the covanmatric of the final (initial,
resp.) state in that equation. If one conside®) (Ben one will get:

= m AN 1 i [ mAnFE| 4
Dr{a-n Qmm} ” A ”_Un erlrl n
{
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for the converted expression. When performing the cantdifferentiation, it should be
observed that the quantity to be differentiated represestalar density of weight — 1. It
will ultimately yield the term that was given in (2.2).

Appendix 2
Distortions and lattice vectors

One can interpret the splitting of the distortion$iew regarded as transformation
matrices, as the image of the basis vectors in tigtnal coordinate system; e.g,; will

goto Afe,, etc. For the sake of clarity and due to its physicaiming, it is preferable to

connect the vector fields that are so defined with tiiedavectors §).
Two possibilities must be distinguished in regard to theeddency of the lattice
vectors on the character of the internal stresscesur

a) Plastic distortion:

The lattice vectors are all the same in the ingiate, as well as the final one. One
can then think of the intermediate state as somethingatisgs by adding (removing,
resp.) some elementary cells or by sliding without streSThat would correspond
precisely to the insertion of dislocations.

b) Quasi-plastic distortion:

The lattice vectors are equal to each other onlyenirthial state. The intermediate
state will then arise by distorting the building Heof the lattice without stress; e.g., by
inserting foreign atoms or extra matter, changes inpéeature, or imposing
electromagnetic fields.

Whereas the neighboring phenomena will be altered bstiplaistortion (e.g.,
connecting vectors will not remain lattice vectors), uice vectors themselves will,
however, remain invariant, and precisely the conversefival be true for quasi-plastic
distortion.

If we now choose the system of lattice vectorkddhe basis vectors in the initial and

intermediate state, as the problem dictates, therresult Ae, (for plastic distortion) or

Afe, (for quasi-plastic distortion), resp., will represd¢ne lattice vectors in the final

state. The parallel translation that is construatechfthe field of lattice vectors will then
be given by the lattice affinity:

Feo= AA (TE = ALAS, resp.). (A.2.1)
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