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1. Introduction. — In a previous paper')( we showed that the MAXWELL
equations and the impulse-energy equations can be writtanconformally-invariant
manner. In this article, it will be shown that thedativistic equations of motion of a
charged particle can also be brought into a conformallgriant form, assuming that one
transforms the mass in such a way that the product 8¢ arad length remains invariant.
h / ¢ (dimension M L] then plays a role that is similar to thatooih the usual theory of

[0}
relativity. Another invariant enters in place of tlest massm, namely, the conformal

massr;: r(;1(—g)”8, which has the dimensioM[L]. Here, we shall give only the simple

mathematical facts and avoid physical speculations.

We briefly recall the results that were obtainezfobe. In a space-time with a
conformal metric, one does not have a fundamental tepsdut a tensor densit, =
gn (—g)*'* (g = detgn) of weight — 1 /2. One does not have a line elerdenbut a

conformal (dimensionless) line elemelatthat is defined by:
(ds)? = &ip A" dE™. (1)

The charge in a four-dimensional volum&; which is itself conformally invariant,
establishes a charge density of weight + 3 / 4 (dimenfiori® L*? T ™]) by means of
the equation:

ded =pdw (2)

and that will imply the current vector density of whig 1:

hood
=p—, 3
s pds (3)

One has the equations:

() “Ueber die konforminvariante Gestalt der MAXWELLscheGleichungen und der
elektromagnetischen Impulsenergiegleichungen,” Phys{@835), 869-872.
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F, =20, ¢, 0 :aigj; (electromagnetic field),

%, Fir =0, )
Shl - ®h|®ll I:I] ,
sh=-0,3",
9,s" =0,
6% =-3"F, +iR §'A" (impulse-energy tensor density)
-0,65 =s'F; =§ (force vector density).

4)

Up to the last equation, no covariant differentiadiappeared. The first six equations
are then independent of any choice of a symmetridatisjment, in the sense that one can
replaced; with [0 j for any such choice. In the aforementioned paperheeead that the
last equation is true for any displacement for which o1 " = 0.

As is known,&i, by itself does not define a displacement, and thereforgeodetic

lines either beyond theull geodetic lineswhich are independent of any choice of
displacement (proof in the next section). Henca,well-defined world-line is to result,
something must be added, and it is known that the requiteaiethe linearity of the
displacement will lead inevitably to a WEYL displacemen

2. Parallel displacement of vector densities for a WEYL dplacement inX, . — If
F'J.‘i are the parameters of a linear displacement theoaveriant differential quotient of

a densityy” of weightt is given by the equation:
Oip"=0;9"+ T p' ¢} o". 5)

Under a WEYL displacement, one has:
= n +1(Q A +QA-6"® 6
i — J| E(QJ ) Q ] ij Q) ) ( )

in which Q; is a vector that transforms under the conformal sfcamation (“re-
gauging”):

O = TG, (7)
as follows:

Q =Q-dlogo. (8)

h
Since{ji} =10; log (- g), the differential equation of a vector density undéYL

displacement will read:
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h .
Dm“=6m“+{ji}n 1¢9"9, log(-g)+1[1-46)Q A"+ QA -8"™8 Qly'.  (9)

One easily derives from this equation tha®i, = 0 (independently of the choice of
Q).

Sincedé&" / ds has weight 1/4, the equation of a geodetic line thabisamull line
will be:

0 d¢" _d¢’ | d&"_ df df“+{ }d;“ 3
jI

e ds ds e @0 Ta & o
(10)
1dé&" dé’ 1 h o hk dé’ df‘
~=28 26 5 log(-g)+= ~6"e = 0.
8 ds da ) a(-g9) 2(Q.P} Q)d &

However, if the geodetic is a null line thdan= 0. Nonetheless, one can assign an
arbitrary scalar parameteto the line. The equation then reads:

g d¢"
dz dz
. . . (11)
_d& a8 [hdf &F " & o &
S odz ! dz+{ji} dz dz HQA+Q A-0"y Q) dz dZ dz

(:: = “proportional to”), and it will then follow thahe geodetic null lines are independent
of the choice o), .

The displacement is callggseudo-WEYLIANvhen the vecto; can be gauged to
zero; i.e., when it is a gradient vector. If thaugjag has been performed and one has
introduced the particular fundamental tensor for whicle ttisplacement is a
RIEMANNIAN one then (9) will go to:

h i
Oy =9, n“+{ji}n -1¢9"9;log (- g). (12)

One can define the curvature affind?;" from the ', of a general WEYL
displacement in a known way, and from it, the quastiRg = R;j;“, and finally the

density?® = R; &' of weight 1 / 2. That density defines a fundamentaloten g, =
Bip R, and then an absolute (i.e., cosmologically-determimea$s. The constart

(dimension []) is chosen so that the usual mass will result - 8dll be very small,
sincefR is, in any event, very small in matter-free domatis (

() H. WEYL, Raum, Zeit, Materied" ed., pp. 269.
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-1/4

If we introduce the notatiogf S for the scalafk (- g)*** that the factow* takes on

under gauging then we will have:

0;logS’=0;logS—-d; log o (13)
under gauging, and it will emerge from this that:

Q=Pj+0jlogS (14)
in which P; is a gauge-invariant vector. Under gauging with the absahass, one will

haveS= 1 andQ; = P

3. Derivation of the conformally-invariant form of the equations of motion. —

o
The classical relativistic equations of motion for @npof rest massn and charge in

empty space read:
o 2¢h h j i i
m(dg +{_}£d‘(j ed{ F,Jg ) (15)
ji

dr? dr dr c dr

1/2

If we introduce the conformally-invariant line elemeéat= (— g)~“ ¢ drin place ofdr

then the equation will go to:

us d€
ds

9,109(~g) = ——(~g)" Fy 6" (16)

mc

d25h+ hldé' d&f 1 d" o
dr® |ji| dr dr 8 dr o

Sinceoi(—g)‘”8 F. is dimensionless, ardl” andd¢' / ds is conformally-invariant,
mc

the right-hand side will be conformally-invariant. Angparison with (10) will teach us

h

that the left-hand side is equal to precis%éy ddg

s Qs

whoseQ is, at the same time, reduced to exactly zero. ®ima 6f the equation that is

invariant under an arbitrary conformal transformatiomtreads:

for a pseudo-WEYL displacement

ode _d¢ [hldoar 1a"
ds ds ds® jij]d & 8 & &
+1(A' R-6", F;)d‘” i +1(A'd log S-&"%, g log 3—£ (17)
. ds ds ds
- Oe (_g)—llsd_fl Fu'@hj’

ds

mc
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in which P; is regarded as a gradient vector, for the momentndfagain introduces the
parameter then the equation will read:

& & _ e df

+1(A"Q -6 e,
2( JQ uQ) dT d_ r(;-]CZ dT

d2<(h +{h}d_fjd_fl Fi]-gjh- (18)

dr?  |ji| dr dr

Since MAXWELL'’s equations are conformally-invariartfallows thate, as well as
Fij , must be conformally invariant. Since the conformaliiaree ofc is also out of the

o
question,oi(—g)‘”slﬁj can only be dimensionless when takes on a factor o
mdc

under the transformation (7). The conformally-invariamss m=m(-g)"®, with the
dimension M L], enters into the denominator in the right-hand side(10%). The

conformally-invariant mass densit;n that is defined by the equatiard ;)ndr =d ronds

=,chda) belongs to that mass, and it likewise has a dimansio[M L]. ,chc is the

conformally-invariant action density. Transforming thegkhs byc*? must then imply a
transformation of the mass y2>. h/ c will remain invariant in that, and that constant
will then play a role when one goes over to the can&drtheory of relativity that is
similar to the role ot when one goes over to the usual one. Since the dimmsnsfe
and F; are both 1 8 132 7% = [M Y2 L2 . LT, the demand of the conformal
invariance of those quantities will also already leath&invariance ofyl L], moreover.

As is known, in WEYL’s theory,Q; will be identified with the undetermined
electromagnetic potential vecta#i from the outset. Except for the fact that the
intrinsically completely free transformation ¢f must be connected with gauging in a
physically not-well-founded way, a WEYL displacement! vairise in that way that
likewise can have not meaning for the world-lines oé foarticles. If one sei + 9; log
Sequal to the potential vector in (17) then that will ¢ielorld-lines that cannot coincide
with the correct world-lines for any definition of thetpntial vector. Rather, we would
like to demand that equation (17), when written briefty as

5dE"_ e df

g Fi ", (19)
ds ds me ds

must yield the correct experimentally-verified world-Bneith sufficient precision when
the cosmologically-determined natural mass is usedoasia. It will then emerge from
this that whether or not the vectBr, which is invariant under gauging, is a gradient
vector, the other quantities that occur in the equatwdhlikewise be very small in
matter-free regions. Hence, the term w&imust vanish under gauging in the natural
mass, and the equation must go to (15), up to a small deviaabis consistent with the
measured results. It would not be impossible Bhatontains,inter alia, a terms of the

#i/z
R

form a 0; log , In which a represents any constant. That will yield a possible



Schouten and Haantjes — On the conformally-invariam faf the relativistic equations of motion. 6

experimentally-accessible deviation of the world-lindsttis independent of the
conformally-invariant action density.

4. The conformally-invariant form of the DIRAC equation. — In latter years,
various authors have tried to exhibit a conformally-iraatrDIRAC equation'}.

DIRAC came to the result that there is no simpdg/for arriving at such an equation
(®.  We will thus understand the phrase “conformally-irasati to mean only

“independent of8;, , but not of any field); .” We let the latter restriction drop, since

there are actually times that nature seems to givddwioes, and thus any type of
displacement, and we then consider the DIRAC equatitimei form:

(i—ha"Dj +r‘§m°j w=o. (20)

18 o1 instead ofa!, since one

In a conformal geometry, one must empla}j/: -9
has:

a® g =@ (21)

and only®" is available. However, the equation will then read:

(I—h (~9)"°a'0, +m(-g)"*cr Oj @=0, (22)

with:
@ = P d? =P (23)

and this equation is no longer conformally-invariander constant mass in the second

Cc [0}
term, since’a® has weight zero. From our Ansatz, however m(-g)"® is precisely

conformally invariant, and we will then arrive atet conformally-invariant DIRAC
equation:

(i—h'aimj +r?1c'a°j¢/: 0. (24)

The equation is identical to the usual DIRAC eaumtup to the possible influence of
vectorsP,; in [J;, such that one can say that if one ignores thevkneplacement o ;
with [J; then the usual DIRAC equation will already be comnfally-invariant, as long as
one understands “conformal invariance” in our seobkeéhe term and introduces the
correct transformation of mass.

() P.A. M. DIRAC, “Wave equations in conformal spac&tihals of Math37 (1936), 429-442.
O. VEBLEN, “A conformal wave equation,” Proc. NAtad. Sci.21(1935), 484-487.
() Loc. cit, pp. 442.
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When using the conformal equation, one must naturally expatti¢y would
represent the conformally-invariant electrical probabitignsityo of weight 3/4; i.e.
must be normalized as a density of weight 3/8. Sincethiee-dimensional spatial
elementdas is a density of weight — 3/4 day properly has weight zero. However,
@ a"y also has, in fact, weight + 1, as one would demarnbeoéurrent vectos”.




