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 1. Introduction.  – In a previous paper (1), we showed that the MAXWELL 
equations and the impulse-energy equations can be written in a conformally-invariant 
manner.  In this article, it will be shown that the relativistic equations of motion of a 
charged particle can also be brought into a conformally-invariant form, assuming that one 
transforms the mass in such a way that the product of mass and length remains invariant.  
h / c (dimension [M L] then plays a role that is similar to that of c in the usual theory of 

relativity.  Another invariant enters in place of the rest mass 
o

m , namely, the conformal 

mass 
c

m= 
o

1/8( )m −g , which has the dimension [M L].  Here, we shall give only the simple 
mathematical facts and avoid physical speculations. 
 We briefly recall the results that were obtained before.  In a space-time with a 
conformal metric, one does not have a fundamental tensor gih, but a tensor density Gih = 

gih 
1/4( )−g  (g = det gih) of weight – 1 / 2.  One does not have a line element dτ, but a 

conformal (dimensionless) line element ds that is defined by: 

 
(ds)2 = Gih dξ i dξ h.     (1) 

 
 The charge in a four-dimensional volume dω, which is itself conformally invariant, 
establishes a charge density of weight + 3 / 4 (dimension: [M 1/2 L3/2 T −1]) by means of 
the equation: 

de ds = ρ dω,      (2) 

 
and that will imply the current vector density of weight + 1: 
 

sh = ρ 
hd

d

ξ
s

.      (3) 

 One has the equations: 
                                                
 (1) “Ueber die konforminvariante Gestalt der MAXWELLschen Gleichungen und der 
elektromagnetischen Impulsenergiegleichungen,” Physica 1 (1935), 869-872.  
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 Up to the last equation, no covariant differentiations appeared.  The first six equations 
are then independent of any choice of a symmetric displacement, in the sense that one can 
replace ∂j with ∇ j for any such choice.  In the aforementioned paper, we showed that the 
last equation is true for any displacement for which one has ∇ j G

hi = 0. 

 As is known, Gih by itself does not define a displacement, and therefore no geodetic 

lines either beyond the null geodetic lines, which are independent of any choice of 
displacement (proof in the next section).  Hence, if a well-defined world-line is to result, 
something must be added, and it is known that the requirement of the linearity of the 
displacement will lead inevitably to a WEYL displacement. 
 
 
 2. Parallel displacement of vector densities for a WEYL displacement in Xn . – If 

h
jiΓ  are the parameters of a linear displacement then the covariant differential quotient of 

a density yκ of weight k is given by the equation: 

 
∇j y

h = ∂j y
h + h i i h

ji jiΓ − Γy k y .    (5) 

 
 Under a WEYL displacement, one has: 
 

h
jiΓ = 

h

j i

 
 
 

+ 1
2 ( )h h hk

j i i j ij kQ A Q A Q+ −G G ,    (6) 

 
in which Qi is a vector that transforms under the conformal transformation (“re-
gauging”): 

ihg′  = σ gih ,      (7) 

as follows: 

jQ′  = Qj − ∂j log σ .     (8) 

 Since 
h

j i

 
 
 

 = 1
2 ∂j log (− g), the differential equation of a vector density under WEYL 

displacement will read: 
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∇j y
h = ∂j y

h + 1 1
2 2log( ) [(1 4 )i h h h hk i

j j i i j ij k

h
Q A Q A Q

j i

 
− ∂ − + − + − 

 
y ky g k G G ]y .  (9) 

 
 One easily derives from this equation that ∇j Gih = 0 (independently of the choice of 

Qi). 
 Since dξ h / ds has weight 1/4, the equation of a geodetic line that is not a null line 

will be: 

1 1
log( ) ( ) 0.

8 2

h j h j h j i

j j

h j i j
h hk

j i j ij k

hd d d d d d d

j id d d d d d d d

d d d d
Q A Q

d d d d

δ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

 
= ∇ = ∂ +   

  


− ∂ − + − =


s s s s s s s s

g G G
s s s s

  (10) 

 
 However, if the geodetic is a null line then ds = 0.  Nonetheless, one can assign an 

arbitrary scalar parameter z to the line.  The equation then reads: 
 

1
2 ( ) ::

h

j h j i i j h
h h hk

j i j j i ij k

d

dz dz
hd d d d d d d

Q A Q A Q
j idz dz dz dz dz dz dz

δ ξ

ξ ξ ξ ξ ξ ξ ξ






  = ∂ + + + −    
G G

 (11) 

 
(:: = “proportional to”), and it will then follow that the geodetic null lines are independent 
of the choice of Qi . 
 The displacement is called pseudo-WEYLIAN when the vector Qi can be gauged to 
zero; i.e., when it is a gradient vector.  If that gauging has been performed and one has 
introduced the particular fundamental tensor for which the displacement is a 
RIEMANNIAN one then (9) will go to: 
 

∇j y
h = ∂j y

h +
h

j i

 
 
 

yi − 1
2 k y

h ∂j log (− g).   (12) 

 
 One can define the curvature affinor h

kjiR⋯  from the h
jiΓ  of a general WEYL 

displacement in a known way, and from it, the quantities Rji = h
hjiR⋯ , and finally the 

density R = Rji G
ji of weight 1 / 2.  That density defines a fundamental tensor ε 2 

o

ihg = 

Gih R, and then an absolute (i.e., cosmologically-determined) mass.  The constant ε 

(dimension [L−1]) is chosen so that the usual mass will result – so ε will be very small, 
since R is, in any event, very small in matter-free domains (1). 

                                                
 (1) H. WEYL, Raum, Zeit, Materie, 4th ed., pp. 269.  
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 If we introduce the notation ε2 S for the scalar R (− g)−1/4 that the factor σ−1 takes on 

under gauging then we will have: 
 

∂j log S′ = ∂j log S – ∂j log σ     (13) 
 
under gauging, and it will emerge from this that: 
 

Qj = Pj + ∂j log S,     (14) 
 
in which Pj is a gauge-invariant vector.  Under gauging with the absolute mass, one will 
have S = 1 and Qj = Pj . 
 
 
 3. Derivation of the conformally-invariant form of the equations of motion. – 

The classical relativistic equations of motion for a point of rest mass 
o

m  and charge e in 
empty space read: 

2o

2

h j ihd d d
m

j id d d

ξ ξ ξ
τ τ τ

  
+   
  

= 
ie d

c d

ξ
τ

Fij g
hj .   (15) 

 
 If we introduce the conformally-invariant line element ds = (− g)1/2 c dτ in place of dτ 

then the equation will go to: 
 

2

2

1
log( )

8

h j i h j

j

hd d d d d

j id d d d d

ξ ξ ξ ξ ξ
τ τ τ τ τ

 
+ − ∂ − 
 

g  = 1/8
o

2
( )

ie d

dm c

ξ−−g
s

 Fij G
hj.  (16) 

 

 Since 1/8
o

2
( ) ij

e
F

mc

−−g  is dimensionless, and Ghj and dξ i / ds is conformally-invariant, 

the right-hand side will be conformally-invariant.  A comparison with (10) will teach us 

that the left-hand side is equal to precisely 
hd

d d

δ ξ
s s

 for a pseudo-WEYL displacement 

whose Qi is, at the same time, reduced to exactly zero.  The form of the equation that is 
invariant under an arbitrary conformal transformation then reads: 
 

2

2

1 1
2 2

1/8
o

2

1
log ( )

8

( ) ( log log )

( ) ,

h h j i h i

i

j i j i
h hk h hk
j i ij k j i ij k

i
hj

ij

hd d d d d d

j id d d d d d d

d d d d
A P P A S S

d d d d

e d
F

dmc

δ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ−

 
= + − ∂ −  

  
+ − + ∂ − ∂ 



= − 


g
s s s s s s s

G G G G
s s s s

g G
s

 (17) 
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in which Pi is regarded as a gradient vector, for the moment.  If one again introduces the 
parameter τ then the equation will read: 
 

2
1
22 ( )

h j i i j
h hk
j i ij k

hd d d d d
A Q Q

j id d d d d

ξ ξ ξ ξ ξ
τ τ τ τ τ

 
+ + − 
 

G G = o
2

i
jh

ij

e d
F g

dmc

ξ
τ

.  (18) 

 
 Since MAXWELL’s equations are conformally-invariant, it follows that e, as well as 
Fij , must be conformally invariant.  Since the conformal invariance of c is also out of the 

question, 1/8
o

2
( ) ij

e
F

mc

−−g  can only be dimensionless when 
o

m  takes on a factor of σ−1/2 

under the transformation (7).  The conformally-invariant mass 
c

m=
o

1/8( )m −g , with the 
dimension [M L], enters into the denominator in the right-hand side of (17).  The 

conformally-invariant mass density 
c

m  that is defined by the equation 
o

cd mdτ = 
o

d mds  

=
c

µ dω belongs to that mass, and it likewise has a dimension of [M L].  
c

cµ  is the 

conformally-invariant action density.  Transforming the lengths by σ1/2 must then imply a 
transformation of the mass by σ−1/2.  h / c will remain invariant in that, and that constant 
will then play a role when one goes over to the conformal theory of relativity that is 
similar to the role of c when one goes over to the usual one.  Since the dimensions of e 
and Fij are both [M 1/8 L3/2 T−1] = [M 1/2 L1/2 · LT−1], the demand of the conformal 
invariance of those quantities will also already lead to the invariance of [M L], moreover. 
 As is known, in WEYL’s theory, Qi will be identified with the undetermined 
electromagnetic potential vector ϕi from the outset.  Except for the fact that the 
intrinsically completely free transformation of ϕi must be connected with gauging in a 
physically not-well-founded way, a WEYL displacement will arise in that way that 
likewise can have not meaning for the world-lines of free particles.  If one sets Pi + ∂i log 
S equal to the potential vector in (17) then that will yield world-lines that cannot coincide 
with the correct world-lines for any definition of the potential vector.  Rather, we would 
like to demand that equation (17), when written briefly as: 
 

hd

d d

δ ξ
s s

= o
2

ie d

dm c

ξ
s

Fij G
hj,    (19) 

 
must yield the correct experimentally-verified world-lines with sufficient precision when 
the cosmologically-determined natural mass is used as a basis.  It will then emerge from 
this that whether or not the vector Pi , which is invariant under gauging, is a gradient 
vector, the other quantities that occur in the equation will likewise be very small in 
matter-free regions.  Hence, the term with S must vanish under gauging in the natural 
mass, and the equation must go to (15), up to a small deviation that is consistent with the 
measured results.  It would not be impossible that Pi contains, inter alia, a terms of the 

form α ∂i log 
1/2
c

µ
R

, in which α represents any constant.  That will yield a possible 
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experimentally-accessible deviation of the world-lines that is independent of the 
conformally-invariant action density. 
 
 
 4. The conformally-invariant form of the DIRAC equation. – In latter years, 
various authors have tried to exhibit a conformally-invariant DIRAC equation (1). 
 DIRAC came to the result that there is no simple way for arriving at such an equation 
(2).  We will thus understand the phrase “conformally-invariant” to mean only 
“independent of Gih , but not of any field Qi .”  We let the latter restriction drop, since 

there are actually times that nature seems to give world-lines, and thus any type of 
displacement, and we then consider the DIRAC equation in the form: 
 

o
0j

j

h
mc

i
α α ∇ + 

 
 ψ = 0.    (20) 

 
 In a conformal geometry, one must employ ′α j = (− g)1/8 α j, instead of α j, since one 

has: 
′α (h ′α i) = Ghi,     (21) 

 
and only Ghi is available.  However, the equation will then read: 

 
o

1/8 1/8 0( ) ( )j
j

h
m c'

i
α α − ∇ + − 

 
g g  ψ = 0,   (22) 

with: 
′α0 = ′α[1 ′α2 ′α3 ′α4]  = α0,    (23) 

 
and this equation is no longer conformally-invariant under constant mass in the second 

term, since ′α0 has weight zero.  From our Ansatz, however, 
c

m= 
o

1/8( )m −g  is precisely 
conformally invariant, and we will then arrive at the conformally-invariant DIRAC 
equation: 

0
c

j
j

h
' mc'

i
α α ∇ + 

 
ψ = 0.    (24) 

 
 The equation is identical to the usual DIRAC equation, up to the possible influence of 
vectors Pi in ∇j , such that one can say that if one ignores the known replacement of ∂ j 
with ∇j then the usual DIRAC equation will already be conformally-invariant, as long as 
one understands “conformal invariance” in our sense of the term and introduces the 
correct transformation of mass. 

                                                
 (1) P. A. M. DIRAC, “Wave equations in conformal space,” Annals of Math. 37 (1936), 429-442. 
  O. VEBLEN, “A conformal wave equation,” Proc. Nat. Acad. Sci. 21(1935), 484-487.  
 (2) Loc. cit., pp. 442.  
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 When using the conformal equation, one must naturally expect that ψ ψ  would 

represent the conformally-invariant electrical probability density ρ of weight 3/4; i.e., ψ 
must be normalized as a density of weight 3/8.  Since the three-dimensional spatial 
element dω3 is a density of weight – 3/4, ρ dω3 properly has weight zero.  However, 

hψ α ψ'  also has, in fact, weight + 1, as one would demand of the current vector sh. 

 
 

_____________ 
 


