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|. Introduction. — In the first article), following LIE, it was show that any contact
transformation in ther2— 1 variablest?, ..., &", 72, ..., ¢" can be written as not only a
homogeneous contact transformation mmvariablesé?, ..., &M, m, ..., T, but also as a
doubly-homogeneous contact transformation in 2(1) variables®, ..., X", po, ..., pn
that satisfy the homogeneity conditions (1.25):

X0 X = X,
0" x =0,
P (1)
X aK p/]' - O’
P, 0" Py = Py,
the conditions (1.28):
Por X = pp X, (2)
and forp, x° = 0, the condition (1.14, 16):
LdX = p, dX,
ppp’ - P, 3)
x”dp, = ¥ dp,
and the conditions (1.24)
pp’ 6/1 Xp’ = pﬂ !
p,0“x” =0,
A @)
x?0,p, =0,
X790 p, =X
() “Zur Differentialgeometrie der Gruppe der Beriihrungstransétionen. 1. Doppelthomogene

Behandlung von Beruhrungstransformationen,” Proc. Royd Admsterdan#0 (1937), 100-107.
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(which donot follow from (3), only forp, x° = 0). We will now show that we can always
replace the doubly-homogeneous contact transformatiors-abtained with a
transformation that satisfies condition (3), and tfoeee also (4), in addition to (1) and
(2), even for the general case mfx’ # 0, without changingthe transformation of the
elements (which are characterizeddyx” = 0). We call the form that is obtained in that
way anormal formfor the doubly-homogeneous contact transformation. We prove
that in such a way that it implies the main theotbat relates to the most general form of
a finite, doubly-homogeneous contact transformatiomedis

2. The normal form. — Following LIE ¢), one obtains the most general form of a
homogeneous contact transformatiorfih ..., £", 4, ..., 7. in the following way: One

1 q ,
chooses any function®, ..., Q of the" and&" (in whichq is a numbek 1 ands n)
that are arranged so that timeHq)-rowed determinant:

30 0
a a | a:1,...,q; ai:i ai':i., (5)
100,Q 9.Q

does not vanish identically in theé as a result of2 = 0, and then eliminates the from

the 2 + g equations:

Q(&", &M =0, (6)
a n=-10Q, b gm=+10.Q. @)

I
a

The determinant condition guarantees that equations (&ri7be solved fo€", 7.,
and A, as well as foif", 77, A. After eliminating theA, (6. 7) will give the £" as

functions of theé" and 7 that are homogeneous of degree zero insthe If one
substitutes those values inafthen that will yield thed as functions of th&" and 7,

that are homogeneous of degree one intheFinally, substituting thé " and theA in

(7b) will yield the 77 as functions of thé" and 7 that are homogeneous of degree one
in 77;. The same thing will be true when one switches{t'hem with the &", n, resp.
(LIE, loc. cit, pp. 152). Eliminating thel will then yield a system ofrRequations that

can be solved foé", 7., as well as fof", 17,. Those equations represent a contact
transformation that takes a point in general positioart 6 — g-dimensional manifold,
and besides (6), there will be no further equations infthee" (LIE, loc. cit, pp. 158).
The rank of the matriaé" / a7 will then be equal ta — g

() Theorie der Transformationsgruppdh pp. 150.
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We shall carry out the transition to the homogenaoesdinates<', p, ; «, A, £ =0,
1, ...,n, so the elemenpg X’ = 0):

XXX =& EN, } ®)
Po: Pl p ==(En++E) 0N,
will go to:
DX, X) = é[x—z,i;j:o (9)
x° X

under (6), in which thab are homogeneous of degree zera“imndx*, and (7) will go
to:

pa j — 3 pg' j’ _ g _
—W(fjﬂj)——faaq’, —W(Fﬂjl)—%ma.cb, a,B,y=1...n,
hi,j=1...n, (10)
1 . a 1 , o 0 9
5 (En)=-20,0, - (En,)=+10,®, 0,20, 0, =20
or
Prii-Ad,, Prii+ A, 0, (11)

a a

and conversely, equations (7) can be derived from thoserpiooyadities. TheA can be

determined as functions of tle', 7 that are homogeneous of degree ong; iftom (6,
7). However, only the ratios of thé can be calculated from (9, 11), and indeed, as

homogeneous functions of degree zerg‘iandp;, since equation (8) does not allow one
to express they in terms of&", but only to express the ratios of thein terms of the
ratios of thep, . In addition,&" ands;- can be calculated from (6, 7) as functions® bf

17
-

it

K

andz; that are homogeneous of degree zero (one, resg.) ifﬁhex—U and — (or,
X

what amounts to the same thing, Pgé) then follow from (9.11) as functions of thx%
X

Py
Lo X : ¢
and the ™ . Likewise, the— and the”2 can be calculated as functlonséat and
Po X Po X
&. We then get all of the equations together as:
Py

(X, xX) =0 @=1,..,0), (12)
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A a A a
a) pA:—)llaAjCD, b) p/1':+/l]aqu3, (13)
1 1

in which /11 now plays the role of an undetermined parameter, and:

a) X“=a¢” (X p, b)  pr=Byn (X ), (14)

a) xX“=ya” (X, p), b)  pa=ewn (X’ pa). (15)

After eliminating the ratios of thd, %)Ié will be a known function. The* and
1
;- can be chosen to be homogeneous of degree zefaimp,, and similarly, thep”
and ¢ can be chosen to be functions of degree zex andp;- . The functionst®, ¢,
@, y, are now known, except that the coefficieatss, y; ¢ are still undetermined. H,
b (c, d, resp.) are the degreesmf{B, resp.) ix“ andp,, resp., and’, d’ are the degrees
of y (g resp.) ik andp;-, resp., then it will follow by substituting (14) in (1%5t:

a'e =d, b'e =—b, Ce=-c, de=a (e =ad — bg, (16)

and it will follow from this thatyande are established by the choiceacdndb, when one
assumes thaad — bc# 0. In addition,5 is determined in terms af as a result of the
requirement that:

Py ¥ = p,d¥’ for  p,x’=0. (17)

If one substitutes (B} and (14) in the left-hand (right-hand, resp.) side of If}L3
thenA can be calculated from that equation as a homogenaaatioh ofx andp, of
degreesa + ¢, b + d, resp. The choice af then establisheall coefficients. We would
like to make that choice in such a way taat 1,b =0, and as aresutt,=0,d=1,a =
1,b'=0,c¢ =0,d’=1. In order to do that, we need only to chogde be an arbitrary
homogeneous function &f andp, of degree + 1, 0, resp)il then takes on the degrees +

1, + 1 inx* andp,, resp., and the same degrees when one writes it ternis ofx* and

P .
If we now substitute (18 in (14a) then that will yield:

X =a(x, -3, A®) B (X,~0, A D)
ua uu (18)
= a(X, -3, DY B* (X, 13, B),

and this will be a system af+ 1 equations ix* andx* that containg parametersi (a

=1, ...,09), which is, in fact, homogeneous of degree zero. &tesrof those parameters
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can be determined as functions>Sfand x* from q — 1 of those equations. If one
substitutes those values in the remaimngq + 2 equations then it will result from the
fact that thed occur homogeneously of degree zero that the right-hatel vgill be

homogeneous of degrees + 1, &frandx*, and will therefore yielsh —q + 2 equations
of the form:

X (¢, x) = 1 @=q-1,...n) (19)

whose left-hand sides will have degrees + 1, in x*, X*. Since the quotient of tw¥
represents a homogeneous function of degrees 0x0and X, resp., and there can be
only g homogeneous equations of degrees zerg’iand x* [namely, (12)], one can
certainly deriven —q + 1 of equations (19) from the £ q + 2)" one and (12). Thah(

q + 2)" equation is, however, certainly independent of (12), stricas degrees + % 1

in X, X, resp. We write that equation as:

X (X, X)) = 1. (20)

The g homogeneous equations (12) associate every point in ¢g@ositon inH,
with an @ — g-dimensional manifold. Equation (20) changes nothing albait
situation, since it only establishes the factor inxhe (20) has no meaning then for the
geometric transformation of elements, which is alsdeqabvious, since it first arises
when one establishes the choiceapfwhich is likewise inessential for the geometric
transformation of the elements. The rank of the matfiox* /dp, will be n — g and

thus equal to the rank of the matrixa§" /97, .

Equation (20) makes it possible for us to resolve our prohtam and to replace the
contact transformation (14, 15) with another one thtg apon the elements precisely as
(14, 15) do, but also satisfies equations (1), (2), and 3pfo’ # 0. Namely, if we
introduce the equations:

=13, ®+p, X0, X, pi=+13, ®-p, X0, X, (21)

instead of equations (13), and equations (21) are equivalétB)tdor elements, then we
will first have:

’p, = ¥ X=p X
X pp 0+ pp ’ 9’ ” (22)
x’p,=0+p, X X=p X,
and secondly, if we consider (22):
—pp ¥+ pyd¥'=-p,x’dX=0 (23)

(and indeed, this is true even fpg x° # 0) then it will follow from (22) and (23)
(likewise in all cases) that:
X" dpy =X dp,. (24)
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We call (21) anormal formfor a doubly-homogeneous contact transformation. The
normal form is not determined uniquely since the choicg isfarbitrary. Since the form
of X depends upon the choice af one can also proceed conversely, and chobse
arbitrarily as a function of* andx* of degree + 15 1, resp.

3. Themain theorem. — If we set:

0

X = X, X(®+1)= X,
X (25)
A=Xu, prO'*',U?:_,u

a a 0

P ,
then theX (p =0, 1, ...,q) will be homogeneous of degrees +11 inx”, x“, resp., and
equations (12), (20), and (21) can be written as:

X (X x¥)=1 ©=0,1,..0, (26)
p
pr=— o, X, pr=+ o, X. (27)
p

The contact transformation will be obtained by elitimg the ¢ and solving (26), (27)
p

for X*, ps-, as well as fox*, p; .

One now asks whether one can, conversely, alwaysag@bubly-homogeneous
contact transformation with degrees + 1, 0; 0, + i<, resp., fromg + 1 arbitrary
homogeneous functions of degrees + 1, in those variables. First of all, the equations

must naturally be soluble fof’, p;-, 1 , and likewise fox*, p;, 4 ; i.e., the determinant
p p

P
9, X 0
b b (28)
H0,0,X 0, X
p

must not vanish identically inx as a result of (26). If that requirement is met then
p

according to LIE, that will imply a homogeneous conteahsformation in any case, and
the degrees of andp;,- in py will be 0 (+ 1, resp.). Since we started with fuoiesi that
were homogeneous if, X, the transformation will also be doubly-homogeneousd, an
all that must be proved is that the degrees‘odndp,- in py are + 1 and 0, resp. If the
equations that are obtained by solvingx6yp,- and their inverses are:
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a) X=¢~ (x’f, P, b) pi = ¢’A’(le, PA), (29)
a) X=¢"(x, pa) b))  m=¢e ) (30)

then it will follow from the fact that one can alsoite the left-hand sides of equations
(26) homogeneously with degrees — 1, + Xinx*, resp., that the degrees of (29) and
(30) must then be equal (cf., pp. 4):

a=4a, b=b"=0, c=c, b=Db =1. (31)

It will then follow from (16) that either:

a=a=+1 c¢c=c=0 (32)

or
a=a =-1, c=c =freelychosen. (33)
If we seta= -1 from now on then we will have:

X" 00 e X

FXOXO =¢ (F’pﬂj’ (34)
and eliminating th@, can then give only equations that conté@q, X—O andx’x?, and

X X
thus equations of the form:
1 X X
—F| —,— =1 35
x°x? ( x° xoj (35)

That system of equations must be equivalent to (26). eidexy those equations are
homogeneous of degree zero in time+22 variables¢, X, and as a result, a system of
equations of the form (35) can never be equivalent to (Z8)ly the values (32) then
remain.

With that, we have proved the following theorem:

M ain theorem:

The most general doubly-homogeneous contact tremafmn of X, p, into X, py-
that has degrees, 0 (0, 1, resp.in X and p will be obtained in normal form when one

P
starts with g+ 1 (1< g < n) equations of the forrf26), in which the X are homogeneous
functions of the % x* of degrees+ 1, — 1, and chooses them such that the determinant

(28) does not vanish identically in the as a result 0{28), and then eliminates thg
p p

from equation$26) and (27) and solves those equations f&t g+ (X*, pi , resp.).
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Since a complete duality exists betweenxthand thep,, one can switck* andp, in
the formulation of the main theorem. One can theh s well begin with functions of

P, pa-with degrees + 1; 1, resp.

4. Example. — The path that goes from a homogeneous contact trenafon to its
associated doubly-homogeneous one is quite simple. Gonalynwrites down the

functions @ in xX* andx*, chooses an arbitrary functiohof degrees + 1> 1 in x* and

, P
x*, resp., and then construcxs.
As an example, we treat the transformation:

fr=¢t-&2q, §¢é%=0, & =g,
& =- &2 la=-¢3

(@=2,3)  (36)

Converting to thef", 77 yields the transformation:

Ea'=—%, Na=&%m,
1

| (hi,j=1,2 3) (37)
e =t pmp,

1

which is established uniquely by the requirement t,matdfj' =1, d&’. There is only
one functionQ, namely:

Q=¢" -+t + et =0, (38)
that goes to:
XX XX 0%
PE T e e 70 9

under the transition t&*, py. We then get the equations:

poz_/]xoi)’(cr-*_/]%:_/]%;(o’ g),:—)l%wl%:—)l%?,
p=As, pﬁﬂ%,

a) b) (40)
pzz‘)'xf)(;’ P = A)ngg’
p3=—/lxﬁ(;’ by = )l)g—xjg
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(in which use has been made of the equationO in the first rows), and those equations
imply that:

v Xt X
X = a, pU:_,B?1 X=y, Fb:_a_?,
X = aFIC))O p= B, %z—y%, R= o
a) b) 0 d (41)
2 & = —2 = & = - ﬁ
T P X d Y RETo
X a'pl, Py ﬁXO’ yg! R ﬁ)g

y and d can be determined as functions»4f p,-, as long asa and B are given as
functions ofx* andp,, assuming thaad — bc# 0 (cf., pp. 4). We determing from a

when we demand that:

Py ¥ =p, dX¥=-x"dp, (0=0,1,2,3), (42)

or (when one consideps, X° = 0):

- dp, + S] 9] R (43)
p, X (p)?* X p X (R?ZX
Ba ,
=- dp,=-¥d
T ?
from which, it will follow that:
af=+p.X. (44)
We likewise find that:
yo=+pr X, (45)
and upon substituting (44,.b) in (4Qb):
A=ap, (46)
and likewise upon substituting (41d) in (40a):
A=yl (47)

If we now chooser to be any function of* andp, of degrees 1, 0 — e.gr,=x° — then it
will follow that:
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a=x, B=p1, y=x, J0=pi, A=pX’=prX’,  (48)
and
0 _ 0 - _ B X Y= ¥ =— R X
X X, Ry 0 , R N
v g
X1:_p0 , B= P )&:_RJ_, R= R,
S B
a) b) 0 d) (49)
2 _ _ P, X’ - B X ¥ = Y )g = _9_)%
” P 2T e R T
3:_p3X0 - p X @ = p X __R X
X pl ’ p3' XO ’ g’ ' Q )g )
Here, equation (20) is:
0
%: 1, (50)

o1 X 1
=2 tp ¥ =, pE=-A——t p X,
O A O .
1 1
p= A h= A
, , (51)
S x? _ X
2 NIV R ¥’
X X
=-A = A——.
Ps XOXU P )@){7
SinceA = p; X°, that implies that:
NI ITE R e pe X B
Xl':xl_l_pzxz-"pﬁxgl R= R X=X b X+ p X RP= P (52)
P Pr
2’__p2X0 - H_)g = B_)g :—_%
X = o P, N X 5 B
3__p3X2 — p1_X3 _ X __p1'X3
X = pl , ps— XO ' )8_ pl ’ p3 Xo’
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and equations (2), (3), (4), are, in fact, true, everpfof’ # 0, for that transformation,
which will be identical to (49) when it is applied to elet® One also obtains the

normal form that was just found when one solves thetemsa

0 XO 1 1 )
X=2=1 X=—S(¥x-XX+ XX+ XX+ RN)=1
X (xX7)
__ 1. x? + X __'ff+ X+ X
P = :f)lxc :Lll(xor)z’ - XO ,Lll XO !
L L
pl 1X0“ pl' 1X0“
NG X2
ST ey
o =- X2 - N
3 lil(XO')Z’ %’ lll (XO')Z’

after eliminatingy and ¢ fromx*, p;-.
0 1

(53)



