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The projectivetheory of relativity
By
J. A. SCHOUTEN

Translated by D. H. Delphenich

Introduction. — In what follows, one will find a summary of the mciive theory of
relativity, as it was developed in the publications G. E.I\M, V, VI, VIII (%), upon
starting with the idea, which is due to O. VEBLEN and HOFFMANN (%), of a
projective connection that leaves invariant a given quadrlocal space. As in those
publications, we shall make use of the method of homagmsneoordinates that is due to
van DANTZIG @)(). Meanwhile, the theory and calculations have beepliied

greatly by introducing the sighature- — — + for the fundamental projectdi,, directly

and employing auto-geodesics, instead of the induced geotlesiosere utilized in G.
F. [I-VI (°). We have also employed the RICCI symbolism in istmodern form, as

() In the text, the following abbreviations will be used:

G. F. IIIl: J. A. SCHOUTEN and D. v. DANTZIG, “Geratle Feldtheorie,” Zeit. Phy§8(1932), 639-
667.

G. F. VI: “On projective connexions and their applicatio general field-theory,” Ann. MatB4 (1933),
271-312.

G. F. IV: J. A. SCHOUTEN, “Zur generellen Feldtheori Ableitung des Impulsenergiestromprojektors
aus einem Variationsprinzip,” Zeit. Phyi (1933), 129-138.

G. F. V: J. A. SCHOUTEN, “Zur generellen Feldthecrid®Raumzeit und Spinraum,” Zeit. Phyil
(1933), 405-417.

G. F. VIII: J. A. SCHOUTEN and J. Haantjes, “Autodétische Linien und Weltlinien,” Zeit. Phy&9
(1934), 357-369.

(® O. VEBLEN and B. HOFFMANN, “Projective relativityPhys. Rev36 (1930), 810-822.

B. HOFFMANN, “Projective relativity and the quanturaldl,” Phys. Rev37 (1931), 88-89.

() D. v. DANTZIG, “Theorie des projektiven Zusammenhangiimensionaler Raume,” Math. Ann.
106 (1932), 400-454. “Zur allgemeinen projektiven Differenetiafgetrie, I. Einordnung der
Affinegeometrie,” Il. X+, mit eingliedriger Gruppe,” Proc. Kon. Ned. Akad. Wet#erdam35 (1932),
524-534, 535-542. “On the general projective differential gegmit. Projective pointfield-algebra and
analysis,” Proc. Kon. Ned. Akad. Wet. Amsterdarm(1934), 150-155.

(% In O. VEBLEN,Projektive RelativititstheorjeBerlin, J. Springer, 1933, one will find the projeetiv
theory treated from another viewpoint that makes nmtisemogeneous coordinates.

() The consequences of the choice of the other signatdre— + are found sketched out briefly in the
notes at the bottoms of the pages.
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it is presented in the book by J. A. SCHOUTEN and BTRUIK (%), which will appear
shortly.

It is proved that if the signature— — — + is given then the projective connection will
be determined completely by two geometric coordinatesfigadpohysical coordinates,
namely:

I. The quadric is invariant.
[I. The induced connection is identical to the Riemann@mection.
[1l. The auto-geodesics are the trajectories of chapgeticles.

IV. The equation of the trajectories is identical witle equation of the conservation
of impulse and energy.

V. The two bivectorsP,, and Q,, differ from the electromagnetic bivector only by
constant factors.

VI. When the simplest invariaf that one can deduce from that connection — viz.,
the scalar curvature — is taken to be the universal funatidghe variational equations,
that will provide the equations of gravitation and the sdcMAXWELL equation
without the current term.

VII. The simplest invarian¥ that one can deduce from the Dirac equation, when it is
taken to be the universal function, provides the current vath no additional terms.

When one discards the last condition, there will &® infinitude of possible
connections. Among them, one finds the connection thatutilized in the theory of A.

EINSTEIN and W. MAYER 9 (P = 0) and the one in the theory of O. VEBLEN and

B. HOFFMANN (P = Qu), which was employed by W. PAULP)(in his last work.
Meanwhile, PAULI's theory utilizes induced geodesics; consadyat does not satisfy
condition IV. (The two types of geodesics are idextior 7., = 0.) When one employs

the auto-geodesics, all of those theories will satedpnditions I-VI. Moreover, the
additional term in the second MAXWELL equation is snalbugh that for the moment
any experimental verification of it seems absolutelgassible.

() Einfuhrungen in die neueren Methoden der Differentialgeometfeed., Noordhoff, Groningen,
1935.

() A. EINSTEIN and W. MAYER, “Einheitliche Theorie voGravitation und Elektrizitat,” Sitz.,
Preuss. Akad. Wiss. Berl2b (1931), 541-557.

() W. PAULI, “Ueber die Formulierung der Naturgesetze fiihf homogenen Koordinates,” Ann.
Phys. (Leipzig)8 (1933), 305-372.
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|. —Geometric notions.
COORDINATES AND LOCAL SPACES. — Let:
& (i, ....m=1,2 3, 4)

be the coordinates of a four-dimensional space. Theybe subjected to all of the
transformations of the groug,, which consists of all the continuous, several-times

differentiable transformations. A space that admiesgiroup®, will be called anX, .

An arbitrarily-chosen system @' will be called gpointof X, .
Let:

K

X KA uv,mp or=0,1,2, 3,4)

denote the homogeneous coordinates of a four-dimensional ggdack can be subjected
to the transformations of the grod , which consists of all continuous, several-times

differentiable transformations that dremogeneous of degree onA.space that admits
the group$s will called anHs . A system ok # 0 that is chosen arbitrarily, up to a

numerical factor, will be denoted Hay(KJ , and will be called @ointofHy . A system of

X is called amarked poin(*) of H, . The marked points &f, can be represented by the
points of an auxiliary spacs in which thex® are special inhomogeneous coordinates.
The points oH, are represented by the curvesiythat take the formx* = y ¢, with c*

= const. The point“ = 0 of X5 has no representationlity . We make the points of the
spacesXy andH, correspond pair-wise in the following manner: If the camath system

X€ is chosen in an arbitrary manner then we tdleto be arbitrary homogeneous
functions of degree zero of thé. Obviously, the nature of the relation betw&€nand

x“ will persist when the and " are subjected to transformations that belong to the

groups$s and®,, respectively. One must remark that despite that kEation, the two

spacesXy andH,4 do not have the same geometric properties, since the gtaugsd s

are different.
Let us now press on and identify the pointsXafand Hs with the points of the
physical space-time. The grogig will then permit us to introduce some new geometric

notions into physics that are not known in the geometry,, which is based upon the
usual theory of relativity. Each point of space-tima oaw be denoted by eithét” or

by Lx’( J .
Thedé&" transform linearly undet, as follows:

0&"
0&"

(1) dé™ = AVde", A=

() In the publications that were cited in footnot8sahd ) on page 1, point = Ort = spot, and marked
point = Punkt = point.
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For each point oH,, we introduce affine Cartesian coordinates iBiqa(viz., ordinary
affine geometric space) that will be denotedEdy and whose transformation law is:

2) =M= p"="

That space is thaffine local spaceor thelocal E4 at the point oH, in question. A
system of=" is a correspondingoint of the localEs . The point&" of X, can be
identified with the poinE " = 0 of the locaE, ; we call it thecontact point.

In the same fashion, tlix" transform linearly undes :

3) X = A dx, A=
ox

which will permit us to introduce B4 (viz., an ordinary projective geometric space) at
each point oH, that hasordinary homogeneous coordinat¥$§ with the transformation
law:

(4) X= AF X",

That space is thiecal projective spacer the localP, of the point ofH,4 in question. A
system ofX" is a marked pointof the localP, . Naturally, up to now, it has been
impossible to represent the lo&l on the locaP., since theE, contains a hyperplane at
infinity that does not exist iR, .

GEOMETRICAL OBJECTS INX, . — Ageometric objecbf X, is a set that consists
of a well-defined number of components that are functidné"othat are defined in a
region ofX, (which can reduced to just one point), and transform uédein such a
manner that the new components will depend upon the nsfdraned components
uniquely and the transformation law of th& Here are some examples:

1. Scalar¥):
()
p=p.
2. Contravariant vector:
Vh': h’Vh
3. Covariant vector:
Wo=A W,
4. Affinor; for example 9):
Jh— AN i y,.h

i i

() When the components of a geometric object have nadsdisometimes we will add one in
parentheses above the principal letter in order to déneteference system.
(®) For the sake of brevity, we shall not repeat ttterd.
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5. A-density (scalar)'f of weightt:

P =07 P, A = det(A").
6. Affinor-density, of weight; for example:
O - jih' ..h
QUJ"i’ =4 EA‘jJ’i’h ani '

Obviously, all the objects in 1-6 are special cases ohaafflensities. For the
affinors whosevalence (i.e., the number of indices) is greater than unitye @an
transform each of the indices independently of the othes and thus obtain some
intermediary component&r example:

(5) Qj.mh': AT’ Qj..hh: /Aﬁji’i’ QJ'Eh" .

Obviously, the A" and A} are the intermediary components of tentity affinor
):
(6) Aza".

Each of the objects 2-6, when defined at a poinkKgfcan be represented by a
geometric figure in the locak, of that point. For example, one can represent the
contravariant vectov" by the point=" = V", the covariant vector by the hyperplaney
=' = 1, the tensor (= symmetric affinogy by the quadriog; =' =! = 1, etc. It is
remarkable to confirm that, from (1), the linear elemaf is avector. Hence, every
direction that passes through a paffitof X, is represented in a bijective manner by a
direction in the locak, at £", and the infinitesimal region that surrounds the péthin
X4 will be represented in a bijective manner in the regromired the point of contact in
E4, up to second-order infinitesimals.

In the E4 at each point o, , there are four contravariant vectoaia% and four

h
covariant vectorg that belong to the coordinate systéthand which are defined by the
equation:

7) Ly, e2d

() It is well-known that an A-density” of weight one is nothing but an abbreviated esjpwasfor a
covariantn-vector (alternating affinor of valencg. We shall take Gothic letters for the principatérs of
densities.

() The symbol2 means that the equality is valid only for the coordirststems for which it is
essentially written.
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These vectors areoordinate vectors.They constitute théocal frameof &" in the
local E; . Each coordinate systedl', &", etc., has its proper system of local frames,
which will be denoted byh), (h”) from now on.

GEOMETRIC OBJECTS i, . — In what follows, we will imagine only geometric
objects inH; with components that ateomogeneougunctions of thex" that are defined
in a region of the auxiliarif, that can, moreover, reduce to one of the curve§ imat
are given by“ = c. These objects are defined with respect to the gfglip the same

way that the objects oX, are defined with respect to the groda . Hence, the
transformations must be defined with respectwo groups, namely, the groufs of
coordinatetransformations, and the grogmf marked pointransformations:

(8) "X = px-~.
Here are some examples:
1. Scalar:
K) ()
$s - p=p,
©) ()
S P=p.
2. Marked point:
95 V= ARVE,
3 V= pV~

The corresponding point is denoted[h&? J

3. Marked hyperplane:

. — A
95 . W, = AA, W,
. ] — ~1
S W)y=,0" W;.

The corresponding hyperplane is denoted Wy | .

4. ProjectorY); for example:

. K' — K'Au |,k
555 . VD}I',u’ - 'AEM’,U' VDR,u’

5 Vi SO Vi,

() The letter4 will be written only once, to abbreviate.
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5. P-density (scalar)'f of weightt:

(«) —E(K)
9s . b =A"b,
T .(%) :p—(n+1)é (6).

6. Projector-density of weiglf for example:
s - %KD'],#, =A" Aﬁff %Kmﬂ ,

‘Sf |%Kmﬂ - ~(n+l)¢-1 %Kmﬂ )

Obviously, all of the objects’-B' are special cases of projector-densities. The
intermediary componentre deduced from them asXa . As before, thed® and A%

are the intermediary components of the identity ptojec
9) AL e

In that presentation, we almost always employ projedénsities for which the
excess, which is defined (for holonomic systems) by: xeedegree — contravariant
valence + covariant valencet{n + 1), is equal to zerg)(

Each of the objects’-®' that are defined at a point bf, [i.e., along a curve of the
system X* = u ¢ in Xs] is represented by a marked geometric figure in the Bgalt
that point. For example, the marked poihis represented by the marked poxfit= V*,
and if one introduces the hyperplane coordingtegto P, (which are well-known from
ordinary projective geometry) thew, will be represented by the marked hyperplane
w, . It is remarkable to conform thtte X themselves are the components of a marked
point of R, since, from EULER’s theorem, one has:

(10) X<'= AF X,

That property has no correspondent or analogue in the ¢ggoofieds . In addition, the
linear element dkis not a marked point of the local Psince the transformation gf

(11) d%“ = p (dxX*+x“dlog p)

() A “P-density” of weight one is nothing but the abbreviated esgipns for an alternating covariant
projector of valence.

() The coordinate points and hyperplanes that are definpdges 6 and 8 define the sole exception to
that rule.
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is more complicated than that of a marked point. Wetlhseaelation (10) in order to
identify a pointhKJ of Hs with the pointLXKJ = LXKJ of the localP, at x* , which we

(o]

call thecontact pointof P, . The linear elememtx at X uniquely fixes a direction iR,
[0}

that passes through the contact point. One will tlas la bijective representation of the
directions that pass througti in H, and the directions iR, that pass through the contact
[0}

point. Meanwhile, the poink” + dx* is not represented by a fixed pointRg but by a

variable point that depends upon transformationd,and displaces along the line that

passes through the contact point that is determinedelyyrdteding direction.

If one uses the contact point then one can now septehe objects’'® (whose
excesses equal zero) by means of a figure that is compbpethts (and not bynarked
points) inP4 (*). For example, the marked poirftcan be represented by the set of two
points:

(12) LXKJ, Lx“+\fJ,

and the marked hyperplamg , by the homography:

(13) X (A =xw,) X'

One will obtain a simple, purely-geometric represeaotain the locaP, of all the objects
in 2-6' by that method.

At each point oH,, there are five marked poine§ and five marked hyperplané,

which belong to the coordinate syst&hand are defined by the equations:
(14) €25, e 27,

They are theoordinate pointendhyperplaneg?). They constitute thiecal frameof x*
in the localP; . Each system of coordinate§ x*, etc. has its proper system of locall
frames, which will be denoted in the text &y, ((«”), etc.

There exist geometric objects that carry indibesg ..., as well as indiceg, A, ...
They are thgunction objects which belong toXs;, as well as taHs; . The simplest
example is the projector-affinor:

(15) g) =0, ¢".

One can deduce an invariant quantifyom a given&;' by means of the equation:

() Cf., D.v. DANTZIG,loc. cit, 1934.
(®) Their excesses are not equal to zero.
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(16) g[[é ...534]‘/44’3 =a XK,

which is a p-density” of weight + 1 and arA“density” of weight — 1. One then deduces
that theP-densities and th&-densities havéhe same geometric significance.
The object uniquely affixes a contravariant vectdg4n

(17) W=
to each marked poirff; of P, and a marked hyperplane Ry
(18) "Wy = gﬂh W,

to each covariant vector &f , but it does not determine a bijective representation.

ANHOLONOMIC FRAMES INX, . — If one is given vector fieldg', w in X4 then
one can introduce other components by the equations:

(19) V= AV, wie= Aw,  det(A)£0, AVA = A",

in which the 16 parameterd” are arbitrary functions of thé". In general, the new
components odé&"

(20) 0o" = A'dé"

are not exact differentials of thefunctions&™. In order for this exceptional case to
A ’
present itself, it is necessary and sufficient the Q'J‘, that are defined by the
equations:
A ; I I
(21) Qi 2Al 0, A [(h) holonomic]
must be identically zero.
A ’ ’
Q'J.‘.i. is called theobject of affine anholonomylf the d&" are deduced from a
coordinate systerd" then the frameh() that is defined by:
’ ’ h’ ’
(22) gLt ety

[
o
I

will be calledholonomic and in the contrary casanholonomic Hence, the components

A
of the objectQ are zero for each holonomic frame, and there anezeoco components
for each anholonomic frame. In physics, after intraatp@ metric inXs, one generally
prefers to utilize a system of anholonomic frames ithaomposed of real vectors that are
orthogonal and have length or duration equal to 1.
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ANHOLONOMIC FRAMES INH, . — In the same fashion, one can introduce other
components of the fields of marked poiufsand marked hyperplaneg in Hy with the
equations:

(23) V= ANV, wi= A w,, det(4) )20, Af A= A

in which the A¥ are chosen arbitrarily and have degrggin x“. The new components
V¥ have degreél —g). Since the marked points of the new frame:

(24) e’ 20y, e 205

have components with respect to the systgji{at have degrees equal togHor —g,
respectively:

(25) eEAL, gAY

we call the system of frames’() an anholonomic system of degee€).

In order for the system of frames that is introducebdeholonomic- i.e., in order for
the @x)*":
(26) X" = A* dx‘

to be the differentials of the @ 1) functions¢” = AX x*— it is necessary that:
P T’ '
(27) Qf 2AL 0, A2 0 [(K) holonomic]

P 4 . - - - - -, .
Q7 is theprojective object of holonomit{f). However, that conditiodoes not
suffice since:

(28) Af dx = d(A)Y X) - X dx'd AL
= d(A) X)-dx Xo,A

or

(29) (1 —g) AF dx* = d(A" x¥).

One must add the conditign= 0, from which, it will follow that the frames of degr 0

are always anholonomic.That result is very important, since the use of amtmhic
projective frames in projective relativity cannot be ided without great inconvenience
as a result.

() Consequently, for an anholonomic system, one wilehav
excess = degree + (1g) [- contravariant vector + covariant vectot ¢n + 1)].

2 K - K
() InG.F.1I-VI, we wroteQ, , instead ofQ , .
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INTRODUCTION OF A HYPERPLANE INTO THE LOCAIP, . — When one gives
a field of hyperplanes in the local space, one caa b¥ective representation of the local
P, on the locaE, by the condition that the given hyperplane must be repted by the
hyperplane at infinity.

Let:
(30a) uX'=0

be the equation of the hyperplane, and let:
(30b) o X*=-yx, x=realand constant.

The most convenient manner of finding the analytjgression for the representation
consists of introducing a system of anholonomic fraagdqa, b, ...,g=0, 1, 2, 3, 4) in

H, and adding a system of framdy (h, ..., m = 1, 2, 3, 4) that are holonomic or
anholonomic inXy and are determined by the equations:

h égh,
31) { o

4 ="0,-

The systemd) has degree + 1. Consequently, the degree of the compohemt of
a marked point or a marked hyperplane whose excess istequatiois zero. The A
are found by solving the equations:

(32) ACAEAL AMg =0,
Ay 2 XX

They satisfy:

(33) A A= K A A=A 2S.

P
The components d? with respect tod) are:

P . A
(34) Q ?b 2 _X_lqcb X* + A(J:'ghQ hji’ Qur = a[/1 -
The vecton" of E, corresponds in a bijective manner to the marked point:

(35) Ve AN

on the hyperplan%qﬂj, and that point will have componenf’s V" = 0 with respect to

the systemd). The set otontravariant vector®f E,4 is then represented by thearked
points that are situated ohq, | in P4 . Similarly, the vectomi of E4 corresponds

bijectively to the marked hyperplane:
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pass through the contact point and have components = O with respect to the system
(). The set otovariant vector®f E4 is then represented by the marked hyperplanes that

pass through the contact point. The identity affifdr corresponds bijectively to the

projector:

(37) K= ASAL = AL + X g

which has the components:

(38) A3, A20, A 20, A20

with respect to the systera)(
One must further deduce a bijective representation qidimsof P, on thepointsof
E, . One obtains it by remarking that each vectoEpfs the radius vector of a well-

defined point ok, and that each marked point®f on LqAJ is the difference of a well-
defined marked point ¥, andx”*. Call:

(39) po=-h p’

the weight(*) (from MOBIUS) of the marked point; the weight o will be . Now
represent the point &, that has/" for its radius vector by the poivhtp“ J of P4 that is

given by the equation:

0

(40) P_X A
P X

in which a marked point oﬁqﬂj IS written in the form of the difference of two rkad

points with weight one. If that representation hasnbiexed then we caidentify P, and
E4, and the addition, as well as subtraction, of pomtfl reduce to simply the well-
known MOBIUS calculation. It goes without saying thainfr that identification, the
affinors are nothing but the special projectors, nantaby projectors whose components
of index zero are all zero with respect to the syst@m In other words, the projectors
that are annulled by each transvection wftlor g, , or furthermore, the projectors that do

not change under a transvection wit{ . One deduces from that remark that one can
now write all of the equations in the affinorstef in terms of either affine frames that
have the indiceh, ..., mor in terms of projective frames that have the ek ..., ror

a, ..., 0. The result of the transvection of a projector wvifie .4} on each index, for
example:

(41) P/ = AP,

K

is anaffinor that one called theffinorial partof P

() That “weight” is nothing but its weight as a density.
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INTRODUCTION OF A QUADRIC INTO THE LOCALP, . — Introduce a non-
degenerate quadric into the lo€alby means of the equations:

(42a) Gu X' X =0
and let {):
(42b) G X' X == 4, ® = det G % 0,

in which ¥ is a positive constant)( G, is called thundamental projector One can
raise and lower the indices by meanggfandG**, which is defined by:

(43) GG =A7,

just as in Riemannian geometry. Introduce the marked:point

(44) q/‘ = —X)@,
in such a way that:
Gy ' o =-1,
(45) { Ak
X' =-x, gq=-1 d=+1

One introduces the hyperplane at infinity with the aid,of andP, is identified with
E4, as we have just explained.

If the pointh“J Is situated on the quadric then one will have:

n’ o, 2 L
(46) [F—q”j[ﬁ—q jgﬂ,——ﬁn”q,\—l_+l,

The quadric then defines a Euclidian metric for vectanswhich it takes the form of a
“sphere” of radius equal to + 1. The intersectiothefquadric with the hyperplane, |
is the isotropic “sphere” at infinity.

One can deduce two tensors of rank four from the projégtor

g/ik :g/l/(+q/lq(’
47
( ) { gAK:gAK+q/Iq(,

which are called thtundamental tensors&nd which determine the metric of the vectors.
One deduces from (47) that:

(48) W g™ = Al = Af+ g

*) InG. F., llI-VI, we have writtergj,, X' X* = — w? and left the sign ofo? undetermined.
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It is obvious that,« gives rise to a Riemannian geometryHi) which we assume to be
identified with the Riemannian geometry of space-time. ad&ime that the signature is
———+ (Y for the latter geometry. The loda] becomes aRy; i.e., The components of

G, andg,, with respect to the system) (satisfy the equations:

goo =-1 Qoo = 0,
(49) Gi =G0=0, 94=9,=0,
G = G-
The componentsyy, depend upon the choice of the systemy ( If one takes an

anholonomic system ¥, with vectors that have real coordinates and lengtlication)
1 then one will have:

(50) { gll 01, = gzz 922_g33 O3~ "~ 1,
g44 - g44 - +1'
Hence, G« has signature- —-— + (%), and that signature will be invariant under real

transformations of the coordinates. The quadric isphéeér®” with a radius of length
equal to 1 in the locdks, which signifies that a real line that passes throughctintact
point will cut the sphere at two real points when the diae be taken to be the coordinate
axis in space, and at two complex points when it caalen to be the time axis.

PROJECTIVE CONNECTIONS INH, . — The ordinary derivativeg, v with
respect to a holonomic or anholonomic systémdp not form the components of a
projector. Meanwhile, as in the affine case, one candace a covariant derivative by
the equation”j:

51
(51) DW 6W -~ w

HA K’

{ O,V =0,V +N%,V,

with the following condition for the transformatiah the geometric objedtl’, :

(™) In G. F. llI-VI, we supposed that the signature was +—-. We remark thag,, can be replaced

with g, in equation (46), because:
®) +---+fory?<o0.

() When ) is anholonomic andk(’) is holonomicg,, is defined by, = A"
(*) We shall writel’, , instead off1’ , as we did in G. F. lll-VI-VIII, in accord with the m@ modern
notations that are employed in the book that is citedatnbte t) on page 2. Hence, the * in (53) is
17
written S,* in G. F. lll-VI-VIIL.
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(52a) 95 MY, = A N, + A% 0, AL,

KA
which is a condition that is valid for all holonontic anholonomic system$)( and:
(52b) 3 = p‘ll'lfm.

One sees that the excess of the covariant derivati@gmjector whose excess is zero is
likewise equal to zero. As in affine geometry:

P h
(53) = M Q=N
is a projector; wher§ [ = 0, one says that the connectiosymmetric Meanwhile, we
encounter two other projectors here that one doesnubirf affine geometry, namely:

PX = XTI, + AL,
(54) { 5 X A
Qf, =Niux' + Ay =0,x =x0O,d".

Another remarkable difference is that, in genetfadre is nocovariant differential
becausedx” is not a marked point, and in turdx“0,, P9, for example, will not be a
projector, in general. Since the covariant diffeisd does not exist, there is no longer

parallel displacement (or pseudo-parallelism), bseathat displacement is defined
precisely by annulling the covariant differentialOne can prove that the covariant

differential exists only wherP*, = 0, but that case is discarded in projective netgt

because the projectd®”, cannot be zero. On the contrary, it plays a waportant role

in all of the theory.

Nevertheless, there exigeodesics.Recall thatdx” fixes a direction in the locdl,,
but does not correspond to a fixed point in the tinat passes through the contact point
in that direction. It is always possible then &fide a covariant differential in a given
direction, up to a constant factor, when one kn@wgarticular point along the line

besidesLxKJ . Let Lr”J be the point in questionx‘ can be written in only one manner,

in the form:
(55) dx‘=ex“+nr"

in which £ and 7 are infinitesimals that are not scalars, but ficons in a well-defined
manner for the transformations of the gr@upOne can then take the compongnt to

() Since anholonomic frames will be employed most fredyiewe shall give most of the formulas in
their general form here, in such a fashion that tleeyalso be employed in the anholonomic case. In the
h
formulas that are valid only for holonomic systemrse will write =, instead of =.
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be the linear element and define pseudo-parallelism wsgect to the poinkr“J by the
covariant relation:
(56) r o, p=0.

Hence, a projective connection does not determine pestparallel displacement for
each direction, but an infinitude of displacementd¢ tepend upon the choice of point
Lr“J. Thus, ifp“ is a marked point in the loc#, of a givean“J then one will

(o]

necessarily know the pointp* | itself, and one can define the geodesic that stams fro

LXKJ in the direction otx”J to Lp“J by the equation');

(o]

(57) p“ 0, p = 0.

Indeed, one deduces the vapfer dp* at x + dx* from that equation:

(58) dp=dXo, f=¢ xa, p+n7 ga, P
=ep -np Py,

and that process, when repeagedinfinitum will successively yield all of the elements
of the desired geodesic. The geodesics thus-@ataane calledauto-geodesigssince

their construction is based upon the use of thatgai” | itself. It goes without saying
that ! auto-geodesics pass through each given pointch @isection, and that the form
of a such a curve depends upon only the situatidheopoint| p* | in the localP, at X" .

When one is given a quadric in the loBal, one can take the point on the polar
hyperpland g, | to LXKJ.
Since:
(dx)* = A(dy' - q(dx' §
(59) = AYE (A0’ - g (dY" d
=AY (d¥" - q,(dy”" d,

one can take the linear vectorial elemet@in X4, which is written:
(60) @ %"= &(d§)"

in homogeneous coordinates, insteadddf{ and the geodesic equation becomes:

() D. v. Dantzigjoc. cit, Math. Ann. (1932) called a fieldp | that satisfies equation (57) a “geodetic

position field,” and geodesics that are defined by [(89), cit, Amst. Proc. (1932), pp. 532] “pseudo-
geodetic lines.”
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(61) d %*0,p"=0.

We call those curvesduced geodesidsecause they are, in some way, “induced” by the
quadric {). The other geodesics — viz., the auto-geodesics — alwists @ven in the
case in which the connection does not even depend ugpaaoaic.

RIEMANNIAN CONNECTIONS IN PROJECTIVE COORDINATES: Introduce a
fundamental projecta,,, and suppose that one has deduced the fundamentaldggnsor

as well as the componerdgwith respect to the systera)(that is adjoint to the systems
of holonomic or anholonomic frameh)(of X, . With respect to the systerh)( the
Riemannian connection of the fundamental tengas given by the equationd){

R
iw=0.w-r" )
(62) RJ i IW J'W
DJVh :ajvh+r]-ri]vi,
in which:
A A A
(63) r?i :Eghk(ajgk +0, g 0, Qi)_QE-*_ % Q'+ g d Qi'k'

That connection is a connection gectors;i.e., on marked points that are situated in
La, |-

R
We deduce a projective connection from it thatdeeote byl], by demanding that

the covariant derivatives of the vectasandw, must be identical to the Riemannian
derivative. With respect to tha)( one will have:

R R ) .
OV 20,V +1 1V =0, V'+T "V,
R R ) R .

DoV 2o, V'+N 2v=N/V=0,

(64) R R
D,-voél'l ?IV' =0,

R b A RO )
Oovo =1 g,V =0,

R
and analogous equations fok w, , so one will deduce that:

() Those are the geodesics that used in G. F. Ill and.G/IFand which also appear in the
communications of O. Veblen (1933) and W. Pauli (1933). allte-geodesics that we employ here are the
same as the geodesics of the five-dimensional relathéory of T. Kaluza and O. Klein.

() When {) is anholonomic anch() is holonomicy; is defined by, = A’'a .

]
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(65) :

R R
One sees thafl o, and %, are not further determined. Nevertheless, (34) @3)
show that:

R
(66) S’ —ai, Uy = Opu Oy
i.e., that the Riemannian connection in homogeneouosdinate€an never be symmetric
when ¢, is non-zero. In order to fix the undetermined parametersuffises to give

R p R
0,q“ord,q,. If:

R R

(67) D,u qK:V#ﬂ?, Dﬂ q/]:Z,[/M
then one will have:

R

M 8o:Vom = Z/{oo’

R
(68) N52V°2 U,

ucm é(), Vci =

Now adopt the simplest hypothesis, under which:

R R
(69) Dﬂq”:o, DﬂqA:O.
In this case:
R .
(70) M ?bzAchI)ahrhji’

so, upon applying formulas (34) and (53):

R . AN
(71) S;k.)aéAchI)ar]r[r]jﬂ _X_lanbxa'*'Ac“t?hQii
- qu qa,

and thus, since the equation is invariant:

>

R

(72) S ==aqud

Naturally, the Riemannian connection must imply eveaciant differential. The
differential:

R R
(73) dx O, V= o A,
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R
is, in fact, covariant, because’ [, V'is annulled anddx’ X' transforms like a marked
point under the group:
(74) dx A =pdxX’+x°dlog p) A= pdxX’ AL,

The parallel displacement that one obtains by annulliagctivariant differential leaves
invariant, on the one hand, the quadric, since:

(75) 0,6, =0,

and also, on the other hand, the contact point, d{@%p the hyperplanéq, |, and the
isotropic sphere ing, |.
One deduces from (75) by a well-known procéstht:

R B K R » RK R
(76) n’, :{y)l}+s‘“+ St S
in which { KA} iIs the CHRISTOFFEL relative tG,, . Consequently, one has, from
U
(72):
R K K K K
(77) ﬂm={m}—quaq—qmqﬂ—q§,%-

PROJECTIVE CONNECTIONS DETERMINED BY THE FUNDAMEML
QUADRIC. — One can demand that the quadric should deterotiveg connections that
are more general than the Riemannian connection. Ngiurathat case, one must
impose the following condition:

I. — The quadric is invariant under every displacement that is deduced frem t
connection, no matter what particular point is chosen along the line*of dx

In order for that condition to be satisfied, it is resagy and sufficient that:
(78) r* Oy Gax 2 Gax (:: = proportional to)

for each choice af’; i.e., that:
(79) D,u g/lk =Sy g/l/(,

() J. A. SCHOUTENDer Ricci Kalkul(1924), pp. 73. [See not) on page 13.]
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in whichs, is a marked hyperplane that is otherwise undeterminete e@sily deduces
from that equation that:

[] 73[/1K] = _%SXgaw
(80) [2] .95 =3xS,
s=-9=ds (bydefinition).

A
Each projective connectidn fixes uniquely another connectidn, which is called

A
theinduced affine connectipmand is such that when is applied to an affinor, that will
yield the affine part of the result of applyihgto the same affinor, and in addition, that

A A
0,9=0,0,0q,=0:

A

O,V = A0V, v =0,
(81) o oV G
D;,WA:A{;DTV\Q, q"\é,:o.
Therefore, one deduces that:

A
(82) A S = AT SL,

0

A
which expresses the idea that the affinorial phi$g'is determined bys .
It then follows from (53) and (54) that:

(83) 0“S, = 1 x (P —2Qh).-
Since one has:
(84) 0u =50, =0, th =X Quu+hSu,

due to (54) and (79), one will have:
(85) S, 0= Gt + X Quuar + G Sy -
Upon combining (82), (83), and (85) suitably, evitk deduce that:
(86) S = A = d (G X Q8 9)
= X o (Phy = Q5) + X 0 Quod” o
Having done that, we impose the following condition

Il. — The induced affine connection must be identicéthéoRiemannian connection of
the g« .

In order to do that, it is necessary that:
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R
(87) 0=0,0,= A;jimr(gap+QUq;J) = A:,Srg/]/(,
so it results that:
(88) Sy=-SQ.

In addition, the first term of (86) is annulled due to {f2), and one will find:

(89) Sy == X (P = Q) + 9 [0 + X Qpan + X 0 Qao o]
and {):

K K K K K
(90) n, :{,LI/]}+SM +8,+3$,+3 é‘gAﬂ+ A - "@;’M),

which is an equation that givés}, as a function ofj,. , its derivatives,P;, QF, d ,
andqg,, . One deduces from the two equations (77), (90) that:

@) Ny -N5L=S+S,+$,+ g &+ § g 5o (sa+ 4 - "q,),

which is a relation that is valid for any holonomicamholonomic system.
The two geometric conditions that we have imposedadcsuffice to determine the

connection uniquely. The projecto®; and Q7 must satisfy equations (80.1) and
(80.2), but they are not determined completely by those ieqaat

I. Physical applications.

AUTO-GEODESICS AND TRAJECTORIES. — In this secondtpave fix the
projective connection by physical conditions, althoughsitotherwise undetermined.
Naturally, the first condition to impose (which is praserspirit) is the following one:

lll. — The auto-geodesics are the trajectories in the sgane of electrically-charged
particles. The duration of the radius vector frdamKJ to Lp“J depends upon only the

guotient émand remains constant along the trajectory.

Those trajectories are given in Riemannian geomettiidwell-known equations:

(92) i(df)h +rh| (dE)J (df)I :_ifﬂh (d{)] ’
dr dr " dr o mc ' dr

df =-d¥é —dy’ —dZ + * dt.

In the equation for the auto-geodesics:

() Der Ricci Kalku| pp. 75. [See'f on page 13.]
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(93) p“0,p =0,

the marked poinp“ can be decomposed into a vector and a multipdg of

(94) pP=p’ (i +g9, p’=-p“a,
in which:
L 1A 1, dx)y_ 1, (dé) P
95 1" == =—A =— , 17=0
(95) cdr ¢’ dr CAh dr g

is the well-known world-velocity vector)( when written in homogeneous coordinates,
p° is an undetermined coefficient, ahds the duration of the radius vector gf (%),
which must be constant along the trajectory. F¢84) and (93), one will havé)(

(96) PO, () == p P Dt =— X" PP Qi +s ()

Upon applying the operatpt’ [, to the equation:

(97) Qup' P = )% (1°-1),
one will get:
(98) 0= 1p/Oul=p° (°=1) ¥ Qui P p" - 15 (P,

which is a relation that will remain valid for eachoice ofl, and thus, the result that:

(99) p' P Qu = 1xs (%>
Upon substituting (94) in (93), because of (96 will obtain:

(100) 0=p" 0, p° (1" + ) =p° I p* O, i+ ¥ p°Q P +p* P Oul g (0°)
= () PO, @) s 1+ @) rteg 1
+ X 202+ g p O, (%) + 21 s (pY)%%

in which
bK - K M = K
(101) XQE‘ o =xQ, o
b“qg, =3 x°s [dueto (80)]

The transvection of the right-hand side of (10Ghwi is identically zero due to (96);
hence, (100) is equivalent to its vectorial part:

™) In G. F. llI-VI, we have writtert / ¢ i, instead of i*; hence, 1 £i* will be the velocity vector in
that case.

() | is a constant with no physical dimensions.

é) IOne must writel],, (p°) for the covariant derivative gi’, sinced, p” has another significance,
namely:

0,0°= A2 0, p"
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R -1 -2
(102) 0 =i i+ A= (P + QI+ b #4201,

in which P}, Q/y, andb'“ are the affinorial parts oP, , Q7 , andb®, resp.:
(103) Py =ASPL, n=ASOL, b“= A'b'.
Equations (102), when written with respect tospstem §):

R -1 ) -2
(104) 01! 0ii" + (P + Qi+ Ao 44000,

must be compared with the equations of the trajest@92), which one can write in the
form:
- R - h e m. H
(105) P Ojit=- — F .
mc

In order for these two equations to be exactly esjant, it is necessary that must be
zero. It will then follow, upon taking into accay®0) and (101), that:

b“=-1xsd,
(106) Qan P P" = (0’ 1% Qua 11" + 1(°)° x s
and consequently, by virtue of (99):
(207) Qi =0,
SO

e

(108) —

-1
f}mij:XI_(P[’jh+Q’[jh)i]+%l§gijilijih:
which is an equation that must be satisfied for @myser" (). It will then follow that:

k 1 (ot '
(109) ’ed. ==X (Riy+Qjy)

which is a relation in which we have introduced tindetermined constaktby ():

() When one takes the induced geodesics, instead of thgeadesics, one will find that (G. F. VI,
pp. 297):

ol=

F==X"Y.

() When one does not fix the sign gf, one will see from (109), and also from the equation of
footnote ) above, that the produky is always real.



J. A. Schouten and J. Haantjes — The projective theaslativity. 24

mc
l=k—.
e

(110)
One easily deduces from (80), (101), and (107) that:

(111) { P =R "2SX D t3 ¥ 4 Q,

QAK :Q‘[’AK] +%SXq/] q(

THE CONSERVATION OF ENERGY AND QUANTITY OF MOTION= In the
usual theory of relativity, the vectonci represents the kinetic energy and impulse; the
potential energy and impulse are represented by the vegtpg", in which ¢" is the
potential vector, which is determined up to an additive gradwector. In the projective
theory, a gradient vector is a very particular objelet general, a gradient is a marked
hyperplane. One can then represent the total energyntgrked point, which is the sum
of the vectormci + (e/c) ¢ “ and a marked point that is an arbitrary gradient.is It
possible to choose that gradient point in such a manneth&anarked point of total
energy coincides with the marked pogft so the equation of the trajectories will be, at
the same time, the equation of the conservation af éotergy and impulse. We impose
the condition that this identification must be possidad we formulate it in the
following manner:

IV. — The marked point:

(112) p=p” (i + )
differs from the total energy vector:
(113) met + £ ¢~

o

only by a gradient.

It then follows, first of all, that:

(114)
p“ = mcf +E d.

Hencep® is constant, so, by virtue of (96) and (99):

(115) s=0,
and by virtue of (111):
73/1/( = 73[:1/(] !
(116) { ;o
QAK :Q‘[AK] !

in other wordsP,, and Q,, are hivectors.
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Secondly, it is necessary that:

m ¢ c
(117) Fax =20 ¢x = ZE_I OOy = ZE qua »

and that condition will be fulfilled when:
k
(118) P+ Q/\K:_Z)(qu/\:_)(zfﬂk-

Under those conditions, there is no longer anything mgsie about the marked
pointsp® in the local spaces of the points of a trajectdrigose points are nothing but the
geometric representation of total energy. The redsorthe indeterminacy that the
potentialg, is affected with appears clearly: It comes down tdfdbethat the true — i.e.,
well-defined — potentialdk) g, is not a vector, but a marked hyperplane, and that the
affine theory, in which it is impossible to represdratthyperplane, can do no better than
to resort to an undetermined veciprthat differs from only by a gradient/k) q, .

THE TWO BIVECTORSP« AND Q. — We have seen that the two quantifiggs

and 9, are bivectors and that their sum is the electromagbeatector, up to a constant
factor. Now, in physics, there is only one bivector, @gnthe electromagnetic bivector
Fir. One must then impose the following supplementary tiondi

V. —The bivectorsP,, and Oy, differs from the electromagnetic bivectbg, by only
some constant factors:

(119)

Upon substituting those values in (89) and (91), one will thad:

(120) S =@@-Dgud +@-pP G, %
and
K
(121) M, = {M} +@-1Daud+(@1-pa,q +(1-9aq,q, .

Hence, the conditioN reduces the choice of the geometry that one must,aglopo the
determination of the constamisqg, andk.
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THE VARIATIONAL EQUATIONS OF THE FIELD. — In a weltonstructed
theory, it is necessary that the field equations catebed from a variational principle
that is based upon a universal function that is an inviargand preferably, the simplest
invariant. Now, the simplest invariant of our geomesrthe scalar curvatuie, which is
defined by the equations:

(122) { NG = —26[VI'I;KM ~ 20 M
N = N;:“G*.
We are then led to impose the condition that:
VI. — The equations that are induced from:
(123) 5jmdx°... dx =0, R=N®

(in which x* and y remain constant, and in which one makes ¢hg give both the

equations of gravitation and the ones from elecagnetism that consist of
MAXWELL'’s second equatioff) in a vacuum.

Upon performing the variation, one will be ledthe equations?);:

! J

2-2pg+2pk
(124) K — 1K g —2 F:; = E R 1R, F"g)=0,

(125) zqz—aoq+ao)q505jﬁﬂzo,

in which K; and K are the well-known curvature tensor and scalaiR@mannian
geometry. (125) is the second MAXWELL equatiomiwacuum, if:

2_
(126) { o -2pg+ 2 pz 0,
q#z0.

Compare (124) with the equation for energy and isgu
(127) Kj— 1K g - 25 (F"F, -1 £, F"g,)=0
1 2 gIJ CZ i ih 2 gij ,

in which « is the gravitational constant. One sees thatnecessary and sufficient that:

(128) 2¢°—20q+ 2p) K =K f,

() The first MAXWELL equation is already a consequencglaf?).
() G.F. VI, pp. 308.
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so it will follow that ¢):

(129) ¢ —2pq+20>0

and

(130) k= g \ﬁ
o°-2pg+2pV 2

THE ORDINARY DIRAC EQUATION IN THE PROJECTIVE THERY. — It is
well-known that in the usual theory of relativitgne can obtain the current term in the
second MAXWELL equation by adding another univer&ahction M to N that is
deduced from the DIRAC equations for the matter avawWe shall first present that
method by using the language of projective geometry

The equation:

(131) a%a’=g”

defines an associative hypercomplex number systénsixteen numbers that are
generated by the five numbar®, a?, ..., a*. These five hypercomplex numbers can be
represented by co-contravariant affinors of valethwe in a four-dimensional local
auxiliary space, namely, tlspin spaced?):

0A 1A 2A 3A 4A
(132) aly, aly, ay, aly, aly.

In that case, one then has two transformatioriak® into consideration: On the one
hand, the affine transformations of the systenrarhks &) in the projective local spaces,
and on the other, the homogeneous affine transtangof the system of frames)(in
the local spin spaces. Those transformations laselately independent of each other.
Obviously, we impose the condition that all of cquations must be invariant with
respect to those two types of transformations. Willalefine the vectors and affinors of
that spin space in the usual manner with respetiteégroup of transformations o)
and one calls thespin vectorsandspinors. The magnitude:

(133) a's

is aprojector spinor which belongs to the local projective space by whits index«
and to the local spin space, by way of its indiégeand B. In the spin space, the
allowable transformations are not just the realrdoate transformations, but also all of
the transformations with complex coefficients o thomogeneous affine group. That
fact will lead us to the following consequence: c®irthe usual transformation of spin
vectors is given by the equatior (

(;) When one takeg? < 0, it is necessary thaf < 0 andg® — 20q + 2p < 0.
? G.F.V.

(® a. istheidentity spinor.
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(134) wh=aiy?, Ne = g1,

one can define another type of spin vector that ie@abpin vector of the second kind
which transform, like the preceding ones, except that dbefficients of the

transformationsz” , @ are the complex conjugates of tag , a (*):

(135) {"=a

[oe]]

6

' Ug -

>l 3

7%, 6= a,

@

It is obvious that the complex conjugates of the campts of an ordinary spin
vector are the components of a spin vector of thenskedund, andvice versa. In
addition, there also exist spinors (and spinor dessitieat carry both overbarred indices
and simple indices, for example:

(136) o

o= Oo

" >

Those spinors are calleHermitian spinors. The complex conjugates of the
components of a HERMITIAN spinor are the componerftamother HERMITIAN
spinor, which are called the conjugate spinor to theding. The principal letters of the
two conjugate spinors are always the same, but otieeaf is overbarred and the other
one is not. The most important HERMITIAN spinore #éine covariant or contravariant
spinors that are symmetric or alternating. That ptgp@vhich must not, in fact, be
confused with the proper of symmetry or alternation dir@ry spinors) is defined by the
equations:

(137) Prg= tDg, T0= T,

When one multiplies a symmetric HERMITIAN spinor b}(f—_l an alternating spinor
will result, andvice-versa.

W. PAULI proved that there exists an invariant symmettERMITIAN spinor of
rank 4 in spin space, namelg, ., that we call the covariafiindamental HERMITIAN

tensorin spin space?. One deduces tHendamental contravariant tensad “® from
Wyg -
A

(138) W Wh=al, W Cw,= al.

One can deducey,, from thed” by the equatior’:

A c‘ré‘ is theidentity spinor of the second kind.

() Loc. cit, pp. 347. The Hermitian form that corresponds to thabsjrfound already in the work of
E. CARTAN, “Les groupes réels, simples et continus,” Asher.'école Norm. Sup3l (1914), 265-355.
The spinor was rediscovered independently by V. BARGMANN, niB&ungen zur
allgemeinrelativistischen Fassung der Quantentheorie,” 8#rungsber. (1932), 347-354.

() W. PAULI, loc. cit, pp. 3, see also G. F. V, pp. 413-417. See also J. AOSTHN and J.
HAANTJES, “Konforme Feldtheorie IRs; and Spinraum,” Ann. d. Pisa (1934).
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(139) ar’

@ >

= W AT W
One can prove that the spin-affinors:

wa, = w,. a5, a,wt=a o,

=1
W) = Wse Ao Qe @ @ores Vo) @

(140) {
are symmetric and that the spin-affinors:

(141) o

=1
{ WAy, Oy,
WAy O W

are alternating'j.
In Euclidian space-time, the DIRAC equation camitten:

(142) a"(i—haﬂ —E¢ﬂ+mcqu¢/’*:
c
in homogeneous coordinates, in whigh' is the spin vector that represents the matter

wave. In the presence of a gravitational fielde emust replacé, with a symbolJ, for
the covariant differentiation of spin vectors. Tleavariant differentiation is deduced

from the condition that the derivative of must be zero.

One confirms the remarkable fact that there eyustsone possible differentiation for
contravariant densities of weight 1/4 of spin vestand for covariant densities of weight
— 1/4 of spin vectors, while the covariant diffeiation of spin vectors themselves
remains undetermined. Meanwhile, that indeternyirdies not pose any difficulty: One
must simply always take a spin vector dengity of weight + 1/4 to represent a matter

wave, and considen S to be a spinor of weight + 1/4 @ and of weight — 1/4 i
The parametersAQﬂ of the differentiation of a density of spin vectf* of weight 1/4

satisfy the equation:
(143) A,’jﬂ =0.
With the aid of that equation and:

(144) 0=0,a"% =0,ah+N%a't+ AL a*t- AS a*h,

one easily deduces that:
(145) AL, =—iNgalls +iacoa,s,.

() G.F.V, pp. 413. Equation (140) and (141) will no be longgid when one takes the signature
+———+,
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R K

When one replacel ;; with M., one will find the parameters:

R R
A A[A A [C
(146) A Bu _% M ,ulxi(au-KEB +7},a-l<(-c aa'/([B’
which defines a Riemannian connection.

Ultimately, the ordinary DIRAC equation is written in rhogeneous coordinates
while suppressing the indices of the spin space:

(147) (ha, —¢ +mcquz// a“[ (6#+/Fiﬂ)—§¢ﬂ+mcql}¢/:0.

Upon introducing the system of framey, (it is easy to write down that equation in the
well-known four-dimensional form.

R
THE GENERALIZED DIRAC EQUATION. — The operatdr, is an operator of
Riemannian geometry, and it is probable that inprojective theory, one must replace it
with [0, ; one will then obtain the wave equation in therfo

(148) a“(i—hDﬂ —f¢# +mcq1j¢/:a"[i—h(6# +/\l,)—f¢ﬂ +mcq,}//: 0.

When one takes (91), (115), (120), (145), and (1d#®) account, one will find that the
difference of the left-hand sides of equations {latl (148) is:

(149) Thaﬂ(mp—ﬂ,j - i_haﬂ(/\l,—/?pj . E__h(p—zq)af“q Q.

1h p
=7(p" 2g9)a**q, q,,

from which, one deduces that the passage to acpiragetheory will modify the known
results that relate to quanta only in the case eqber2q # 0.

THE VARIATIONAL EQUATION OF THE FIELD AND THE MATTER WAVE.
— On the usual theory, one obtains the universadriant by multiplying the left-hand
side of equation (147) b« /cgiw:

(150) hﬁzz—:ww (ha, —¢ +mcq,j
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R
That invariant is not real, but the solution to thelataynal equation is real, becaubé
R
is “practically real”; in other words, because the imagy part ofM is a divergence'Y.
Indeed, sinceva” is symmetric, one will have:

(151) I\?I—I\%I = %D(zﬁwa“ s+ wa* Dﬂwj DZ—K (zﬁwa"z/l)

c i C

The fundamental invariant of the projective theamyst obviously be:
R
(152) M:Z—CKL,ZM) (hDﬂ —¢ +mcq,j

We shall show tha¥l is also “practically real.” One has:

R
M-M —%ﬁbww(p 20)a"" ¢, g,

12 K o
=1 2P —2q)—i4ﬁwa“” WX X e

(153)

R
Since wa#* is alternating, the expression will be pure imagyn andM — M will be
real €).
The variational equation:

(154) 5j (M +91) d dxt dxé o dx = 0, m=MJ6

leads to the equation¥(

K
Kij _%ng _?(}Im};\ _711~7';|~7:k| g )

(155) )

K (R e p- 2C|h _
+?{9%e egZia)a(J(D.)—h—C@) Y- 24 ]{(427 0 w} 0,
R
(156) 0, Fi-epwap+ P20 poa aa'y=0  (a,=Ka,).
i

() H. WEYL, Gruppentheorie und Quantenmechar® ed., pp. 188.
R
(® When one takes the signature + —+, M — M will no longer be real, and one must tgke2q = 0
in order to mak&/ practically real.

() MRe signifies “real part of.”
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The second equation is identical with the completerseMAXWELL equation, up
to the term that contains that factpr<{2q). Therefore:

VII. — In order for the variational equatioifl54) to lead to the second Maxwell
equation with no additional ternit is necessary and sufficient that:

(157) p-2q=0.

By virtue of that equation and (118), one will have:

4 2
158 =_, =z,
(158) P=35. 457
and consequently (120):
(159) S,u/]/( = _% Our Ok _% Uik Qu _% 0 Q== O = S[/MK] :

Hence,Su« is alternating.
A connection for whichS,, is alternating has a very remarkable property. The

K

symmetric partf1 ;,» of N ; (for holonomic systems) constitutes a new connectiod, a

one easily proves that in order for the derivative&gfto be annulled for that connection,
it is necessary and sufficient thaf, must be alternating. In that case, and only in that
case, the auto-geodesics are identical with the auto-gesaésymmetric geometry.

We summarize the results of the preceding calcukiimm figure. In the plang q,
the cases that correspond to the points of the hypedralathe lineq = 0 must be
discarded by condition VI, and the cross-hatched partd)dogondition thaM should be
“practically” real. Condition Ill leads to the ling + g = 2 when one takes the auto-
geodesics, and to the limp= 2 when one takes the induced geodesics. Condition VII
leads to the lin@ —2q = 0. The theory of A. EINSTEIN and W. MAYER (wherade
projective) is represented by the lipe = 0, the theory of O. VEBLEN and B.
HOFFMANN is represented by the pol@t: p = 1,9 = 1 (symmetric connection), and
that point also represents the theory of W. PAUBE.(cit, 1933). The poinP is the
only point that fulfills all of our conditions I-VII.One sees that the auto-geodesics are
preferable, since the induced geodesics lead to a line thatragies into the forbidden
part of the plane and cuts the lipe- 20 = 0 at a poin& (permissible) that belongs to the
implausible signature +--+. In addition, the pointQ, which symbolizes the
symmetric connection, is found on the lipe- q = 2. There is no longer any difference

between the two types of geodesics at the gfiflitecauseP; = 0), but that point is not

as good because it gives neither symmetry nor the MAKMEqguations without the
additional term. On the contrary, the pdihtioes allow symmetry, and it is possible that
nature has such a preference for symmetric geometaed thill even accept additional
terms into the MAXWELL equation in order to preserve fiyenmetry. That is the
PAULI viewpoint. Meanwhile, one must recall that thierRannian connection itself is
not symmetric when one expresses it in projectivguage, which is a warning that one
must not exaggerate the value of the symmetry withouridho
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pX = total energ)
(induced geodes

O

p* = total energy
Maxvv_el 2 \ Einstein- (auto-geodesics)
equatonsy Mayer

theory

Figure 1 ).

The additional terms in equation (156) are extremely smadleed, they contain the
factor:

(160) k= 9 \ﬁ
o°-2pg+2pV 2

which is very small for all points that are nousited in the immediate neighborhood of
the hyperbola. That makes it quite improbable thgderiments can permit us to decide
whether one must add those terms to the equatideanwhile, it is not excluded that
upon developing the relativistic theory of quaraae will arrive at some very strong
arguments in order to be able to choose betwemmdQ definitively.

The projective theory realizes the unification tbe theories if gravitation and
electromagnetism in a very satisfying manner, big incapable of relating to the theory
of material particles, because the two functidvhandN do not follow from one and the
same principle. That is a grave defect. The prteeory then represents only a first
approximation, and it is clear that one must inticela new principle of one wishes to
arrive at a complete unification of all of the piayd theories.

Conference presentation at I'Institut Henri Ponécia February 1934.

Manuscript received on 27 March 1934.

() In this figure, one readg instead ofu



