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On the reversal of time in natural law
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Introduction. — If the probability of presence:
w (X, to) dx
is given for a particle that is diffusing or exhibiting BRON&N motion in the domain of
the abscissa(x + dx) at timety :

W (X, to) =wo (X)

then fort > to it will be the only solutiorw (x, t) of the diffusion equation:

o'w_ ow
ox? ot

)

that is equal to the given functiom (X) for t = to . — There is an extensive body of
literature on problems of this kind, which have many possit®mplications and
variations that might relate to special experimerdgalangements and methods of
observation in which the system that is treated do¢sanall need to be a diffusing
particle, but, for example, the needle in an electremietr K. W. F. KOHLRAUSCH’'s
arrangement for measuring the SCHWEIDLER fluctuatioms] a generalization of
equation (1) appears in its place, namely, the so-cal@HKER-PLANCK patrtial
differential equation for the system in question thasubject to any sort of random
influences {).

Now, such systems give rise to a class of problemsobaghility that have not been
looked at very much, if at all, up to now, and which aleaaly mathematically
interesting due to the fact that the answer is not provided sglution to FOKKER’s
equations, but, as we will show, by the product of the swmisitof two adjoint equations,
such that the temporal boundary conditions are not intbag®n the individual
solutions, but upon the product. Physically, there existdoae kinship with the

() A. FOKKER, Ann. Phys. (Leipzig}3(1914), 812.
M. PLANCK, these Berichte, 10 May 1917.
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interesting circle of problems that M. VON SMOLUCHOWSK) has unrolled in his

beautiful recent work on expectation times and retimes of very improbable states in
systems of diffusing particles. The conclusions thatmilleinfer in 8 6 can actually be

read off rom SMOLUCHOWSKI’s result already, but thean still be surprising in their
sharply paradoxical nature. In addition (8 4), they yielohes remarkable analogies with
guantum mechanics that seem quite worthy of further thdoghe.

8 1.— The simple example that | would like to treat herdeasfollowing one: Let the
probability of presence be given, not only fgrbut also for a second time potpt>to :

W (X, to) =wo (X); w (X, t1) =w (X).
How big is it during thentermediate time3 i.e., for anyt for which:
h<t<t;.

Obviously, w (x, t) is not a solution of (1), since any such solution would indeed be
determined already by itsitial value for all later times.w is also probably not a solution
of theadjoint equation:

0°w_ ow

= 2
ox? ot )

since such a solution would, in turn, be determined by itd finlue w; (x) for all
previoustimes. — Is there a contradiction in the problem statgéth Certainly not. One
can recognize that immediately in a simple special destevte would like to address.
We assume that we have encountered the partigieadttimet, and atx; at timet; . [wo
andw; are then the “leading functionsSgpitzenfunktiongrat x = X, (X = x4, resp.)]. An
auxiliary observer observes the position of the partiak timet, but without
communicating his result to us. The question that réAfstt probabilistic conclusions
can we infer about our two observations from thermediate observation that our
assistant made?

The answer is simple. | introduce the notatgiix, t) for the well-knownbasic
solutionto (1):

X2

e 0t (3)

g ) = ———
[ 4nDt

That is the probability density at the locatioat timet > 0 when the particle started»at
=0 at timet = 0. — | now let my particle start fror= X, very many times; sayy times.
From theseN attempts, | select the ones that take the patic(g; x; + dx) at timet; .
Their number is:

n =N g(Xl—Xo, tl—to) Xm .

) M. VON SMOLUCHOWSKI, Bull. Akad. Cracovie A (1913), pp. 418éttinger Vortrage (by
Teubner, 1914), pp. 88t seq. Sitz.-Ber. d. Wien Akad. d. Wiss. 223 (1914), 2381jbid., 124 (1915),
pp. 263, 339; Phys. Zeit6 (1915), 321; Ann. Phys. (LeipzigB (1915), 1103.
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| once more select from them the ones that:

1. Take the particle to(x + dx) at timetand then
2. Take it toXq; x4 +dx;) at timet; .

Their number is:
N=Ng(X-—X%,t—t)dxg(x—x t1—t)dx .

The probability in question is obviously the quotiariing; i.e.:

9(x— %, t=4) o(%X- X1 9

4
g(x =%, t—t) “

w(x t) =

That is the solution for the special case in wlocle iscertain about the position of the
particle at timeg, andt; .

8 2.— We now consider the general case. The plattaclkais the following: We let
a very large numbeéX of particles start at timg, and in fact:

N Wb (Xo) do (5)
of them from the domairnx{; X + dx). We observe that at tintewe will encounter:
N w (X)) dxg (6)

of them in the domainx( ; x; + dx). (Incidental remark: This observation should be
more or lessurprising since it will brand our series of attempts ashganore or less
exceptional One would theexpectto have:

Ndx [ w(%) dx= % t= b dy, 8)

instead of (6). However, that is not true heree &8sume that the distributions (5) and
(6) aretrue and must draw our conclusions from tfaadt.)

The solution to this more general problem is appdy much more difficult than the
special case that was treated before. If we wishdshow how many of the particles (5)
are found among the ones at (6) then we would kawsultiply that number by (4) and
integrate overp andx; from —o to + . The determination of the aforementioned
number is the main problem.

We divide thex-axis into cells of equal size whose lengths wengefo be the unit
length, for the sake of simplicity. We latdenote the number (5) that start in kfecell
atto, and letb, denote the number (6) that are encountered ifi'tbell att; . Letgy be
thea priori probability for a particle that starts in tkB cell to enter thé" one; I.e.gu is
a notation forg (x; — X, t1 —tp) that is suitable for the present purposes, amdhaisgy =
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ga . Finally, letcy be the number of particles that arrive in tAeell fromk" one. One
then has the following equations:

> c,=a foranyk

Y. c,=h foranyl. (7)

There exists one and only one identity between equgfidne/hich arises from:
2.&=2.h=N (8)
k |

Naturally, the system of numbecg is not given. The actually-observed shift of the
particles can come about for any of the systemsyothat are compatible with (7).
However, it will be correct in the limN =« (which is indeed what is always intended),
assuming that it endows the systentgthat has the highest probability with complete
certainty.

The particle shift that is actually-observed can evemec about in many different
ways for a fixedcy . That possible realization endows the observed \aitt the

probability:
179 - (9)

However, as we said, there are many such equadlgatme possible realizations, namely:
|
M LI (10)
k |_| Ca*
|

of them. The product of (9) and (10) yields theatprobability that the observed fact is
associated with a well-defined system of numisgrs

Ma I @

We now look for the system ad; that makes (11) a maximum under the auxiliary
condition (7) in the usual way. We easily findttha

Cui =0 ¢k @ (12)

The ¢« and ¢ are LAGRANGE multipliers. They are determinednfrahe auxiliary
conditions:

‘/’kz 0w ¥ =38 foranyk
|

@Y 9.4 =h foranyl. (13)
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We now have to translate (12) and (13) back into thgulage of continuaay, b are
given by (5) and (6).¢k , ¢ are functions ox, and indeed we would like to set:

=N (%) dx, @= N ¢(x) dx .

Furthermore, one hag =g (X1 —Xo, t1 —tp). Therefore:

Yo) [ 90X~ % t— @) dx= w( %),
N (13)

Ax) [ 906 % t- @ () dx= w( %,

and:
C (Xo, X1) dxo dxe =N g (X1 —Xo, t1 —to) & (o) @(x1) dxo dxq (12)

will be desired number of particles that diffusenfr (xo, Xo + dxo) to (X1, X1 + dx;). If we
multiply (12) by (4) and integrate oveg andx; then (after dividing byN) we will get
the probability density at the locatigrat timet:

wxt) = [ g(x=% t=)@Op) dyC d x= xf Yo P (14)

This is the solution to the probleexpressed in terms of solutions of the pair ofgrae
equations (13.

8 3. — A discussion of this pair of equations wouldtamly be interesting, but
presumably not entirely easy, since it is nonlindaregard the existence and uniqueness
of the solution (except for perhaps especiallydneaous givensw, wi) as being agreed
upon, due to the reasonableness of the probleenstat that led to these equations in an
entirely unique and precise manner. For the moneatare less interested in how one
actually constructs they and ¢ from well-defined givensw, andw; than we are in the
general form ofw (x, t). It is extremely transparent, namely:is the product of any
solution of(1) with any solution of2). The first factor in (14) is then nothing katy
solution of (1), but characterized Iy (xo), viz., its distribution of values at tintg ; an
analogous statement will be true for the secontbfan (14), which relates to equation
(2). Furthermore, it easily follows from (1) ar@) ¢hat a product of two solutions will

have a time-independer‘f dx..., and will therefore remain normalized to 1 ifwere

normalized to 1 at any arbitrary time. (Naturalhe following restriction must be made:

+00

Only those two solutions can be employed whoseumiolhas dinite jdx..., such that

one can normalize it to 1.) Hence, one can therosh arbitrarilyany twotime-points
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within those time-spans for which the product of the gmristremains regular to be the
time pointsty, t; at which the probability densities are observed. (Ndyyrdiey are
observed in such a way that the values of the prodaat\an.) The product then yields
the probability density fointermediate times.

8 4.— Today, what is probably the most interesting thing abautesult is probably
its striking formal analogy with quantum mechanics. eft@in relationship between the
basic equation of wave mechanics and FOKKER’s equatiopriudmbly been imposed
upon each of them, as well as the statistical concepictare that is linked to both of
them that is sufficiently familiar in both circled mleas. Just the same, upon closer
consideration, they exhibit two very serious discremciOne of them is that in the
classical theory of random systems, the probability desditemselves are subject to the
linear differential equation, while in wave mechanicsjsitthe so-called probability
amplitudes, from which all probabilities will be consted bilinearly, that are subject to
such an equation. The second discrepancy lies in ttetliat in both cases, the

differential equation indeed has first order in time, batappearance of a factor gf-1

in the wave equations gives it a hyperbolic (or, phylicgeaking, reversible) character,
in contrast to the parabolic-irreversible charaofehe FOKKER equation.

In those two regards, the example that was treatedeabzhibits many close
analogies with wave mechanics, even though it related ¢tassical, truly-reversible
system. The probability density is not, as in wave haacs, the solution obne
FOKKER equation, but the product of the solutions of two sous that differ only by
the sign of time. Therefore, the answer distingiashe time direction. If one switches
Wo (X) andw; (X) then one will get precisely the opposite evolutionvdk, t) betweert,
andt; . (In a certain sense, that is generally true fersimpler problem statement with
only one temporal boundary-value function: If merely phebability density is given at
time to, and nothing else, then it will have precisely thensasalue at timey + t that it
had at timedg —t.)

I would still rather not predict whether or not thealagy will prove useful in
clarifying quantum-mechanical concepts. In spite of if #llis obvious that the

aforementioned,/ -1 represents a very deep-rooted difference. — | cannot hedgliny
from mentioning some words of A. S. EDDINGTON on thieipretation of the space of

wave mechanics (even if they are quite gloomy) tpaeared on pp. 21@&t seq.of his
Gifford lectures (“The nature of the physical world,” Gardge 1928):

“The entire interpretation is very vague, but it seeéondepend upon whether one is
dealing with a probability by which one knows what is happeamg probability for the
sake of prediction.¢ ¢ will be preserved when one introduces two symmetric Byste
of ¢rwaves that move in opposite directions; presumably,obibem has something to
do with a probabilistic conclusion about the known (esuased to be known) state of the
system at a later time-point.”
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8 5.— We would now like to write (14) in the form:
w(xt) =W (xt) D (xt), (15)

in which it is assumed th&® is a solution of (1)® is a solution of (2), and the product
®W is normalized to 1:

0’y o 0°d 0P v
-9 dWdx= 1. 16
o ot X ot _J; (16)

If one multiplies the first equation by, the second one byx¥, and adds them, then

that will give:
—(XCDHJ) Dxi(CDG—qJ waﬁj :
ox\ ox 0Xx

+00

One forms j dx... and integrates by parts:

—00

On the left-hand side is thvelocity by which thecenter of masef the probability density
displaces. However, the integral on the right-hsidd is constant, since:

2 2 3
g kg Iawacb 6¢dx_Ia\iJ6¢ qJ6(1390|X
dt - 6x ot 0x axat ot ox oXx

W o)
= I dx =0.
' OX X 0X ax2

The center of mass then moves with constant welfyoitn the initial position to the
final position.

In the special case in which the initial and final gos# of the particles are known
precisely, equation (4) allows one to establish that ghabability maximum also
displaces uniformly from the initial to the final posn. If (4) is a GAUSSian
distribution for every time point then the center cis® and the maximum will agree at
every time point.
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8 6. — In one special case, the solution to the pair efgmatl equations (1Bcan be
given immediately. Namely, it is the one when thensity distributionw; that is
prescribed at the end of the interval is preciselyotne that one would have developed
from the initial distributionng by the free reign of the diffusion equation (1); i.ehew:

Wi () = [ 904 =%t =) we( ) d,

Namely, one must obviously then set:
@p=1; Y=EW .

w (x, t) will then satisfy equation (1) in the whole time iM&r If one represents it by a
diffusion process involving many particles then it will lze thermodynamically
completelynormal diffusion process.

However, the solution of (18would be just as simple even when, conversely, the
initial distribution w is precisely the one that would evolve from the fohatributionw;
during the timet; —to by a free reign of thaormal (!) diffusion equation (1), or in other
words: when the final distributiow; is given in such a way that it would emerge from
the initial distribution by thenverted diffusion equation (2) in timé; —t, . The
assumption is then written:

Wo (0) = [ 9(X =%, 4= t) dx,

and the solutions of (1Bare:
@Y= Wy Y= 1.

w (X, t) then satisfies the “inverted” equation (2) in the entime interval, so the
diffusion process that is being represented will bénastodynamically abnormal as one
can imagine.

Naturally, that originates in the comical choice odubdary conditions, but
nonetheless admits an entirely interesting appbaaiti reality, namely, to the manner by
which one can construct especially improbable exceptistailes for a system in
thermodynamic equilibrium, which are to be expected and/then, even if they are also
rarely extraordinary.

Assume, in fact, that we have established the normfarin spatial distribution for a
system of diffusing particles at tintg that goes to a quite significantly deviated one at
time t;, but not so significant that it would not go back tmarkedly uniform distribution
in a timet; — ty according to the diffusion law. Furthermore, it skdobé known with
certainty that at the intermediate times the systwould be left in unperturbed
thermodynamic equilibrium, or in other words, tha¢ tibnormal distribution that we
observe is actually a spontaneous thermodynamic flucstugthenomenon. In our
opinion, if we were to then ask whigast historythat the observed strongly-abnormal
distribution of probable ways might have had then veeild have to reply that its first
manifestation would probably lie as far back as necedsaris last traces to vanish once
more. That is, such that from that first manifestatonward, an unimaginable swelling
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of the abnormality would take place due to the diffusiomesur which almost always
points almost exactly in the direction of concentratyadient (not its decline!), but
corresponds precisely to the material consianexcept for that difference in sign. In
brief: such that the abnormality would probably arigerfra regular diffusion process by
precisely a time reversal. Of course, this statenoérpinion on the probable past
history would only be a judgment based upon probability, betiéve that it would take
on precisely the high degree of “almost certainty” as ¢brresponding statement of
opinion about the probable later history; i.e., aboutthrenal diffusion process that one
would expect fot >t .

Naturally, one should not be led by that finding toriistaken belief that perhaps a
diffusion flux in the direction ofthe gradient and with a magnitude that corresponds
precisely to the material constddtshould bein and of itselfmuch less improbable than
any magnitude that is more arbitrarily inclined. Our judgnuéirobability is not based
upon only the mechanism of the diffusion process, but wsg essentially upon the
strongly-abnormal final state that is assumed todbeadly observed. It turns out that it
can be attained by a precise reversal of the law fafstbn infinitely more easily and
with a much more extraordinary probability than it caamy other less radical way.

One can probably transfer the statement with no furtheught to arbitrary
thermodynamic fluctuation phenomena, as long as thlegeel the domain of normal
fluctuation processes. The so-called irreversible lafvsature actually distinguish no
time direction when one interprets them statistycallVhat they say in a special case then
depends upon only the temporal boundary conditions at tresSesections”t{ andt,),
and is completely symmetric with respect to thosedwmss-sections, without arriving at
their temporal sequence in any way. That will be digglisnly by the fact that we
generally regargust oneof the two cross-sections as being actually observede el
other one will obey the trustworthy rule that whent theoss-section is moved to a
sufficient distance in time, a state of great disordemaximal entropy must prevail
there. The fact that this rule is the correct @nactually quite remarkable, and | believe
that it is not logically deducible. However, in any eyat also does not distinguish a
time direction, since it is true just the same fohei of the two time directions that one
also shifts the second cross-section, as long asrieigly sufficiently separated in time
from the first one.

Moreover, all of that was probably an opinion thattB@MANN expressed before.
One should understand nothing else when he states khwifg, for example, at the end
of his treatis((le “Uber die sogenanhtekurve” [Math. Ann.50 (1898), pp. 325; Ges. Abh.
[, no. 128] ():

“There is no doubt that a world would be just as cwadde in which all natural
processes evolved in the opposite sequence. Howeven dhat lived in that reversed
world would by no means perceive matters differentmfrthe way that we do. He
would just refer to what we call the future as the pasd, conversely.”

() See alsoGastheorie Part II, § 90; furthermore, Natubd (1895), 413; Wied. Anr60 (1897), 392;
one can then confer the aforementioned papers of SMIHHOWSKI; of the more recent authors, G. N.
LEWIS especially went into the principle of the “symtny of time” [e.g., Phys. Re®5 (1930), 1533, and
elsewhere].
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Whoever then thinks that the thorough founding of that dloesis on the diffusion
process that SMOLUCHOWKSI studied so thoroughly in conneactitim this is trivial
and superfluous must forgive me if | prefer to agree Wwith. In discussions of these
things, | occasionally meet up with noteworthy contraaiit that make me uncertain.
The opinion has been expressed that laws forctbation of strongly-abnormal state
from a normal one by fluctuations are not nearly aspmiing as the ones for its
vanishing and that, moreover, a well-defined abnormal statebei attainedrelatively
often by a completely disordered evolution thana the mirror image in time of a
normal evolution when one piles up the rare cases inhwihiarises by sufficiently long
observation times.

8 7.— The arguments of the first three paragraphs are apglitaibhany complicated
cases with little alteration: e.g., several spatiardinates, variable diffusion coefficient,
external forces that are any sort of function of positi For the probability density, one
always gets the product of the solutions to two adjequations that generally differ by
not only the sign of time, but also in their othents. For the basic solutions [cfypra
equation (3)] to the adjoint equations, one finds the Ilginfand certainly not new)
theorem that they go to each other by permuting thedotades of the starting point and
the singular point and changing the sign of time. Hawelvwould not like to go further
into these matters until it has been established whetiee can actually employ them to
obtain a better understanding of quantum mechanics.




