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 Introduction.  – If the probability of presence: 
 

w (x, t0) dx 
  
is given for a particle that is diffusing or exhibiting BROWNian motion in the domain of 
the abscissa (x, x + dx) at time t0 : 

w (x, t0) = w0 (x) 
 
then for t > t0 it will be the only solution w (x, t) of the diffusion equation: 
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that is equal to the given function w0 (x) for t = t0 . – There is an extensive body of 
literature on problems of this kind, which have many possible complications and 
variations that might relate to special experimental arrangements and methods of 
observation in which the system that is treated does not at all need to be a diffusing 
particle, but, for example, the needle in an electrometer for K. W. F. KOHLRAUSCH’s 
arrangement for measuring the SCHWEIDLER fluctuations, and a generalization of 
equation (1) appears in its place, namely, the so-called FOKKER-PLANCK partial 
differential equation for the system in question that is subject to any sort of random 
influences (1). 
 Now, such systems give rise to a class of problems in probability that have not been 
looked at very much, if at all, up to now, and which are already mathematically 
interesting due to the fact that the answer is not provided by a solution to FOKKER’s 
equations, but, as we will show, by the product of the solutions of two adjoint equations, 
such that the temporal boundary conditions are not imposed upon the individual 
solutions, but upon the product.  Physically, there exists a close kinship with the 

                                                
 (1) A. FOKKER, Ann. Phys. (Leipzig) 43 (1914), 812. 
  M. PLANCK, these Berichte, 10 May 1917. 
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interesting circle of problems that M. VON SMOLUCHOWSKI (1) has unrolled in his 
beautiful recent work on expectation times and return times of very improbable states in 
systems of diffusing particles.  The conclusions that we will infer in § 6 can actually be 
read off from SMOLUCHOWSKI’s result already, but they can still be surprising in their 
sharply paradoxical nature.  In addition (§ 4), they yield some remarkable analogies with 
quantum mechanics that seem quite worthy of further thought to me. 
 
 
 § 1. – The simple example that I would like to treat here is the following one: Let the 
probability of presence be given, not only for t0, but also for a second time point t1 > t0 : 
 

w (x, t0) = w0 (x); w (x, t1) = w1 (x). 
 
How big is it during the intermediate times?; i.e., for any t for which: 
 

t0 ≤ t ≤ t1 . 
 

Obviously, w (x, t) is not a solution of (1), since any such solution would indeed be 
determined already by its initial value for all later times.  w is also probably not a solution 
of the adjoint equation: 
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since such a solution would, in turn, be determined by its final value w1 (x) for all 
previous times. – Is there a contradiction in the problem statement?  Certainly not.  One 
can recognize that immediately in a simple special case that we would like to address.  
We assume that we have encountered the particle at x0 at time t0 and at x1 at time t1 . [w0 
and w1 are then the “leading functions” (Spitzenfunktionen) at x = x0 (x = x1, resp.)].  An 
auxiliary observer observes the position of the particle at time t, but without 
communicating his result to us.  The question that reads: What probabilistic conclusions 
can we infer about our two observations from the intermediate observation that our 
assistant made? 
 The answer is simple.  I introduce the notation g (x, t) for the well-known basic 
solution to (1): 

g(x, t) = 
2
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That is the probability density at the location x at time t > 0 when the particle started at x 
= 0 at time t = 0. – I now let my particle start from x = x0 very many times; say, N times.  
From these N attempts, I select the ones that take the particle to (x1; x1 + dx1) at time t1 .  
Their number is: 

n1 = N g (x1 – x0 , t1 – t0) dx1 . 
                                                
 (1) M. VON SMOLUCHOWSKI, Bull. Akad. Cracovie A (1913), pp. 418; Göttinger Vorträge (by 
Teubner, 1914), pp. 89, et seq.; Sitz.-Ber. d. Wien Akad. d. Wiss. 2a 123 (1914), 2381; ibid., 124 (1915), 
pp. 263, 339; Phys. Zeit. 16 (1915), 321; Ann. Phys. (Leipzig) 48 (1915), 1103. 



Schrödinger – On the reversal of time in natural law 3 

 I once more select from them the ones that: 
 
 1. Take the particle to (x; x + dx) at time t and then 
 2. Take it to (x1; x1 + dx1) at time t1 . 
 
Their number is: 

n = N g (x – x0 , t – t0) dx g (x1 – x, t1 – t) dx1 . 
 

The probability in question is obviously the quotient n / n1; i.e.: 
 

w (x, t) = 0 0 1 1

1 0 1 0

( , ) ( , )

( , )

g x x t t g x x t t

g x x t t

− − − −
− −

.    (4) 

 
That is the solution for the special case in which one is certain about the position of the 
particle at times t0 and t1 . 
 
 
 § 2. – We now consider the general case.  The plan of attack is the following: We let 
a very large number N of particles start at time t0, and in fact: 
 

N w0 (x0) dx0      (5) 
 

of them from the domain (x0 ; x0 + dx0).  We observe that at time t1 we will encounter: 
 

N w1 (x1) dx1      (6) 
 
of them in the domain (x1 ; x1 + dx1).  (Incidental remark: This observation should be 
more or less surprising, since it will brand our series of attempts as being more or less 
exceptional.  One would then expect to have: 
 

1 0 0 1 0 1 0 0( ) ( , )N dx w x g x x t t dx
+∞

−∞

− −∫ ,    (6′) 

 
instead of (6).  However, that is not true here.  We assume that the distributions (5) and 
(6) are true and must draw our conclusions from that fact.) 
 The solution to this more general problem is apparently much more difficult than the 
special case that was treated before.  If we wished to know how many of the particles (5) 
are found among the ones at (6) then we would have to multiply that number by (4) and 
integrate over x0 and x1 from – ∞ to + ∞.  The determination of the aforementioned 
number is the main problem. 
 We divide the x-axis into cells of equal size whose lengths we define to be the unit 
length, for the sake of simplicity.  We let ak denote the number (5) that start in the kth cell 
at t0, and let b1 denote the number (6) that are encountered in the l th cell at t1 .  Let gkl be 
the a priori probability for a particle that starts in the kth cell to enter the l th one; i.e., gkl is 
a notation for g (x1 – x0, t1 – t0) that is suitable for the present purposes, and one has glk = 
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gkl .  Finally, let ckl be the number of particles that arrive in the l th cell from kth one.  One 
then has the following equations: 
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There exists one and only one identity between equations (7), which arises from: 
 

k
k

a∑ = l
l

b∑ = N.     (8) 

 
Naturally, the system of numbers ckl is not given.  The actually-observed shift of the 
particles can come about for any of the systems of ckl that are compatible with (7).  
However, it will be correct in the limit N = ∞ (which is indeed what is always intended), 
assuming that it endows the system of ckl that has the highest probability with complete 
certainty. 
 The particle shift that is actually-observed can even come about in many different 
ways for a fixed ckl .  That possible realization endows the observed fact with the 
probability: 

( ) klc
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k l

g∏∏ .      (9) 

 
However, as we said, there are many such equally-probable possible realizations, namely: 
 

!

!
k

k kl
l

a

c∏∏
      (10) 

 
of them.  The product of (9) and (10) yields the total probability that the observed fact is 
associated with a well-defined system of numbers ckl : 
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We now look for the system of ckl that makes (11) a maximum under the auxiliary 
condition (7) in the usual way.  We easily find that: 
 

ckl = gkl ψk φl .      (12) 
 
The ψk and φl are LAGRANGE multipliers.  They are determined from the auxiliary 
conditions: 
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 We now have to translate (12) and (13) back into the language of continua.  ak , bl are 
given by (5) and (6).  ψk , φl are functions of x, and indeed we would like to set: 
 

ψk = N ψ (x0) dx0 ,   φl = N ψ (x1) dx1 . 

 
Furthermore, one has gkl = g (x1 – x0 , t1 – t0).  Therefore: 
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and: 
c (x0, x1) dx0 dx1 = N g (x1 – x0 , t1 – t0) ψ (x0) φ (x1) dx0 dx1    (12′) 

 
will be desired number of particles that diffuse from (x0 , x0 + dx0) to (x1 , x1 + dx1).  If we 
multiply (12′) by (4) and integrate over x0 and x1 then (after dividing by N) we will get 
the probability density at the location x at time t: 
 

w (x, t) = 0 0 0 0 1 1 1 1( , ) ( ) ( , ) ( )g x x t t x dx g x x t t x dxψ φ
+∞ +∞

−∞ −∞

− − ⋅ − −∫ ∫ .  (14) 

 
This is the solution to the problem, expressed in terms of solutions of the pair of integral 
equations (13′). 
 
 
 § 3. – A discussion of this pair of equations would certainly be interesting, but 
presumably not entirely easy, since it is nonlinear.  I regard the existence and uniqueness 
of the solution (except for perhaps especially treacherous givens w0, w1) as being agreed 
upon, due to the reasonableness of the problem statement that led to these equations in an 
entirely unique and precise manner.  For the moment, we are less interested in how one 
actually constructs the ψ and φ from well-defined givens w0 and w1 than we are in the 
general form of w (x, t).  It is extremely transparent, namely: It is the product of any 
solution of (1) with any solution of (2).  The first factor in (14) is then nothing but any 
solution of (1), but characterized by ψ (x0), viz., its distribution of values at time t0 ; an 
analogous statement will be true for the second factor in (14), which relates to equation 
(2).  Furthermore, it easily follows from (1) and (2) that a product of two solutions will 

have a time-independent dx
+∞

−∞
∫ …, and will therefore remain normalized to 1 if it were 

normalized to 1 at any arbitrary time.  (Naturally, the following restriction must be made: 

Only those two solutions can be employed whose product has a finite dx
+∞

−∞
∫ …, such that 

one can normalize it to 1.)  Hence, one can then choose arbitrarily any two time-points 
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within those time-spans for which the product of the solutions remains regular to be the 
time points t0, t1 at which the probability densities are observed. (Naturally, they are 
observed in such a way that the values of the product are even.)  The product then yields 
the probability density for intermediate times. 
 
 
 § 4. – Today, what is probably the most interesting thing about our result is probably 
its striking formal analogy with quantum mechanics.  A certain relationship between the 
basic equation of wave mechanics and FOKKER’s equation has probably been imposed 
upon each of them, as well as the statistical conceptual picture that is linked to both of 
them that is sufficiently familiar in both circles of ideas.  Just the same, upon closer 
consideration, they exhibit two very serious discrepancies.  One of them is that in the 
classical theory of random systems, the probability densities themselves are subject to the 
linear differential equation, while in wave mechanics, it is the so-called probability 
amplitudes, from which all probabilities will be constructed bilinearly, that are subject to 
such an equation.  The second discrepancy lies in the fact that in both cases, the 

differential equation indeed has first order in time, but the appearance of a factor of 1−  

in the wave equations gives it a hyperbolic (or, physically speaking, reversible) character, 
in contrast to the parabolic-irreversible character of the FOKKER equation. 
 In those two regards, the example that was treated above exhibits many close 
analogies with wave mechanics, even though it related to a classical, truly-reversible 
system.  The probability density is not, as in wave mechanics, the solution of one 
FOKKER equation, but the product of the solutions of two equations that differ only by 
the sign of time.  Therefore, the answer distinguishes no time direction.  If one switches 
w0 (x) and w1 (x) then one will get precisely the opposite evolution of w (x, t) between t0 
and t1 .  (In a certain sense, that is generally true for the simpler problem statement with 
only one temporal boundary-value function: If merely the probability density is given at 
time t0, and nothing else, then it will have precisely the same value at time t0 + t that it 
had at time t0 – t.) 
 I would still rather not predict whether or not the analogy will prove useful in 
clarifying quantum-mechanical concepts.  In spite of it all, it is obvious that the 

aforementioned 1−  represents a very deep-rooted difference. – I cannot help myself 

from mentioning some words of A. S. EDDINGTON on the interpretation of the space of 
wave mechanics (even if they are quite gloomy) that appeared on pp. 216, et seq. of his 
Gifford lectures (“The nature of the physical world,” Cambridge 1928): 
 
 “The entire interpretation is very vague, but it seems to depend upon whether one is 
dealing with a probability by which one knows what is happening or a probability for the 
sake of prediction.  ψ ψ* will be preserved when one introduces two symmetric systems 
of ψ-waves that move in opposite directions; presumably, one of them has something to 
do with a probabilistic conclusion about the known (or assumed to be known) state of the 
system at a later time-point.” 
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 § 5. – We would now like to write (14) in the form: 
 

w (x, t) = Ψ (x, t) Φ (x, t),     (15) 
 
in which it is assumed that Ψ is a solution of (1), Φ is a solution of (2), and the product 
ΦΨ is normalized to 1: 
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If one multiplies the first equation by xΦ, the second one by – xΨ, and adds them, then 
that will give: 
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On the left-hand side is the velocity by which the center of mass of the probability density 
displaces.  However, the integral on the right-hand side is constant, since: 
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 The center of mass then moves with constant velocity from the initial position to the 
final position. 
 
 In the special case in which the initial and final positions of the particles are known 
precisely, equation (4) allows one to establish that the probability maximum also 
displaces uniformly from the initial to the final position.  If (4) is a GAUSSian 
distribution for every time point then the center of mass and the maximum will agree at 
every time point. 
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 § 6. – In one special case, the solution to the pair of integral equations (13′) can be 
given immediately.  Namely, it is the one when the density distribution w1 that is 
prescribed at the end of the interval is precisely the one that one would have developed 
from the initial distribution w0 by the free reign of the diffusion equation (1); i.e., when: 
 

w1 (x1) = 1 0 1 0 0 0 0( , ) ( )g x x t t w x dx
+∞

−∞

− −∫ . 

 
Namely, one must obviously then set: 
 

φ ≡ 1;  ψ ≡ w0 . 
 
w (x, t) will then satisfy equation (1) in the whole time interval.  If one represents it by a 
diffusion process involving many particles then it will be a thermodynamically 
completely normal diffusion process. 
 However, the solution of (13′) would be just as simple even when, conversely, the 
initial distribution w0 is precisely the one that would evolve from the final distribution w1 
during the time t1 – t0 by a free reign of the normal (!) diffusion equation (1), or in other 
words: when the final distribution w1 is given in such a way that it would emerge from 
the initial distribution by the inverted diffusion equation (2) in time t1 – t0 .  The 
assumption is then written: 

w0 (x0) = 1 0 1 0 1( , )g x x t t dx
+∞

−∞

− −∫ , 

and the solutions of (13′) are: 
φ ≡ w1;  ψ ≡ 1. 

 
w (x, t) then satisfies the “inverted” equation (2) in the entire time interval, so the 
diffusion process that is being represented will be as thermodynamically abnormal as one 
can imagine. 
 Naturally, that originates in the comical choice of boundary conditions, but 
nonetheless admits an entirely interesting application in reality, namely, to the manner by 
which one can construct especially improbable exceptional states for a system in 
thermodynamic equilibrium, which are to be expected now and then, even if they are also 
rarely extraordinary. 
 Assume, in fact, that we have established the normal uniform spatial distribution for a 
system of diffusing particles at time t0 that goes to a quite significantly deviated one at 
time t1, but not so significant that it would not go back to a markedly uniform distribution 
in a time t1 – t0 according to the diffusion law.  Furthermore, it should be known with 
certainty that at the intermediate times the system would be left in unperturbed 
thermodynamic equilibrium, or in other words, that the abnormal distribution that we 
observe is actually a spontaneous thermodynamic fluctuation phenomenon.  In our 
opinion, if we were to then ask which past history that the observed strongly-abnormal 
distribution of probable ways might have had then we would have to reply that its first 
manifestation would probably lie as far back as necessary for its last traces to vanish once 
more.  That is, such that from that first manifestation onward, an unimaginable swelling 
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of the abnormality would take place due to the diffusion current, which almost always 
points almost exactly in the direction of concentration gradient (not its decline!), but 
corresponds precisely to the material constant D, except for that difference in sign.  In 
brief: such that the abnormality would probably arise from a regular diffusion process by 
precisely a time reversal.  Of course, this statement of opinion on the probable past 
history would only be a judgment based upon probability, but I believe that it would take 
on precisely the high degree of “almost certainty” as the corresponding statement of 
opinion about the probable later history; i.e., about the normal diffusion process that one 
would expect for t > t1 . 
 Naturally, one should not be led by that finding to the mistaken belief that perhaps a 
diffusion flux in the direction of the gradient and with a magnitude that corresponds 
precisely to the material constant D should be in and of itself much less improbable than 
any magnitude that is more arbitrarily inclined.  Our judgment of probability is not based 
upon only the mechanism of the diffusion process, but also very essentially upon the 
strongly-abnormal final state that is assumed to be actually observed.  It turns out that it 
can be attained by a precise reversal of the law of diffusion infinitely more easily and 
with a much more extraordinary probability than it can in any other less radical way. 
 One can probably transfer the statement with no further thought to arbitrary 
thermodynamic fluctuation phenomena, as long as they exceed the domain of normal 
fluctuation processes.  The so-called irreversible laws of nature actually distinguish no 
time direction when one interprets them statistically.  What they say in a special case then 
depends upon only the temporal boundary conditions at two “cross-sections” (t0 and t1), 
and is completely symmetric with respect to those two cross-sections, without arriving at 
their temporal sequence in any way.  That will be disguised only by the fact that we 
generally regard just one of the two cross-sections as being actually observed, while the 
other one will obey the trustworthy rule that when that cross-section is moved to a 
sufficient distance in time, a state of great disorder or maximal entropy must prevail 
there.  The fact that this rule is the correct one is actually quite remarkable, and I believe 
that it is not logically deducible.  However, in any event, it also does not distinguish a 
time direction, since it is true just the same for either of the two time directions that one 
also shifts the second cross-section, as long as it is merely sufficiently separated in time 
from the first one. 
 Moreover, all of that was probably an opinion that BOLTZMANN expressed before.  
One should understand nothing else when he states the following, for example, at the end 
of his treatise “Über die sogenannte H-Kurve” [Math. Ann. 50 (1898), pp. 325; Ges. Abh. 
III, no. 128] (1): 
 
 “There is no doubt that a world would be just as conceivable in which all natural 
processes evolved in the opposite sequence.  However, a man that lived in that reversed 
world would by no means perceive matters differently from the way that we do.  He 
would just refer to what we call the future as the past, and conversely.” 
 

                                                
 (1) See also, Gastheorie, Part II, § 90; furthermore, Nature 51 (1895), 413; Wied. Ann. 60 (1897), 392; 
one can then confer the aforementioned papers of SMOLUCHOWSKI; of the more recent authors, G. N. 
LEWIS especially went into the principle of the “symmetry of time” [e.g., Phys. Rev. 35 (1930), 1533, and 
elsewhere].  
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 Whoever then thinks that the thorough founding of that older thesis on the diffusion 
process that SMOLUCHOWKSI studied so thoroughly in connection with this is trivial 
and superfluous must forgive me if I prefer to agree with him.  In discussions of these 
things, I occasionally meet up with noteworthy contradictions that make me uncertain.  
The opinion has been expressed that laws for the creation of strongly-abnormal state 
from a normal one by fluctuations are not nearly as compelling as the ones for its 
vanishing, and that, moreover, a well-defined abnormal state will be attained relatively 
often by a completely disordered evolution that is not the mirror image in time of a 
normal evolution when one piles up the rare cases in which it arises by sufficiently long 
observation times. 
 
 
 § 7. – The arguments of the first three paragraphs are applicable to many complicated 
cases with little alteration: e.g., several spatial coordinates, variable diffusion coefficient, 
external forces that are any sort of function of position.  For the probability density, one 
always gets the product of the solutions to two adjoint equations that generally differ by 
not only the sign of time, but also in their other terms.  For the basic solutions [cf., supra, 
equation (3)] to the adjoint equations, one finds the simple (and certainly not new) 
theorem that they go to each other by permuting the coordinates of the starting point and 
the singular point and changing the sign of time.  However, I would not like to go further 
into these matters until it has been established whether one can actually employ them to 
obtain a better understanding of quantum mechanics. 
 
 

______________ 
 

 


