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 1. – A fundamental theorem in the hydrodynamics of vortex theory is this one: 

 

 No particle in an ideal fluid mass in which arbitrary density distribution might prevail and 

upon which arbitrary external conservative forces act can be in rotation when it was not already 

in rotation to begin with (1). 

 

  If vorticial motions can nonetheless be created with remarkable ease in arbitrary fluids, 

especially by means of rapidly-decaying pressure differences, then that is related to the fact that 

this anomalous behavior of the fluids can be attributed to their lack of ideal behavior, and so great 

is one’s confidence in the absolute admissibility of the theorem that was cited above that Lord 

Kelvin had based his celebrated ideas regarding the constitution of ponderable matter upon it. 

 Meanwhile, it has remained unnoticed that it is precisely in the experimental arrangements on 

which vortex rings have been created most regularly and reliably that the degree of ideal behavior 

in the fluid is largely irrelevant to the outcome of the experiment, and the great significance that is 

assigned to the theorem in its own right would seem to make it desirable to place a sharp limit on 

its domain of evidence. 

 The result of the following little study of that situation is the remark that the initially-cited 

theorem indeed possesses unrestricted validity for any ideal fluid that is everywhere and 

continually found to be in complete (2) thermodynamic equilibrium regardless of whether the fluid 

is compressible or incompressible. However, in general, it cannot be applied to other fluids when 

they are completely ideal and incompressible then. 

 

 

 2. – We understand the quantities , p, X, Y, Z, and u, v, w to mean the density, pressure, external 

forces, and flow velocity, respectively, that prevail in the fluid, which is assumed to be completely 

frictionless, at time t and at the point x, y, z. The equations of motion will then be true: 

 
 (1) Von Helmholtz first expressed that theorem for incompressible fluids. For ideal compressible fluids, it is 

generally accepted everywhere in the literature of hydrodynamics, sometimes expressly and sometimes tacitly. 

 (2) In order for that to be true, it is necessary that the fluid should coexist with a second thermodynamical phase.  
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 Since one differentiates the second of those equations with respect to z and the third one with 

respect to (− y), adds the two equations thus-obtained, and suitably reorders them then one will 

get: 
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 The d / dt in that means a total differentiation with respect to time. The assumption that the 

external forces are conservative makes the term Y / z − Y / z vanish, and the introduction of 

the rotational velocity: 
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will simplify equation (3) to the following one: 
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 3. – If , ,  are simultaneously zero for a fluid particle then the following differential 

equations will be true for that point in time: 
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 However, when one makes no special assumptions, the expressions on the right of the equal 

sign will generally differ from zero by a finite amount, and indeed not only for compressible fluids, 

but also for completely incompressible ones, to the extent that this concept even has an intrinsically 

physical sense (1). 

 However, we can make those expressions vanish by the requirement that the expression 

/ 2dp   should be a complete differential. That would be the case: 

 

 
 (1) Cf., on this, also my following note regarding a caveat that is required by the theoretical introduction of 

incompressible fluids. Whoever loves paradoxes can say that vorticial motions are impossible in an incompressible 

fluid, but they can be easily generated in an infinitesimally-compressible fluid. 
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 I. For any fluid in which all possible fluctuations in pressure are compensated by either 

completely-isothermal or completely-adiabatic ones. One should not remotely expect that one of 

those extremes should generally exist, even only approximately, in moving fluids (let alone ones 

in which there are discontinuous perturbations that are necessarily coupled with the creation of 

vortices). 

 

 II. However, the second case, where a possible realization of the requirement above does not 

generally contradict any theoretical consideration, is the one in which the fluid coexists with a 

second thermodynamic phase and is found to be in complete thermodynamic equilibrium with it 

everywhere and continually. 

 

 

 4. – Allow me the further remark that the remaining fundamental laws of the hydrodynamical 

laws of vortices, which refer to the phenomena of motion in completed vortex rings, will not be 

touched by the essentially-physical considerations above. Rather, they will be true in full rigor as 

soon as the effect of the pressure impulse has ceased. In fact, those laws will express purely 

geometric (kinematic, resp.) truths that can basically dispense with any physical assumptions. 
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