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On the integration of the equation dx¢ + dy* + dZ = ds’
By J.-A. SERRET

Translated by D. H. Delphenich

l.
The question that | propose to answer in the folkgwone:

If X, y, z are four functions of one independent vari#ileat are subject to verify the
equation:

(1) e + dy? + dZ = d<’

then express the general values of those function in finite form and widmyut
integration sign.

It is obvious that one can satisfy the preceding equéatiaiakingx, y, z, ands to be
the rectangular coordinates and arc length of an anpitiave, resp., so it will follow
that the general values af y, z, ands must contain two arbitrary functions of the
independent variable in their expressions.

Consider an arbitrary curve. The developable surfaceighae geometric locus of
its tangents can be represented by the set of two ensati

Z=pXx+qy-—-u,
0 =x dp+y dg—du,
in whichp, g, andu are functions of one paramet@whose differentials arep, dqg, du,

respectively, and the curve itself, which is the edgesgfassion of the surface, will be
represented by the set of three equations:

Z= px+ qy- U
(2) O0=xdp+ ydg duy
O=xd’p+ yd g du
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One deduces the values»ofy, z as functions of the paramet@rwhich we take to be the
independent variable, from this. Namely:

= dgd®u- dud g
dqd® p- dpd g
_dud®p-dpdu
"~ dqd? p- dpd g
Z= px+ qy- u

3)

Equations (2), when combined with the ones that one dedfioes them by
differentiation, will give:
dz=p dx+qdy

dp dx+ dqg dy= 0,

d%p+d?qdy=d3u—-xdp—qd3q,
from which one infers that:
dx = d*u-xd p- yd dy
dgd® p- dpd q
_ d*u-xd® p- yd q
dqd’ p- dpd g
_dPu-xd’p- yd

dz= dg- qdp.
dqdzp_dp&qo(p o qdp

(4) dp

If one substitutes those valuesd dy, dzin the proposed equation and then takes the
square roots of the two sides then one will have:

d’u-xd’p- yd g >
5 ds= dof +df +( pda- qdp? .
(5) dqdzp_dpd?qu p+(pde- qdp

Finally, if one replaces andy with the values that are provided by equations (3) and
sets:

£ 06°dd + dg +( pda- qapf
dgd® p- dpd q ’

_do(dqd p- dpd gy d&+ dp+( pde qip
(dgd? p- dpd ¢ ’

o (dad’ p- & pd g/ dd+ dp+( pdq qip
(dgd” p- dpd ¢ |

(6) B
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to abbreviate, then the valuedswill be:

3
d u 46+ d?u du
dé? do? d6?

ds=A

(ﬂ ’

and upon integrating each termdsby parts, one will find that:

d u dAdu dA d A
'[A 3 - _2 ——t— 3 j 3ud6?,
dé dé d6’ @ b (v7}
B d’u Uip =Y ﬂgu+jd228ud6’,
dé dé dé de

jc—de Cu j—ude

and one will have:

7 s= Adu (dA Bjdé? [&A__ds Cj”‘f( d A a§_djtudg

dH dé ¥ & & & b

for the value ofs. Now the quantitie\, B, C do not contairu, which must be an
arbitrary function ofd. One can then expres finite form by setting:

- AC)
d*A o B, dc’
dé&’ d92 o

in which ¢’ (6) denotes the derivative of an arbitrary functigr(8), because one will
have:

_ d dA d A dB
(9) S= dHZ dH (dé? Bj d6?+( e d9+ Cj u-y(6),

and upon replacing with its value that is given by equation (8) iruatjons (3) and (9),
one will have the values af y, z, ands expressed in finite form, and with no integration
sign. Those expressions contain three functior® namely,y (), p, andq, only two of
which must be considered to be arbitrary, becansecan obviously tak€to be one of
the two quantitiep andq without altering the generality of the results,ifawne prefers,
one can equate one of those two quantities to angtibn of & that one likes. The
independent variable that has been left undetednmest be chosen in such a manner
that one gets the simplest-possible formulas. #®hatdetail that we shall address in the
following paragraph, but in conclusion, we point that the question that we have posed
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is answered completely by the preceding, and also teataiime method can be extended
with no modification to the more general equation:

d + ... +dy? +dZ = ds,

which contains an arbitrary numhbarof variablesx, ...,y, z
Indeed, one can replace thasevariables withm other quantities that are determined
by them equations:
z=pXx+..+qy-—u,

0=xdp+ ... +ydg—duy,
0=xd?p+..+yd*’q-d?y,
0=xd™'p+..+yd™tg-d™uy,
and upon following the same path as before, one will sggieem + 1 quantities, ..., Y,
z, ands in finite form with the aid of then functions of the independent variahie;- 1 of
which can be considered to be arbitrary.
The same transformation further applies to the monergéequation:

dxX'+ ... +dy' +dZ' = ds,

in whichn is an arbitrary number.

Let us return to the question that was posed and addresbdloe of independent
variable.

Sinceq and p are two functions of the same independent variable; taa be
considered to be the rectilinear coordinates of anrarpitplane curve. The general
equation of the tangents to that curve will be:

gcosf-psind+ ¢ (6 =0,

in which @is a variable parameter agdis an arbitrary function. In addition, since any
envelope is the envelope of its tangents, one can set:

(10) { qcosfd- psid+¢= 0

gsind+ pcosf-¢'= 0
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and consider those equations to belong to the curve. eEoad of those equations is the
derivative of the first one with respect to the par@mé that we have taken to be the
independent variable. Finally, we put simpgyin place of¢ (6 and denote the
derivatives in the manner of Lagrange.

One deduces the following valuesppandq from equations (10), which contain an
arbitrary functiong, and from the preceding, they are the most general thia¢ one can
imagine:

=¢@'sind-¢ coY
(12) 47 ¢ sino=g co
p=¢'cosf+¢ sind
One deduces from them that:
dg=(¢" +¢)sind dg,
(12) dp=(¢" +¢)cosd db,

pdg- qdp=(¢"+@)¢ @.
Hence:

(13) VAo’ + dif +( pdo- qdi = (9" +9)y/1+4°d6.

One further has:
(14) d*q=[(¢" +¢)sing+ (¢" +¢) cosd Jdé*
d*p=[(¢"+¢)cosd- @"+¢)sind 1d6°,
SO
(15) dg d’p—dp d’q =~ (¢" + ¢)* d6°.

We further have need for third-order differentiale& find that:

(16) { d*q=[(¢" - @)sinO+ 2" + ¢)cosh 146"

d®p=[(¢" +¢)cosf- 2@¢" + ¢ )singd 1d&"
and we can deduce from (15) by differentiation:that
(17) dqd’p—-dpd®q=-2 (¢" + g)(¢""+ ¢’) d6".
Finally, one infers from equations (14) and (1&tth
(18) d’qd’p—-d’pdiq=[(¢" +g)(¢" +¢") -2+ ¢") - (¢" + ¢)°] dE°.

Having said that, by virtue of equations (13), (18)/), and (18), the values Af B, C
become:
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a=-Y1te°

¢ +¢
(19) g= 20"t HN G
(9" +9)

c:{(¢'v+¢")_(¢"'+¢')2 _ 1 }/W

(@"+9)" (9"+9)° ¢"+¢

If one differentiates the first of equations (19) andntlsubtracts the result from the
second one then one will have:

0 dA o @1 gy
do (9" +9)° (8" + @)/ 1+ 82

If one differentiates equation (20) and adds the resuligdhird of equations (19) then
one will have:

d’A dB @ 1+ g?+¢'?
21 —-— +C=- - :
@ de*  de 1+g? (¢ +P)L+g')"
and upon setting:
g 1+gt+gt

22 - =p
(22) J1+g? (9" + @)1+ %)

to abbreviate, one will then have:

_yo
(23) u= o

and as a result:

du_g'6) _Pyo)
& P P
d’u _¢"(6) _2Py"(©) , (2P° - PP )y (@)
d& P P p? |

(24)

One will get the values of the quantitiesy, z, ands from that with the aid of formulas
(3) and (9) upon eliminating the quantitiesq, u from their expressions. That can be
done with no difficulty by appealing to some forsilthat we gave, but we shall
dispense with writing those values out here, dubeo extreme complexity.
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1.
We just found the general solution to the equation:
dx? +dy? + dz? = d<,

which includes two arbitrary functiong and ¢, as we just saw. However, it is very
remarkable that this same equation admits yet anotheticsolthat includes only one
arbitrary function, and which will not be contained Ire tgeneral solution that we just
found. As a consequence, | will call that second salutiie singular solution of the
proposed equation. That singular solution relates ta@dke in which the quantity that
we have called® reduces to a constant. Indeed, equations (23) and (24begitime
illusory. The functionp (6) will then be determined by the differential equation:

P = constant,
ie.:

4 1+g°+¢”
25
&9 J1+¢? ! (9" +@)(1+¢%)"

and the functiomu will be absolutely arbitrary. Equations (3) coni to give the values
of X, y, andz, and the value cfwill be given by equation (7), which will reduce t

2
s= AOl 2—(%—%&' +mu
dg” \do do

= constant #m,

One arrives at some simple formulas in the case ©00. Equation (25) will reduce to:

1+ ¢2 +¢12 _
(¢"+¢)(1+6°)

@+

and one will have:

¢ =1 ntcos -6, ) 1

for its integral, in whichn and & are two arbitrary constants. Nonetheless, | db no
believe that | must insist upon that particularecas




NOTE

ON A PARTIAL DIFFERENTIAL EQUATION

By J.-A. SERRET.

One knows from the beautiful theorem of Gauss thane performs an arbitrary
deformation of a surface then the product of the rddirimcipal curvature will preserve
its value at every point. Hence, it will follow, in pattlar, that the surfaces that can be
developed to a sphere will enjoy the property that the ptaafudeir radii of principal
curvature will have the same value at every point.

The recent work of Liouville and Bertrand on Gauss’s fienhas attracted my
attention to that subject, and | shall undertake the stlithe partial differential equation
of surfaces whose radii of principal curvature have st product. Up to now, my
research has not led me to any result that is satisfyamg a geometric viewpoint, but |
have found a solution to the partial differential equatihat | just spoke of, which is a
solution that contains one arbitrary function and regmes only imaginary surfaces. That
solution is quite remarkable in the sense that it presesef as a sort okingular
solution to the partial differential equation. | think that Iliwbe doing something
agreeable to the geometers by publishing that result here.

Conforming to the adopted usage, we shall ¥ety, z denote the rectangular

coordinates of the surface, whipeandq denote the first-order derivativedsg and d—Z
dx dy
d’z d’z d?z
andr, s, t denote the second-order ones;,——, — . As everyone knows, the
dx’ "dxdy’  dy’

equation that we shall consider will then be:
(1) & (rt—)=-(1+p’ +q)’,

in whicha denotes a real or imaginary constant.
We employ the known Legendre transformation and set:

(2) u=px+qy-z.
If we then takep andq to be independent variables then we will have:

_du _du

3 X=—, =,
() dp y aq

and
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d’u_ t d’u _ -s d’u_ r
4) -2 2! - 2! 2 2!
dp® rt-s dpdg rt-s dg° rt-s
so:
2 2 2
5) d ng u( dfu)y_ 1 .
dp®> do | dpd rt-s

Equations (2) and (3) will give y, andx as functions op andq as soon as one knows
the value oti. Finally, due to equation (5), the proposed &qng1) will become:

d’u _d’u [ du 2:_ a’
dp® dof { dpd @+ p*+q°)*
or

d?u 2u: d’u a dzu+ a
dp> df |dpdg 1+ g+ d )| dpdg 1+ p+ §)’

and will result from eliminating the quantityfrom the following two:

d’u d?u a
— + _O’
dp’ dpdg 1+ g+ g
d’u _du,  al  _
dpdg dd 1+ g+ ¢

(6)

If one differentiates the first of those equatidoysq and the second one Ipythen one
will have:

du du dt fu  2agq

— +_ :O,
dpdq dpdd dgqdp 1+ P+ 9°
201
du  du  d du dp ~ 2apl

- +— + =0,
dpdg dpdd dpdpdql+ pr g 1+ P Y

and subtracting them will give:
dA

dAdu_dt du, “dp 2 pl)_
dg dgf dpdpdg 1+ p+ § (1+ p+ B°

(7)

. . .d’u d’u d®u .
One can infer the values of the three derivatives, , — from equations (6)
dp” dpdg dq

and (7); namely:
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dA
dA_d\du_ Ydp |, 2a(c p)
dq daf 1+ B+ 4 @+ B+ G

dA  ,dA
) a[d+)l j )
@®) (ﬂ_)ld/lde_ q (o pl)

dq " dp)dpdq 1+ B+ & @+ p+ §°
dA

dA_ dAdu_ #Vdq |, 2a1%(a- ph)

dg ~ dp)dd 1+ g+ 4 @+ B+ 4)°

One sees that #l is known theru will also be, since one knows its second differéntia

d’u. The quantityl depends upon a second-order equation that we shall dispths
writing out, and which can be obtained easily with tideod equations (8). For example,

2 2
it will suffice to infer the values O-Lg and dd : from the first two and set the values
dp pdq
d d’u d d’u
of their derlvatlves—— and — equal to each other.

dgdf ~ dpdpdg
We remark that equations (8) will become illusoryday value ofi that satisfies the
equation:
9 a_ A— dA =0.
dg dp

Now, | say that such a value fdrcan correspond to a solution of our partial differéntia
equation. That cannot happen unless the right-hand diceegiations (8) are zero; i.e.,
unless one has:

ﬂ _q-Ap _
(10) dp 1+p2 q2

It is very remarkable that one can satisfy equati®) and (10) by the same value of
A, so it will follow that equations (8) will then hesrified in their own right. Indeed, the
general integral of equation (9) is:

ptAg=¢ (),
in which ¢ (1) denotes an arbitrary function. One then dedtiats
M 1
dp dg_ -
i 0

and as a result, upon replacimgnddA / dp with their values, equation (10) will become:
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dg
d/

(1+¢2—;|¢ j+q[(1+)l2)%—)l¢} 0.

In order for that equation to be true for apyt is necessary that one must have both:

(11) 1—¢2—A¢g—ﬁ=o and (1 +)|2)g—ﬁ—)|¢:o.

Upon eliminatingdg / dA from equations (11), one will have:

1+ + ¢ =0, hence, ¢ () =+-1-12,

and one easily assures oneself that this valye(df satisfies each of equations (11).
If one then sets:

(12) p+Aq=+-1-A7

then equations (8) will be found to be verifiedtheir own right, and one can, moreover,
integrate equations (6), which are each linearfmsdorder, if one considers tlthi / dp
in the first one and theu / dqin the second one to be the principal variable.

Let us examine the first of equations (6) and wErgiu/ dp = x to be a function of
the quantities) andA . p will then be a function off and A that is defined by equation
(12). One has:

d’u _ dx dA
dp® dAdp’

d’u _dx di L X
dpdgq dA dp dg
As a result, upon considering equation (9), thet bif equations (6) will give:
dx _ a

_ —a
R R P e

SO upon integrating and lettingdenote an arbitrary function:

(13) X = _+ ).

T (4 qu)

One can likewise considelu / dg =y to be a function of the quantitigsand A in the
second of equations (6). One will have:
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d2u _dy di

dpdg dA dp’

d’u _dy di dy
dg® dAdg dg

The second of equations (6) will then become:

dy al

—-a/
dg 1+ p*+q? (/1+q /7_1_/]2)2,

SO upon lettingp denote an arbitrary function:

al

14 =
(14) J-1-A2 A +qf -1-2%)

+¢(N).

The functionsy and¢ are not both arbitrary and depend upon each adlayne sees, due
to the fact thak andy must be partial derivatives of the same functibp andg.
One has:
du=xdp+ydg
and due to equation (12):

du= (y -1 %) dq— )'\/‘:'_7\'1_;)'2

and upon replacing andy with their values that are inferred from equatigh3) and
(14):

SO

du =[¢ () -4 ¢ ()] dg+ 2N “qV_l " yha,

1+ A2 [—1-
adl  Ag(A)

Ty —m dA-{qy ) dd+[A¢(A) - ¢ (A)] da}.

The first two terms in that value dfi are exact differentials, and in order for thedhir
one to be that way too, it is necessary and safftdihat one must have:

Ay N)=9'(),
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in which ¢”and ¢’ denote the derivatives @f and ¢, respectively. Hence, K (1) then
denotes an arbitrary function then one can set:

YAN)=FQ), pA)=AF (A -FQ),

and one will have:

que 24 AFQ)

1+2* [-1-22

- [q F'(A) dA +F (1) dq],

and upon integrating:
AF'(A)
u=-qF() +aarctand — dAa.
.[ ’_1 AZ

Finally, one determinesfrom the equation:

Z=p X+qy-—u,

and in summary, one will have the following valuesxXoy, z :

= a +F'(1),
§ 1/—1—)l2()l+q./—1—)l2) W

15 = as +AF'(1) - F()),

W T ) TR
z=}l+q\/a_1j—aarctan)l+«/— A2 F 4 H’A\/Il)d)l

Those equations (15), which refer to an arbitrary fund&idA), constitute a solution to
the proposed partial differential equation. It belongsan imaginary ruled surface,
because one will obtain the following two equations whes@iminates :

y=Ax-F()

(16) z= %] -1-A° - aarctam +J'M
\-1-A7

which are the equations of a straight line.
One can rid formulas (15) or (16) of the integratsign. If one sets:

F)= @+ -1-22f' (N)-a) -1-42,

in which f (1) denotes the derivative of an arbitrary functiofd), then equations (16)
will become:
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{ y=Ax+af-1- 12 -1+ A2}/ -1-12 f (),
(17)
7= x%[-1-1% - al + A (1+1%) F ()= f(A).

If one changeg andy into x,/ -1 and y,/ -1 then equations (17) will become:

{ y=Ax+af —1-A2 - (1+ A2 f (1),

(18)

z=-x| -1-A2—al+ A 1+ 1?) F (1)- f1),

and equations (18) will constitute a real soluttonthe following partial differential
equation:
& (rt-5)=-1-p*-)>

The imaginary surface that is represented by @&nsat(15) or (16) or (17) then
enjoys the property that the product of its twoiirafl principal curvature is constant at
each point. However, what seems remarkable tosntleat those two radii of curvature
are themselves constant at each point and eqealktoother; in other words, our surface,
like the sphere, has the property that all of @s{s are umbilics.

Indeed, upon differentiating the equation:

p+Agq=4-1-4°

with respect tox andy and recalling equations (15) and (16), one willdha

2
/1(;1+q4/—1—/12)
a 1

r+As=

S+At=

2
~(4+ay-1-47)
a )
SO
(19) tA2+21+r=0.
Moreover, the equation betwepjg, andA can be put into the form:
(20) (L+)A%+2pgA+(1+p)=0.
If one eliminates! from equations (19) and (20) then one will findtth

[(L+dP)r-2pgs+ (1+p°° -4 L+ +) (rt-5) =0,
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or, upon denoting the two radii of curvature®gndR":
(R-R)*=0.

It is quite curious that this imaginary surface, which cae consider to be known, since
Monge gave the complete integral of the equation:

R=R
presents itself as a true singular solution of the eqguati

RR’= constant.



