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1. — The properties of systems of integral curves oPtladf equation:
() P dx+Qdy+Rdz=0

have attracted the attention of distinguished resegrche several occasions. The
ground-breaking papers @&. Voss (Math. Ann. 16, 23 25), S. Lie Geometrie der
Beruhrungstransformationen Bd. 1), and R. v. Lilienthal Grundlagen der
Krimmunstheorie der Kurvenschar&i896 and Math. Anr82 and38) were followed by
Rogers [Proc. Roy. Irish Acad. (&9, no. 6, (1912)] and G. Darboux [Bull. Soc. Math.
(1912) andThéorie des Surface€™ ed., v. Il, 1915]. The analogy with the theory of
surfaces prompted Abbot Issaly to choose the term “pseufk:sst in numerous
publications.

However, | would not like to stress the analogies,tbatdeviations from them. It
seems to me that such an investigation will give a gimp# the intrinsic structure of
surface elements, since the integral curves of (1)ghahrough the pointx(y, 2) just
like curves in a surface, have all of their tangents atane:

2) PX-X%+Q(Y-y+R(Z-2=0,

but when the integrability condition:

3) G=PR-Q+AR-R+ RQ =0
is not fulfilled, they will not define a surface elemean (x, vy, 2).

For that reason, even in the case®f O, it is convenient to not consider the
individual surface= = 0, but all of the integral surfacEs= const. of (1).

2. Principle tangents.— The point X + dx, y + dy, z+ d2) corresponds to the plane:

(2) P+dP) (X —x—-d}x+(Q+dQ) (Y -y—-dy+ R+dR (Z—-z-dg=0.
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The perpendicular that is dropped at the poiy,(2) has the length:
_ dPdx+ dQdy+ dRd

JPP+Q+R

when one keeps only the second-order terms, excepdthdit have order three in the
directions @x, dy, d2) that satisfy the equation:

4) o

(5) dP x +dQ My + dRHz= 0.

Those are therinciple tangent directionsOne will come to the same equation (5) when
one looks for the integral curves of (1) whose oscuaptanes coincide with the
corresponding planes (2). One can regard those tworetjgas as basically equivalent.

3. Singular points and minimal lines.— If one has:
(6) P=0,Q=0,R=0

simultaneously at the point,(y, 2 then the plane (2) will be indeterminate. The targent
will lie on the surface of the cone:

PUX =27+ QY= ¥+ R Z ¥
@)
+ (R +QX= (Y= J+( B+ B( % X 2 )2( '@ 'K ¥)y Z) =0,

which can degenerate into a line that is the axis of eilpgiplanes, two planes (biplanar
point), or even into a double plane (uniplanar point) made cases. Such points will be
ignored in what follows. Minimal lines will also bgnored, which are lines whose
tangents possess imaginary directions:

(8) P? + R dx + 2PQ dx dy+ (Q° + R?) dy? = 0.

The properties of such lines are entirely analogouse@tbperties of minimal lines of
surfaces.

Figure 1.
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4. Radius of curvature.The Meusnier circle — We take a second poikt; in the
plane (2) in (Fig. 1) and draw the perpendiculMP to the plane (2 and the
perpendiculaMQ to the lineM; M, . Let ¢ be the angle between the plahgsvi; M,
andM M; Mz [Ny M; is the normal to (2]. SinceMP ||M1 N;, we will also have:

9 < PMQ= ¢,
MP = MQ [tos¢ .

Q M,

M

C
Figure 2.

Let linesM C ||M M; andM; C ||[M1 Q be drawn in the plan® Q M; , and letC be their

point of intersection (Fig. 2). One will then havl\ég: M So:
M, M,C

1_ dPdx+ dQdy dRdz
l, cospSH P+ Q@+ R

If @ =0 then one will have:

(10) 1_ dPdx+ ddyr dRd

r dsy P+ Q+ R

That will yield Meusnier’s theorem:

r, =r [cosp .

When ¢ changes from 0 to/2 the center of curvature will trace out a cirelamely, the
Meusnier circle.

5. Umbilic points. — If we eliminatedz with the help of (1) and write:

()=RR-PR, (9=RF-QBR, (3)=RQ-PQ,

(4=RQ-QQ, ()=RR-PRB,  (6)=RR-QR,
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to abbreviate, then (10) will assume the form:

(10) 1 _[RD)-PO) dX +[ R2+3)- R6)- @5)] dxdy[ R)- (@) a).
r [(R°+P)d{¢+2PQdxdy( R+ § Yy P & R

r will then be independent of the directidy/ dx only when:

RO-PE)_ R(2+3)~P(6)-QE) _ R(4)-Q(6)

11
D R*+ P? 2PQ R+

Such points will be called umbilic pointanGbilica). In general, they trace out a curve,
namely, thdine of circle pointgKreispunktlinig.

6. Indicatrix. — We lay line segments equal {b|T| in every direction in the plane
(2) fromM. If M is the coordinate origin and (2) is tk&plane then we will have:

(12)

= |k

=R cosa+ (P +Q,)siny cow +Q, siha,

and the endpoint of the aforementioned segmenthaile the coordinates:

(13) =S, =i

Hence, the position will be determined by the erumat

(14) P& +(R+Q)én+Qn* =1.

It will be an ellipse, hyperbola, or parabatapair of parallel lines) according to whether:
(F+Q)°-4B Q=1G"+A =1/

IS negative, positive, or zero, resp. The corredp@ points in space are then called
elliptic, hyperbolic,or parabolic resp. In the first case, the principal tangesmts
imaginary, in the second case, they are real, ®iindt, and in the third case, they
coincide. The projective behavior of the direcsitM; = (dx, dy, d2 andM; M= (d’x,
d’y, d’ 2 [i.e., the intersection of the tangent planesai@) (2) at the pointdM andM;]
(Fig.1) ():
d'x _ dy _ dy
QdR- Rd¢ RdP- PdR PdQ-QdP

() The notatiorM’is missing from Fig. 1.
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will also be elliptic in the first case, hyperbolin,the second, and parabolic, in the third,
but involutory only wher@ = 0.
The axes of the indicatrix are determined by the amgle

Py' +Q,

tan 2 = ———.
R-Q

If one chooses them to be the coordinate axes then @qa4) will become:
(14) (R)E* +(Q) 7= 1.

The directions of the principal tangents will thennoide with the asymptotes of the
indicatrix.

7. Directions of principal curvature. — Whena: changes, the radiusin (12) will
also change, and it will assume its extreme valueswh

(Q, - F) cosasina + (P, +Q) (cos a~sirf a) =0,

and thus in the directions of the axes of the indicatr
If awere replaced witlr + 77/ 2 in (12) then one would have:

(12) 1,= P cosasina—-(P,+Q) sinacosa+ Q, cos a.
r

The sum would then give:

(15) %*rl': P+qQ, = (P)+(Q),

and would be independent of direction.
However, since (12) will assume the form:

(P)cog a+ @, )sifa ==
r
when the axes of the indicatrix are coordinate akesextremal radii; andr», will be:

(B) =ra, Q) =r2,

and formulas (12) and (14) will then take on the form:
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1_1

cos?a+—1 sifa

(12 -
ro r

(14") leylpeoyg
rl r2

However, equation (15) will become:

|

»:‘lH

(15)

S|

1
+—.
r2

-

One can also call one-half the sum of the principievatures thenean curvaturdiere.
The locus of the curvature circles will now be:

(X2+Y2+Z23)+2Z(X*+YH =0,
which will have theZ-axis [viz., the normal to (2)] for a double linacawill contain the

two isotropic lineXx?+Y?=0,Z=0.

8. Total curvature. — In order to arrive at general formulas, we dutee the
extremal values of:

(16) VP2+?Z+R2=P;a2+be2+F§6+(e+ Q ab( P B ag( '@ 'R |

with the conditions that:
Pa+Qb+Rc=0, a’+b*+c?=1.
We will come to the equations:

2P,a+(F+Q)b+(R+ R) &1 P Sao,
(17) (R+Q)a+2Q, b+ (Q+ R) &A1 G SbO,
(F+R)2a+(Q+ R) 2R el R ScO,

and
Ph+Qb+RX=0.

One obtains the quadratic equation $drom:
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2P-S P+Q P+ R
(18) Py’,+Q; 2G-S Q+B Q_,
P+R Q+R 2R-S
P Q R 0

JP+Q+FR
r

(17) bya, b, c, respectively, and sums.
If we then denote:

The quantityS is equal to2 , which one will find when one multiplies

29, Q+R Q| 2B PB+R 2P B Q
(199 H=|Q+R, 2R R+ P+ R 2R B Q 27Q
Q R 0 P R 0 P Q O

then (18) will assume the form:

(18) FPP+Q*+R)—4H 5-A' =0.
Hence:
1,1_ H
(20) rl r2 (PZ +Q2 + R2)3/2’
1 N

Lr, __(P2+Q2+R2)3/2'

The two radii of principal curvature have the same saren elliptic point, se— > O,
rlr2

while they will have different signs at a hyperboliamipso — < 0, and at a parabolic
rl r2
. . 1 . 1 . L :
point, one will have— = 0. The quantit)k =—— characterizes the point in space in
rl r2 rl r2
the same way that the total curvature does inlhbery of surfaces. One can then also
call that quantity by that name here, as well.

9. Lines of curvature (of the first kind) as envelopes odlirections of principal
curvature. — If one eliminategd andS from (17), instead od, b, c, then one will get the
qguadratic form irdx, dy, dz:
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2Ridx+(P+Q)dy(P+ R dz P d
(21) (P+Q)dx+2Q, dy (Q+ K) dz Q dy=0.
(F+R)dx+(Q+ R) dy2 R dz R

For the special coordinate system whthas its coordinate origin and (2) as K&
plane, it will take the simpler form:

(21) 0=(P, +Q)(dy - d¥)+2( P- Q) dxd.

The two directions are mutually-perpendicular armmincide with the axes of the
indicatrix in question. Since the asymptotic lides determined by the equation:

(5) (FdxX +(F+ Q) dxdy Q & =0,

they will have the lines of curvature as angle ttises. If the axes of the coordinates
coincide with those of the indicatrix ther Y ®ill become:

1dx2 2 dy’=0,
rl r2
and (21) will become:

Z(E—EJ [dx dy= 0.

rl r2
10. Lines of curvature of the second kind- We now ask about the directions in (2)
along which infinitely-close normals to (2) willtersect. The condition that:

X—x_Y—y:Z—z X—x—dx:Y—y—dy:Z—z—dz

and
P Q R P+dP Q+dQ R+ dR
should intersect is that:
dx dy dz
(22) 0={P Q R|.
dP dQ dR

If M is the coordinate origin and (2) is tk&-plane then the equation will become:

dQ dx—-dP d¥ 0
or

(22) Q. d¥ +(Q - P) dxdy P &i=0.
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Since:
: Q ==, P+Q=0, and PR -Q =G,

in this case, (22) will assume the form:

1 1

(22" —%Gm%+mh+( jdxw:Q

2 1

and it is clear that both systems‘(and (21) will coincide forG = 0.
The angle between the directions"(2fbr G # 0 is different formzz/ 2. Namely, if
we divide byds’ and setlx/ ds= cosa, dy/ ds= sina then that will give:

L n

-1G+ [i—ij sina cosa =0,

SO [1 —ij sin 2o =G.
r2 r1

However, ifG = 0 then sin 2 =0, soa = 0 or 7/ 2.

11. Gaussian curvature— We would now like to calculate the product of thdii of
curvaturer, andr, that would correspond to the directions that wjest found. In

order to shorten the calculations, | shall tBke— 1 and introduce the notations:

P+PE=(), P.+QP=(ll),
Q. +P Q= (I, Q +QQ=(V).

We will then have:

1_ dPdx+ dQdy _ ()d@+(ll+Ill) dxdyHIV) df

[ A1+ P+ G 4|1+ P+ @ ’

and equation (22) will become:

dP P dx

(24) 0={dQ Q dy
0 -1 Pdx+Qdy

=dP[PQ dx+ (1 +Q?) dy] — dQ[dx (1 +P% + PQ dy.

Thus, we can also write:
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(25) dP=A[dx1+ P)+ dydPQ
dQ=A[PQdx+(1+ P) dy,
or
(25) (D dx+(1l) dy=A[ PQdy{1+ B dx
() dx+(IV) dy=4 PQdx{(l + @ dy

If we multiply (25) bydx anddy, respectively, and add them then that will give:

dP dx+ dQ dy=A [d¥ (1 +P?) + 2PQ dx dy+ (1 +Q) dy?] = A d<,

1= dPdx+ dQdy_ y/1+P*+Q°

ds? r

SO

We must now calculatd. Eliminating dx and dy from (23) will give the quadratic
equation ind :
(D -A(L+P?) (I -APQ

(26) () -APQ (V) -1+ |~

or, when calculated out:

(26) PA+PP+Q) AL+ (1) = (I + 1) PQ+ (1 +PA(IV)]
+ (H(IV) = (1) = o.
Hence:
M A = (V) 2_(”)(2"2 |
(1+P"+Q%)
SO:
PR B B P
1 _avy-npam 1 Q@ Q& Q 1
K 1+ P? + Q%)? 0 0 0 -1@1+P*+Q%**
P Q -1 O

If we return to the general case (i.e., we intedaP / R and —Q / R, in place ofP
andQ) then after an easy calculation, we will have:

1 _ A
nr, 1+P*+Q?%)?’

We will give that quantity the name Glussian curvature The sum of the roots of (26)

iSAL+ A= /1+P?+Q° (1+1j , SO:
nor

1 2
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1,1_ (@+Q%)()=(1+1) PO (1+ P)(IV)
nor (1+P*+Q%)** '

The right-hand side is equal to the sum of theqggpad curvatures, so:

1 1 1 1

—+ = D+

oo
However, from (15, one has:

1 1 1 1

=+

n r,  r

in which r" is the radius of curvature in the direction thatperpendicular to the' -
direction. Hence:

n !

Figure 3.

As a result of the symmetry of the indicatrix t®da to its axes, the angle that a line
of curvature of the second kind makes with oneheffirst kind and the one that a line of
curvature of the second first kind makes with ohthe second second kind will be equal
to each other. The lines of curvature of the frstl second kind will then have the same
angle bisectors (Fig. 3).

12. Extension of Gauss’s theorem- We take two infinitely-close pointd = (x +
dx,y+dy,z+d2 andM”= (x+d’'x y+d’y, z+d’2 in the plane (2) that corresponds
to the pointM (X, y, 2). (Fig. 4). Three planes (2) belong to it withrmalsMN, M " N/,
M”N”. We construct the spherical image of the triahgl®1’M ”: namely,M; , with the
coordinatef=P/V, 7=Q/V,{=-1/V(V=1+P>+Q%), soOM; ||MN, etc.; M,
=({+dé n+dn, {+df), M{ =({+d’én+d'n {+d’d).

The surface area of the triang/leM "M ”:
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S=1V(dxdy-dydy)
is equal to that of the triangh, M, M :

1.1
S=Z[F(dP d'Q-dQdP).
> Rz(dPd'Q-dQdP)

Hence:

g’: dPdQ- dQdP

S V*dxdy- dydx

Z
X
Figure 4.
However:
dP dQ—-dQdP=[D{IV) =D (dxdy—dy dx) .

Hence:

i': (av) =@nynn _ 1

S  @+P*+Q%)* .
We then get the theorem:

The quotient of the surface area of the sphericalge of a triangle and that of the
triangle itself has the product of the curvaturésng the lines of curvature of the second
kind as a limit, and thus, the Gaussian curvature

as in the known theorem of Gauss.
We are then justified in calling the quantity:

1 _ A
nr, (PP+Q°+ R)?

S
S

the “Gaussian curvature.” Since:
A =G? + 4N,



Sintzov — On the curvature of integral curves of theflefgfiation. 13

a and- A
(P2+Q2+R2)2 (P2+Q2+R2)2
The lines of curvature of the second kind are with the Gaussian curvature in

the same way that those of the first kind are cedip¥ith the total curvature, and the

properties of the lines of curvature of the surface distributed over the two types of
lines of curvature.

the quantities-

will coincide whenG = 0.

13. Analogue of the Enneper-Beltrami relation.— We considered two quadratic
forms above:

|.  The square of the line elemeds =dx + dy* +dZ .
II. The left-hand side of the equation of the aptatic lines:

dP dx+dQ dy+dR dz
We then add:

I1l. The square of the line element of the sptadrimage:

HRORG:

If the coordinate axis is placed at the pointlitaad the axes of the indicatrix taken
to be the axe®X, OY then one will have:

| =dx + dy,

= 1dx2 2 dy?,
rl r2

Il = dF? + dQF = [%+Eszdx2+ G[—l——lj dxdy{—g+—l c%j &,
- 4 nr, r, 4
However, those three forms do not suffice for tmbee able to exhibit a relation that
would be analogous to the Enneper-Beltrami relati@ne must employ a fourth form:

namely, the left-hand side of the equation of linésurvature of the first or second kind.
It will now read:

w:[

V=1G(d¢+ di){i—ij dxdv= LGO+IV .

1 2

qul—‘

—1j dxdy
r2

and



Sintzov — On the curvature of integral curves of theflefgfiation. 14

One can also write the form Il as:

Il = [r—lzdx2 +ri2 dyzj+% G+IV

1 2
or
1 1 2
rl r2
Eliminatingdx’ anddy? from the three equations will yield:
I 1 1
rl r2
N -iG*0-GIv iz iz
rl r2
If we develop that and drop the common facto&of—l then we will get the desired
r2 r1
relation:
(K-iG*)m -2HOI+NI-GOV=0
or

(K+iG*)O-2HOI+ -GV =0,

according to whether we employ the form IV or Vorks = 0, one will again get the
Enneper-Beltrami formula. The same formula wilsaalbe true for an arbitrary
coordinate choice whepf + Q° + R? = 1.

By contrast, whei® + Q* + R # 1, one must replad® with % and that
PP+Q°+ R

will give:
1 G* G
-2 —2HO+ - ——— OV =
4(P2+Q2+R2)2[ﬂ J P2+Q2+RZ|:I 0

or
1 G* G
-2 —2HOI+ 1l - ——— W =0.
4(PP+Q°+R)? 1 J P2+Q2+R2w 0

If one introduces the Gaussian curvatkireinstead of the total curvatuke then the
last formula will assume the form:
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G

KO-2HO+lll - D————=V=
P2+Q2+R2w

0.

| have treated this situation more thoroughly in Babf the Annals of the Scientific
Lyceum in Ukraine and the Letters to the Kharkov Math@abBociety (4)1.
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