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 In the spirit of his previous papers (Math. Ann. Bd. 32, 38, and 42: “Ueber die 
Krümmung von Curvenschaaren,” “Zur Krümmungtheorie der Curvenschaaren,” “Ueber 
geodätische Krümmung”), the author of this book gave a summary presentation of the 
theory that was mentioned in the title that was rich in content, extremely concise in form, 
and restricted to the necessary superstructure. 
 The first part of the book treats simply-infinite families of curves in the plane and on 
an arbitrary surface.  The second part, in which the center of gravity of the books lies, 
considers doubly-infinite families of curves in space.  There, they were thought of as 
being given by finite equations of the form: 
 

x = f (p, q, r),  y = f1 (p, q, r),  z = f2 (p, q, r), 
 
in which x, y, z mean the rectangular coordinates of a point along any curve of the family, 
for which only the parameter r will change along each individual curve, while a change in 
p and q means the transition from one individual curve of the family to another.  Finally, 
in Part Three, doubly-infinite families of curves are examined once more, but this time 
they are established by the differential equation: 
 

dx : dy : dz = ξ : η : ζ  
 
(by means of three arbitrarily given functions ξ, η, ζ of x, y, z). 
 
 Let us next say a few words about the general problem of doubly-infinite families of 
curves, or as one usually says, congruences of curves, and about what makes that this 
situation inherently interesting. 
 As is known, under certain circumstances, a doubly-infinite family of curves 
possesses a system of orthogonal surfaces, in which case, the author refers to that family 
as a normal family.  In general, that property is not satisfied.  In the former case, one can 
borrow from a terminology that Hertz introduced into mechanics and aptly call the family 
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holonomic, while in general it is non-holonomic. (The mechanical problem, which we 
would like to recall with the terminology that is proposed here, is this: Investigate the 
motion of a material point that is constrained to move continually perpendicular to the 
curve of the family that goes through it at each point in time.  For a normal family, such a 
point always remains on a well-defined orthogonal surface to the family.  By contrast, for 
a general, non-surface-normal family, that can be achieved by the addition of suitable 
jumps at each point of the region of space that the family of curves goes through.) 
 The simplest example of a normal family is defined by the normal system of an 
arbitrary surface, for which the curves of the family will be straight lines.  In this simplest 
case, the study of the orthogonal trajectories to the family of curves and its curvature 
behavior is identical with the study of the curves that lie on the surface and the curvature 
theory of the surface.  Above all, the theory of holonomic families of curves proves to be 
essentially identical with the general theory of surfaces; i.e., with the theory of the 
families of curves that are orthogonal to surfaces.  Analogously, the theory of non-
holonomic families of curves represents an interesting extension of the theory of surfaces.  
If one, like the author, imagines that orthogonal trajectories to the family of curves have 
been constructed at each point then one will obtain a distribution of surface elements in 
space that one might, in turn, be able to refer to as a non-holonomic system of surface 
elements, in connection with Hertz’s terminology.  Indeed, the elements of such a system 
do not unite into surfaces, as in the holonomic case.  However, their arrangement and 
positions are accessible to investigations that are similar to what one does with 
holonomic systems of surface elements; i.e., they can represent the system of tangent 
planes to an ordinary surface that one might in study in the theory of curvature.  Thus, we 
can perhaps refer to the actual objective of the book as this one: To adapt the methods of 
surface theory from holonomic systems of surface elements to non-holonomic ones. 
 The basic principle that will lead to that adaptation is clear from the outset.  One 
chooses the notations and concepts (as is also customary in the cited literature) in such a 
way that they will go to the notations and concepts of the ordinary theory of surfaces in 
the case of a holonomic family of curves.  In that sense, the surface-theoretic concept of a 
surface normal for a family of curves will take the form of the tangents to the curve of the 
family that goes through the point under consideration, and furthermore, the tangent 
plane to the surface will go to the normal plane to the curve, a normal section of the 
surface will be a plane that contains the tangent to the curve, the curves on the surface 
will go to the orthogonal trajectories to the family of curves, etc.  One can define the 
normal curvature to the orthogonal trajectories to the family of curves, which is the 
analogue of the curvature of a normal section in surface theory, as well as the geodetic 
curvature, which is the analogue of the geodetic curvature of the curves on the surface, as 
follows: At the point P under consideration, one constructs the curvature axis of the 
orthogonal trajectory that is spoken of; it will cut the tangent to the curve of the family 
that goes through P at Q and the normal plane to the family of curves that goes through P 
at R.  Q is then the center of the normal curvature, and R is the geodetic curvature.  At the 
same time, the reciprocal values of the lengths PQ and PR determine the magnitudes of 
the normal curvature and geodetic curvature, up to sign.  Beyond that, one can determine 
a series of further concepts that are requisite for the curvatures of the orthogonal 
trajectories, which we will not, however, go into here. 
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 The concepts of normal curvature and geodetic curvature are linked with the 
definitions of asymptotic lines, geodetic lines, and lines of curvature.  Among the 
orthogonal trajectories to a family of curves, the asymptotic lines are the ones whose 
normal curvature vanishes everywhere.  One further says “geodetic lines” to mean the 
ones whose geodetic curvature is continually equal to zero.  As far as the surface-
theoretic concept of lines of curvature is concerned, they separate into two distinct 
concepts, as is known already from the special case of ray systems, namely, according to 
whether a line of curvature is defined to be an orthogonal trajectory along which the 
tangents to the family of curves define a developable surface or a line whose tangent 
belong to a principle normal plane everywhere.  That is, in one of the two planes in which 
one finds a maximum or minimum of the normal curvature, one will obtain two generally 
different systems of curves that will be distinguished from each other as curvature lines 
of the second an first kind, respectively. 
 In regard to that, one can remark that even the surface-theoretic concept of geodetic 
lines is capable of two extensions to families of curves.  The two different types of curves 
to which one will be led in that way are best distinguished as being the straightest and 
shortest lines, respectively.  The definition of geodetic lines that von Lilienthal gave, 
which is reproduced above, corresponds to the one that we just called the straightest line.  
They have the properties that their principal normal coincides with the tangent to the 
family of curves everywhere and that they exhibit a minimum of the first curvature when 
compared to certain neighboring curves.  For the mechanical problem that is closely 
connected with the theory of families of curves that was mentioned above, those 
straightest lines are likewise the actual paths of the material point in question.  In contrast 
to that, the shortest lines – i.e., the lines which possess the smallest arc-length of all 
orthogonal trajectories that connect those two points – have no simple mechanical 
meaning.  The differential equation that determines them is also more complicated than 
that of the straightest line.  Moreover, Hertz simply referred to precisely those shortest 
lines as geodetic lines.  Naturally, for a holonomic family of curves, the concepts of 
straightest and shortest lines coalesce into one.  Perhaps a book like the present one might 
consider the straightest lines along with the shortest ones and, in fact, touch upon the 
mechanical meaning of the entire problem statement, which might raise the interest of 
many readers in the subject essentially.  Unfortunately, as is known, detailed examples 
that would explain the interesting distinction between shortest and straightest paths are 
still lacking.  Von Lilienthal could easily provide us with them, based upon his deep 
knowledge of the subject. 
 We shall not go into the many details of the contents of the book here.  One can 
hardly present them more briefly than what is done in the book, anyway.  By contrast, we 
would like to expand a bit on the curious analytical method that author applied to his 
deductions; we mean the differentiation with respect to arc-lengths. 
 Without question, for geometric calculations, it would be preferable to employ only 
those operations that are independent of the provisionally-introduced coordinate system 
and possess an invariant geometric meaning.  That procedure will reward one with the 
fact that all of the formulas that occur will have geometric interpretations and one’s 
attention will not be misdirected by inessential auxiliary quantities from the true 
geometric invariants, which are the only ones to which one arrives. 
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 Now, for a system of curves (for the sake of simplicity, we would like to speak of a 
simply-infinite system of curves in the plane, and we would like to think of a quantity F 
as a function of position in that plane), the differential quotients of F with respect to the 
arbitrarily-chosen coordinates are something inessential, while the differential quotients 

/F s∂ ∂ and /F n∂ ∂  with respect to the arc-length of a curve of the system or with respect 
to the arc-length of a curve in the orthogonal family, resp., mean something that is 
geometrically invariant.  What one must understand by those differential quotients hardly 
requires explanation.  One considers two points on a curve of the family (or the 
orthogonal family) that are separated from each other by an arc-length of ∆s (or ∆n), 
forms the difference between F at those points, divides it by ∆s (or ∆n), and passes to the 
limit. 
 Derivatives such as /F s∂ ∂ and /F n∂ ∂  have been useful for some time in 
mathematical physics, where one understandably places much value upon employing 
only those quantities in calculations that are physically meaningful and independent of 
coordinate systems.  There, one can recall the “directional derivatives” that Maxwell 
successfully employed in his theory of electricity, as well as the methods of vector 
analysis, in general, in which one differentiates with respect to vectors in arbitrary 
directions and, above all, abhors the use of a coordinate system.  We can say that the 
operations that von Lilienthal employs are special applications of differential vector 
analysis, in which the functions to be differentiated are scalars and the vectors with 
respect to which they are differentiated are chosen to have the directions of curves of the 
system or its orthogonal trajectories. 
 Moreover, the author rejected the notations /F s∂ ∂ , /F n∂ ∂ , since one cannot choose 
the arc-lengths s and n to be independent variables, and he introduced a less-intuitive new 
symbol in their place.  By contrast, we will allow ourselves to preserve the symbols 

/F s∂ ∂ , …,  in this review, since they are entirely natural in various parts of mathematics 
and are understandable with no further discussion. 

 A fact that might perhaps seem amazing on first glance is that 
2F

s n

∂
∂ ∂

is not, in 

general, equal to 
2F

n s

∂
∂ ∂

.  Von Lilienthal showed that by calculation and determined the 

difference between the two aforementioned derivatives by a formula that will be given 
below.  Here, we would like to account for that important fact geometrically. 
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 We consider a curvilinear rectangle 1234 (cf., the figure) that is composed of two 
curves of our planar family and two of their orthogonal trajectories. 
 The arc-length 12 will be denoted by ∆s and the arc-length 13, by ∆n, such that the 
curves 12 and 34 will belong to the family of curves itself, while the curves 13 and 24 
will belong to the system of its orthogonal trajectories.  From 2 on the curve 24, we 
measure out the arc-length ∆n, as well as the length ∆s from 3 on the curve 34.  The 
points to which we arrive in that way might be called 5 and 6.  We let F1, …, F6 denote 
the values of F at the points 1, …., 6, resp.  The directions of increasing s and n are 
suggested in the figure by arrows.  By definition, the symbols /F s∂ ∂  and /F n∂ ∂  then 
mean the limiting values that the quotients: 
 

2 1F F

s

−
∆

, 2 1F F

n

−
∆

, resp., 

 
will approach.  Moreover, one clearly understands: 
 

F

s n

∂ ∂
∂ ∂

= 
2F

s n

∂
∂ ∂

 

 
to mean the limiting value of the following quotient: 
 

5 2 3 11 F F F F

s n n

− − − ∆ ∆ ∆ 
 = 1 2 3 5F F F F

s n

− − +
∆ ∆

. 

 

By contrast, 
2F

n s

∂
∂ ∂

 is the limiting value of the expression: 

6 3 2 11 F F F F

n s s

− − − ∆ ∆ ∆ 
 = 1 2 3 6F F F F

s n

− − +
∆ ∆

. 

 
Thus the difference between our two derivatives will be: 
 

2 2F F

s n n s

∂ ∂−
∂ ∂ ∂ ∂

= Lim 5 6F F

s n

−
∆ ∆

 = Lim 5 4F F

s n

−
∆ ∆

− Lim 6 4F F

s n

−
∆ ∆

. 

 
 Naturally, we tacitly assume that the function F, as well as the basic system of curves, 
possesses continuity properties that would be required for the existence of the limiting 
values that occur.  All that remains is to determine the last two limiting values that were 
written down more closely.  We would like to denote the arc-lengths between the points 4 
and 5 (4 and 6, resp.) by ∆n′ and ∆s′, respectively.  We will then have: 
 

Lim 5 4F F

s n

−
∆ ∆

= Lim 5 4F F

n

−
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′∆
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and 
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Lim 6 4F F

s n

−
∆ ∆

= Lim 6 4F F

s

−
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 ⋅⋅⋅⋅ Lim
n

s n
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∆ ∆
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. 

 
 We further remark that, in the limit where ∆s = 0 and ∆n = 0, the connecting lines 13 
and 24 will go to two neighboring normals on the system curve s, and likewise, the lines 
12 and 34 will go to neighboring normals to the trajectory n.  In the limit, the intersection 
point of those two pairs of lines will then determine the centers of curvature of the two 
curves s and n; the associated radii of curvature might be called ρs and ρn , resp.  We can 
now exhibit the proportions, which are exact in the limit: 
 

∆s : ∆s – ∆s′ = ρs : ρs − ∆n 
and 

∆n : ∆n – ∆n′ = ρn : ρn − ∆s, 
 
from which it will follow that: 

∆s′ : ∆s = ∆n : ρs or 
s

s n

′∆
∆ ∆

= 
1

sρ
 

and 

∆n′ : ∆n = ∆s : ρn or 
n

s n

′∆
∆ ∆

= 
1

nρ
. 

 
 The limiting values in question are thus determined.  When we substitute them, we 
will thereupon get the formula that von Lilienthal gave on page 4: 
 

2 2F F

s n n s

∂ ∂−
∂ ∂ ∂ ∂

 = 
1 1

n s

F F

n sρ ρ
∂ ∂−
∂ ∂

. 

 
 Precisely the same argument can also be applied to a family of curves that lies on an 
arbitrarily-curved surface.  It will then show that the foregoing formula also remains valid 
for this case, except that corresponding geodetic curvatures will appear in place of the 
curvatures ρs and ρn .  On the other hand, for a twofold-infinite family of curves in space, 
one must consider a curved rectangular parallelepiped that is composed of curves of the 
family and eight of their orthogonal trajectories, in place of the curvilinear rectangle.  If 
one denotes the lengths of three mutually-perpendicular edges of the parallelepiped by 
∆s, ∆n, ∆m then one will also have to measure out those lengths along the parallel edges, 
and in that way, arrive at points that are different from the vertices of the parallelepiped, 
just like the points 5 and 6 in the case above.  That difference shows clearly the geometric 
basis for why the operations ∂ / ∂s , ∂ / ∂n , ∂ / ∂m do not commute with each other here, 
either.  It is characteristic of calculations with arc-length that nothing but geometrically-
important quantities will appear in the formulas that represent the difference between two 
differential quotients, namely, certain curvature measures that are characteristic of the 
family of curves, just like in the planar case.  The formulas under consideration, which 
make up an essential component of the present theory, are developed by von Lilienthal on 
page 56. 
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 In conclusion, we would like to express a divergent opinion on the most preferable 
definition of Lamé’s differential parameters.  Von Lilienthal described those quantities 
for the case of the plane, to which we would like to restrict ourselves here, and based 
upon rectangular coordinates by the formulas: 
 

∆1F = 
22

F F

x y

 ∂ ∂  +   ∂ ∂   
,  ∆2F = 

2 2

2 2

F F

x y

∂ ∂+
∂ ∂

. 

 
That must then lead to a proof that they have a meaning that is independent of the 
coordinate system.  In contrast, it seems to us to be more correct to define the differential 
parameters independently of coordinate systems from the outset, which would shed a 
brighter light on the concept.  Furthermore, that is also often customary in the literature. 
 From that standpoint, one can say the following: The first differential parameter ∆1F 
at a point P is equal to the derivative of the function F in the direction of the normal to 
the curve F = const. that goes through P (†).  Furthermore, one can define the second 
differential parameter ∆2F as follows: One surrounds the point P in question with an 

arbitrary closed curve σ and defines the line integral 
F

dσ
ν

∂
∂∫

, which extends over the 

entire curve σ, in which ∂F / ∂ν means the derivative of F with respect to the outward-
pointing normal to σ.  One divides that line integral by the area of the surface that is 
bounded by σ and passes to the limit when one contracts the curve σ to the point P.  The 
limiting value of our quotient that arises in that way is precisely identical to the second 
Lamé differential parameter. 
 Exactly the same definition can be adapted, word-for-word, to the case in which F is 
given as a function of position on an arbitrary curved surface.  It therefore also extends to 
space in the same way when one replaces the words “curve” and “surface” with “surface” 
and “volume,” respectively 
 The various properties and ways of representing the differential parameters are 
obtained from those definitions with the greatest ease.  Thus, e.g., the expression for the 
second differential parameter in rectangular coordinates can be written down directly 
from Green’s theorem.  The same theorem will also shows that our limiting value is 
independent of the choice of curve σ.  The fact that it cannot depend upon the coordinate 
system is self-explanatory, since nothing of the sort was mentioned in our definition.  In 
particular, we would like to derive an expression that von Lilienthal gave for the second 
differential parameter in the plane in terms of differential quotients with respect to arc-
length on the basis of the previous figure. 
 As before, we imagine a family of curves s in the plane and give the family its 
orthogonal trajectories n.  Let the curve σ that we just spoke of be the infinitesimal 
curvilinear rectangle 1243.  We then have: 
 

                                                
 (†) Translator: More precisely, ∆1F is the Euclidian norm || dF || of that derivative; i.e., the length of the 
covector. 



Sommerfeld – Review of book by von Lilienthal. 8 

F
dσ

ν
∂
∂∫

= 
12 13 34 34

( ) ( )
F F F F

s n s s n n
n s n s

∂ ∂ ∂ ∂       ′ ′− ∆ + − ∆ + − ∆ − ∆ + ∆ − ∆       ∂ ∂ ∂ ∂       
. 

 
 In the products on the right-hand side, the second factor means the length of the side 
in question of our curvilinear rectangle, while the first term is a mean value of the 
respective differential quotient of F; i.e., the value of the differential quotient in question 
at a suitably-chosen point of the arc that is suggested by the index that is affixed to that 
quotient.  The negative signs on the first two products arise from the fact that the 
outward-pointing normal ν is opposite to the positive directions of the arc-lengths s and u 
that is assumed in the figure.  However, in order to develop those products, we can now 
write: 

34

F

n

∂ 
 ∂ 

= 
2

2
12

F F
n

n n

∂ ∂  + ∆ ∂ ∂ 
 

and 

34

F

s

∂ 
 ∂ 

= 
2

2
12

F F
s

s s

∂ ∂  + ∆ ∂ ∂ 
. 

 
 If we neglect all terms that will be zero to order higher than two in the limit then 
when we drop the indices, that will give: 
 

F
dσ

ν
∂
∂∫

= 
2 2

2 2

F F F F
s n s n

s n n s

 ∂ ∂ ∂ ∂′ ′+ ∆ ∆ − ∆ − ∆ ∂ ∂ ∂ ∂ 
. 

 
 We must divide this by the area of our curvilinear rectangle – i.e., by ∆s ∆n, 
approximately – consider the expressions for ∆s′ and ∆n′ that were given above, and pass 
to the limit.  The second differential parameter ∆2F will appear on the left-hand side, 
while the right-hand side will go to: 
 

2 2

2 2

1 1

s n

F F F F

s n s nρ ρ
∂ ∂ ∂ ∂+ − −
∂ ∂ ∂ ∂

. 

 
 That is the expression that we would like to derive, and which von Lilienthal 
ascertained on page 6 in a different and (we would like to confess) more rigorous way. 
 If we replace the plane with a curved surface then that expression will persist, except 
that ρs and ρn will then mean the geodetic curvatures of the family of curves under 
consideration.  When one goes to space, in which surface integrals must be used in place 
of line integrals, that will yield an analogous manner of representation in which the 
coefficients of the first derivatives of F will once again mean certain quantities that are 
characteristic of the curvature of the family of curves considered. 
 
 Clausthal, July 1898. 
  A. Sommerfeld.  

___________ 
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