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Review of the book:
Grundlagen einer Krimmungslehre der Curvenschaaren

By R. von Lilienthal

Translated by D. H. Delphenich

In the spirit of his previous papers (Math. Ann. B2, 38, and 42: “Ueber die
Krimmung von Curvenschaaren,” “Zur Krimmungtheorie devé€nschaaren,” “Ueber
geodatische Krimmung”), the author of this book gave a susnpresentation of the
theory that was mentioned in the title that was mcbontent, extremely concise in form,
and restricted to the necessary superstructure.

The first part of the book treasgmply-infinite families of curveis the plane and on
an arbitrary surface. The second part, in which théeceof gravity of the books lies,
considersdoubly-infinite families of curvem space. There, they were thought of as
being given byfinite equationf the form:

x=f(p, q,1), y=f1(p,q. 1), z=f2(p.q,1),

in whichx, y, zmean the rectangular coordinates of a point along ang @irthe family,

for which only the parameterwill change along each individual curve, while a change in
p andg means the transition from one individual curve of dmaify to another. Finally,

in Part Threedoubly-infinite families of curveare examined once more, but this time
they are established by tbdferential equation:

dx:dy:dz=¢:n:¢
(by means of three arbitrarily given functiof)s;, {of x, y, 2).

Let us next say a few words about the general probleshowusly-infinite families of
curves, or as one usually sagengruenceof curves, and about what makes that this
situation inherently interesting.

As is known, under certain circumstances, a doublwibefi family of curves
possesses a system of orthogonal surfaces, in whseh ttee author refers to that family
as anormal family In general, that property is not satisfied. In thener case, one can
borrow from a terminology that Hertz introduced inteamanics and aptly call the family
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holonomi¢ while in general it ision-holonomic (The mechanical problem, which we
would like to recall with the terminology that is preea here, is this: Investigate the
motion of a material point that is constrained to moweatinually perpendicular to the
curve of the family that goes through it at each paintmne. For a normal family, such a
point always remains on a well-defined orthogonal serfache family. By contrast, for
a general, non-surface-normal family, that can be aetidy the addition of suitable
jumps at each point of the region of space that thdyfarhcurves goes through.)

The simplest example of a normal family is definedthy normal system of an
arbitrary surface, for which the curves of the familil e straight lines. In this simplest
case, the study of the orthogonal trajectories e fémily of curves and its curvature
behavior is identical with the study of the curved tlgaon the surface and the curvature
theory of the surface. Above all, theeory of holonomic families of curvpeoves to be
essentially identical with thgeneral theory of surfacgs.e., with the theory of the
families of curves that are orthogonal to surfacesnaldgously, thetheory of non-
holonomic families of curvagpresents an interestiegtension of the theory of surfaces
If one, like the author, imagines that orthogongktitories to the family of curves have
been constructed at each point then one will obtairstailalition of surface elements in
space that one might, in turn, be able to refer ta asn-holonomic system of surface
elements, in connection with Hertz’'s terminologyndéed, the elements of such a system
do not unite into surfaces, as in the holonomic casewener, their arrangement and
positions are accessible to investigations that arelasind what one does with
holonomic systems of surface elements; i.e., theyrepresent the system of tangent
planes to an ordinary surface that one might in stadke theory of curvature. Thus, we
can perhaps refer to the actual objective of the bookim®mhe:To adapt the methods of
surface theory from holonomic systems of surface elements to non-holonesic

The basic principle that will lead to that adaptatisrclear from the outset. One
chooses the notations and concepts (as is also cugtanthe cited literature) in such a
way that they will go to the notations and conceptthe ordinary theory of surfaces in
the case of a holonomic family of curves. In tlaise, the surface-theoretic concept of a
surface normal for a family of curves will take thenfoof the tangents to the curve of the
family that goes through the point under consideration, fartthermore, the tangent
plane to the surface will go to the normal planeh® turve, a normal section of the
surface will be a plane that contains the tangernheéocurve, the curves on the surface
will go to the orthogonal trajectories to the famdf/ curves, etc. One can define the
normal curvatureto the orthogonal trajectories to the family of\as, which is the
analogue of the curvature of a normal section in surfaeery, as well as thgeodetic
curvature which is the analogue of the geodetic curvature oftinees on the surface, as
follows: At the pointP under consideration, one constructs the curvature axtbeof
orthogonal trajectory that is spoken of; it will chiettangent to the curve of the family
that goes througR atQ and the normal plane to the family of curves thatsgbseoughP
atR. Qs then the center of the normal curvature, Rriglthe geodetic curvature. At the
same time, the reciprocal values of the lengtfsand PR determine the magnitudes of
the normal curvature and geodetic curvature, up to signoriiethat, one can determine
a series of further concepts that are requisite for dineatures of the orthogonal
trajectories, which we will not, however, go into éer
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The concepts of normal curvature and geodetic curvatweliaked with the
definitions of asymptotic linesgeodetic lines and lines of curvature Among the
orthogonal trajectories to a family of curves, tlsymaptotic lines are the ones whose
normal curvature vanishes everywhere. One further ‘gm@detic lines” to mean the
ones whose geodetic curvature is continually equal to. zeke far as the surface-
theoretic concept of lines of curvature is concernedy Separate into two distinct
concepts, as is known already from the special chs®y®ystems, namely, according to
whether a line of curvature is defined to be an orthogtagctory along which the
tangents to the family of curves define a developable surdat a line whose tangent
belong to a principle normal plane everywhere. Thahiene of the two planes in which
one finds a maximum or minimum of the normal curvatare will obtain two generally
different systems of curves that will be distinguisiiean each other as curvature lines
of the second an first kind, respectively.

In regard to that, one can remark that even the sutifeogetic concept of geodetic
lines is capable of two extensions to families of esrvThe two different types of curves
to which one will be led in that way are best distingedsias being thetraightestand
shortestlines, respectively. The definition of geodetic linbattvon Lilienthal gave,
which is reproduced above, corresponds to the one thatsiveglled the straightest line.
They have the properties that their principal normahades with the tangent to the
family of curves everywhere and that they exhibit a murn of the first curvature when
compared to certain neighboring curves. For the medidaproblem that is closely
connected with the theory of families of curves thaswmentioned above, those
straightest lines are likewise the actual paths ofrthgerial point in question. In contrast
to that, the shortest lines — i.e., the lines which msstiee smallest arc-length of all
orthogonal trajectories that connect those two pointhave no simple mechanical
meaning. The differential equation that determines tiseaiso more complicated than
that of the straightest line. Moreover, Hertz syngdferred to precisely those shortest
lines as geodetic lines. Naturally, for a holonomic ifaraf curves, the concepts of
straightest and shortest lines coalesce into onehapga book like the present one might
consider the straightest lines along with the shodasts and, in fact, touch upon the
mechanical meaning of the entire problem statement, whight raise the interest of
many readers in the subject essentially. Unfortunagslyis known, detailed examples
that would explain the interesting distinction betwekartest and straightest paths are
still lacking. Von Lilienthal could easily provide us withem, based upon his deep
knowledge of the subject.

We shall not go into the many details of the comsteftthe book here. One can
hardly present them more briefly than what is dondénbook, anyway. By contrast, we
would like to expand a bit on the curious analytical metth@d author applied to his
deductions; we mean tldgfferentiation with respect to arc-lengths.

Without question, for geometric calculations, it wouldppeferable to employ only
those operations that are independent of the provigeinroduced coordinate system
and possess an invariant geometric meaning. That procedurewalrd one with the
fact that all of the formulas that occur will have getme interpretations and one’s
attention will not be misdirected by inessential aaxyli quantities from the true
geometric invariants, which are the only ones to whiahamives.



Sommerfeld — Review of book by von Lilienthal. 4

Now, for a system of curves (for the sake of simigliave would like to speak of a
simply-infinite system of curves in the plane, and weailddike to think of a quantity
as a function of position in that plane), the diffef@muotients ofF with respect to the
arbitrarily-chosen coordinates are something inessenthale the differential quotients
OF /dsand dF /on with respect to the arc-length of a curve of the syste with respect
to the arc-length of a curve in the orthogonal familgsp., mean something that is
geometrically invariant. What one must understand byetldferential quotients hardly
requires explanation. One considers two points oouve of the family (or the
orthogonal family) that are separated from each othearbwrc-length ofAs (or An),
forms the difference betwednat those points, divides it s (or An), and passes to the
limit.

Derivatives such asoF /dsand OF /on have been useful for some time in
mathematical physics, where one understandably placedh value upon employing
only those quantities in calculations that are physicadaningful and independent of
coordinate systems. There, one can recall the titwed derivatives” that Maxwell
successfully employed in his theory of electricity, vesll as the methods of vector
analysis, in general, in which one differentiateshwiespect to vectors in arbitrary
directions and, above all, abhors the use of a cooedsytem. We can say that the
operations that von Lilienthal employs are specialliepiions of differential vector
analysis, in which the functions to be differentiated acalars and the vectors with
respect to which they are differentiated are chosemve the directions of curves of the
system or its orthogonal trajectories.

Moreover, the author rejected the notati@#s/ ds,0F /odn, since one cannot choose
the arc-lengths andn to be independent variables, and he introduced a lestviatoew
symbol in their place. By contrast, we will allosurselves to preserve the symbols
oF /0s, ..., inthis review, since they are entirely naturalanious parts of mathematics

and are understandable with no further discussion.
2

A fact that might perhaps seem amazing on first glaacthat IS not, in

Json

2
general, equal tog—g. Von Lilienthal showed that by calculation and detesd the
nos

difference between the two aforementioned derivatbyes formula that will be given
below. Here, we would like to account for that impaotrfant geometrically.

/ .




Sommerfeld — Review of book by von Lilienthal. 5

We consider a curvilinear rectangle 1234 (cf., the figura) i composed of two
curves of our planar family and two of their orthoganajectories.

The arc-length 12 will be denoted Ag and the arc-length 13, &yn, such that the
curves 12 and 34 will belong to the family of curves fisghile the curves 13 and 24
will belong to the system of its orthogonal traje@sr From 2 on the curve 24, we
measure out the arc-lengftm, as well as the lengths from 3 on the curve 34. The
points to which we arrive in that way might be calledrsl 6. We leF,, ..., Fs denote
the values of at the points 1, ...., 6, resp. The directions of ingirgas andn are
suggested In the figure by arrows. By definition, the sysB& /ds and oF /on then
mean the limiting values that the quotients:

R h "R resp.
As An ’

will approach. Moreover, one clearly understands:

d OF _ 9°F

dsodn 0sdn

to mean the limiting value of the following quotient:

1{&—5_a—ﬁ}zﬁ—a—a+a_

A_s An An ASAN

2

By contrast,g g is the limiting value of the expression:
nas

i Fe_Fg_Fz_Fl _FR-F-F+F
An| As As AsAnN '
Thus the difference between our two derivatives$ bl

2 2 — — —_
aF—aF:LimF5 I:‘S:LimF5 I:“—LimF6 F4.
Json 0nds ASAn ASAn ASAn

Naturally, we tacitly assume that the functieras well as the basic system of curves,
possesses continuity properties that would be reduor the existence of the limiting
values that occur. All that remains is to deteertine last two limiting values that were
written down more closely. We would like to dentite arc-lengths between the points 4
and 5 (4 and 6, resp.) By’ andAs’, respectively. We will then have:

P F_ Lim - F, CLim an _ oF Lim an
AsAn An’ AsAn  0On AsAn

Lim

and
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Limmzum&;,':4 Lim an _ oF Lim as :
ASAn As AsAn 0s ASAn

We further remark that, in the limit whefss = 0 andAn = 0, the connecting lines 13
and 24 will go to two neighboring normals on the systermaecsirand likewise, the lines
12 and 34 will go to neighboring normals to the trajectoryn the limit, the intersection
point of those two pairs of lines will then determine tienters of curvature of the two
curvess andn; the associated radii of curvature might be calledndg,, resp. We can
now exhibit the proportions, which are exact in thettimi

As:As—As’=ps: ps—An
and
An:An—-An"=pn: pn —As,

from which it will follow that:

As’:As=An: ps or As _ 1
AsAn  p,
and
An’:An=As: o, or an :i.
AsAn  p,

The limiting values in question are thus determin&Vhen we substitute them, we
will thereupon get the formula that von Lilientlggve on page 4:

0°F _0°F _ 10F 10F

dsdn amds p, on p, ds

Precisely the same argument can also be appliaddamily of curves that lies on an
arbitrarily-curved surface. It will then show thiae foregoing formula also remains valid
for this case, except that corresponding geodetigatures will appear in place of the
curvaturesos andg, . On the other hand, for a twofold-infinite fayndf curves in space,
one must consider a curved rectangular paralledebipat is composed of curves of the
family and eight of their orthogonal trajectori@s place of the curvilinear rectangle. If
one denotes the lengths of three mutually-perpeftaticedges of the parallelepiped by
As, An, Amthen one will also have to measure out those lhsnglong the parallel edges,
and in that way, arrive at points that are difféfeom the vertices of the parallelepiped,
just like the points 5 and 6 in the case aboveat @ifference shows clearly the geometric
basis for why the operatios/ s, 0/ on, 0 / om do not commute with each other here,
either. It is characteristic of calculations wéfc-length that nothing but geometrically-
important quantities will appear in the formulaatthepresent the difference between two
differential quotients, namely, certain curvatureasures that are characteristic of the
family of curves, just like in the planar case. eTiormulas under consideration, which
make up an essential component of the presentythe@ developed by von Lilienthal on
page 56.
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In conclusion, we would like to express a divergent opiron the most preferable
definition of Lamé’s differential parametersVon Lilienthal described those quantities
for the case of the plane, to which we would likeréstrict ourselves here, and based
upon rectangular coordinates by the formulas:

2 2 2 2
AF = (a_Fj+a_F ’ A2F265+6i-
ox ay [ )Y

That must then lead to a proof that they have a meahiagis independent of the
coordinate system. In contrast, it seems to us todve norrect to define the differential
parameters independently of coordinate systems from utseto which would shed a
brighter light on the concept. Furthermore, thatls® often customary in the literature.
From that standpoint, one can say the following: Tis¢ fifferential parametek;F

at a pointP is equal to the derivative of the functiénin the direction of the normal to
the curveF = const. that goes throudh("). Furthermore, one can define the second
differential paramete,;F as follows: One surrounds the polatin question with an

arbitrary closed curver and defines the line integrélg—Fda, which extends over the
vV

entire curveg, in whichdF / 0v means the derivative &f with respect to the outward-
pointing normal too. One divides that line integral by the area of theasartthat is
bounded byo and passes to the limit when one contracts the amteethe pointP. The
limiting value of our quotient that arises in thaty is precisely identical to the second
Lamé differential parameter.

Exactly the same definition can be adapted, word-forewto the case in whidh is
given as a function of position on an arbitrary curvedaser It therefore also extends to
space in the same way when one replaces the words *@amgée'surface” with “surface”
and “volume,” respectively

The various properties and ways of representing therdiifial parameters are
obtained from those definitions with the greatest eddaus, e.g., the expression for the
second differential parameter in rectangular coordinatn be written down directly
from Green’'s theorem. The same theorem will alsows that our limiting value is
independent of the choice of curge The fact that it cannot depend upon the coordinate
system is self-explanatory, since nothing of the s@s mentioned in our definition. In
particular, we would like to derive an expression that Lilienthal gave for the second
differential parameter in the plane in terms of défaral quotients with respect to arc-
length on the basis of the previous figure.

As before, we imagine a family of curvesin the plane and give the family its
orthogonal trajectories. Let the curveo that we just spoke of be the infinitesimal
curvilinear rectangle 1243. We then have:

(") Translator: More preciselp;F is the Euclidian norm ¢|F || of that derivative; i.e., the length of the
covector.
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Ia—Fdaz (—G—Fj AS+(—6—FJ An+(—a—Fj (As—Aé)+(a—Fj AnAb.
ov on ), 0S )5 on),, 0S)

In the products on the right-hand side, the sedaatbr means the length of the side
in question of our curvilinear rectangle, while thest term is a mean value of the
respective differential quotient &% i.e., the value of the differential quotient inestion
at a suitably-chosen point of the arc that is saggkby the index that is affixed to that
guotient. The negative signs on the first two picid arise from the fact that the
outward-pointing normal is opposite to the positive directions of the kergthss andu
that is assumed in the figure. However, in ordedevelop those products, we can now

write:
2
(a_Fj = (a_Fj +Ana_lz
on/),, \on), on
2
(a_':j = (a_':j +ASa F .
0s )5, \0S ), s

If we neglect all terms that will be zero to ordegher than two in the limit then
when we drop the indices, that will give:

and

2 2
oF - a_'zﬁ_': Asan-2E e 9F A n
ov 0s*  orf on 0s

We must divide this by the area of our curvilingactangle — i.e., byAs An,
approximately — consider the expressions®randAn’that were given above, and pass
to the limit. The second differential paramefeF will appear on the left-hand side,
while the right-hand side will go to:

62F+62F 10F 10F

9 ot p. s p, on

That is the expression that we would like to deriand which von Lilienthal
ascertained on page 6 in a different and (we whkadto confess) more rigorous way.

If we replace the plane with a curved surface tianh expression will persist, except
that o5 and g, will then mean the geodetic curvatures of the karof curves under
consideration. When one goes to space, in whidlaelintegrals must be used in place
of line integrals, that will yield an analogous man of representation in which the
coefficients of the first derivatives &f will once again mean certain quantities that are
characteristic of the curvature of the family ofwees considered.

Clausthal, July 1898.
A. Sommerfeld.
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