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I. 

 

Concept of a dynamical problem. Normal form for the differential equations of dynamics. 

 

 In his first lecture on dynamics (edited by A. Clebsch in 1886 and by E. Lottner in 1884), 

Jacobi said that he would restrict himself to those problems in mechanics for which one dealt with 

the motion of a system of a finite number of material points with the property that the constraints, 

as well as the forces that act upon the system depend upon only the configuration of points, but 

not on their velocities. In what follows, it will prove convenient to also allow certain systems with 

an unbounded number of material points, namely, all of the ones whose position at time t is given 

by the values of a finite number of determining data, as would be the case for a rigid body. By 

contrast, Jacobi’s restriction in regard to the constraints on the system as well as the applied forces, 

will be fixed throughout. The problems that are defined in that way shall be called, briefly, 

dynamical problems. 

 In order for a dynamical problem to be exhibited in the form of the differential equations of 

motion that Lagrange gave in Part Two of his mechanics (Mécanique analytique, Paris 1788, pp. 

226), the determining data p1, p2, …, pn of the system will be introduced in the following way: Let 

the coordinates of the 
thi  material point at time t relative to an arbitrary fixed rectangular 

coordinate system be x3i−2 , x3i−1 , x3i . Certain equations will then exist between the quantities x1, 

x2, …, xn due to the constraints on the system, and in dynamical problems, it is their nature that 

they will be fulfilled identically when one expresses the xh as functions of n independent variables 

p1, p2, …, pn . However, if one regards the p1, p2, …, pn as functions of n + r new independent 

variables p1, p2, …, pn then one will get expressions for the xh in terms of those new variables by 

which the constraint equations will likewise be fulfilled. For that reason, Lagrange (loc. cit., pp. 

217) added that n shall be the smallest number of independent variables by means of which xh can 

be represented. Jacobi (Dynamik, pp. 62) expressed that requirement (and likewise Kirchhoff, 

Mechanik, pp. 29) in such a way the number n is equal to the difference between the number of all 

coordinates xh and the number of mutually-independent constraint equations between those 

quantities. That will be permissible as long as one has only a finite number of quantities xh. 
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However, it is possible to give a form to the criterion for n to actually be the smallest number of 

independent variables that is free of that restriction. Namely, Kronecker has proved the following 

theorem in his lectures: 

 

 If one has a system of at least n functions x1, x2, …, xn of the independent variables p1, p2, …, 

pn then the smallest number of independent variables in terms of which those functions can be 

expressed will be precisely equal to the number that gives the rank (*) of the system: 
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It is equal to n if and only if that rank is equal to precisely n. 

 

 If the xh are now represented by the n determining data p1, p2, …, pn of the required type then 

according to Lagrange, one must represent the components along the coordinate axes of the force 

X3i−2 , X3i−1 , X3i that acts upon the thi  material point, which depend upon only the xh , by assumption, 

in terms of the p . The expressions for xh and Xh must then be replaced: 

 First of all, in the expression for the virtual work done on the system during the time interval 

(t, t + dt): 

h h

h

X x , 

which might then go to: 

 

(1)  U   = P p 


 . 

 

 Secondly, in the expression for the vis viva of the system at time t, which will read: 

 
2

1
2

h
h

h

dx
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dt

 
 
 

  

 

when the mass of the thi  point is denoted by m3i−2 = m3i−1 = m3i , and that might go to: 

 

(2)  T = 1
2

,

dpdp
a

dt dt




 

   (a = a). 

 

In that way, the P and a are functions of only p1, p2, …, pn . Here, as in what follows, the small 

Greek symbols refer to the sequence of numbers 1, 2, …, n. 

 If that is the case then that will finally give the desired equations in the form: 

 
 (*) On the concept of the rank of a system of quantities, cf., Sitzungsberichte der Berliner Akademie (1884), issue 

II, pp. 1192. 
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(a)  
d T T

P
dpdt p

dt


 

 
− −




 = 0 . 

 

 However, another completely-equivalent system can be derived from that one in which the 

second derivatives of the p with respect to time are expressed in terms of the quantities p 

themselves and their first derivatives with respect to time. In order to do that, we appeal to the 

following argument: 

 The vis viva of the system T can (for real values of the xh) vanish only when all of the dxh / dt 

vanish. Therefore: 

T = 1
2

,

dpdp
a

dt dt




 

  

 

can also vanish only when the equations: 

(3)  h
dpx

p dt



 




    (h = 1, 2, …) 

 

are all fulfilled. Now, the minimum number n of independent variables will be characterized by 

the fact that at least one determinant: 

  hx

p




   (,  = 1, 2, …, n) 

 

will not vanish identically, from which it will follow that equations (3) can be satisfied only by the 

vanishing of all dp / dt . Therefore, T is a quadratic form in the dp / dt that will vanish only when 

all of the dp / dt vanish and will otherwise have a positive value. In the theory of quadratic forms, 

it is proved that this property is inseparably linked with the other one that the principal 

subdeterminants of the symmetric system of coefficients a does not vanish identically but are 

positive quantities (except for the singular systems of values of the p). In particular, that will 

imply that for every dynamical problem, the determinant: 

 

(4)  a = | a |   (,  = 1, 2, …, n) 

 

will not vanish identically. The same thing is true for the quantities a11, a22, …, ann . 

 Since the determinant of the quadratic differential form: 

 
22T dt  = 

,

a dp dp  
 

  

 

does not vanish identically, one finds an application to it of the theorem about such forms that 

Christoffel and Lipschitz developed in the simultaneously-appearing treatises [“Ueber die 

Transformation der homogenen Differentialausdrücke zweiten Grades,” this Journal, 70 (1869), 
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pp. 46 and 241; “Untersuchungen in Betreff der ganzen homogenen Functionen von n 

Differentialen,” ibidem, pp. 71]. In those investigations, a special role was played by the 

combination: 

a a a

p p p

  

  

  
+ −

  
 , 

 

which Lipschitz denoted by f , and Christoffel denoted by 2
 



 
 
 

. Since different differential 

forms had to be considered along with them later on, the procedure of Weingarten (“Ueber die 

Theorie der auf einander abwickelbaren Oberflächen,” Festschrift der technischen Hochschule. 

Berlin, 1884) shall be discussed here: 

 

(5)  1
2

a a a

p p p
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a
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 With the use of that symbol, equations (a) read explicitly: 

 

( )a  
2

2
,

dpd p dp
a P

dt dt dt

 
 

  

 



 
+ − 

 
   = 0 . 

 

However, since the determinant: 

  a = | a |   (,  = 1, 2, …, n) 

 

 

does not vanish identically, those equations can be solved for the 
2

2

d p

dt

 . To that end, one 

introduces (likewise following the procedure of Christoffel, Lipschitz, and Weingarten): 

 

(6)   
a

a


 



 
 

 
 = 

a

 



 
 
 

, 

 

in which a
  denotes the system that is reciprocal to the system of a . One will then get the 

system that is completely equivalent to ( )a : 

 

( )a
 

2

2

d p

dt

  = −
, a

dpdp
P a

dt dt


 

  

 



 
+ 

 
  . 
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Equations ( )a  shall be referred to as the normal form for the system of differential equations of 

motion for the dynamical problem. 

 

 

II. 

 

Concept of and conditions on analytically-equivalent dynamical problems. 

 

 One can introduce new variables q1, q2, …, qn in place of the independent variables p1, p2, …, 

pn when one sets: 

 

(S)   p = p (q1, q2, …, qn) . 

 

In so doing, the substitution (S) is subject to only the one condition that the functional determinant: 

 

  
p

q








    (,  = 1, 2, …, n) 

 

must not vanish identically. Since the integration of the differential equations of motion is based 

upon the possibility of introducing the n determining data in various ways, the transformation of 

those equations has fundamental importance, and it will be eased precisely by taking the viewpoint 

that Lagrange assumed when he exhibited the differential equations of motion in the form (a) (cf., 

loc. cit., pp. 217). Namely, if one introduces the new variables into the expressions for U   and T, 

from which one might get: 

 

(1)  U  = Q q 


  

(2)  T = 1
2

,

dqdq
b

dt dt




 

    (b = b), 

 

then the new differential equations of motion will read: 

 

(b)  
d T T

Q
dqdt q

dt


 

 
− −




 = 0 . 

 

It will then suffice to convert the expressions for the virtual work and the vis viva, because one can 

derive the differential equations of motion from them immediately. In that way, one will also get 

the normal form of the equations of motion directly. To that end, one must only form: 
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(5)  1
2

b b b

q q q

  

  

   
+ − 

    

 = 
b

 



 
 
 

, 

 

(6)  
b

b



 



 
 

 
  = 

b

 



 
 
 

 

 

from the coefficients of (2), in which b
  means the system that is reciprocal to the system of b. 

One will then have: 

( )b  
2

2

d q

dt

  = −
, b

dqdq
Q b

dt dt


 

  

 



 
+ 

 
  . 

 

 The fact that one needs to know only the expressions for the virtual work and the vis viva in 

terms of the smallest number of determining data from the system in question in order to exhibit 

the differential equations of motion for a dynamical problem seems significant to me from another 

angle. It explains the phenomenon that various problems in mechanics that are totally disparate in 

their formulation have led to the same system of differential equations of motion, so to the same 

analytical problem. One must then distinguish between the mechanical trappings of the dynamical 

problem and its analytical kernel. The solution of a single analytical problem frequently produces 

the means to resolve entirely-different types of dynamical problems, since they only come down 

to the problem of interpreting and discussing the functions of time that one obtains from the 

standpoint of mechanics. Such phenomena are common in other branches of mathematical physics, 

and potential theory is a beautiful example of one. However, it is precisely in dynamics that the 

aforementioned distinction does not seem to be recognized with sufficient clarity and followed 

through on.  The consequences of that will be shown in some illustrative examples below. 

 When two problems in dynamics relate to each other in such a way that they lead to the same 

system of differential equations of motion, they shall be called analytically equivalent. 

 If one would like to make the concept of the analytical equivalence of dynamical problems 

useful for the investigation of such problems then one will immediately encounter a serious 

difficulty insofar as that equivalence in terms of the identity of the systems of differential equations 

of motion will become obvious only when the determining data for the two problems being 

considered are chosen in a special way. In general, only the following is true: If Problem I leads 

to equations ( )a
 and Problem II leads to equations ( )b

 then both problems will be analytically 

equivalent when a substitution (S) exists that takes the system ( )a  to the system ( )b
. 

 One can immediately give a sufficient condition for that to be the case. Since the time of 

Lagrange, one has known that when the related expressions for virtual work and vis viva for two 

dynamical problems: 
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(I)   
1
2

,

,

U P p

dpdp
T a

dt dt
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 =
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1
2
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,

q

dqdq

dt dt

 





 =
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U Q

T b

 

 

go to each other under a substitution (S), the same substitution will take the differential equations 

of motion to each other, as well. 

 In order to decide whether such a substitution (S) exist, one proceeds as follows: One examines 

whether the quadratic differential form 22T dt  can be transformed into 22 dtT . The question of 

whether two given quadratic differential forms can be transformed into each other was treated by 

Christoffel (loc. cit., pps. 65 and 244). One next excludes the case in which the domain of the 

variables p can be displaced into itself without changing 22T dt , since “the substitution (S) would 

necessarily include elements that are capable of continuous variation.” Therefore, if that 

transformation is possible at all then it will be well-defined, and one will decide whether it is 

possible when one investigates the possibility of the simultaneous linear transformation of a series 

of algebraic forms. 

 If one has investigated the transformation (A) that takes 22T dt  to 22 dtT  in that way then one 

needs only to ascertain whether U   also goes to U under it. However, the identical existence of 

the equations: 

  Q = 
p

P
q




 




    ( = 1, 2, …, n) 

 

is necessary and sufficient for that. Thus, if those equations are true then the problems will be 

analytically equivalent. 

 Now, since analytical equivalence requires only that the differential equations of motion can 

be made identical, that now raises the question of what sort of relationship the expressions for the 

virtual work and vis viva might have for two analytically-equivalent dynamical problems. 

 Two such problems necessarily belong to the same smallest number n of determining data. It 

would then be natural to combine all dynamical problems for which that number has the same 

value into orders that are characterized by the value of n. 

 Since the two problems considered are analytically equivalent, one can then imagine that the 

determining data were introduced from the outset in such a way that the equivalence will become 

obvious. Therefore, let: 

 

1
2

,

,

U P p

dpdp
T a

dt dt

 





 =

=




 

1
2

,

.

V p

dpdp
w

dt dt

 





 =

=





U

T

 

 

The relevant differential equations of motion will then read: 
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( )a  
2

2

d p

dt

  = − 
, a

dpdp
P a

dt dt


 

  

 



 
+ 

 
  , 

 

( )w  
2

2

d p

dt

  = − 
, w

dpdp
V w

dt dt


 

  

 



 
+ 

 
  . 

 

By assumption, the two systems are identical, i.e., they define the p as the same functions of time. 

However, in order for that to be true, it is necessary and sufficient that both of them imply the same 

values of the 
2

2

d p

dt

  for the same arbitrary initial values of the p and 
dp

dt

 , and that means nothing 

but the idea that the equations: 

(A)   
w

 



 
 
 

 = 
a

 



 
 
 

   (, ,  = 1, 2, …, n), 

 

(B)  V p 


  = P p 


    ( = 1, 2, …, n) 

 

must be true identically in the p1, p2, …, pn . 

 Equations (A) and (B) can also be regarded as the Ansatz for the following problem: If a 

dynamical problem with the expressions U   and T is given then the P and a are known. One 

seeks the expressions U and T, so the V and w , that will belong to dynamical problems that are 

analytically equivalent to the given one. By means of equations (A) and (B), that problem is 

reduced to a discussion of a system of simultaneous partial differential equations. In so doing, it 

should be noted that the only solutions w to that system that can be allowed are the ones for 

which 22 dtT  is a positive quadratic form in the dp . That will immediately make it possible to 

simplify the discussion immensely, since the determinant: 

 

(7)  w = | w |   (,  = 1, 2, …, n) 

 

cannot vanish identically, equations (B) can be solved for the V , so they will be equivalent to: 

 

( )B  V  = 
,

P a w  
 

 . 

 

One then needs only to investigate what the most general solution of equations (A) for which 
22 dtT  is a positive quadratic form. If one has found it then one will get the most general 

expression for U when one defines the V by equations ( )B . 

 Everything then comes down to a discussion of equations (A). One easily sees that those 

equations are fulfilled identically by: 

w = c a , 
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in which c is a positive constant. One will then have: 

 

T = c T, 

 

so 22 dtT  will be a positive quadratic form in the dp . Furthermore, that will imply that: 

 

U = cU  . 

 

In order for two dynamical problems to be analytical equivalent, it will then suffice that the related 

expressions for virtual work and vis viva should differ by only the same multiplicative constant. 

 It is easy to find a problem with expressions for U   and T that will lead to U = cU  , T = c T. 

One needs only to replace every length l in the first problem with  l, every mass m with  m, 

every force X with  X, and every time t with  t, where , , ,  mean constants. Thus, U   will 

go to U   , and T will go to 2 2( / )T   . Hence, if one has only: 

 

2  = 
 


 

 

then U   and T will change by the same multiplicative constant, and the differential equations of 

motion will remain unchanged. 

 Newton (Philosophiae naturalis principia mathematica, 1686, Liber. I, prop. 87) had already 

recognized that special type of analytical equivalence for some problems of a special nature. It is 

formulated in full generality in Bertrand [“Note sur la similitude en mécanique,” J. de l’École 

Polytechnique 19 (1848) Cah. 32, pp. 189] and can be referred to as mechanical similarity. 

Bertrand stressed that this principle, which he regarded as very fruitful, did not, in fact, give the 

solution to a mechanical problem, but probably just the connection between different problems, 

which would be problems “de difficulté analytique équivalente,” as he phrased it. It should be 

mentioned that H. von Helmholtz made repeated use of mechanical similarity in his work (cf., 

e.g., Wissenschaftliche Abhandlungen, Bd. I, pp. 158). 

 One now asks whether the system (A) possesses other solutions besides the obvious solution 

w = c a . The fact that this can be very likely be the case for certain special problems can be 

shown by the following example. Let the a  all be constants. All 
a

 



 
 
 

, and therefore all 

,
a

 



 
 
 

 as well, will be equal to zero, and equations (A) will become 
a

 



 
 
 

= 0. 

 However, those equations are clearly fulfilled identically when one assigns any constant values 

to the w . In order for 
22 dtT  to be a positive quadratic form in the dp , only the principal 

subdeterminants of the symmetric system of w must be positive. Therefore, it is not at all 

unnecessary for the ratios a : w to have the same constant values for all systems of values , . 
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 However, it can probably be shown (and this will define the subject of the following section) 

that in general the system (A) has only the solution w = c a , i.e., that the demand that there 

should exist another solution in addition to that one, defines an actual constraint on the choice of 

coefficients a . The following theorem will be proved in the following section: 

 

 Let a symmetric system of functions of the variables p1, p2, …, pn : a (,  = 1, 2, …,n) whose 

principal subdeterminants do not vanish identically be given. One seeks a system w with the 

property that the w satisfy the partial differential equations: 

 

  
w

 



 
 
 

 = 
a

 



 
 
 

   (, ,  = 1, 2, …, n). 

 

Assume that the a satisfy certain partial differential equations that can be given precisely. The 

most general system w of the required type will then be given by: 

 

w = c a , 

in which c is an arbitrary constant. 

 

 The conclusion of the section will consist of the consequences that we can infer from that 

theorem in terms of our dynamical questions. 

 According to Lagrange, in order to exhibit the differential equations of motion for a dynamical 

problem of the system in question, one needs to know only the expressions for the virtual work 

and the vis viva in terms of the smallest number of determining data. It will follow from the 

theorem that was just given that, except for certain singular cases, one can, conversely, determine 

the expressions for the virtual work up to a multiplicative constant. The appearance of those 

constants explains how it already emerges from the remark on page 9 that as long as the choice of 

units of length, mass, force, and time remain arbitrary, those expressions will be determined only 

up to a proportionality factor. One might then say that for a suitable choice of units, the identity of 

the system of differential equations for two problems will generally also imply the identity of the 

expressions for virtual work and the vis viva. Under that condition, one will then have the theorem: 

 

 Except for some singular cases (that must be examined individually), in order for two 

dynamical problems to be analytically equivalent, it is necessary and sufficient that the relevant 

expressions for virtual work and vis viva in terms of the smallest number of determining data are 

identical or can be made identical by simultaneous transformation of the variables. 

 

 It follows from this that every general principle of mechanics with whose help the differential 

equations of motion for a dynamical problem can be exhibited must be such that one can determine 

the expressions for the virtual work and vis viva of the system with its help. The knowledge those 

expressions can then be characterized as the minimum amount of information that would be 

required in order to characterize a dynamical problem analytically. 
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 However, the result of the foregoing investigation of the analytical equivalence of dynamical 

problems first came into the proper light when one linked it up with certain considerations that 

Lipschitz presented in his treatises “Untersuchung eines Problem der Variationsrechnung” [this 

journal, 74 (1871), pp. 746] and “Bemerkungen zu dem Princip des kleinsten Zwanges” [this 

journal, 82 (1877), pp. 316] (*). It is especially important in that to work through what one finds 

in loc. cit., Bd. 82, pp. 331, and whose essential content is reproduced here in the notation that we 

have applied. 

 A problem in dynamics has led to the expressions: 

 

U   = P p 


 , T = 1
2

,

dpdp
a

dt dt




 

 . 

 

Now, one can extend the problem in dynamics in such a way that the square of the line element ds 

in space is assumed to be equal to an arbitrary essentially-positive quadratic form in the 

differentials of the coordinates. One can choose that differential form to have precisely the 

expression: 

 

(8)  
,

a dp dp  
 

  = 
2ds . 

 

In agreement with that, the vis viva of a point of mass 1 is then equal to: 

 

T = 

2

1
2

ds

dt

 
 
 

 = 1
2

,

dpdp
a

dt dt




 

 . 

 

However, one can also give the corresponding meaning of the virtual work for the motion that is 

now being considered to the expression: 

U   = P p 


 . 

 

If one does that then, by means of the theorems that Lipschitz developed in the first-cited treatise, 

one will obtain a system of differential equations of motion for a point of mass 1 in the n-fold 

manifold whose line element ds is given by eq. (8) that has precisely the same form as the system 

of differential equations (a) that was exhibited for that dynamical problem. 

 If one then considers dynamical problems that correspond to that extended concept of 

mechanics then one will regard all of the ones that lead to the same system of differential equations 

of motion as analytically equivalent. In order for two such problems to be analytically equivalent, 

it is generally (except for those singular cases) necessary and sufficient that they should lead to the 

same differential forms: 

 
 (*) In regard to that, I shall remark that Lipschitz was also kind enough to communicate some letters to me on the 

subject that were of great use to me in the present investigation and for which I feel that I owe him my deepest 

gratitude. 
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U   = P p 


 , 22T dt  = 
,

a dp dp  
 

 . 

 

Among the infinitude of analytically-equivalent dynamical problems, there is always one of them 

whose mechanical formulation is simplest, namely, the problem that says that one must determine 

the motion of one point of mass 1 that always remain in an n-fold manifold whose line element ds 

is given by eq. (8), while the expression for the virtual work is represented by U  . However, such 

a reduction is possible even in those singular cases, although it can happen that more than one 

normal problem of the type that was just characterized might exist. 

 With that conception of things, the equations: 

 

(A)   
w

 



 
 
 

 = 
a

 



 
 
 

 

 

(whose discussion everything comes back to, moreover) will take on a simple dynamical meaning. 

They can be regarded as the necessary and sufficient condition for the system of differential 

equations: 

0( )a  

2

2

d p

dt


 = − 

, a

dpdp

dt dt



 

 



 
 
 

  

to be identical to the system: 

 

0( )w  

2

2

d p

dt


 = − 

, w

dpdp

dt dt



 

 



 
 
 

 . 

 

However, the first system can be regarded as the system of differential equations of the geodetic 

lines of the n-fold manifold whose line element ds will be given by equation (8), and the question 

of the most general solution to equation (A) for a given a will then be identical to the question of 

the most general form for the line element of an n-fold manifold whose geodetic lines satisfy the 

differential equations 
0( )a . Since that solution will generally be w  = c a, as will be shown in 

the following section, that will likewise imply that (except for singular cases in which the question 

must remain open) the line element of the n-fold manifold in question is determined uniquely up 

to an arbitrary constant multiplicative factor by the differential equations of the geodetic lines, so 

by general equations of those lines, as well. The fact that the converse is true, namely, that n-fold 

manifolds whose line elements will agree also lead to the same general equations of geodetic lines, 

is immediately obvious. 
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III. 

 

Investigating the system of partial differential equations: 

 

   
w

 


=  

a

 


   (, ,  = 1, 2, …, n). 

 

 Let a symmetric system of functions of the n independent variables p1, p2, …, pn be given: 

 

  a     (,  = 1, 2, …, n), 

 

of which one assumes only that the principal subdeterminants do not vanish identically. One seeks 

the most general system of them with the same property: 

 

  w     (,  = 1, 2, …, n) 

 

that relates to the given one in such a way that: 

 

(A)  
w

 



 
 
 

= 
a

 



 
 
 

   (, ,  = 1, 2, …, n). 

 

The question of whether such a system w exists is meaningful, since w = c a , where c means 

a constant, is one solution of (A). 

 For the investigation of equations (A), it is of the greatest importance that they can be replaced 

by a completely-equivalent system of homogeneous linear first-order partial differential equations 

for the w . That conversion is based upon the identity that Christoffel gave (loc. cit., pp. 50): 

 

(9)  
w w

   

 

   
+   

   
 = 

w

p








. 

 

Moreover, that identity is only a special case of a more general one that Lipschitz discovered [loc. 

cit., Bd. 70, formula (11)]. With the help of the definition of the 
w

 



 
 
 

, one concludes from 

equation (9) that along with equations (A), one also has the equations: 

 

( )A
 

w

p








 = 

a a

w w 
 

   

 

   
+   

   
  . 

 

However, a simple calculation will show that conversely equations (A) will again emerge from 

equations ( )A
, so they can be replaced by equations ( )A

 completely. 
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 Equations ( )A  answer the question of the most general solution to equations (A) quite directly 

in the aforementioned special case on page 9 in which all a were constants. Namely, one will 

then have: 

  
w

p








 = 0   (, ,  = 1, 2, …, n), 

 

such that the solution w = const. that was given above is even the most general solution of 

equations (A) for this special case, which can then be regarded as solved from now on. 

 Should equations ( )A  be compatible with each other, then the partial derivative of 
w

p








 with 

respect to p would have to agree with the partial derivative of 
w

p








 with respect to p . One easily 

sees that these integrability conditions appear in the form of homogeneous linear relations between 

the w. The coefficients in those relations are closely related to the coefficients of the quadrilinear 

form  that Lipschitz exhibited [this journal, Bd. 79, pp. 84, formula (34)], which is covariant of 

the quadratic differential form: 

,

a dp dp  
 

 , 

 

and whose identical vanishing is the necessary and sufficient condition for that form to be 

transformable into a form with constant coefficients. However, the same expressions, up to a 

constant factor, also occur in a different context for Christoffel [ibidem, pp. 54, formula (13)], 

where it was denoted symbolically by (   ). Since that symbol was also used by Lipschitz, 

but with a completely different meaning, I shall regard a different notation to be preferable and 

set: 

(10) 
a

 

 

 
 
 

 = 
,a a a a a a

a
p p


  

          

     

             
− + −                          

 . 

 

One will then have: 

(11)  = − 
, , ,

2
a

du u dv v   
   

 
 

 

 
 
 

 , 

 

in which the u and v mean new variables. Just as the expressions 
a

 



 
 
 

 can be derived from 

the expressions 
a

 



 
 
 

 using equation (6), new expressions can be derived from the 
a

 

 

 
 
 

 by 

way of: 
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(12) 
a

a


 

 

 
 

 
  = 

a

 

 

 
 
 

. 

Conversely, one then has: 

(13) 
a

a


 

 

 
 
 

  = 
a

 

 

 
 
 

, 

 

such that the vanishing of the 
a

 

 

 
 
 

 will also imply the vanishing of the 
a

 

 

 
 
 

, and 

conversely.  

 If one compares formula (13) with the one that Christoffel derived (loc. cit., pp. 53): 

 

a

 

 

 
 
 

 = 
a a a a a a

a
p p


  

           

     

               
− + −                              

   

 

then one will easily convince oneself that the following equations are true: 

 

(14) 
a

 

 

 
 
 

 = 

a a a a a a
p p  

           

     

             
− + −                          

 . 

 

 Moreover, if one defines the integrability conditions: 

 

w w

p p p p

 

   

 
−

   
 = 0 

then one will get (*): 

(J)  
a a

w w 
 

   

   

   
+   

   
   = 0 

after some reductions. 

 If one set  =  and gives  a fixed value from the sequence 1, 2, 3, …, n, while  and  remain 

arbitrary, so they can be set equal to the 1
2

( 1)n n −  different combinations of two of the numbers 

1, 2, …, n, then one will get the group 1
2

( 1)n n −  equations that are included among (J): 

 

 

 (*) Equations (J) will exist identically when all  
a

 

 
 vanish identically. That is the only time when all 

 
a

 

 
 will also vanish identically, so  = 0, and one can assume from the outset that the a are constants. 

However, it is precisely that case that was resolved already. 
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( )J  
a

w


 

 

 
 
 

  = 0   (,  = 1, 2, …, n). 

 

Those equations can be regarded as homogeneous linear equations for the unknowns w1, w2, …, 

wn . The number of them amounts to 1, 3, 6 for n = 2, 3, 4, respectively. Equations (J) are satisfied 

identically by w = a . Now, since a is non-zero, one can satisfy equations (J) without having 

to set all n quantities w equal to zero. As a result, the rank of the system: 

(S)  
 

 

 
 
 

   
1,2, , ,

, 1,2, ,

n

n



 

= 
 

= 
 

will necessarily be smaller than n. 

 If the rank of that system is equal to precisely n – 1 then the w will be determined by equations 

(J), up to an arbitrary multiplicative factor. However, one can satisfy those equations by w = 

a , so their most general solution is: 

w = z a , 

 

in which z denotes a still-undetermined function of the p1, p2, …, pn . In order to determine that 

functions, I shall substitute those expressions for the w in the equations of the system ( )A
: 

 

( )A

  
w

p








 = 2

a

w


 



 
 
 

   ( = 1, 2, …, n). 

That will then give: 

z
a

p









 = − 2

a

a
z a

p


 



 



  
−      

  . 

 

However, the factor of z will vanish, since one can satisfy equations ( )A

  by w = a . As a 

result: 

  
z

a
p









 = 0   ( = 1, 2, …, n), 

 

and since a does not vanish identically, 
z

p








 = 0, so z will be equal to a constant C . If the rank 

of the system (S) is equal to n – 1 then the w, w, …, wn will be determined by equations (J), 

in conjunction with equations ( )A

 , up to the multiplicative constant C . 

 That will be true for all n groups (J1), …, (Jn), and if the rank of the system (S1), …, (Sn) is 

equal to n – 1 then all w will be determined up to multiplicative constants C . However, it can 

now be shown that under that assumption, the n constants C must necessarily all have the same 

values c. Namely, one has: 

w = w = C a = C a = C a , 
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so 

(C – C) a = 0 . 

 

It follows from this that C = C , except when a = 0. The assertion is then proved, unless one 

has precisely: 

  a = 0  ( = 1, 2, …,  − 1,  + 1, …, n) 

 

for a fixed value of , which is a case that requires a special examination. Moreover, it will occur, 

and even for every , when the differential form in question includes only the squares of the 

differentials dp1, dp2, …, dpn as is often the case. 

 Equations (J) are satisfied in any case by w = a , so by: 

 

w = 0 , …, w− = 0 , w = a , w+ = 0 , …, wn = 0 

 

in the case that is considered here. If one substitutes those values for the w in (J) then that will 

make: 

a

a

 

 

 
 
 

 = 0 , 

such that one must have 
a

 

 

 
 
 

 = 0 in this case, and indeed for all 1
2

( 1)n n −  pairs of values , 

. Equations (J) can then be fulfilled by only: 

 

  w = 0 ( = 1, 2, …,  – 1,  + 1, …, n), 

 

while w does not appear in it at all, so it remains completely undetermined. However, equations 

( )A

  will imply that w = C a , as before. 

 Since equations (J) and ( )A

  have been exhausted, one must take recourse to the other 

equations in the system (J), in which  has the fixed value that comes under consideration here. 

Since w = 0 for  = 1, 2, …,  – 1,  + 1, …, n, those equations will be: 

 

  
a a

w w 


   

   

   
+   

   
  = 0     

1,2, , 1, 1, ,

, 1,2, ,

n

n

  

 

= − + 
 

= 
. 

Therefore, if: 

a a

C a C a   


   

   

   
+   

   
  = 0 . 

Now, one has: 

a a

a a 


   

   

   
+   

   
  = 0 

identically, so one must have: 
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( )
a

C C a  


 

 

 
−  

 
  = 0 . 

 

However, one infers from this that C = C for  = 1, 2, …,  – 1,  + 1, …, n since it is impossible 

that all expressions: 

(15) 
a

a


 

 

 
 
 

 = 0  (,  = 1, 2, …, n). 

 

Namely, that system of equations will go to (J) when one replaces a with w , and as a result, 

its most general solution will be: 

 

a1 = 0 ,  …,  a−1, = 0 , a+1, = 0 , …, an = 0 . 

 

The existence of all equations (15) would then have a = 0 as a consequence, since  is different 

from , which would contradict the assumption. 

 One has then arrived at the following result: 

 

 If each of the n systems: 

(S) 
a

 

 

 
 
 

   
1,2, ,

, 1,2, ,

n

n



 

= 
 

= 
 

 

has rank precisely n – 1 then the most general solution of: 

 

(A)  
w

 



 
 
 

= 
a

 



 
 
 

    (, ,  = 1, 2, …, n) 

will be given by: 

  w = c a   (,  = 1, 2, …, n), 

in which c means a constant. 

 

 Everything will then come down to showing that the requirement that the rank of one of those 

n systems is less than n – 1 means an actual restriction on the choice of functions a, so it is not 

true for, say, each system of a that at least one of the systems (S) has a rank less than n – 1 in 

its own right. 

 To that end, it would suffice to prove that when the a are regarded as arbitrary functions, at 

least one of the subdeterminants of (n – 1)2 elements of each of the systems (S) is non-zero. It is 

only with the same expenditure of calculation that one can show then that when one selects an 

arbitrary equation from the 1
2

( 1)n n −  equations (J), one can always associate it with n – 2 of the 

other equations in such a way that under that assumption, the ratios of the w, w, …, wn will be 

determined completely by those n – 1 equations. 
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 If the a are regarded as arbitrary functions of the p then their derivatives with respect to 

those variables can be regarded as new arbitrary functions. Therefore, the determinant: 

 

  


 

 

 

 
 
 

   (,  = 1, 2, …, n – 1) 

 

can vanish identically only when the set of all terms in that determinant that include the second 

derivatives of the a vanish by themselves. Along with that determinant, the determinant: 

 

 

2 2 2 2

a a a a
a a a a

a
p p p p p p p p 

   

   


        

    
+ − − 

         
  (,  = 1, 2, …, n – 1)  

 

must vanish identically then. Since the term with  =  vanishes identically in each of those (n – 

1)2 sums of n terms, that determinant will be equal to the product: 

 
2 2 2 2

a a a a
a a a a

a
p p p p p p p p 

   

     

 

       

 



 

   
+ − − 

       
  

1,2, , 1, 1, ,

, 1,2, , 1

n

n

  

 

 = − + 
 

= − 
. 

 

As long as a = a  can be regarded as arbitrary quantities, the second factor cannot vanish 

identically. However, the second factor is also non-zero. One can see that as follows: 

 If one first considers the quantities that occur in an element of the determinant (in which one 

must observe that the indices of the a  can be switched without changing the value, like the 

sequence of differentiations) then one will see that the first term can only be equal to the second 

one and the third one can only be equal to the fourth, and conversely, and that this will occur for 

a = , a =  and a = , a = , respectively. One now chooses the n – 1 different pairs of values 

,  as follows: Let all  have the same value 0, and let  = 1, 2, …, 0 – 1, 0 + 1, …, n. Since 

one can have 0 = 1, 2, …, n, one will get n times n – 1 pairs ,  in that way, and one will easily 

see that these n (n – 1) pairs ,  will include all possible pairs , , and indeed each of them twice. 

Therefore, if an arbitrary equation of the system (J) is given then one can always associate it with 

n – 2 other equations in such a way that  will remain constant. Now, it can be shown that of those 

n – 1 equations, the associated n subdeterminants of (n – 1)2 elements that determine the ratios of 

the w when the a are arbitrary functions will not vanish identically. 

 To that end, I will select from them the quantity: 

 

0

2a

p p

 

 



 
, 

 

in which   and n have any fixed values (except that    ,   0) and ask where that quantity 

will occur in the determinant: 
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0 0

0 0

2 22 2a aa a

p p p p p p p p

    

       

 

 

  
+ − −

       
  

0 0

1,2, , 1, 1, ,

1,2, , 1, 1, , 1

n

n

  

  

 = − + 
 

= − + − 
. 

 

One easily sees that it can occur in only one element of the determinant and generally once in that 

element. It is only for 0 = ,   = n that it can occur twice. 

 If one now imagines that the determinant is developed in the quantities: 

 

  0

2a

p p

 

 



 
 

0 0

1,2, , 1, 1, ,

1,2, , 1, 1, , 1

n

n

  

  

 = − + 
 

= − + − 
 

 

then they can vanish only when the sets of equal dimensions in those quantities vanish identically, 

so in particular, when the determinant: 

0

2a

p p

 

 



 
 

 

of those quantities vanishes identically. However, that will contain (n – 1)2 arbitrary functions 

when the a are arbitrary functions. 

 With that, the proof is brought to completion, and investigation has gone as far as it should at 

this point. One might only remark that the discussion of the cases in which the n systems (S) are 

not all of rank n – 1 seems to raise some appreciable difficulties. 

 

 

IV. 

 

Some applications of the concept of the analytical equivalence of dynamical problems 

to certain problems in mechanics. 

 

 

 It might be appropriate to explain the investigation in the foregoing section in the simplest case 

of dynamical problems, for which n = 2. 

 Then let: 

  U   = P1 p1 + P2 p2 , 

 

  T  = 

2 2

1 1 2 21
11 12 222

2
dp dp dp dp

a a a
dt dt dt dt

    
+ +    

     

 . 

 

It will then follow that every second-order dynamical problem is analytically equivalent to the 

motion of one point on a surface whose line element ds is given by: 
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2ds  = 2 2

11 1 12 1 2 22 22a dp a dp dp a dp+ +  . 

 

 From the foregoing, in order for two problems of that type to be analytically equivalent, it is 

sufficient and also necessary, except for certain singular cases, that first of all the two associated 

surfaces should be developable to each other, and that secondly, U   must always have the same 

value for corresponding points of the two surfaces. 

 That condition is sufficient under all circumstances. One will then have the theorem: 

 If one bends a surface on which a material point moves, and in that way lets forces act upon it 

whose tangential components are always the same functions of p1, p2 for each point p1, p2 of the 

surfaces, then with the same initial conditions, the moving point will traverse the same path on the 

bent surface that emerges from the original path by bending the surface, and indeed in such a way 

that corresponding points p1, p2 will always belong to the same value of time. 

 

 Euler had already applied that principle of bending in his own mechanics (“Mechanica sive 

motus scientia analytice exposita,” Petersburg 1736. T. II, §§ 869, 870), and in that way he reduced 

the problem of the motion of a massive point in a circular cylinder to the coordinate motion in the 

plane. Moreover, the same reduction is possible for any cylinder. For Liouville [Liouville Journal, 

12 (1846), pp. 358], the principle of bending is expressed in words as (†): “que des formules 

d’analyse identiques entre ells serviront pour le movement d’un point sur deux surfaces 

susceptibles d’être appliquées l’une sur l’autre sans déchichure ni duplicature.” Betrand remarked 

[Liouville’s Journal 17 (1851), pp. 121] that when the differential equations of motion for a point 

on a surface possess certain prescribed integrals, they will also lead to the same integral under the 

bending of the surfaces that arise from it. For the surfaces with curvature zero, Wittenbauer 

[Berichte der Wiener Akademie 71 (1880)] inferred the invariance of the paths under bending by 

purely-geometric considerations. Finally, in my Inaugural Dissertation (“Ueber die Bewegung 

eines Punktes auf einer Fläche,” Berlin 1885), I expressed that theorem in the form that was given 

above, except with the unnecessary restriction that U   should be a total differential, and referred 

to the meaning that it would have for the solution of dynamical problems. 

 The principle of bending is closely related to the theory of the geodetic curvature of curves on 

a surface, and the invariance of that curvature under bending that Minding [“Bemerkung über die 

Abwicklung krummer Linien von Flächen,” this journal, Bd. 6, (1830) pp. 159] first proved can 

be recognized immediately. A material point of mass 1 moves along the curve in question from 

the point p1, p2 or A and traverses the arc-length AB = ds in the time interval dt. In the following 

time interval dt, it will then traverse an element of arc BC of the curve that differs from ds by only 

second-order quantities. Let BC  be the arc-length element of the geodetic continuation of AB that 

the point would cover in the time interval dt if it were left to itself, and which also deviates from 

ds by only second-order quantities. Let the angle CBC  be equal to d. When one neglects 

infinitely-small quantities of order one, the geodetic curvature g of the curve at the point B will 

then be equal to d : ds, and as a result, it will also be equal to 
2:CC ds . Therefore, g is nothing 

but the component of the driving force in the tangent plane to the surface that is perpendicular to 

 
 (†) Translator: “some formulas of analysis that are identical to each other can serve to describe the motion of a 

point on two surfaces that can be mapped to each other without tearing or duplication.” 
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the tangent to the path, divided by the square of the velocity at that location on the path [cf., the 

article by Resal in Liouville’s Journal (3) 3 (1877), pp. 82 and the remark that O. Bonnet made 

on pp. 207 there]. If one now bends the surface and lets the point move with the same initial 

conditions and under the action of forces that are the same functions of p1, p2 as before then the 

curve that arises will be described by bending the given curve. Therefore, g will also have the old 

value for that curve, as well. 

 Conversely, I shall imagine that two surfaces are given. A material point moves on each of 

them under the influence of given forces. If one exhibits the differential equations of motion and 

finds precisely the same equations in both cases then one can infer from this that the surfaces will 

be developable onto each other, unless one of those singular cases occurs that requires a special 

examination. However, that examination is easy to carry out in the case of n = 2. In that way, it 

will be shown that the appearance of singular cases is in no way based upon a lack of methods of 

investigation, but rather upon the fact that the essential differences in the nature of quadratic forms 

demands a separate treatment of the individual cases. 

 Those singular cases are characterized by the fact that not all systems (S1), (S2), …, (Sn) have 

rank n – 1. For n = 2, a simple calculation will show that one has: 

 

(S1) − 12a
k

a
, 11a

k
a

, 

(S2) − 22a
k

a
, 12a

k
a

, 

 

in which k is the curvature of the quadratic differential form: 

 
2 2

11 1 12 1 2 22 22a dp a dp dp a dp+ +  . 

 

The rank of those two systems is generally equal to 1. It can be equal to zero only when k vanishes. 

However, one can then assume from the outset that the coefficients a11, a12, a22 are constants. One 

will then get the most general solution of equations (A) when one likewise sets w11, w12, w22 equal 

to (arbitrary) constants. One will then have the second quadratic differential form: 

 
2 2

11 1 12 1 2 22 22w dp w dp dp w dp+ +  

 

likewise has zero curvature. Now, since all surfaces of zero curvature can be developed to each 

other, concluding the coincidence of the differential equations of motion from the developability 

of the surface will remain correct. In the regular cases, that conclusion is based upon only the fact 

that when the differential equations are identical, the line elements that produce those equations 

must also be identical (up to the constant of mechanical similarity), while in the singular cases, it 

will be possible only when the intrinsically-different line elements can go to each other under a 

transformation of the variables. 

 To conclude, an example of a system of infinitely-many material points will be given whose 

motion is analytically equivalent to the motion of a point on a surface, which is an example that I 
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was induced to examine in the Winter of 1887/88 by a communication from my esteemed teacher 

Kronecker, with whom I had a lively conversation at the time. 

 The motion of a rigid line that is endowed with mass in space can be decomposed into the 

motion of the geometric lines that the rigid line contains, and their displacement in the latter is 

then a fifth-order problem. However, that order can be lowered when constraints are added. Since 

constraints that include time shall be excluded from this investigation from the outset, only two 

possibilities will remain. Either one allows the displacement of the rigid lines in the geometric 

lines, or one rejects it. If one would like to obtain a second-order problem then one must either 

assume that the rigid line always remains a member of a system of rays, and therefore its position 

in the ray system is determined by giving the ray, or that the rigid line is constrained to remain on 

a rectilinear surface. However, a more precise examination would show that the second case is 

already contained in the first one and can be regarded as a degenerate case of it. Assuming that the 

applied forces depend upon only the two determining data p1, p2 of the rigid lines, the two motions 

that were just given will be analytically equivalent to the motion of one point on certain surfaces. 

Therefore, above all, the problem will come down to the problem of exhibiting the line element of 

those surfaces. 

 If one treats the motion of a rigid line in a system of rays then one must base that on the study 

of the surfaces that include all possible positions of the center of mass of the line and associate 

each point p1, p2 of that surface with a point p1, p2 on the Gaussian unit sphere by means of the 

ray that goes through it. Let the line element of the center of mass surface be ds, while that of the 

associated Gaussian sphere is d. 

 One must now define the vis viva T of the rigid line at time t. Let the center of motion 

coordinates at time t, when referred to a rectangular coordinate system that is fixed in space, be a, 

b, c, and let the direction cosines of the rigid line at the same time be , , . If one then denotes 

the distance from a point x, y, z of the rigid line to its center of mass by  then: 

 

x = a +   , y = b +   , z = c +   . 

 

The motion of the rigid line during the time interval (t, t + dt) can be summarized as a parallel 

displacement of it under which , ,  remain unchanged and a, b, c change in such a way that: 

 
2 2 2da db dc+ +  = 

2ds , 

 

and a rotation of the rigid line around the center of mass under which only , ,  will change in 

such a way that: 
2 2 2d d d  + +  = 

2d . 

 

If the mass at the point x, y, z is denoted by  () d then the mass of the massive line will be equal 

to: 

( ) d   , 

 

so that integral can be set equal to 1. Since  = 0 is the center of mass of the line, one must have: 
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( )d     = 0 . 

 

Finally, the moment of inertia of the rigid line relative to its center of mass is given by: 

 
2 ( ) d     = 2 . 

 

 With those preparations, one will have: 

 

2 T = 

2 2 2

( )
da d db d dc d

d
dt dt dt dt dt dt

  
     

       
+ + + + +      

       
  

 = 

2 2

2ds d

dt dt




   
+   

   
, 

 

from which, it will follow that: 

 

 The motion of a rigid line in the ray system is analytically equivalent to the motion of a point 

on a surface whose line element dS is given by: 

 
2dS  = 2 2 2ds d + . 

 

 If one now lets the ray system degenerate into a rectilinear surface, and at the same time, lets 

its center of mass surface go to a rectilinear surface then one will arrive at precisely the case of the 

motion of a rigid line on a rectilinear surface. However, the lines will produce only a curve on the 

Gaussian sphere, and for a cylinder, it will even be a point. For the cylinder, one will then have 

d = 0, and therefore dS = ds, i.e.: 

 

 The motion of a rigid line on a cylinder is given by the motion of its center of mass on the 

cylinder when all masses of the rigid line are concentrated there. 

 

 In the general case, one can choose the arc-length of that curve on the Gaussian sphere to be 

the variable p2 . One will then get dS from the formula: 

 
2dS  = 2 2 2

2ds dp+ . 

 

The variable p2 has the simple geometric meaning that the lines p2 = const. are the generating lines 

of the surface in question. One can then choose the variable p1 to be the length on such lines, as 

measured from a fixed curve on the surface. The rectilinear surface will then be represented by: 
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2 2 1

2 2 1

2 2 1

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

x p p p

y p p p

z p p p

 

 

 

= + 

= + 

= + 

 
2 2 2

2 2 2 2

2

1,

.d d d dp

  

  

+ + =

+ + =
 

 If one sets: 

   d +  d +  d = f dp2 , 

  2 2 2d d d  + +  = 2

2g dp  , 

d d + d d + d d = 2

2hdp  , 

 

to abbreviate, then those equations will yield the surface: 

 
2ds  = 2 2 2

1 1 2 1 1 22 ( 2 )dp f dp dp g h p p dp+ + + +  , 

and one will then have: 

 
2dS  = 2 2 2 2

1 1 2 1 1 22 ( 2 )dp f dp dp g h p p dp+ + + + +  . 

 

Conversely, if one considers the rectilinear surface [cf., Minding, this journal, 18 (1836), pp. 297]: 

 

  X = 2 2 2 2 1(cos sin ) cosp f p h dp p p −  +  , 

  Y = 2 2 2 2 1(sin cos ) sinp f p h dp p p +  +  , 

  Z = 
2 2 2

2g f h dp+ − −  

 

then one will easily see that the square of the line element on that surface is equal to precisely 
2 ,dS  i.e.: 

 

 The motion of a rigid line on a rectilinear surface is analytically equivalent to the motion of a 

point on an associated surface that is likewise rectilinear. 

 

 However, rather than that second rectilinear surface, one can also choose any surface that arises 

from it by bending, although it by no means needs to be rectilinear. 

 If one sets: 

f = 0 ,      g = const.,      h = 0 , 

in particular, then one will have: 

 
2ds  = 2 2 2

1 1 2( )dp g p dp+ + , 
2dS  = 2 2 2 2

1 1 2( )dp g p dp+ + + , 

 

and ds and dS can be regarded as line elements of the helicoid (hélicoïdes gauches): 

 

x = cos p2  p1 , y = sin p2  p1 ,  z = g   p2 , 
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and 

  X = cos p2  p1 , Y = sin p2  p1 , Z = 2g +  p2 . 

 

It is known (cf., Minding, loc. cit., pp. 365) that any helicoid can be bent into the surface of 

rotation of a catenary, that takes the generating lines to the meridians. One can therefore also 

choose the catenoid to be the surface that is associated with the line element ds : 

 

  X = 2 2

1g p+ +  cos p2 , Y = 2 2

1g p+ +  sin p2 , Z = 
2

1

2 2

1

g dp

g p





+ 

+ +
  . 

 

Now, I have solved the Jacobi problem of motion of point on a surface of revolution when the 

force function is constant on the parallel circles in my aforementioned Inaugural Dissertation in 

full generality (*). However, the motion of a point on a helicoid is also resolved by that principle 

of bending when one has only that the force function is constant on the orthogonal trajectories to 

the generating lines, so it will be a function of only p2 with the notation that is used here. As a 

result, the motion of a rigid line on a helicoid can be regarded as known when the force function 

depends upon p2 alone. 

 Fernbach investigated the motion of a rigid line that is homogeneously endowed with mass in 

a cone whose vertex attracts the rigid line in his Inaugural Dissertation (“Ueber die Bewegung 

einer homogenen mit Masse belegten starren Geraden aud einer geradlinigen Fläche,” Halle 1887). 

That motion is a special case of the aforementioned motion on a helicoid and can therefore lead to 

only a special case of the differential equation that I discussed in general. That explains the fact 

that Fernbach could adopt the fourth section of my own Inaugural Dissertation into his own almost 

word-for-word. 

 Even the remaining cases in which one investigates the motion of a rigid line on a rectilinear 

line can admit a similar treatment. 

 The motion of a massive rigid line on a parabolic cylinder, which Lüttich treated with a great 

expenditure of calculation (Inaugural Dissertation, Jena 1883), leads one back almost immediately 

to the elementary parabolic ballistic motion. 

 Tuphorn (Inaugural Dissertation, Halle 1883) examined the motion of a massive rigid line on 

a vertical hyperboloid of revolution with one sheet. If the equation of that surface is: 

 

  
2 2 2

2 2 2( 1)

x y z

a a 

+
−

−
 = 1   ( > 1) 

then one can set: 

  x = − a cos  p2 + 2 1

1
sin p p


 , 

  y = + a sin  p2 + 2 1

1
cos p p


 , 

 
 (*) In Section Three, one will find a summary of the abundant literature on that subject. 
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  z =  2

1

1
1 p


−  . 

 

The square of the line element of that surface will then be: 

 
2ds  = 2 2 2 2 2

1 1 2 1 22 ( )dp adp dp a p dp+ + +  , 

 

and the square of the line element of the associated surface will be: 

 
2dS  = 2 2 2 2 2 2

1 1 2 1 22 ( )dp adp dp a p dp + + + +  . 

 

One can therefore likewise choose the associated surface to be a hyperboloid of revolution with 

one sheet, namely, the one on which the 
2  on the first surface is replaced with: 

 
2

2

2a


 +  . 

 

 However, the motion of a massive point on such a vertical hyperboloid of revolution falls 

within the motions that I treated in my Inaugural Dissertation. 

 

 

___________ 

 


