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PART ONE 

 

Mechanical systems with equality constraints 

_____ 

 

 

§ 1. – Generalities on point-systems with holonomic and non-holonomic 

constraint equations. 

 

 One deals with a system of n mass-points.  In order to simplify the calculations, the mass of 

the vth point will be denoted by m3−2 = m3−1 = m3 .  Let its rectangular Cartesian coordinates at 

time t be x3−2, x3−1, x3 .  The position of the system at time t will be determined by the 3n 

coordinates (x) .  Differentiation with respect to t yields the velocity components ( )x ; the 

quantities ( , )x x   characterize the state of motion of the system at time t.  By repeated 

differentiation, one will obtain the acceleration components ( )x .  Finally, let the components of 

the force that acts upon the vth point be X3−2, X3−1, X3 ; they are assumed to be single-valued 

functions of the quantities ( , )x x   and time t. 

 The system might be subjected to k mutually independent, consistent, holonomic equations: 

 

(1)     f (x1, x2, …, x3n ; t) = 0  ( = 1, 2, …, k), 

 

which shall be written more briefly as f (x ; t) = 0 .  If will be assumed of the functions f (x ; t) 

(as for all of the functions that occur in what follow) that they admit the appropriate 

differentiations.  In general, the k mutually-independent, consistent equations: 
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will then exist between the 3n velocity components.  In addition, it should be stated that in general 

an equation of higher degree will enter in place of at least one of the linear equations (2) for special 

systems of values (x ; t), namely, for the systems of values for which all of the kth-order 

determinants of the matrix f / x vanish. 

 At the level of velocity, l non-holonomic equations: 

 

(3)     
3

0

1

( ; ) ( ; )
n

x t x x t    


 
=

+  = 0 ( = 1, 2, …, l) 

 

can be combined with equations (2).  It will be assumed that equations (2) and (3) collectively 

make up a system of m = k + l linear equations for the velocity components: 

 

(4)     
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n
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for which at least one mth-order determinant of the matrix || F || does not vanish; otherwise, they 

are singular. 

 With those preparations, the basic problem of analytical mechanics for the point-system in 

question reads: 

 

 Given a state of the system that satisfies the constraints at any time, find the accelerations that 

pertain to that time by means of the conditions and forces at that time. 

 

 For a regular position, the equations: 

 

(5)     
3
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n
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will follow from equations (4) by differentiation.  The expressions ( ; ; )H x x t    are functions of 

degree two in the quantities ( )x .  (5) will yield m suitably-chosen acceleration components as 

linear functions of the remaining 3n – m . 

 With that, everything that can be inferred from the prescribed conditions for the velocities and 

accelerations has been exhausted.  In order to determine the accelerations by means of the 

constraints and the forces completely, one must add a principle of analytical mechanics. 
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§ 2. – D’Alembert’s principle for systems with holonomic and non-holonomic 

constraint equations. 

 

 D’Alembert’s principle demands that for the virtual displacements that satisfy the equations: 

 

(6)      

 

 

the work done by the system reactions will vanish: 

 

(7)       

 

It is equivalent to the equations: 

 

(8)  

 

in which L1, L2, …, Lm mean undetermined multipliers.  If the expressions for the quantities ( )x

in (5) are substituted in (8) then one will get the m linear equations: 

 

 ( = 1, 2, …, m) (9) 

 

 

for the multipliers, whose determinant is equal to the sum of the squares of the mth-order 

determinants that belong to the matrix 
1

F
m





, from a known theorem (1).  It follows from 

this that for regular positions of the system, the accelerations will be determined uniquely from the 

state of motion (2). 

 The fact that the assumption of a regular position is essential is shown by the following 

example: 

 Let a point of unit mass be constrained to move on the surface of a cone: 

 

(1)       

 

That condition will imply the equations: 

 

(2)     

 
 (1) C. G. J. JACOBI, “De formatione et proprietatibus determinatium,” J. reine angew. Math. 22 (1841), pp. 312; 

Werke, Bd. III, Berlin 1884, pp. 386; Ostwald’s Klassiker der exakten Wissenschaften, Heft 77, Leipzig 1896, pp. 40.  

 (2) C. G. JACOBI, Vorlesungen über Dynamik, published 1842/43, 2nd edition, Berlin 1884, Lecture 17, especially 

pp. 140.  The fact that JACOBI assumed holonomic constraints does not obstruct the generality of his process, since 

it involves only the behavior of the matrix || F || . 
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(5)    

 

and the virtual displacements will be specified by the equations: 

 

(6)      x1 x1 + x2 x2 + x3 x3 = 0. 

 

 At time t, the mass-point is found at the vertex of the cone, and in fact at rest.  The original 

specification of the virtual displacements breaks down at that singular point.  However, one will 

also have to consider displacements that move the mass-point from the given position to a position 

that is compatible with the constraints, and equations (6) will then have to be replaced with the 

equations: 

 

(6)      

   

 One gets the equation: 

 

(5)      

 

and most simply by geometric arguments.  By means of d’Alembert’s principle, that will lead to 

the equations: 

 

(8)     

 

By themselves, they generally contradict equation (5). 

 One can seek to explain that result by the fact that the vertex of the cone is not able to produce 

a reaction.  However, it will be shown that reactions will appear when one applies the principle of 

least constraint. 

 

 

§ 3. – The principle of least constraint for systems with holonomic 

and non-holonomic constraint equations. 

 

 According to GAUSS, for a given state of motion, the constraint: 

 

(10)     

 

 

will be a minimum for all quantities ( )x  that are compatible with the constraints. 

 For regular positions, the admissible quantities ( )x  will be specified by the linear equations 

(5).  For singular positions, at least one of those equations will be replaced with an equation of 

order two or higher.  In both cases, the constraint will have at least one minimum.  Namely, it is 

initially a continuous function of the independent variables ( )x  and will preserve that property 
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when its variability is restricted by algebraic equations.  There will then be at least one system of 

values ( )  that makes the constraint a minimum. 

 It will now be shown that the constraint possesses only one minimum for regular positions. 

 Let ( )  be a location of the minimum, so ( )Z u  +  will be greater than ( )Z   for all 

sufficiently small, admissible systems of values (u), and indeed a system of values (u) will be 

admissible when equations (5) are fulfilled for the quantities ( )u  + , so when the m equations 

exist: 

 

(11)     

 

 

It follows from this that for a system of values (u), the system of values (g u) will be admissible 

for arbitrary positive or negative g .  Now, one has: 

 

(12)    

 

 

and as a result, one must have the expression: 

 

(13)     

 

for a minimum, initially for sufficiently small systems of values (u), but then for all admissible 

ones.  If there is a second location for a minimum ( )  then one can put   in place of u  +  in 

equation (12), so ( )Z   would be greater than ( )Z  , with the exclusion of equality.  One can 

show in the same way that ( )Z   is greater than ( )Z  , with the exclusion of equality.  As a 

result, the assumption that there is a second location for a minimum must be rejected. 

 One has repeatedly stated that the principle of least constraint yields an absolute minimum, 

and one would like to conclude from this that the constraint possesses only one minimum location.  

However, an absolute minimum can appear at several places at once; for instance, take the function 

y = sin x .  However, in addition, equation (11) will be true only under the assumption of a regular 

position of the system.  How things work at the singular positions will be explained at the 

conclusion of this paragraph in an example. 

 Under the assumption of a regular position, there is always one and only one system of 

accelerations that satisfy the principle of least constraint for a given state of motion.  It is easy to 

see that one will obtain the same accelerations that are given by d’Alembert’s principle, because 

equations (11) will be converted into equations (6) when one sets: 

 

(14)     x = u  t , 

 

and in that way, equations (13) will, at the same time, go to equations (7). 
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 It would seem that the fact that the admissible changes in the accelerations are coupled with 

the virtual displacements by equations (14) was first pointed out by GIBBS (3), but generally 

without expressly stating the essential assumption that the position of the system must be regular. 

 With that, we have arrived at the lemma that d’Alembert’s principle and the principle of least 

constraint are equivalent for point-systems that are subject to holonomic and non-holonomic 

constraint equations, assuming that the position is regular.  Due to equations (14), the demand (7) 

that the virtual work done by reactions should vanish is identical to the necessary and sufficient 

condition (13) for the minimum of the constraint.  In order to prove that the accelerations are 

determined uniquely by d’Alembert’s principle for a regular position, one can then depart from 

JACOBI’s path and appeal to the principle of least work and then arrive at that goal by simple 

conceptual arguments without using the theory of determinants. 

 In conclusion, we shall once more take up the example that was treated in the foregoing 

paragraphs of the motion of a mass-point on a cone.  The principle of least constraint demands that 

the expression: 

 

(10)    

 

must be a minimum, with the constraint (5).  Geometrically, that can be interpreted by saying that 

it is the shortest distance from the point X1, X2, X3 to the surface of the cone. 

 One sees immediately that two points of the cone can yield a minimum in some situations.  The 

line segments from the vertex of the cone to the two points will give the directions and magnitudes 

of the desired accelerations, while the two shortest distances will represent the associated reactions.  

When there is also a means of preferring one of the accelerations that are found, it must however, 

break down when the direction of the force lies along the axis of the cone. 

 In the textbooks on mechanics and physics, one often finds it maintained that the motion of a 

mechanical system should be established completely by the initial state of motion (i.e., 

determinism).  It is then “self-explanatory” that the accelerations will be determined uniquely by 

the principles of mechanics.  Here, however, the objection is raised that, first of all, it might be just 

as conceivable, in and of itself, that one must also know the initial accelerations.  However, 

secondly, one must know the meaning of the principles.  Those are starting points for the 

calculations, and their implementation belongs to the domain of mathematics.  It is up to the 

physicists to verify the physical admissibility of the results of calculation.  However, it would be 

wrong to reject a principle of mechanics just because the accelerations would not be determined 

uniquely in some situations.  The fault might, in fact, lie in the way that the problem was posed.  

Thus, the motion in the vicinity of the vertex of the cone that was required in the example will not 

be realized by mechanics; an inadmissible idealization was made here. 

 In the present context, the example shows that d’Alembert’s principle and the principle of least 

constraint do not need to be equivalent for singular positions, and indeed, it shows that Gauss’s 

principle achieves more than d’Alembert’s.  It follows from this that it is not possible to derive 

the principle of least constraint from d’Alembert’s principle for singular positions.  Rather, one 

will have to pose Gauss’s principle axiomatically for singular positions. 

 
 (3) J. W. GIBBS, “On the fundamental formulae of dynamics,” Am. J. Math. 2 (1879), pp. 49.  

2 2 2
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§ 4. – Geometric interpretation. 

 

 It is often useful to regard the systems of quantities that appear in the mechanics of point-

systems as the coordinates of a point in a Euclidian space of several extensions. In particular, that 

is true of the 3n acceleration components ( )x
. 

 The geometric interpretation will become more transparent when one performs an affine 

transformation and introduces the 3n new coordinates: 

 

(15)     

 

 

In that way, one will get the square of the distance from the point (y) in a 3n-fold extended 

Euclidian space R3n to the origin O of the coordinates.  The constraint equations (5) now read: 

 

(16)      

 

 

and the principle of least constraint says that for a regular position of the system, the shortest 

distance from the point O to the (3n – m)-fold extended Euclidian space R3n−m shall be singled out 

by the one that is suggested for R3n by equations (16).  It is known from the study of multiply-

extended Euclidian spaces that the desired shortest distance is the perpendicular that is dropped 

from O to R3n−m and that there is always one and only one such perpendicular (4). 

 D’Alembert’s principle also takes on a simple geometric meaning.  The base F of the 

perpendicular has the coordinates () .  The point ( + v) then belongs to the space when the 

quantities (v) satisfy the equations: 

 

(17)      

 

 

However, that will be converted into equations (11) when one sets: 

 

(18)      

 

The requirement (7) of d’Alembert’s principle is then identical to the orthogonality condition: 

 

(19)       

 

 

 
 (4) See, for instance, P. H. SCHOUTE, Mehrdimensionale Geometrie, Erster Teil: Lineare Räume, Sammlung 

Schubert, Band XXV, Leipzig 1902.  
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In fact, the shortest distance OF from the point to O to the space R3n−m is always perpendicular to 

all of the directions in R3n that belong to that space.  The fact that the two principles are equivalent 

in the regular case will then become obvious. 

 

 

___________ 

 

PART TWO 

 

Mechanical systems with inequality constraints (5) 

____ 

 

 

§ 5. – Generalities on point-systems with holonomic and non-holonomic 

constraint inequalities. 

 

 The holonomic and non-holonomic constraint equations shall be combined with k inequalities: 

 

(20)     g (x ; t) > 0  ( = 1, 2, …, k ) . 

 

In them, it will only be assumed that there are positions of the system that are compatible with all 

constraints at time t . 

 When one of the functions g (x ; t) is positive for an admissible system of values (x) at time 

t, the condition that g  > 0 will be called passive to the change in position of the system, because 

all systems of values will then be admissible in a sufficiently-small neighborhood of the system of 

values (x ; t) .  However, when one of the functions g (x ; t) vanishes at time t and assumes 

positive, as well as negative, values in the neighborhood of (x ; t), the velocity components ( )x  

must satisfy the condition: 

 

(21)      

 

 

If the value on the left-hand side is positive for one system of values (x ; t) then all states of motion 

in a sufficiently-small neighborhood of the state of motion ( ; ; )x x t   will also be admissible.  Such 

an inequality will then be called passive to the change in the state of motion. 

 l non-holonomic inequalities: 

 
 (5) For the history and literature on this topic, cf., the articles in the Encyklopädie der mathematischen 

Wissenschaften, Bd. IV 1, by A. VOSS, “Die Prinzipien der rationellen Mechanik,” especially pp. 73 and 85, and by 

P. STÄCKEL, “Elementare Dynamik der Punktsysteme und starren Körper,” especially pp. 460.  The statements that 

were made there will be extended in various directions here. 
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  ( = 1, 2, …, l ) (22)  

 

 

can be added to the k holonomic inequalities (20).  They will be active or passive to the changes 

of the state of motion according to whether equality or inequality exists, respectively. 

 In total, s equations that the velocity components must satisfy: 

 

  ( = 1, 2, …, s) (23)   

 

will be obtained for the given state of motion in the manner that was described.  The position (x) 

of the system at time t will be called regular when the m + s equations (4) and (23) allow one to 

represent just as many suitably-chosen velocity components as linear functions of the remaining 

3n – m . 

 An inequality for the acceleration components will follow from equations (23): 

 

(24)     

 

 

However, whereas the knowledge of the state of motion will make it possible to decide whether 

the equality sign is or is not valid for one of the conditions (21) and (22), that will not be true of 

the conditions (24).  It will be shown that for regular positions of the system, the acceleration 

components ( )  that actually exist are determined uniquely by the principle of least constraint, 

and indeed when the ( )  are substituted for the ( )x , the equality sign will be valid for some of 

the conditions (24), the greater than sign will be valid for the rest of them.  Those inequalities can 

be dropped from the outset; for that reason, they shall be called passive for the accelerations. 

 

 

§ 6. – The D’ALEMBERT-FOURIER principle for systems with holonomic 

and non-holonomic constraint inequalities. 

 

 On the basis of arguments that go back to Fourier (6), one must replace d’Alembert’s principle 

with the requirement that the virtual work done by reactions can have no negative values for 

systems with inequalities.  An example was given in the cited treatise by Gibbs for which the 

d’Alembert-Fourier principle was not sufficient to determine the acceleration components 

completely.  The following simpler example will also accomplish the same objective. 

 A point of unit mass moves in space; let it be subject to the inequality x3  0 .  In order for the 

condition to be active for the change in position at the time t, let it be found in the x1 x2-plane.  The 

velocity components must then satisfy the condition that 3x   0, and that condition will be active 

 
 (6) J. FOURIER, “Mémoire sur la statique,” J. de l’École polyt. 5 (1798), pp. 30; Œuvres, t. II, 1890, pp. 488.  
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for the change in the state of motion when 3x  = 0 .  That implies that one must have 3x   0 for the 

acceleration components. 

 When x3 = 0 at time t, the virtual displacements must fulfill the inequality  x3  0 .  

Furthermore, the d’Alembert-Fourier principle demands that one must have: 

 

(7)     

 

Due to the arbitrariness in  x1 and  x2 , one must have 1x  = X1 , 2x  = X2 , such that (7) will go to 

the condition that X3 . 

 The result is that 3x  cannot be less than the greater of the two values 0 and X3 .  Therefore, 3x  

will not be determined completely by the d’Alembert-Fourier principle. 

 Just as Gibbs remarked for his own example, it is also possible to ascertain the value of 3x  

here by means of simple arguments on the progress of the motion.  Namely, if the component X3 

is negative then it will be annihilated by the reaction of the boundary surface x3 = 0, and one will 

have 3x  = 0 .  However, if X3 were zero or positive then the mass-point would move as if it were 

free, and one would have 3x  = X3 .  That is correct.  Merely performing the calculations from the 

Ansatz that the d’Alembert-Fourier principle prescribes will yield only the previously-posed 

inequality condition for 3x , and the example then shows that this principle will not lead to the 

determination of the accelerations in general. 

 

 

§ 7. – The principle of least constraint for systems with holonomic 

and non-holonomic constraint inequalities. 

 

 It seems that Jacobi was the first to examine the application of the principle of least constraint 

to systems with inequality constraints in detail, in his lectures on dynamics during the Winter 

semester in 1848/49 (7).  He was followed by RITTER (1853) in a dissertation that was supervised 

by Gauss (8), Gibbs, in the cited 1879 treatise, and Boltzmann (9). 

 Without knowing of the aforementioned publications, Mayer (10), prompted by some older 

work by Ostragradsky (1834 and 1836), addressed inequality constraints, and on the basis of 

some remarks by Study in the year 1899, he showed how one could determine the accelerations 

by means of the principle of least constraint; a regular position was tacitly assume there.  It still 

remained doubtful whether several systems of acceleration might be obtained in some situations.  

Generally, Mayer believed that “For that reason, one can probably regard it as obvious that two 

different systems of accelerations of the given character cannot exist, because if they did exist then 

 
 (7) According to A. VOSS, loc. cit., pp. 87.  A copy of detailed calculations by SCHEIBNER that were cited in it 

can be found in the Bibliothek der Berliner Akademie der Wissenschaften.  

 (8) A. RITTER, “Über das Princip des kleinsten Zwanges,” Dissertation, Göttingen, 1853. 

 (9) L. BOLTZMANN, Vorlesungen über die Principe der Mechanik, Part I, Section VI, Leipzig, 1897. 

 (10) A. MAYER, “Über die Aufstellung der Differentialglichungen der Bewegung für reibungslose Punktsystemem 

die Bedingungsgleichungen unterworfen sind,” Leipziger Berichte, math-phys. Klasse 51 (1899), pp. 224. 

1 1 1 2 2 2 3 3 3( ) ( ) ( ) 0.x X x x X x x X x  − + − + − 
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there would absolutely no means of finding out which of the two systems were the correct one.”  

However, as was proved in § 3, it is very probable that two systems of accelerations might make 

the constraint a minimum at singular positions.  The fact that uniqueness prevails under Mayers’s 

assumption then requires proof. 

 While tacitly assuming a regular position, Jacobi already remarked in the cited lecture that 

“the nature of the minimum at hand excludes several minima,” and Boltzmann asserted that “the 

constraint must be an absolute minimum for the actual motion, and be capable of having several 

minima” (loc. cit., pp. 240).  Soon after, Zermelo (11) proved that the constraint possessed only 

one minimum in full rigor for regular positions of the system, but generally under certain restricting 

assumptions, and in that way demonstrated the uniqueness of the accelerations. 

 The process that was used in § 3 can be adapted to the case in which any holonomic or non-

holonomic inequalities are added to the constraint equations, and that would allow one to derive 

the theorem on the uniqueness of the accelerations in its most general form. 

 In the R3n of the components ( )x , the constraint is a continuous function of position for the 

part of space that contains all of the points ( )x  that are compatible with the constraints, and it 

will therefore attain a smallest value for at least one location; one does not need to assume that this 

position is regular in order to reach that conclusion. 

 Let the point ( )  be one location of the minimum, such that ( )Z u  +  will be greater than 

( )Z   for all sufficiently-small changes (u) in its coordinate that are compatible with the 

constraints.  As a result of equation (12) the necessary and sufficient condition for that is that: 

 

(25)      

 

For a regular position, it can, in turn, be shown that the validity of the condition (25) for all 

sufficiently-small admissible systems of values (u) will imply its validity for all systems of values 

(u) that that exist in general. 

  In order for a system of values (u) to be admissible, it must first satisfy equations (11).  

Secondly, the conditions (24), which were fulfilled for x  =  , must remain fulfilled when x  is 

replaced with the value   + u . 

 Now let  be a quantity that lies between 0 and 1.  The system of values (U) will always be 

admissible when the system of values (U) is.  The fact that equations (11) are valid for that system 

of values is indeed obvious.  However, if the two inequalities are true: 

 

(26)    

 

and 

 
 (11) E. ZERMELO, “Über die Bewegung eines Punktsystems bei Bedingungsungleichungen,” Göttinger 

Nachrichten, math-phys. Klasse, (1899), pp. 306; that note was presented on 3 February 1900. 
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(27)    

 

for one value of the index  then the inequality: 

 

(28)    

 

will also be true, as one easily convinces oneself.  The result can be interpreted geometrically by 

saying that for a regular position of the system, the part of space that contains all of the points (…) 

that are compatible with the constraints is simply connected and everywhere convex. 

 Moreover, if one chooses the quantity J to be sufficiently small that the requirement (25) is 

fulfilled for u =  U  then it will also be fulfilled for u = U .  One might infer the conclusion of 

the proof word-for-word from § 3. 

 

 

§ 8. – Determining the accelerations by means of the principle of least constraint. 

 

 The determination of the accelerations from the principle of least constraint will be eased when 

one likewise employs the geometric interpretation that was developed in § 4.  Under the 

assumption that the position of the system is regular, equations (5) between the coordinates (y) 

will then correspond to m linear equations 

 

(29)      

 

that are mutually independent and mutually consistent, and correspond to the constraints (24), and 

there will be s inequalities: 

 

(30)      

 

that are compatible with each other and with (29).  A Euclidian R3n−m will be specified in R3n by 

equations (29), and the inequalities (30) will have the effect that only the points of a certain N-

fold-extended, simply-connected, everywhere-convex region of space SN in it that is bounded by 

Euclidian spaces with N – 1, N – 2, …, 2, 1 extensions will come under consideration; therefore N 

 3n – m .  The principle of least constraint will then follow from the fact that the following problem 

has then be solved: 

 A region of space in a Euclidian space is specified by linear equations and inequalities.  Find 

its shortest distance from a given point in space. 

 The fact that there is only one such shortest distance was proved in the foregoing paragraphs.  

Two cases are to be distinguished in its solution:  First of all, the given point O belongs to the 

region of space SN , including the boundary.  The shortest distance to the point O itself will then 

be obtained.  Secondly O can lie outside the region of space SN .  If the perpendicular OF were 

then dropped from O to the N-fold-extended Euclidian space RN that includes SN then OF would 

be the minimum of the distances from all points of RN to O .  Thus, if the point F belongs to the 
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spatial region SN then OF will be the desired shortest distance.  It is easy to see that in this case the 

point F lies on the boundary of the spatial region SN with the space R3n .  Finally, if the point F 

does not belong to the spatial region SN then the minimum of the distance will reached at a point 

A that is different from F, and which necessarily lies on the boundary of the spatial region SN with 

RN .  Namely, since the perpendicular OF is perpendicular to all of the directions of R3n that lie in 

RN , one will have the equation: 

 

(31)     OA2 = OF 2 + AF 2, 

 

and as a result, AF will be the minimum of the distance from the point F to the points of the spatial 

region SN . 

 The original problem with the auxiliary conditions (29) is then reduced to the same problem 

without the auxiliary conditions by the argument that was just presented.  Gauss addressed 

precisely the problem of finding the minimum of the expression: 

 

(32)      

 

when the linear inequalities: 

 

(33)    C1 z1 + C1 z1 + … + CN zN  0 

 

are prescribed for the quantities z1, z2, …, zN  in a lecture that he gave during the Winter semester 

of 1850/51 on the method of least squares (12).  I have thoroughly presented the process that he 

suggested for finding the location of the minimum, and at the same time, I have proposed another 

way of treating it that is likewise based upon geometric considerations (13).  Finally, one can also 

employ the method of multipliers to solve it.  One might refer to the 1917 article for the details 

(14). 

 

 

  

 
 (12) C. F. GAUSS, Werke, Bd. X 1, Göttingen 1917, pp. 473; reprint of part of RITTER’s calculations. 

 (13) P. STÄCKEL, “Eine von GAUSS gestellte Aufgabe des Minimums,” these Sitzungsberichte (1917), 11th 

treatise.  The note by Zermelo, which seemed to consider an entirely different subject, was not available to me at the 

time.  Once I later recognized the connection, I did not neglect to point out that part of what had been done in the 1917 

article had already been done by ZERMELO. 

 (14) My colleague PERRON was kind enough to write to me that there are two places in § 7 that can be improved.  

When one of the possible points for the minimum of the function f (x1, x2, …, xn) that is to be found lies in a spatial 

region Sn inside of an (n – 1)-extended boundary manifold, it does not need to yield a minimum.  Rather, the same test 

that is required for less than n – 1 extensions can be carried out for it.  For example, consider the case in which the 

shortest distance from a plane (n = 2) to a point on the surface of a square is to be found.  That is connected with the 

fact that the sign convention for the multipliers is not given expressly.  Moreover, one finds that OSTRAGRADSKY 

and MAYER already went into that in detail; cf., also L. HENNEBERG, “Über den Fall der Statik, in dem das virtuelle 

Moment einen negative Wert besitzt,” J. f. reine u. angew. Math. 113 (1894), pp. 179. 

2 2 2

1 2 Nz z z+ + +
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§ 9. – Connection between GAUSS’s minimum problem  

and the principle of least constraint. 

 

 Judging from Ritter’s report, Gauss did not say in the lecture during the Winter semester of 

1850/51 what had led him to pose his problem of the minimum with inequality conditions, and the 

question then arose of whether he knew of its connection with the principle of least constraint.  

Now, it certainly remains puzzling how he would otherwise arrive at the problem.  However, one 

can also arrive at an affirmative answer by other considerations. 

 Statements that were made in letters and articles show that Gauss repeatedly dealt with 

multiply-extended manifolds.  Here, it will suffice to mention a statement that he made to 

Sartorius v. Walterhausen at roughly the time of that lecture: “We can (he said) perhaps 

empathize with beings that are aware of only two dimensions.  A being that is above us would 

perhaps look down on us similarly, and he would (he continued jokingly) have to overlook certain 

problems that he thought had been treated geometrically in a higher state.” (15) 

 In his 1829 note “Über ein neues allgemeines Grundgesetz der Mechanik,” Gauss explained 

that the restriction to condition equations was “unnecessary and not always reasonable in nature” 

and demanded that one should likewise express the law of virtual velocities in such a way that it 

would subsume all cases from the beginning.  At the conclusion, he said that the analogy with the 

method of least squares could not be pursued any further, which does not, however, seem to be his 

present opinion on that subject (16).  He also referred to the importance of the condition inequalities 

in the 28 September 1829 treatise “Principia generalia theoriae figurae fluidorum in statu 

aequilibrii” (17), and he returned to that topic in a letter to Möbius on 29 September 1837 (18). 

 In Ritter’s 1853 dissertation, which goes back to Gauss, the principle of least constraint was 

applied to systems with holonomic inequality constraints, and indeed Ritter appealed to the 

language of multidimensional geometry in it.  He dealt in depth with the general problem of finding 

the minimum of a function of position in a multiply-extended Euclidian space for a spatial region 

in that is defined by inequalities.  Ritter remained at that level of generality.  He did not follow 

through on the Ansatz of Gauss’s principle with computations, nor did he present the linear 

inequalities (19).  One can be certain that Gauss took that latter step. 

 

 

§ 10. – Virtual displacements and admissible variations of the accelerations. 

 

 The fact that d’Alembert’s principle and the principle of least constraint can replace each other 

for equality constraints, assuming a regular position of the system, is based upon the equations: 

 

(14)     x = u  t , 

 
 (15) Cf., my essay: “GAUSS als Geometer,” Materielen für eine wissenschaftliche Biographie von GAUSS, Heft 

V, Leipzig, 1918, pp. 136. 

 (16) C. F. GAUSS, Werke, Bd. V, pp. 25.  

 (17) C. F. GAUSS, Werke, Bd. V, pp. 35. 

 (18) First published by C. NEUMANN, “Über das Princip der vituellen oder fakultativen Verrückungen,” Leipziger 

Berichte, math.-phys. Klasse 31 (1879), pp. 61; reprinted in C. F. GAUSS, Werke, Bd. XI 1, pp. 17.  

 (19) The relevant section of RITTER’s dissertation is printed in C. F. GAUSS, Werke, Bd. XI 1, pp. 469. 
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which exhibit the invertible, one-to-one correspondence between the virtual displacements and the 

admissible changes to the acceleration components.  By contrast, the fact that d’Alembert’s 

principle and Gauss’s principle are not equivalent for inequality constraints, even when the 

position is regular, was shown in the example that was treated in § 6. 

 One asks, “What relationships exist between the quantities (x) and the quantities (u), and 

first of all in the example?”  The only case that comes under consideration is the one in which the 

condition x3  0 is active for the change in the state of motion, so x3 and 3x  vanish at time t .  The 

virtual displacements  x1 and  x2 can then be chosen arbitrarily, and one must have  x3  0 .  The 

condition that 3x   0 is valid for the acceleration components.  Therefore, u1 and u2 are small 

quantities that can be chosen arbitrarily, and one can set x = u  t , x = u  t .  For u3 , there 

are two possibilities to be distinguished: If the condition for 3x  is active then 
3  = 0, so one must 

have u3  0, and one can set x = u  t .  However, if that condition is passive then 
3  > 0, and 

u3 is a small quantity that can be chosen arbitrarily.  Therefore, the condition of the minimum 

requires that one must now have 
3  = X .  The equation x = u  t loses its validity for negative 

values of u, so the domain of the admissible changes (u) is more extensive than the domain of 

the virtual displacements (x) .  The fact that the condition for the minimum is fulfilled for those 

changes in acceleration that are produced by means of the equation x = u  t is, in fact, necessary, 

but not sufficient, because the constraint must be a minimum when it is regarded as a function of 

acceleration.  However, the demand that the virtual work done by reactions cannot be negative 
3(  

− X3) x3  0 says less than the demand that 
3(  − X3) u3  0, which is necessary and sufficient for 

a minimum of the constraint.  That explains the fact that the first demand on 
3  yields only an 

inequality, while the second one implies the unique determination of the acceleration. 

 One further sees that Gauss’s principle cannot be a consequence of the d’Alembert-Fourier 

principle, because if it could be derived from the latter principle then the acceleration could be 

determined uniquely from the d’Alembert-Fourier principle.  However, that principle probably 

follows from Gauss’s, namely, when u3 is subject to the restriction that it is not negative. 

 What is true for the example proves to be correct in general.  When one restricts oneself to 

sufficiently-small systems of values (u), as is allowed by the proof of the minimum, the quantities 

(u) must initially satisfy equations (11).  As the conditions (27) show, for those values  of the 

index  for which the equality sign is valid in the constraints (26), that must be combined with the 

inequalities: 

 

(34)      

 

 

By contrast, when the greater than sign is valid in the conditions (26), they will be passive to the 

changes in the accelerations. 

 One initially has equations (6), which correspond to equations (11), for the virtual 

displacements.  However, when the inequalities (20) are active for the change in positions, they 

will be combined with the conditions: 
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(35)      

 

and indeed for all values  = 1, 2, 3, …, s . 

 A glimpse at the formulas shows that any system of virtual displacements (x) will produce a 

system of admissible changes (u) in the acceleration components by means of equations (14).  In 

general, however, the converse is not true, since the displacements (x) must satisfy all s 

inequalities (35), while the conditions (34) on the changes (u) are fulfilled for only some of the 

values of , in general.  Therefore, in general, the domain of the admissible changes (u) will be 

more extensive than the domain of the virtual displacements (x), and the demand of the 

d’Alembert-Fourier principle that: 

 

(36)      

 

 

will say less than the demand of Gauss’s principle that: 

 

(24)      

 

 Boltzmann’s geometric proof of the principle of least constraint (20) might lead to the 

suspicion that the principle is also a consequence of the d’Alembert-Fourier principle for 

inequality constraints, as well.  The fact that this is not the case was shown already by Gibbs’s 

example, which Boltzmann communicated in detail.  It is generally true that a system of 

admissible changes (u) in the acceleration components x  will emerge from any system of virtual 

displacements ( x), and it cannot be denied that 
3( )Z u +  is greater than 

3( )Z   for those 

changes.  However, that only means that a necessary condition for the minimum has been fulfilled, 

but one lacks a proof that the value of the constraint proves to be greater than it is for 
3( )  for all 

admissible, sufficiently-small changes in the acceleration components. 

 Gauss underestimated the profundity of his “new fundamental law” when he explained that it 

was already included in the combination of d’Alembert’s principle with the extended principle of 

virtual displacements as far as the matter was concerned.  The fact that the constraint on a 

mechanical system that is subjected to arbitrary equality and inequality constraints is a minimum 

for the actual accelerations cannot be proved.  Rather, it is an axiom that first becomes accessible 

to mathematical investigation in the case of inequality constraints.  Such a concept only enhances 

the significance of Gauss’s principle.  In that way, it attains the status of a fundamental law for 

analytical mechanics. 

 

___________ 

 

 
 (20) L. BOLTZMANN, loc. cit., pp. 216-220.  
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