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Foreword i

FOREWORD

Since it was founded bylonge and Gauss the general theory surfaces has piqued
the interest of mathematicians to an appreciable dedreat interest led up to a series of
survey presentations)(that were mostly connected with the purely geometeiatiment
of Gauss while the more recent especially rich and distinctiverkvof Darboux is
essentially built upon kinematical foundations. Althoitgh not entirely easy to survey
the wealth of formulas, theorems, and problems inthkery of surfaces, that fact does
seem to point to the fact that the requirement géeral, as well as simple and unified,
treatment of the matter has still not been suffityeaddressed. Thus, that points directly
to the goal of the present brief discussion of theddmmental formulas and their most
important applications. This little book might be able as a foundation for the study of
more thorough works (such as the stimulating bookBlmnchi and the works of
Darboux) in which the analytical, as well as geometric, qoestiare treated in detail or
of lectures in which the analytical development is eatéel and enlivened by developing
the models?) for special classes of surfaces.

The basic impetus to publish this book came from my lestore the theory of
surfaces over four years. The actual writing of it caabeut in collaboration with
Kommerell, in whose dissertation (Tubingen, 1890) individual sectidriswere treated
already in the same spirit. For the sake of gaining ttetbeverview, the subject is
divided into three parts. The first sectionl(®) gives the formulas that are needed for
the study of a given surface, the second orié18) gives the formulas for the derivation
of a surface with given properties, and the third on&3&.8 gives the formulas for the
study of curves on surfaces. The applications can bendegdaquite easily. However,
for the sake of a simple overview, a restriction t® thost important groups of general
problems also seems preferable here. At the sameitsm@nnection with the original
treatises is provided by numerous references, except thatfeat places, it was not
possible to refer to the literatur®arboux’s works deserve special attention.

Tlbingen, August, 1892
H. Stahl

() Cf., pp.iv.
() Mathematische Modelia the publication of.. Brill in Darmstadt.



§1.
§ 2.
§ 3.
§ 4.
§ 5.
§ 6.

§7.
§ 8.
§9.

§ 10.
§ 11.
§ 12.

§ 13.
§ 14.
§ 15.
§ 16.
§ 17.
§ 18.

Table of Contents

TABLE OF CONTENTS

|. — Study of a given surface

Gauss’s equations. First-order fundamental quantities.................
Second-order fundamental quantities...

Minimal lines. Isometric lines. Conformal mapplng G:Uaface .........

Geodetic lines. Geodetic coordinates..

Conjugate directions. Lines of curvature Asymptotlcsllne ..........

Application to central surfaces..........coooviiiiiiiiiiiiii e

Il. — Deriving a surface with given properties.

The fundamental equations of Gauss and Mainairdi.......................

Bonnet’s theorem.. .

Applications. leferentlal equatlon for certalnfaces

Application to a triply-orthogonal system of soefs...
Spherical map. Plane coordinates. Applications..........................
Application to minimal surfaces...........c.ccooviiiiiiiiiii

lll — Study of curves on general surfaces.

The general SPace CUIVE.......o.vui it e e e e
The general surface curve. Determining the radius......................

Theorems 0N SUIMACE CUIVES... ... et e et e e e e e e e e e e

Calculating the angle. Applications...........coooviiiiiiiiii e
Conversions. Differential parameters. Applications................c......

Transformations of the parameters. Application............................

84

.90

95
100
106
113



wh e

14.
15.
16.
17.

18.

Overview of applications iii

OVERVIEW OF APPLICATIONS

Conformal mapping of the sphere onto the plane............... e, 83
Central surfaces.. .8 6.
Surfaces whose radu of prrncrpal curvature are coupledartny

(=0 {1 = L0 o PP 86
Differential equation of surfaces of constant cunetur.............. §09.
Differential equation of surfaces of constant maanature.......... §09.
Differential equation of surfaces with isometriceknof curvature.... 8 9.
Surfaces with planar and spherical lines of curvature................ 89 and 11
Surfaces with given spherical maps.............c.ccovevcee e, 8110
Bending surfaces of a given surface..............cocoiiiiiiiiiiiiic i, §09.
Criteria for a surface to be a bending surface of anoth........... 8§ 18.
Triply-orthogonal systems of surfaces................coccoiiiiinnn. § 10.
Conformal mapping of a space into itself.. P - [0}

Minimal surfaces (general properties, equatron of theasirf
special surfaces, mapping and development, determining tleesurf

by acurve onthesurface...............cooiiiiini 0 8 12,
Theorems oNn SUrface CUNVES..........vviiiiiiiie e e § 15.
Total curvature of a surface patch.....................coceiieenn.... 8 16.
Geodetic lines on Liouville surfaces e ..8 16.
Criteria for ¢ = a to be a system of mrnrmal Irnes geodetrc Irnes
geodetic parallels, isothermal lines.. .8 17.

Lines of striction for systems of curves..............ccoooeviiiiiiinn, 8§ 17.




iv Original works and survey presentations

ORIGINAL WORKS AND SURVEY PRESENTATIONS

Monge, Application de l'analyse & la géometrié™ ed. 1795, and the titl€Feuilles
d’analyse appliquées a la géometr®# ed., 1850, with notes by J. Liouville.

Dupin, Développements de géométi&€13.

Gauss Disquisitiones generalesirca superficies curvasl1827; Werke IV pp. 217.
German by O. BoklenAnal. Geom. des Raumepp. 198,et seq.and by A.
Wangerin, Leipzig, 1889.

Lamé, Lecons sur les coordonées curvilgnearis, 1859.

Lacroix, Calcul diff, 1797, Problems by Hermite and J. A. Serret, 1874.

Cauchy, Lecons sur les Appl. du calc. inf. a la géomettig26.

Bertrand, Calcul diff, 1864.

Joachimsthal Anwendung d. Diff. u. Integralrechnung auf die allg. Theorie der Flgchen
Leipzig, ' ed., 1872, § ed., 1890.

Salmon-Fiedler, Anal. Geom. d. Raumes, Th. Leipzig, £ ed., 1865, 8 ed., 1880.

Hoppe, Lehrbuch d. Anal. GeomLeipzig, I. Curventheorie 1880, Il. Flachentheorige
1876.

Boklen, Anal. Geom. d. RaumeStuttgart, Ped., 1884.

Bianchi, Lezioni di geom. diff Pisa, 1885-86.

Knoblauch, Einl. in d. Theorie d. krummen Flachdreipzig, 1888.

Laurent, Traité d’analyset. VII, Paris, 1891.

Darboux, Lecons sur la théorie gén. des surfades I, I, Paris, 1887-92.




CHAPTER |

STUDY OF A GIVEN SURFACE

8 1. — Gauss's equations. First-order fundamental quantities

We shall first presenGausss most important formulas') that will facilitate the
study of a surface, with some deviation in notation.

Let the coordinates X, y, z of a point on the surfaeegiven adunctions of two
variable parametergu, v) of the form:

(1) X=xXuVv), y=y(UvVv), z=z(uV).
To abbreviate, from time to time, we shall set:

ox _ ox _ 9°x 9°x  _ 9°x _
(2) -— =X, -— =X, — = X1, =X12, —5 =X22.

ou ou ou? ouov ov?

The expression for tHee element dss:

(3) ds’ =dx¢ +dy? +dZ = e dif + & du dv+g dV/,
where
2 2 2 2
=(5) (3] (3] ~=(&)
ou odu Ju ou
(4) f= %%4-%@4-6_26_2 = %a_x’
duov 0dudv 0udv ou ov

ox oy 2 (9z)’ ox )’
== | +| 2| +| = = =
g (avj (avj (avj ) ov) '
in which only the term in the sum that refersxte written out, to abbreviate, since all

terms are symmetric i®, y, z The three quantities, f, g, which include only first
derivatives ok, y, z, are calledirst-order fundamental quantities/NVe set:

(5) 0%=eg-F,

which is an expression that is always assumed to be@mn Furthermore, let:

() Gauss Disq. gen, art. 3,et seq.



2 Chap. I. — Study of a given surface

= %a_zx = E% = %a_zx :—Ea_e-{-ﬂ

ou oU? 20u’ ov OU? 20v du’
(6) m’= % 62)( = E% n’= % 62)( :—Ea_g
dududv  20v’ ovoudv 20u’

,_~0x0°x _ 1log of ., ~—0x0°x _ 1dg
m=>--——2 =—--"“3Z 4+ n
ou 0V

20u ov’ VoV 20v

Thus, the derivatives &, f, g with respect tai, v can be expressed in terms of the six
guantitiesm, m’, m”, n,n’, n”.

Finally, let:
mg-nf =pd? ne-mf =qd?
(7) mg-nf =p % nNne-mf =qd?
m’ g _ n" f = p" 52, n" e_ m’ f = q" 52,
from which:
(7a) prq==22 prq=3%
oou’ ooV

The angle (C, C;) between the two curves C and & the point (, v), whose
directions are given by the quotientli ¢ dv) and ¢hu : div), is determined by:

cos C, Cy) = edug ut dudi;q SdVld)U" gdyd

udv-dvdt
dsfds

(8)
sinC,C) =4

Hence, the anglevthat the two parameter curves const. andl = const. define with
each other will be determined from:

_ f . _ 0 o
9) Ccosw= —, sinw= —, tanw= —,
Jeg Jeg f

and the equation:
(10) f=0

is the condition for thparameter curves to intersect at right angles.
Thesurface element daas the value:

(11) do=sinw./eg du dv= ddu dv.
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It follows from the last of equations (9) that:

fd5—5df f (edg+ gde-2 egd1

(12) dw=
eg 2ego
or
(13) - dw= (&I 5pjdu+[5p' 5qjdv
e g g e
and from that:
2 "
(14) - Xo 000 o) 0%, 30
dudv dul ¢ e av g

We further denote the cosines of the inclinatingles between the coordinate axes at
the point (i, v) and thesurface normaby (a, b, ¢) (*), while the ones defined by the
tangentsto the curvew = const. andi = const. will be denoted by, £, )4) and @,

[, )5), respectively.

Six relations exist between these nine cosinasrder to obtain them, one imagines
two coordinate systems that emanate from the orthin rectangular one,(y, 2 and a
second onex(;, y’, z’), in which thez-axis is parallel to the surface normal, while xie
andy’ axes are parallel to the tangents to the cuwesconst. andu = const. If one
denotes the coordinates of an arbitrary point as¢htwo systems by,(y, 2) and &', v/,

z’) then one will have the transformation formulas:

X=mxX'+my'+az’,

(15) y=AX'+ Ry’ +BZ,
Z= X'+ py'+yz.
The identity:
(16) X AY +Z=x?+y % +2% +2X'y' cOSW
will yield:
X'+y'cosw=mXx+pLy+ Kz,
a7 y'+XxX'cosw=mx+Ly+pz,

zZ’=axt+by+cz

as the solution to equations (15), and that willdyithe desired relations in either the
form:
a?+b?+c?=1, am+ BB+ = cosw

() Later on, (811), these quantities will also be denoted XyY, 2).
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(18) a’l+pr+yr=1, am+bp+cy=0,
1 1 1

a+B+y; =1, am+bB+cy=0,
or in the form:
a’ sit w+ 2 o, a» cosw= sirf w
(19)
absif w+ a1 B+ B— (a1 B+ B aw) cosw= 0,

along with the equations that follow from these by icypermutation.
From (18), one has:

a a a,
(20) b B G =lacimxm|=tsinw
c n b

when one writes only the row that contamsn, a. in a determinant that is constructed
symmetrically froma, b, ¢ ; ;1, B, i, and a», 5, )5, to abbreviate. Under the
assumption that one chooses the positive sign in ¢2@)will have:

By—-Wnp =asing
(21) sinw(b y—-cp) =a»— a1 cosw
snw(lc-by) =mn—-asing
along with the equations that follow from these by icysermutation.

The cosinesdi, [, 1) and @, [, ) are expressed as functions af ) by the
equations:

e LO 1y 10
! Jeou’ Jeou’ Jeou’

(22)
1 ox _ 1 oy _ 1 oz

azzﬁa, ﬁz—ﬁa, Vz—ﬁa,

and, from (21), the cosines, [, ¢) are expressed by the equations:

olh= ﬂa_z—a_za_y,
duov oudv
(23) Olb = %%_%a_z

dudv duodv’
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sm= X3y _dyax
dudv Auodv’

while (20) goes to:
(24) 5=‘a % 2(.
ou ov

For later use, we note the following facts: When employs the abbreviations (2),
(23) will imply:
b c

Yo 4

b c
Y,

(25) o) —ex—-fx, o) =fx-gx.

It will further follow from the first equation (23), wheone squares it and employs (4),
that:

(26) 3 d=e-x)@-%)-Ff-xx)
or

27) a=,1-9(x),

when one sets:
1
(28) 5’(x)=§(ex§—2f>§>$+ g%),

to abbreviate (cf., 7).

8 2. — Second-order fundamental quantities.

In addition to the three functiorsf, g, which are defined by first derivatives xfy,
z with respect tay, v, there are three more functiort} ¢, d’, d”, which also include the
second derivatives ok, y, z, and are therefore calledecond-order fundamental
guantities. They are defined by:

2 2 2 2
d:a\a)z(+ba Z’+ca fz a—)z(,
ou ou Ju ou
9°x 0° y .
1 d=a + =
@) ou ov auav 6u6v Z auav

() Gauss Disg. gen.art. 10.
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9°x 0%y 0%z X
d’=a—+b—5+c—=) a—.
o’ v AV oV
Differentiating the equations that follow from (18) a@@) of 81, namely:

0x 0x

2 a— =0, a— =0,

@ Z ou Z ov

will imply:

(3) %%:—d, %%:—d”, Z%%: %%:—d'

ou dou ov ov ou ov ov du

and from that:

oda 1)
—dx =) —da=-(ddu+d’dv),
Z ou Z ou ( v

fda 0Xx
—dx =) —da=-(d’du+d”dv),
> Rax=y Xda=-( v

(4) v

Y ad’x ==Y dadx =d dif + 2d’du dv+d”dV-.

" da oOda 0x O0X , _
Upon multiplyingla — — — —|, one will get:
ou odv ou
5) dd”—d’2:5‘a ga oa
ou ov

Next, the derivativesa—a, %a can be represented linearly in termsge)f’r, %, and
ou ov Ju ov
conversely, with the help of the quantitiesf, g, d, d’, d”. Namely, if one solves the

equations that appear in (3):

oxoda 0ydb 0zodc_
hbhhhal Nt Sadagt}

duodu dudu Oudu

%%4-@@4-6_2% =-d’

ovou dvou o0vou
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for the 92 , 9 , x , it will follow that (%):

du Jdu du

(6) %: '%+0”6_X, %: p"%+0’"a_x,
ou ou ov ov Ju ov
when one sets:
fd'—gd=p’ 0% fd—ed= 0o %
(7)
fd"-gd=p"3°  fd'-ed=0"5"
to abbreviate.
It follows from this that:
e,0”+ d/(a.”_p/) _dlla—I: 0’
(8)
dpll+ dl(a.ll_pl) _dlla.I: 0 .

There exists another system of equations that shwtshte second and higher partial
derivatives ok, y, z or a, b, c with respect ta, v can all be represented linearly in terms
of the first derivatives of, y, z with respect tay, v, and in terms of the quantitiesb, ¢
or also the former quantities alone. Namely, ongHas

0°x  0x  0X
——-p——-0q— =dh=d 1-9'(x),
ou? pau qav %)

0%x ox ,0x
9 -p—-d— =d’'b=d’'0/1-9(x),
©) Juov P oJu q ov %)

0%X oX 0Xx
92 pZ- g zd"m=d"0J1-5 (),
ov? P ou q ov %)

along with the corresponding equationy iendb, zandc.
In fact, from [81, (23)] and (1), when one employs the abbreviation§ iy [2)]:

1 1 X X%|[*X X % 1 X1 X X%
dl:B.:?O i Yol 1 % :? m e ff,
0 z z|3 2 2 n f g

which will prove the first equation in (9) when one adts[81, (27)]; one gets the other
two equations similarly.

We add two further remarks that will be used later.stFive convert equations (6)
and (9). If we substitute the valuesl§(22)] and consider equations18(21)] then (6)

() Rodrigues Corr. sur I'Ec. poly3 (1815), pp. 162 for parameter curves that are lines of tueva
[cf., 89, (5)]; Weingarten, J. fur Math59 (1861), pp. 382 for general parameter curves.
() Gauss Disg. gen.art. 11.
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and (9) will provide a representation of the differest@d, da: , da» in terms ofa, a,
a,, namely:

(10) da = a,/c(pdu+p'dy+a,/ gl du-o” dy,

dal—T(ddu+dd\) (a, f- afqu“+qd“

(11)
day = -2 (d'du+ ' dy—(a, f-a, egPIUH P v

\/E 2 1 g

One then has the following: If one multiplies theeth equations (9) by, — 21, €,
resp., adds them, and sets (cf,73:

(12) 0% (N =9g(u—px—0gx%) —2f (x2—p X —q %) +e (X —p" X —q" %),

to abbreviate, or also, as a simple calculation #ghuse of equations [§ (6), (7), (7a)]
will show:

(13) 5”()()25{%(9)&_5“(2) av(e)g_é f)fﬂ

then it will follow that:
(14) a(ed-2fd’+gd =00 (x).

When briefly denotes the left-hand side of equation®y9¥)11, (X)12, (X)22, one will
further get:

(15) a® (d d”"—d?) = (11 (22— (X).
Due to [81, (27)], one will get the following representations fr¢iv) and (15):
ed'-2fd+gd_ J'(X

eg- f2 13

_dd'-d? _ (01,0~ (X%
(17) k= eg- f F1-0(x)

(16) h=

The abbreviated valudsandk represent the mean curvature and the curvatsp,, re
of the surface at the point,(v) (cf.,, 8 5). Equations (16) and (17) give a curious
representation of those quantities in termg @dry, z) and its derivatives with respect to
u andv.
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Remark. — In the formulas that were developed before, as weha ones to follow,
upon permutingl andv, the quantities:

ef,g,dd,d"mm’,m’p,p’,p", 0,0
will go to:

o.f,ed’d;dn’n’nqg,q’q o o,
respectively.

8 3. — Minimal lines. Isometric lines. Conformal mapping of surface.

Any equation betweenu V) represents a curve on the surface. The datiodv that
it implies determines the direction of advance ordhection of the line element of the
curve at the pointu; v). In the following sections, we shall consider th#erential
equations for the most important special surface curvdsst like the character and
properties of the surface itself, those curves are détermined in terms of the six
fundamental quantities f,g; d, d’ d”

One calls the system of curves on the surface thadefined by the equation:

(1) dg =d¥ +dy? +dZ =0
minimal lines(®), so theirdifferential equatiorreads:
2) ds’ =edu? + 2f du dv+ g dv¥ = 0.

From (1), the minimal lines are geometrically definedéothose curves on the surface
whose tangents intersect the spherical circle at igfini

From (2), the condition for the parameter cunvesconst. an& = const. themselves
to be minimal lines is that:

(2a) e=g=0.

Equation (2) has degree two doi : dv, so two minimal lines will go through each
point. Indeed, those lines will be imaginary for raaffaces with reag, f, g, since the
discriminant of (2), namelyg? = eg — 2, is positive, which would follow from [&,
(23)]. However, they will lead to important systemsedl lines. In order to do that, one
imagines that equation (2) has been decomposed into itsoiyagate imaginary factors:

3) P=—1 (e dutfdv+iddy), Q=L (e du+f dv—iddy).
e e

Je Je

It is known that there are infinitely many integrgtifactors that will convert such
differential expressions into complete differentialset one such factor fd? be equal to

() From thelie process, Math. Anri4 (1878), pp. 337.
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M +iv, and let the associated differentialdee+ i d5, wherey, v anda, £ are certain real
functions of (1, v). One will then have:

P(u+iv)=da+idg Qu-iv)=da-idB
SO

(4) ds’ =PQ = 4% (d&? + dB?), P

,L12+V2 '

Establishing that form (4) for the line element will thexguire the integrating the
differential equation (2). The curves (u, v) = const. and3 (u, v) = const. (or more
briefly, a and ) possess a characteristic geometric property. él{anf one introduces
a, B as parameters, instead af (), thends’ will assume the form (4), which is
distinguished from (2) by the facts that the coefit of da df is zero, and that the
coefficients ofda? anddB? are equal to each other. The first condition shgs the
system of curves, S intersect orthogonally, while the second one shgt the surface
can be divided intanfinitely-many squareby the system of curves, . If one then
considers a, [ simultaneously to be rectangular coordinatesptaae then it will follow
from (4) that the surface can be mappedformally to the planby the equationsr (u,
V) = a, B(u,v)= B ") with the linear expansiom, under which, the system of lines in the

plane that are parallel to the axes correspontsetsystem of curves, S on the surface.
Now, since the plane can be divided into an infidé of small squares by the linesg,
the same thing will be true for the surface. Duéhat property, the system Sis called
anisometric (isothermal) system of cunas the surface, and the quantit@ss are its
thermal parametersThat will give theheorem:

Any solution to the differential equati@) will imply an isometric system of curves
on the surface whose parametersg will give the line element the ford), and thus
map the surface conformally to the plane.

Corresponding to the infinitude of integratingttas to (3), there are infinitely many
isometric systems of lines on any surface. Inotdenake the transition from one such
system to another, one again lgts i v be an integrating factor & and letda +i dS5 be
its associated differential. It is then known thia& most general integrating factorfof
will have the form:

Ww+iv) F(a+ip),
whereF denotes an arbitrary function. If one now sets:
POu+ivF(a+if=F(a+if)(da+idpf) =dN (a+if) =dA+idB

thends will assume the form:
ds’ = L? (dA? + dB?) ; (5)

() Lagrange (1779) for the ellipsoid of rotatiotDguvrest. IV, pp. 637).Gauss(1822) for the general
surface Werke Bd. IV, pp. 193).
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I.e., the two families of curves, B will likewise define an isometric system in the plane
Sincell is arbitrary, just like=, one will have théheorem:

If (a, P is an isometric system then one will get infinitely many otb@metric
systemgA, B) from it when one understanflsto mean an arbitrary function and sets:

(6) A+iB=M(a+ip)

and splits that equation into its real and imaginaryspart
That is consistent with the known theorem in thethef functions:

If one splits a function of the complex variables i£ into its real and imaginary
parts then one will get two functions A, B that effect a conformal mége gflang(a, f)
onto the plan€A, B).

If (a, ) and @, B) are two such families then they must be coupled loyaguations
A=A (a, p andB =B (a, P that will make:

d = (da+idp) (da—idp =L? (dA+idB) (dA—i dB) .
Now, sincedA anddB are linear and homogeneougimanddg, it will follow that:
dA+idB=p(dazidp),

and since the left-hand side of this is a completereéifiigal, the same thing must be true
for the right-hand side, sp will be a function of & = i f), which will lead back to
equation (6).

These considerations also imply the criterion fergarameter curves u, v themselves
to define an isometric systesn the surface. In that casis’ must have the form:
7) ds’ =1 (U dU + V dv),
in whichU is a function of justs, V is a function of just, andl is an arbitrary function of
(u, v). A comparison with (1) will give the necessary aaéffisient conditions for the
iIsometry as:

(8) f=0, e=lU, g=IU or e:g=U:V=V;:U;.

One can give them another form. Since:

29 2(9)-

upon eliminating, one will get the equations:
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0’loge _ 9°logg

9) f=0, :
oduov Juov

in place of (8).
If those conditions are fulfilled then one can lgigom:

(10) logl :j(algggdu+a§\?edvj.

In particular, ifU =V =1, sof = 0,e =g then (, v) will be thermal parameters.
As anapplicationof this, we shall address tpeoblem:

Map the sphere onto the plane conformally,

which will be useful later.

One first expresses the coordinaxe¥, Z of a pointP on the sphere in terms of the
parametersi, v of the minimal lines on the sphere. The sphesaheadius of 1 and its
center at the origin; here, as well as later, wadl stenote that sphere b LetZ =0 be
the equatorial plane, lgt be the radius of the parallel circle throughand lety be the
angle that the meridian plane Bfmakes with the plan€ = 0. X, Y, Z will then have the
values:

(11) X=pcosy, Y=psinyg, Z=.1-p°.

If (u, v) are the parameters of the minimal lines and apeesses the line elemeis
of the sphere on the one hand py¢) and on the other hand hy, {) then one will get:

(12) dsz= 97" _+p2dy?=F u,V) @ﬂ’
1-p° Y

in whichF (u, v) is an as-yet-undetermined function. It will @i from decomposition
that:

do . du do . dv 2
—+idy=—, ——idy=—, P =F(u,V),
P 1-p° u Py 1-p° v
or
dp du dv) . 1(du dvj
_— = —_—t— y Id == — ’
p/l_pz Z(U vj v Z(U v
or

(13) Py = ilog[%j,
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ut+v sinz//: u-—-v
2/uv’ 2iJuv

Thus,u v = const. are the parallel lines of the spherevhile u : v = const. are the
meridian curves. It will follow from (11) that:

(14) cosy =

+ V- -
(15) x:u v’ Y:|V u’ Z:uv 1’
1+uv 1+uv 1+uv
and upon solving these:
+i -
(16) U= X+1Y = X=1Y
1-7 1-Z

We shall now couple the spheke with the plane by means of stereographic
projection {). If the pole X =Y = 0,Z = 1) is the center of projection, the equatorial
planeZ = 0 is the projection plane, aiXd Y, Z is a point on the sphere, whige 77 is its
image point, then those coordinates (whend&fand /7 axes coincide with thX andY
axes, resp.) will be coupled by the equations:

(17) E=%, ,7:%, 52+/72=%,
or

It follows from (16) and (17) that:

(19 u=<¢&+in, v=E&-in.

Therefore, the parameteusv of the minimal lines of the sphere are identicghwhe
conjugate valueg +1i 7, { — i n, that are defined by the coordinates of the ptmac
point. From (12), (13), and (19), one will have:

g7 o Adudv _ A€’ +dp’)
@+uvy?  (E2+nt+1)?

(20)

One then has the theorem, which is easy to pregengtrically:

The sphere is mapped conformally to the planedrgsgraphic projection.

() Riemann, Ges. Werkel867, pp. 286.
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From (20), the curveé = a, n = [ define a special isometric system on the sphere.
One will get the most general isometric system whea sets the real and imaginary
components of an arbitrary function of the complevialde £ +1 77 equal to constants. |If
L andM are conjugate functions, and:

(21) L=L(+in==Z+iH, MW=M(-in==Z-iH

then= (& n) = A, H (¢ 1) =B will represent the most general isometric systemhen t
sphere. If one sets:

L(u):j«/P(u) du, M(v):j Q(v) dv

then it will follow from (21) that:

2d==/Pdu+/Qdv, 2dH=,Pdu-/Qaw

Hence, the differential equation of the most gehisometric system on the sphere in
terms of the parameters, (/) will have the form:

(22) Pdf-Qdv =0,

in which P andQ are arbitrary conjugate functions relativeutandv. Conversely, any
such solution to the differential equation will ée isometric system on the sphere.

8 4. — Geodetic lines. Geodetic coordinates.

One calls the curves on a surface whose principahal at each point coincides with
the surface normal or whose osculating plane goesigh the surface normgéodetic
lines on the surface

If &, n, { are the coordinates of a variable point on théasarnormal at the point vy,

z, andr is the distance between those two points theedoations of that surface normal
will be:

(1) f—x=ra, n-y=rb, {-z=rc.
Furthermore, the equation of the osculating plares @int &, y, 2) on a space curve, for

which x, y, z are functions of a parameter, and wigew, { are the running coordinates,
will be:

) |£-x | dx| Fx=0.

If one expresses the fact that the osculatingep{@h contains the normal (1) then one
will get thedifferential equation for geodetic lin@sthe form:
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(3) |a}dx| & X =0.

In order to obtain it in terms of the parametersvf and its differentials, one multiplies
the left-hand side by the determinantl{§24)]. (3) will then go to:

(4)

ewMmeummwmmémjww

fdu+gdv ndd+2 hdud¢ ndw fdu dd

That differential equation depends upon only the coeffisie, f, g of the line
element. Moreover, it has order two, so its integndllinclude two arbitrary constants.
One can prove that a geodetic line is determined compleyebne of its points and the
direction through it, while in general it is not deterndiri®y two of its points, even when
they are very close to each other. Ih6G8we shall give the integration of equation (4) for
a special type of surface that includes second-ordesicggfand surfaces of revolution,
among others.

By a comparison with (3), one can further show thatdeodetic lines can also be
defined by:

1. The shortest line between two points (within carlianits).
2. The locus of points moving on a surface in the absaifoeces.

3. Finally, the curve that a tensed string will assemehe surface when no forces
act upon it {).

Geodetic lines can be employed to introduce certaimpetas ?) that are also called
geodetic coordinates. If one draws an arbitrary cprem the surface and starts from
each of its points and measures out equal lengths alomgdhketic liney; )4, ... that are
normal to those points then the endpoints will defireeiivep; that one calls geodetic
parallel to p. One easily convinces oneself that the geodetic p&pllp, ..., and the
geodetic lineg; }, ... intersect each other orthogonally everywhere. thaa calls the
system of those two familiesgeodetic orthogonal systenin fact, if one introduces the
two families as parameter curves and denotes theofies byu = const. and the second
one byv = const., and understands$o be the length of the geodetic lines, measured from
the linep (viz., u = 0), in particular, then one will first haee= 1 in the expression for the
line element (since one must had&e= du for dv = 0), but one must also have 0. The
differential equation (4) of the geodetic lines must aBsBed bye = 1 anddv = 0.

However, it will reduce talu® Dg—f: 0 for those values. One must then hiawd/; i.e.,f
u

must be a function of just orf must be likewise constant along any individual geodetic
line y; 4, ... (v=const.). Now, sinceEmust have the value O for the intersection point of

() Monge-Liouville, Applications pp. 401gt seq.
(®) Gauss Disq. gen.art. 15, 16, 19.
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the curvep with each of its orthogonal curvgs )4, ..., one must havé = 0 over the
whole surface. (Q. E. D.)

The parametens, v that are defined in this way are callgebdetic coordinatesThe
line element will have the form:

(5) ds’ =du? + g dv

in terms of them, in whicly is a function of ¢, v). Conversely, if the line element of a
surface has the forms = e di¥ + g d\?, with the condition thae is a constant or a

function of onlyu, then one will get the form (5) by the substitutedu? = du?, sou;

will then represent a system of geodetic parallels,wantself will be the length of the
geodetic linev = const., when it is measured from the first geogetrallelu; = 0.

If one contracts the first geodetic parale(u = 0) to a pointP in the discussion
above, so the geodetic lines= const. will emanate from that point then one walll the
geodetic parallelsi = const.geodetic circlesand (1, v) will be ageodetic polar system
with its center aP. In that case, one must add the condition for thetiang in (5) that
one must also hawg= 0 foru = 0, since one must hads = du for all directions at the
point P (u = 0). Under the assumption that in a geodetic poldesys means the angle
that the linev makes with the ling = 0 at the poinP, one must add the further condition

N

that foru = 0, one hasa—z 1. The arc length element of a geodetic circlenbiitely
u

small radius will then have the valgls = u dv now; one must then havg g =u, or
ﬂ =1, foru=0.
ou

Let it be further remarked that the minimal lines banregarded as geodetic lines,
since the osculating plane to a minimal line contdwsimaginary spherical circle &.
As a result, that plane will be normal to the tangernhé curve, so it will go through the
surface normal. Analytically, that means the samagthsince equation (4) will be
satisfied bydu = 0, as well aglv= 0, fore=g =0 (cf., also &7).

8 5. — Conjugate directions. Lines of curvature. Asymptotic lias.

Two line elementsls; andds, or directions du; : dwi) and @w, : dw) on the surface
are calledconjugate(*) when the tangential planes at the endpoints of tre lme
element intersect in the direction of the other elen

The fact that this relationship is reciprocal in the twections follows from the
proof of equation (1) below.

Conjugate systems of linem the surface are ones that intersect along conjugate
directions everywhere.

The condition for two directiorduw, : dv; anddw, : dw, to be conjugate is that:

() Dupin, Développementpp. 44 and 91.
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1) d MHuw dw, +d’'Odw dw +dvi dw) +d”Hvidv. =0 .

If X, Y, Z are the running coordinates, then the equations foratigent plane at the
origin (x, y, 2) of ds; will be:

X-3a+(Y-yb+(Z-3c=0,

X=x-dY)y(a+da) +(Y-y—-dy (b+db) +(Z—-z-dg (c+dc) =0,
where:

0Xx oX fda

du +—dv, dag = —

Y ov 4 ' ou

dxg = —
' ou

da
du +—dv.
Ulav\{

Sincea dx +b dy + ¢ dz = 0, one will then have:
X—=Xda+(Y-23dn+(Z-2dc=0
for the point K, Y, Z) on the line of intersection of the two tangent p&ane
The condition for the endpoink ¢ dx; , y + dy1, z+ dz) of ds; to lie on that line is
hat day dx, +dby dys +do; dz = 0
However, from [&, (3)], that equation is identical to (1).

The necessary and sufficient condition for gaameter curves & constand v=
const.to be themselves conjugate lingshat:

(2) d’=0.
If (1) is to be satisfied byd(x = du; dv; = 0) and {u, = 0 ;dw, = dv) then one must have
d’ =0, and conversely, @’ = 0 then that differential must satisfy equation (1).
From [81, (9)], the angleV between a directiodw;, : dv; and the directionw, : dw
that is conjugate to it is determined by:
ds  dg cosV=e duy dw, +f (dw dw + dv; dw) + g dv dw,
or when one substitutes the values:
dwp, = A (d’du + d”dw), dv, =-A(d du +d’dw),

(whereA is a proportionality factor), from (1), by:

(3) ds dscosV=Adu(e d—fd)+duwdw(ed—gd+diFd—gd).
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The systems of curves on a surface that are bothigatej and orthogonal are called
lines of curvatured®).

From (3), the differential equation of the lines ofvature is cod/ = 0, or when one
writes (U, v) for (uy, vi):

(ed—fd)di+ (ed’—gd dudv+ fd’—gd)d/=0
or

edu+ fdv ddw dd
(4) =

fdu+gdv ddu d dy

There are then two families of lines of curvaturelmdurface.
From (2) and [8L, (10)] or from (4), the necessary and sufficient coong for the
parameter curvegu, v) to be themselves lines of curvatare:

(5) f=0, d’=0.

Another definition of the lines of curvature will givse to further considerations.

Lines of curvature are also the curves along which tmsexutive surface normals
intersect.

Should the normals at the points ¥) and (1 + du, v + dv) intersect each other, then
if &, n, { denote the coordinates of the intersection pointrashenotes its distance from
the point (1, v) or (X, y, 2), one would have the condition:

x=xX+ra=(x+dx + (r +dr)(a+da
or

(6) dx+adr+rda=0,

along with the corresponding equationsynk) and ¢ c). Upon eliminating anddr, it
will follow that:

(7) |a da dx| = 0.

That equation can be easily brought into the formdiher by multiplying the left-
hand side by the determinant18(24)] or in the following way: If one multiplies (6) by

a and adds the corresponding equationsy,jib and g, c) then, sinceZadx =0 and
Zaz =1, it will follow that the directions of the lin@s question haver = 0, so:

(8) dx+rda=0, dy+rdb=0, dz+rdc=0.
. . ox o0y 0z ox dy o0z
If one multiplies those equations , —, —, resp., and then by—, =, —,
P a % du ou P %; ov ov

and adds them each time then, froni[§4)] and [82, (3)]:

() Monge-Liouville, Applications pp. 124 gt seq. Dupin, Développementpp. 47 and 94.
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9) edu+fdv=r(d du+d’dv), fdu+gdv=r (d’du+d”dv).

If one eliminates from this then that will yield equation (4), with whidhg identity
of the aforementioned lines with the lines of curvatuitebe proved. Equations (8) give
a third definition of the lines of curvature, namely,,(8 11).

Lines of curvature are also the curves whose direction at each pgqatafiel to the
direction of its spherical image

On the other hand, if one eliminatés : dv from (9) then one will get a quadratic
equation irr, namely:

(10) =0

rd-e rd-f

rd' - f rd"—g‘

or ():
rPdd’—dd-red-%d+gd+(@eg-F)=0.

The two roots; andr; of that equation are called thedii of principal curvatureof
the surface at the point,(v). They are the radii of curvature of those planammal
sections that contact one line of curvature and the athiée pointy, v). The directions
of advance that belong te andr; are implied uniquely from equations (9).

One obtains the values of thervature kand themean curvature lof the surface at
the point (1, v), which were used briefly before, from (10):

(o 1 _dd-d
nr, eg-f*’
(11)
h:1+—1: ed —2fd+gd.

Lo, eg- f?

The lines of curvature, as well as the radii ahgipal curvature, are always real for
real surfaces, since the discriminant of (4) inmrof du : dv is identical to the
discriminant of (10) in terms af and is therefore positive. In fact, that diseniamt can
be easily brought into the form:

5“(£—%} =(ed'-g9’-4ed-fd(Ffd"-gd)

r2 1

(12)
=[(ed”—gd—% (ed’—fob]2+eiz eg-f)(ed-fd’.

() Monge-Liouville, Applications pp. 129.
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A direction on the surface that coincides with the @iased conjugate direction is
called anasymptotic direction The curves that are defined by the asymptotic directions
are calledasymptotic lineg").

One will get the differential equation of the asymputdities from (1) when one sets
du :dvi =dw :dw =du:dv:

(13) d dif + 2d’du dv+d”dv = 0.

Thus, two asymptotic lines go through each point of theasarf Conversely, from (1)
and (13), conjugate directions are ones that lie harmntoathe asymptotic lines.

If one considers the left-hand side of (13) and the ssfe fords’ [§ 1, (3)] as a
binary form indu, dv then the numerator and denominatorhaéndk in (11) will be
simultaneous invariants of it, while the left-hand safe(4) will be the simultaneous
covariant of it.

From (13), the necessary and sufficient conditiomstte parameter curves to be
themselves asymptotic linae:

(14) d=o,  d’=o.

In order to determine the angl¢ between the two asymptotic directions,det : dv
anddu’ : dv' be the roots of the equation (13), and furthermoregdéandds” be the
elements of the asymptotic lines, whiles a proportionality factor.

du du' = d”, dv'dv' = ud, du dv' +dv du’ =—-u[2d"

Due to (11) and (12), one will then have:

edudd +f(du dv' +dv du) +gdvdv =g (ed’— A d'+gd) = ,ua'z(ri+r—1j,
1 2

ds ds' =uf(ed"—-Xd’+gd?—4 e g (d d"—=d’?]1/2 = u &? (E—ij ,

1 2

and as a result, from [§ (8)]:
(15) cosw= 11"z
=,

The angle between the asymptotic lines then depends upothenigtio of the two
radii of principal curvature?).
The curve on the surface along which the asymptotic iimiessect rectangularly is:

() Dupin, Développementgp. 51.
() Dupin, Développementgp. 189.
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(16) ri+r,=0 or ed-2Zd+gd=0.

The asymptotic lines can be defined in yet another wenam [82, (4)], equation
(13) is identical to:

a7 da dx+db dy+dcdz=0;

i.e., (cf., 811): The asymptotic lines are also those curves on thacuvfhose direction
at each point is normal to the direction of the sla¢timage.
Moreover, from [&, (4)], equation (13) is identical to:

(18) ad’x+bd%+cd?z=0.

However, that is the condition for the tangent plahhe surface at the point,{y, 2
to contain the point + 2dx+d?x y+ 2dy+d?y, z+ 2dz+d? z so:

The asymptotic lines are also the curves whose osculating planegdeoimth the
tangent plane at every point.

That result, in a different form, will give thieeorem:

The curve of intersection of a tangent plane to the surface with thaiceunis a
double point at the contact point. The two tangents to the double point ostidate t
surface. They give the directions of the asymptotic lines.

If (x,y, 2) is a well-defined point on the surface with the fixedapaaters y, v) then
the curve of intersection of the tangent plane of ploait with the surface will have the
equation:

(19) aX=X+b(¥Y-y+c(Z-2=0,

when one expresses the quantikeg, z ; a, b, c in terms of the fixed parameters ),
and the quantitieX, Y, Z in terms of the variable parametet ). Equation (19), and
likewise the equations that emerge from them by difteaeng with respect t&J andV :

aa_x+ba_Y+(_:£:O, aa_x+ba_Y+(_:E:0,
ou ou ou ov oV oV

will be satisfied when one letd, V coincide withu, v, resp., and, Y, Z with X, y, z
resp.; i.e., the curve of intersection (19) has a doublg pothe pointy, v). In order to
find the directionglu : dv of the tangents ati(v), one must substitute the development:

2 2 2
(20) X=x+ Zaur a2 g +22% quaw ZX R+ .
ou ov o oudv oV
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in (19), along with the corresponding developmentsYfaand Z. One will then get
precisely equation (13) for the directiods : dv of the tangents at the double point,
which will imply the directions of the asymptotic linéQ. E. D.)

In 815, it will be shown that the asymptotic lines are als® ¢urves for which every
planar curve of intersection that contacts them (budlifferent from the intersection
curve with the tangent plane) has an inflection poith@tcontact point.

One can distinguish between surfac@s¢cording to whether:
k or dd”—d? >0 inthe neighborhood of afiiptic point,
(21) o " <0 " " hyperbolicpoint,
"o " =0 along the curve throughparabolic point.

The latter curve separates the neighborhoods of tipéiccind hyperbolic points. At
the elliptic points, the radii of principal curvature bate same signs and the asymptotic
lines are imaginary; viz., the surface is convex-convék.the hyperbolic points, the
radii of principal curvature have the opposite signs aedagymptotic points are real;
viz., the surface is convex-concave. At a parabolimtpadne radius of principal
curvature is infinite, so the asymptotic lines will codei In general, the curve through
the parabolic point will be a locus of cusps, whileimgsalar cases, it can also envelope
the asymptotic lines totally or partially. One can lgastamine those relationships in the
example of the surfaces of revolution.

The relations (21) have their origin in a line of reasgrthat is connected with the
remark above about the asymptotic lines.

In order to investigate the surface in the neighborhafoa point, one imagines the
intersection curve of the surface with a plane that fallgh to the tangent plane at the
point and infinitely close to it and replaces thatetsection curve with the so-called
indicatrix (%); i.e., the simplest curve that agrees with thersmtetion curve as closely as
possible in the vicinity of the point.

In order to obtain the equation of the indicatrix e simplest form, leti, v be the
parameters of the lines of curvature, so from (5) and (11):

1_d
r, g

(22) f=0, d’=0, _d
e

»:‘lH

A surface that is parallel to the tangent plane (19 distance of from it has the
equation:
aX—-x—-€a)+b(Y-y—=<b+c(Z-z—-0 =0,

() Dupin, Développementpp. 49 and 154.
() Dupin, Développementpp. 48 and 147.
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or
aX=X+b(Y-y+c(Z-2=¢.

If one substitutes the values (20) in this then onkgstt

ddif +2d’dudv+d”dV = ¢

or when one sets the arc length of the parametersemqeal to,/e du = and /g dv =
n, and uses equations (22), one will get:

2 2
(23) LA/
rl r2

as theequation of the indicatrixin which £ is assumed to be infinitely small. Thus, the
indicatrix at an elliptical pointk( > 0) will consist of an ellipse, a hyperbola at a
hyperbolic point kK < 0), and at a parabolic point; (= «), it will consist of a pair of
infinitely-close parallel lines.

Furthermore, conjugate directions at a point of the serfaill correspond to
conjugate diameters, the asymptotic lines through the poirthet asymptotes, and the
directions of the lines of curvature, to the principaés of the indicatrix, such that the
directions of the lines of curvature will also be ftheections for which the normal
curvatures of the point are a maximum or minimum &15).

In particular, ifr; =r, at a point, so the indicatrix is a circle then guent will be
called acircular point(*) (or umbilic poin); from (12), one will have:

(24)

»:‘lH

1_9_d_
r, e

for it.

One easily sees that one does not have infinitelgymimes of curvature that go
through a circular point, in general, but only threeheft €¢). LetA = const. be the finite
equation of the two families of lines of curvatunhen solved for the constants. If one
setsu + du andv + dv for u andyv, resp., in it and develops in powersdafanddv then
when one goes up to terms of second order, oneyetilthe differential equation for the
lines of curvature in the form:

P duf + Q du dv+R dv =0,

in which the left-hand side coincides with (4),tap factor.
At a circular point, wher® = Q =R = 0, from (24), one will need to go on to third-

order terms. When one se%sl::: P1, ? =P,, etc., to abbreviate, one will then get the
u

\"
equation:
(Pydu+ P, dv) dif + (Q. du + Q, dv) du dv+ (Ry du + R, dv) dv = 0,

() Dupin, Développementgp. 126.
() Dupin, loc. cit, pp. 164.
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which implies three values for the ratla : dv.

If d =d”=d”= 0 then one will have a circular point with infinitadius. Upon
carrying out the development (20), one will now find a tlrder curvature for the
indicatrix, and the intersection curve of the tangdaue will contain a triple point whose
three tangents are parallel to the three asymptotekBeointlicatrix and will give the
asymptotic direction of the surface at that point.

The investigations in 88-5 can be employed in order to simplify the formulas ith §
and 82 that were developed for general parameters; one ntust se

f=0, when the parameter curves are orthogonal,
d’=0, " " " conjugate,
e=0,9 =0, " " " minimal lines,
(25) e=qg,f =0, " " " isometric lines,
d=0,d"=0, " " " asymptotic lines,
f =0,d'=0, " " " lines of curvature,
e=1,f =0, " " " a geodetically-orthogonal

system,

andu is the arc length of the geodetic lines, measured @oenof the geodetic parallals
= const.

We add the following remark her8 @bout when a surface can be considered to be
flexible, but not extensible. A surface is calledending surfaceof another one or
developablefrom it when it can be obtained by bending. The poaftsnvo different
surfaces might relate to each other in such a waythleat points X, y, 2 and &, Yy, Z)
are given as functions of the same parameter pai§ i the form:

x=xuVv), y=y(UvVv), z=z(u,Vv),
(26)
X=xX(uv), vy=yUuv), Z2=Z(uV).

An obvious necessary and sufficient condition for twdfaxes to be developable to
each other is that the line elemed$sandds, or the expressions:

ds’ = e dif + 2f du dv+ g dV and ds?=¢€ dif + 2f’du dv+ g dV,
must be equal to each other for every direction, or that
(27) e=¢€, f=f g=gd.

It follows from this that all equations or quantitiesttldepend upon onlg, f, g will
remain unchanged under bending.

() Gauss Disg. gen.art. 12 and 13.
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As is also geometrically clear, that will be truetbé angle between two surface
curves [81, (8)] and the differential equation of the shortest lige$, (4)], and therefore
those lines themselves. Later or/f8it will be shown that the curvatukeand (815) the
geodetic curvature of corresponding surface curves whie hthe same values at
corresponding points of two surfaces that can be dewtkapeach other.

We shall return to speak of the criterion for thedlepability of two given surfaces
later in 8§18

8 6. — Application to central surfaces.

The developments up to now shall now be employed foried &xamination of
central surfaces. Every point, (v) of a given surfac€ corresponds to two centers of
principal curvature that lie along the normal. Teatral surfaceof C — i.e., the locus of
all centers of principal curvature G6f— then has two sheets, which correspond to the radii
r; andr, and are then denoted By andC;, resp. A normal t&€ contactsC; andC; at
the associated centers of curvature. The two skiketsdC; are then also the loci of the
edges of regression of the developable surfat®at is associated with the two systems
of lines of curvature'f.

For the sake of analytical studies, one choosesrtbae bf curvature o to be the
parameter curves. Fromb&nd [82, (6)], one will then have the formulas:

(1) f=0, d’=0, ds’ =e df + g dv,
1_d
r, g

(2)

_d
el

»:‘lH

(3) %:—1% %:—i%
ou rdu OV oV

With their help, when the quantities that relatéhte shee€C; are distinguished by the
subscript 1 and one sets (cf.18:

@ feoe do.,

one will get the following formulas by an easy cdéddion:
(5) X1 =X+r18a, yi=y+rib, Z1=2+r1C,

©) gy o L X b = LY 1oz

"ﬁ%’

"ﬁ%’ @= Jeou’

() Monge-Liouville, Applications pp. 135gt seq.
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ar. )’ ar, or ar. \’
7 = 21 , f :_1_1, =2 +G(ro—r1 2,
0 & (auj ! ou ov 9 (avj (r2=11)
or, G or
8 d = E=L, d =0, d=—-———2,
®) ! au ! ! JE du
2
(9) ds = dr’+ G (r2 —ry)* dV, 02=G (r2—ra)° (%j ,
or, or 1 or,/du
10 dd-d*=--—212%, ki =- 2 .
(10) TS, N AR ALY

That will imply the corresponding formulas for thleeetC, when one switcheas and
v and sets:

(11) X1, Y1, Z, ay, by, ¢, di,d;, dj, ryr, s,% €0FEG
equal to:

(12) X2, Yo,2, &,y Cy, dy, dy,d  r2r1, 8, 0,6G,E,
resp.

Those equations imply the followirigeorems

From (6): The normal to the surface; & parallel to the associated line of curvature
at the corresponding point on C. The normals ta@d G at corresponding points will
then be normal to each other.

From (8): The system of curves on ©r on C,) that corresponds to the two families
of lines of curvature on C are conjugates.

From (9): The curves = const.on G (which correspond to the lines of constant
radius n on C) are geodetic parallels, and the curves wonst.(which correspond to
one family of lines of curvature on C) are the ass®d orthogonal geodetics. At the
same time, rris the arc length along those geodetics whenntesisured from a geodetic
parallel.

If ry = U, in particular,— i.e., it is a function of only — thenf; = 0, d| = 0; i.e., the
lines of curvature of; will correspond to the lines of curvature®ftself.
If ry =V, in particular,- i.e., it is a function of only — then:

e =f1=dy=d = 0; ki = oo, ds=g; dV?;
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i.e., the surfac&; will become a curve. The surfaCwill then be a general channel
surface; i.e., the envelope of a sphere with variabd@usawhose center describes an
arbitrary space curve)(

Of especial interest is the central surface of &asalC whose radii of curvature; r
andr, are coupledy an equation ry, r2) = 0 @), so for them:

oo, od, _, or Ohdk_ohok _

(13)
duodv 0dvou duodv ovou

For those surfaces, from (10), and due to (13), one hdslithweing relation between
the radii of curvature,, r, of C and the curvaturdg andk, of C; andC,, resp. J):

(14) kiko (ri—p)* = 1.
The values; andk; then have the same signs, or the asymptotic linegS; @andC,

are simultaneously real or imaginary.
Furthermore, from (8), the equations of the asymptateslonC; andC; are:

E% g - M2 ¢ =0, E% g - 62 ¢ =0,
Ju ou ov ov

resp.
However, those equations are identical, under therast#n in (13). Therefore)

The asymptotic lines on;@nd G are corresponding lines for the surfaces that are
characterized by13).

In order to derive a third property of such surfacgsafe infer the formulas:

(15) alog\/E _ 1 or alog\/E _ 1 or
ov r,—r o’ ou r—r,ou
from §09.
If one expresses as a function of;, and conversely, then upon integrating, one
will get:
E= gexp( ZI dr j G= yexp( ZI dr, j
r,=r rn=r,

[N

Monge-Liouville, Applications pp. 238.
Weingarten, J. fur Math59 (1861), pp. 382.
Halphen, Bull. Soc. math. Pari (1876), pp. 94.
Ribaucour, C. R. Acad. Scr4 (1872), pp. 1402.
Weingarten, loc. cit., pp. 384.

N

[ e ENE
N N
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in which ¢ is a function of only, andyis a function of onlyw. For a suitable choice of
parametersi andv, € and ycan be made constant, and both of them can be gefto
Under that assumption, the quantitesandG, as well as the quantitiess g, from (4),
will then be functions of one of the two radiiorr, alone. Equation (9) will then go to:

(16) ds = dr? + @ (ry) dV,

in which ®@ (r;1) is a well-defined function of; that depends upon the basic equation
F(r,r,)= 0. For each such equation, there will exist infigitehany surface<C;

however, from (16), the line element of the centraesk; will be the same for all of
those surfaces. One then hasttieorem:

All of the central sheets;Ghat are associated with the various surfaces that are
characterized by the same relation(ff, r;) = O can be developed to each other. The
same thing will be true of the sheet.C

However, the form (16) of the line element Gnis, at the same time, a surface of
revolution, when it is referred to its meridian andatlat circles as the parameter curves.
That implies the furthetheorem:

All surfaces for which the relation in question(ii, r2) = Ois true have the property
that the associated central sheet &an be developed into one and the same surface of
revolution, under which the geodetic lines ¢onst.of G will go to the meridians of the
surface of revolution, and the curvaseconst.on G will go to the parallel circles.

The same theorem will be true 8s. If F (r4, r2) = 0 is symmetric iy andr; then
C,; andC; can be developed to the same surface of revoluti@htrars to each other, as
well.

In order to ascertain the surface of revolution amtoch C; can be developed in a
given case — i.e., whdn (ry, rz) = 0 is given — let the-axis of the coordinate system be
the rotational axis of the surface, Jebe the radius of the parallel circle at a distance
from thexy-plane, and let be the angle between an arbitrary meridian plandrendero
meridian. When the meridian curvezis P — i.e., when it is equal to a function of
and P’ is the derivative oP with respect top, the square of the line element of the
surface of revolution will then have the form:

(17) ds = (1 +P’?) d? + /# dV2.

A comparison with (16) will give:

1y Namely, one can replacewith a functionu, of u andv with a functionv, of v, which will makeE =
y p

2 a 2
E a”"j ,G:G{V"j . (Ct., 818).
ou ov
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(18) dry=+1+P? dp, o) =p,

from which, one will get a differential equationrfthe determination of the functidh
when one eliminates .

The theorem above on the developability@fto a surface of revolution has a
converse; namely, one can prove the followtimeprem (%):

Any surface that can be developed to a surfacewflution can be considered to be
one sheet of the central surface of a surface Gwden whose radii of principal
curvature an equation Kry , ry) = 0 exists. (The only exception is defined by ruled
surfaces that can be developed to the catenoid.)

Hence, the problem of finding all surfaces for etha relatiorF (r1 , ry) = 0 exists
will become identical to the problem of finding dlending surfaces of a surface of
revolution.

To conclude this discussion, we prove the follaytimeorem (%):

The lines of curvature of a surface C that is clut@azed by an equation (¢, , r2) =
0 can be determined by mere quadratures.

In order to prove this’f, we appeal to a lemma. If one chooses the tfiesirvature
onC to be the parameter curves Y), as usual, then, from (1) and (2), the expression

_1
(19) M ==

edu+ fdvn ddw dd
fdu+ gdv ddu d dy

which will give the differential equation for thinés of curvature when it is set equal to
0, will assume the form:

M= eg(r&—r—ljdu dv=/EG (r1—r2) du dv= 2¢ du dv.
2 1

The expression:

(20) j=- 10" logd
§ auov

shall be constructed from the valuegothat is defined in this. If one uses the values:

logJE _ 1 o 1 %(%_ﬁj
ouov ,-r,auov (r,-r)>aviou ou)’

) Weingarten, loc. cit, pp. 384.

()
() Lie, Darboux, Bull. (2)4 (1880), pp. 300-304.
() Weingarten, J. fur Math.103(1888), pp. 184.
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logy/G _ 1 9, 1 %(ﬁ_@j
ouov L-r,ouov (r,-r)>au\ov ov)

which are implied by (15), in that equation then one gall the equation fot :

(oo, o, d
21 AJEG =2 (p—r) 3| 222 -—12 2
(21) te=r) (6u ov 6v6uj

It will then follow from this that for a surfadg of the type that was given above, and
only for one for which the valué vanishes, from (20), one will haye= UV, whereU is
a function of onlyu andV is a function of only. For a suitable choice of the parameters
u andv (cf., the remark on page 28), one can makel / 2, such that one will have:

(22) M =du dv

Now, let a surfac€ for which one ha$ (ri, rz) = 0 be given in terms of arbitrary
parametersup, Vo), and let:

(23) M = (A]_ du, + B; dVo) (Az du + B, dVo)

in terms of those parameters, in whigf) B1, A,, B, are given functions olg, vo), then
since the expressiod in (19) is invariant under a transformation of the paranse{g
18), a comparison of (22) and (23), whers an undetermined factor, will give:

(24) du= p (A; duw + By dw), dv=p" (A dw + B; dw).

The integrability conditions for these expressiomsnaly:

o(pA) _ 3(pB) oo™ A) _ 00" B)

ov, au, ov, du,

give the derivatives gd with respect taip andvp . One will then gep as a function of
Uo, Vo by a mere quadrature, and then get as functions o, Vo from (24) by another
quadrature. (Q. E. D.)




CHAPTER I

DERIVING A SURFACE WITH GIVEN PROPERTIES.

§ 7. — The fundamental equations of Gauss and Mainardi.

The six functiong, f, g ; d, d’, d”of (u, v) that were defined in 8 and2 define the
basis for not only examing the characteristic propediesgiven surface, but at the same
time, for also deriving a surface from given charactertoperties. Since a surface is
already determined by three functiansy, z of u, v, the six quantitieg, f, g ; d, d’, d”
cannot be independent of each other. That shows thatatbegoupled by a system of
three partial differential equationsOne obtains those equations when one exhibits the
integrability conditions for the systems of equationsaft (9) in &.

When one introduces the notations:

0x oy 0z

—=a, _:b, —=C,

ou ! ou ! ou '
(1)

0x oy 0z

— = a, _:b, — =0y,

ov ? ov 2 ov 2

to abbreviate, that system will read:

aa (] ] — aa_ 1 n —
. (P'a+0'a)=0, v (0'a,+0'a,) =0,

@ % _(da+ pa+qa)=0, % _(da+pa+da)=0,
Ju ov
% _(da+pa+da)=0, %, _(d"a+ P g+ d a)=0.
Ju ov

2
If one next sets the two valuesgafai that one gets from (2) equal to each other and
uov

da, 0 da, oOa, .
once more expresses the values—&, iz, ii, %% in terms ofa, a;, a then one
ou OJu ov ov
will get a homogeneous linear equationaira;, a; . If one appends the corresponding
equations irb, by, b, andc, ci, ¢; then one will have three equations of the form:

Ca+Cia+Ca,=0, Cbh+Cib+Cy by, =0, Cc+Cici+Coc =0,

with the same coefficient§, C;, C, . Now, since the determinant|a a | does not
vanish, from [&1, (24)], it will follow that:
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(3) C=0, C:1=0, C,=0.

If one treats the following equations (2) likewise — igne sets the two values of
2

3 31 equal to each other — then one will get three equatiotie isame way:
uov

(4) A=0, A1 =0, A>=0,

2

and similarly setting the two values eg% equal to each other will give three
uov

equations:

(5) BZO, B]_:O, Bzzo.

As an easy calculation will show, the nine equati(8)s (4), (5) reduce to three
equations. Namely\C = 0 identically. Furthermoréd; , A2, B:1, B, are equal to each
other, up to a factor. Finall{g; andC, vanish along withA andB, and converselyThe
integrability conditions of the systef®) then consist of three equationg.hefirst two
read:

od od

———=pd+(-pd-qgd” (fromA=0),
ov adu

(6)
od” _od' _ qgd’+( -d)d-p"d (fromB = 0).
ou ov

By introducing the quantities:

% d Ay oy
o) o o)
they will take on the form:
ot ot
___:2 It"_ t"_ "t,
ov du g g g
(8)
ot" ot
———=2pt'—pt-pt.
au v cPUTPLP

One can also get equations (6) when one differenteqestions [82, (1)] with
respect tau andv and employs equations §& (6)], along with [81, (7)]. One will then
get:

X ad
=)a— =—+pd+qd,
Fao o ou PO
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3
pa=Fa % =8y gaqa =Lapdeqa,

ou® ov
9)

9°x _ ad" od’

A e a e + "d+ I d/ = + d + d//

2% 285 57 =5y TP+ PV
3X ad"

e a e + //d/+ //d//
Aos= 2. v’ v P a

Hence, the derivatives df d’, d”with respect ta andv can be expressed in terms of
the four sumsAgo, Az1, A2, Aoz, a@s well as the six quantitiesf, g ; d, d’; d”, and their
derivatives with respect tq V.

As thethird integrability condition one gets:

dd'-d? _1(op op j
- |90 _oP, - fromA; = 0),
eg- 1 f(au oy PP (romA=9)
. 1(6_q_6_q+ pq- qj (from B, = 0),
flov oOdu
(10)

g 0
(q o, +pd - pa+ qd- éfj (from Az = 0),
f ov odu

T(% %—p+q"p' dg+ pp- pzj (from By = 0).

Gauss (%) already presented this equation by a differemivelion; he obtained the
theorem:

The curvature k of the surfacdcf., 8 5, (11)] can be represented in terms of the
coefficients e, f, g of the line element alonet soll remain unchanged under a bending
of the surface.

Equations (6) define an essential extensiorisatisss system of formulas. They
were probably first given biainardi (%), but in a different form, although they are
often referred to as th@odazzi equations¥). They were developed several times later
(%) in the simpler form (6). Moreover, they appeabedbreMainardi in Lamé’s study
of triply-orthogonal systems of surfaces (cf1@ in terms of special parameters.

() Gauss Disg. gen.art. 11 and 12.

() Mainardi, Giornale dell’ Istituto Lombard® (1856), pp. 395. CfKnoblauch’s remark in Jour. fiir
Math., Bd.103 pp. 31.

() Codazzi Ann. di mat2 (1868), pp. 273.

(Y Knoblauch gave equations (9) ioc. cit, pp. 32.
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The expression (10) for theurvature k= 1 :ry r, can be put into yet another form.
First, it will imply the simple representatiot):(

) 2 8(00). 0 (0d). 30| 22
Lr, ov oul e) odul g ) avl g )

In fact, if one recalls [8, (7a)] then one will get:

de de 1 |(de)’ odedg .0edf
= — | +——=-2—— | =2 [dp - ,
(q ou qavj 20° Kavj dudou 0vo u:l @p-ap)

which proves equation (11). If one considerd[§14)] then it will further follow from
(11) that:

12) 5 Yw a(aqj o(3p)_, 0w 0 (op aia_q'j
nr, oudv oul e) aw g Touav au g) oW e/
Since one further has:

5_(1’_5[eag fae} 1 {J_ aa_Jﬂ

e 20u 20v| Jesinw| ou

_:_[ga_e _f@} N ENERPCNET )
g dgl2ov 20u] [gsinw| ov ou

one will then have?:

Vg _ cosa)a—\fe de cosc«)—a‘/7g
o0 _ dFw 90| ju 0| ov du
(13) == - 5 , !
nr, 0udv au \/Esma) ov| g sinw

instead of (12).

The formulas for the curvature that one obtainsnbyducing the geodetic curvature
of the parameter curves have a more limited meanitigone denotes the geodetic
curvatures o¥ = const. andi = const. by 1 £; and 1 /¢, resp., then [cf., 84, (13)]:

oq_+e op__Jg

e (, g ¢,

(") When this calculation is performed, that will ghieuville’s formula, Jour. de Matfi.6 (1851), pp.
131.
() Liouville, loc. cit.
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It will then follow from (12) that):

(14) s _, Yo +i{£}i{*/_gj .

rr, Z, | au ¢,

nr, ouov 9v
Finally, one has:

o Jeg o' g Jeg au

for therectangularparameter curves. It will then follow from (14)attf):

f=0, w=90 oJ=.eg, 1___1ofe 1_, 1 9dJg

(15) 9 Li[_lj__li[_lj__l__l
nr, Jagovld ) Jeould,) ¢ &%
8§ 8. — Bonnet's theorem.

From 87, the six fundamental functiores f, g ; d, d’, d” of (u, v) for any surface
satisfy three partial differential equations. Nowe has the very important converse
theorem (3):

A surface is determined uniquely (up to its positie space and a reflection in a
plane) when six functions € g ; d, d’, d” exist that satisfy the three partial differential
equationg6) and(10) of § 7.

The proof rests upon a detailed examination ofitbegral of the system [8, (2)],
whose integrability conditions are contained inaeuns (6) and (10) of &.

To abbreviate, we denote the left-hand sides efettuations in the first column in
[87, (2)] by X11, X12, X13, and those of the second columnXy, Xoo, Xo3.

It is known that there are infinitely many systeafsvaluesa, a;, a; that satisfy the
three equationX;; = 0, X;2 = 0, X33 = 0, which is also true for the quantited, g ; d, d’,
d”orthep’, g, p, q, p’; q’that are derived from them. Leb (X1, X2), Yo, Y1, V¥2), (20, z,

2) be three linearly-independent systems of valagsu, a, of that kind whose
determinant does not vanish then. The most gersgistem of values that satisfies
equations [¥, (2)] will then have the form:

Q) a=ébx+mYot+t{Hzn, an=&bXi+tmh+tdz, a=&Xet+tnY:+{z,

() Codazzi Ann. di mat2 (1868), pp. 271, eq. (54).

() Bonnet, Journ. Ec. Poly., Ca82 (1848), pp. 53.

() Bonnet, Journ. Ec. Poly., Cal2 (1867), pp. 33et seq in which the proof is carried out under the
assumption of rectangular parameter curves. Lipschitz gaother proof oBonnets theorem that was
not as simple in Sitzungsberichte d. Berl. Acad. (1883)54p.et seq.
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in which &, 10, {o are morearbitrary functions of v Should those values af a;, a;
also satisfy the three equatiols; = 0, X,2 = 0, X3 = 0, then one would have the
following equations for the determination&f, /70, {:

0 ., 01, , _ 9¢,
+ + == (o Xa1 * Mo Ya1 + {0 Z21) ,
X Y Yo v z 3y (éo Xo1 + 1o Y1 + {o Z21)

(2) X,

0, , ., 97, . _ 04,
+ + == (& Xao + Mo Yoo + (o Z22)
v Y1 v 4 Iy (o Xa2+ 1o Ya2 + (o Z22)

0% .\, 9 ., 9¢,
+ +
X EY Y> EY %

== (& Xoz+ Mo Yoz + {0 Z23) .

In order for the solutiongy , 770, ¢ of this system to be functions wfalone, the
system must be equivalent to the system that is adatdrom the latter by differentiating
with respect tou, in which & , 7, & and their derivatives with respect toare
considered to be constants; i.e., it will then be exjaint to the system:

9% 040 | 0%, 017 , 0% 0¢,_ (5 a4y 21+Z azﬂj
du 0v. du dv ouadv ° au %oau )

(3) a_xl%+%%+a_zi% (50 22 + Y azzzj

22+Z
ou ov Ouodv Odudv oJu

0%, 94, | 0¥, 017, | 0%, 0¢, _ [50 2y Moy 9 j
ou

That is, in fact, the case. If one then multplibe second and third of equations (2)
by p” and o’, resp., and adds them then one will get preciselyitbedf equations (3)
with the help of [87, (2)] and under the assumption of equations (6) and (10¥inI8
the same way, and under the same assumptions, ongetvithe second and third of
equations (3) when one multiplies the three equations (&) fyg ord’, p’, q, resp., and
adds them.

It follows from this that under the assumption that ¢&iqna (6) and (10) of § are
valid, infinitely many systems of three quantit&esa;, a; can be determined that satisfy
the entire simultaneous syste® 7, (2)]. If one then understands (, X1, X2), (Yo , Y1,
Vo), (0 , z2, ) to mean three linearly-independent systems of vahiethat kind
moreover, then the most general system of valuessttaffies equations [g, (2)] and
the corresponding equations that one form,it( b,) and €, ci, ¢2) will have the form:

a=¢éX+tmYot+z, aa=ébX+tmr+Hza, a=ébXetMmY+{O2,

4) b=&xo+mYo+l 2z, bi=&xi+tmn+lza, b=&&Xx+tm+2,
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C=EX+r Yot o, G=&EXa+tmnhw+ozn, C=EX+mYe+ O,

in which the nine coefficient&, n0, {; &, m, & &, 72, { are nowconstantsj.e.,
independent od, v.

Six equations exist between these nine coefficientshedollowing consideration
will show: From equations (19), in conjunction with (9) 42d) of 81, one will have the
following relations for the nine quantitiesa;, az ; b, by, bz ; ¢, ¢1, G

1
a+=(ga+ed-2faa) =1,
(5)
ab+%[ga_1_b1+e&bz—f(albz+b1az)]:0,

along with two other pairs that emerge from them by cyméirmutation o, b, c.
If one correspondingly defines the following quantitiekjolr correspond to the left-
hand sides in (5):

1
M11:X§+?(9Xf+e)§_2 fx %)),
(6)
1
M12 =Xo Yo +?[g X yr+texy,—f (X y2+yx),

along with the quantitied/,, , M33 and M,z , M3; that emerge from them by cyclic
permutation ofx, y, z then those six constantdi will also be constant — i.e.,
independent ofl andv — since their partial derivatives with respecttandv will vanish,
due to [87, (2)]. If one now substitutes the values (4) into ¢éiqua (5) then, from (6),
one will get:

M1162+M22,7i2+M33ZiZ +ZVI23,7i G+Z\/I314§(i+zv|12§(i,7i = 1! GZO! 11 2)!

(7)
Mi1 & &+ Mo 12 i+ M3z G

+ Moz (i &+ &) +Mar (G &+ &)+ M (Em+m &) =0 (,k=0,1;1, 2; 2, 3).
Those equations express the fact that the nine coetfdie (4) — namelyé, 1, {;

&,m, G &, e, {— are the coordinates of the endpoints of three conjualimteeters
of a fixed second-order surface:

®) My &2+ M 77+ M 02 + Mos 1) O+ My £+ Mip £ = 1,

That surface is a midpoint surface, so its conjugate damare all finite, since the
determinant:
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Mll MlZ M13 1 X X % X X0 X% f %X €& X 1 XX X%
M21 Mzz Mza = ? Yo i ¥, Yoo YO ¥ f Yy ey :? Yo 1 ¥,
Ms, My My, z, z 3||3 9 zf~Ff ze.z 4L 4 %

is positive, from (6).

Therefore, every triple of conjugate diameters wdirespond to a well-defined
system of nine constants in (4). All that remainsdaHtiown is how the various solutions
(4) that are obtained in that way behave geometricallly véispect to each other for a
different choice of conjugate diameter.

If one inverts the direction of one of the three ogate diameters then the sign of the
coordinates of one of its endpoints will change (thug, ¢he constant, 7, {, and
from (4),a, a1, a2, as well, or from [8L, (22)], a, a1, a»); i.e., the surface experiences a
reflection in thexy-plane.

By contrast, if one chooses a second triple of comgugameters’, n’, {, instead
of the first onef, 17, ¢, which is coupled to the first triple by the linear equagio

& =bAt+téihtE v, & =ébMtEamn+EHv, = +tb+E W,
Q) Ny =mnoAo+mpp+mve, n =bht+tén+é&n, n,=bl+té+éE 1,
(o =QA+G+ove, {(=OM+a+ov, =0+ +H v,

then equations (7), when defined in terms of the trflen’, ¢, will imply that the
transformation coefficientdo, o, Wo; A1, ta, Vi; A2, b, V2in (9) must satisfy the same
conditions as the coefficients of an orthogonal sti®n.

When one introduce&’, n7’, {’, instead o, 7, ¢, the values, b, c in (4) will go to
the new valuea’, b’, ¢, which are coupled to the original ones by the equations:

a':a/]o+b,Uo+CVo, b':a/]1+b,Ul+CV1, C':a/]2+b,Uz+CV2,

U

(10) & =aidotbyp+cw, b =adi+bys+civi, c=al+bys+cis,
a =adotbypt+cy, b =adi+tbya+tcon, c=aik+bynt+cs.

However, one will get precisely equations (10) when aibgests the coordinates of a
point (x, y, 2 of the surface to an orthogonal transformatiorhlite same coefficient
K, V. Thus, the choice of a new triple will correspondatootation of the coordinate
system or the surface around the origin.

With that, the theorem that was posed is proved. Terém containa general
and systematic method for deriving the equation of a surface that rsedédby its
characteristic properties.The problem splits into two part9:(

() Bour, Journ. Ec. Poly., Ca89(1862), pp. 23.
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First of all, the six fundamental quantitiesf, g ; d, d’, d” must be ascertained as
functions ofu, v. In order to do that, one chooses a well-defineceaystf parameters,

v that are suited to the problem, from which, two ofgixequantities can be determined
or two relations between them can be established. @ taiation will give the property
that characterizes the surface. One then comeg tihitée differential equations (6) and
(10) in 8 7. One will then have six equations that suffice to rmeitee the six
fundamental quantities.

Secondlythe point coordinates y, z must be represented as functionsiof. That
will come about when one integrates the systen,[8)] in the way that was given
above using equations (4). If one then gives the consfanis” arbitrary values that are
compatible with (7) then one will get:

(11) x=[(adutady, y=[Bduthdy, z=[(qdu+c dy

from equations [¥, (1)], so one will gek, y, z by performing quadratures, which will
introduce three arbitrary additive constants. Witat, one will have the equation of the
surface for a well-defined position in space.

In 89, we shall give a derivation of the equation ofiaimal surface by that method.

8 9. — Applications. Differential equations of certain surfaes.

For some applications, we shall briefly summatize most important formulas of8
for special parameter curves.

1. Let the parameter curvés, v) be minimal lines.
From (11) and (25) of §, and from (6) and (10) of 8 one will then have:

e=g=0, d¥=2dudy

1 " __ 12 2
(1) hzﬁ, k:—dd 2d __10 Iogf’
f f f oduov
10d_dlog(d’ 10d"_ dlog( d’
dov oul f)’ dou ov | f)

2. Let the parameter curves, v) be isometric lines.

e=g=J, =0, d¥=A(d?+dV),

) h=

d+d" dd" - d? i(azlogf+azlogfj

, k=——7——-—-—=-
A A? 21 ou? oV



40 Il — Deriving a surface from given properties.

od" od . . .,
9 99 _1(d+d
ou av 2 )

9log A ad _ad ,
9 99 _%€ —1(d+d")

dlogA
ou ov odu '

ov

3. Let the parameter curvés, v) be asymptotic lines.

[} 2 (] 7
he 20 s ses 6w+1(5_qj+iié_pj,

o dudov du\ e ) 0 g
3)
dlogt’ dlogt’
— =-2q, — =-2p
au a ov P

4. Let the parameter§y, v) be orthogonal geodesic coordinates.

One will then have:
e=1, f=0, d¥=du’+gdV

n n__ 2 2
(4) hoged, o dd-dt 1 g

g A2 Jg o

5. Let the parameter curves, v) be the lines of curvature.

One will then have (cf., §) (4):

f=0, d’=0,ds =ed + gdV,

(5) \/_:izﬁ, \/E:d_":\/a, F=0,

Furthermore, thiainardi equations [¥, (6)] read:

od _1(d d")oe od" _1(d  d")\og
(6) oo 212 = = D+ |2,
ov 2le g)ov ou 2le g)odu

When one introducas, r» in place ofd, d” they can be put into the forr):(

() The quantitie€, F, G will be defined more precisely in%L
() Enneper, Zeit. Math. Phys7 (1862), pp. 89.
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ole|_Af1,1)0e 979} 1/1, 1199
ovir ) 2(r, r,)ov’  avir,) 2{r r,jau’

or
alog\/E: nr, (1 alog\/E: nr, 01
ov rL-r,ovir, ) ou L-r,ovir,)
When one introducds, G, and recalls (5), it will then follow that:
@ alog\/E _ 1 on alog\/E: 1 o,
ov r,—=r o’ du r,—r, au
and

® 1 0JE_ 1 dae 1 9JG_ 1 0dJg
\/Eav_\/ﬁav’ \/Eau_\/Eau'

Finally, Gausss equation [87, (10)] will take on the form:

© 9(10Jg), o 10afe)__dd__.leg
oul \[e au 6v Jg av Jeg rr,
or, from (8):

o gl g e

which one also infers when one forms equationg®jte sphere, for which r, = 1

The first application is defined by the derivation of thefeliéntial equations for
surfaces of constant curvatukeand constant mean curvatunein various parameter
systems.

When a surface possessemstant negative curvature— 1 : /2 , the asymptotic
lines will be real. If one chooses them to bepghemeter curves and denotes the angle
between them bywthen, from (3), one will have=t”=0;t’? =1 :z/. As a resultp’=
q’=0, and from [8L, (7)], m’=n’= 0. Hence, for a suitable choic® ¢f parametersy(

V), from [81, (6)], one will have:

(11) e=g=1, f=cosw J=sing d=d”=0, d’'= S|Za).

Finally, from (3), one can determine or represent thdifferential equation of the
surface in the paramete(s, v) of theasymptotic linesvith (9):

() Cf., the remark on page 28.
(®) Hazzidakis, Jour. f. Math88 (1878), pp. 68.
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°w _ sinw

12 =
(12) ouov 7]

When that equation is solved, one will know the fundaaieuantities, f, g ; d, d’,
d”. However, from the theorem ingg the surface will be determined uniquely with that
From (11), the differential equation of the lingflscurvature of the surface will be:
dw* —dv = 0. If one then setg +v = u; ; u — v=v;, one will get thedifferential
equation for the surface in terms of the paramegersv) of the lines of curvaturéom
(12):
2 2 H
(13) 0 c;)_a w_ smza)
o’ oy u

This equation can also be derived easily from gouos (5) to (10).
Should a surface possessnstant mean curvature $ 2 / 1, and should one next
choose theninimal lines to be the parameter curtbsn, from (1), one would get:=g

=0;d'=f:u. Moreover,@ =0, od® = 0, so for a suitable choice of the parameters (

ov ou
v): d =d” =1, and one will get thequation for for the differential equation of the
surface:

(14)

o’logf _ 1 _f
duov 1

By contrast, if one chooses thiees of curvature to be the parameter curgasv)

then one will havd =d" =0 and9+d_: —, SO as a result, from (6)62: 1%;
e g U ov  uov
od" _1dg . . . a i
T ;E For a suitable choice af v, one will then haved =e/ u+ 1;d”"=g/ u-
u

1, soe=g. That will give the theorem:

The surfaces of constant mean curvature (especialyminimal surfaceg/ = o)
possess isometric lines of curvat(te

Moreover, the fundamental quantities are:
7/ 1 ”
(15) e=g=41, f=d=0, d:;+1, d’=—-1,

and it will follow from (9) that the equation thaeterminesi, orthe differential equation
of the surfacewill be:

() Bonnet, C. R. Acad. Sc37 (1853), pp. 529 and Jour. d. Ma#(1860), pp. 221.
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2 2
(16) 9logA , 0%logA _ 2[1 1)

ou’ oV A _?

When one makes the substitutiohss 1 € '® u = ug, v = i vy, that will go to an
equation ford as a function ofi;, vi, namely:

9’9 _9°6 _ _ 4sind

17 -
() oS 0V J7;

The formal agreement between equations (13) andddows that the derivation of
surfaces of constant curvature and the derivatiudaces of constant mean curvature
are essentially the same problem. In fact, theistsea very simple geometric connection
between both types of surface that is expressetidieorem (*):

The parallel surface to a surface of constant curvaure/ that is at a distance qgf
is a surface of constant mean curvatarey .

If X, y, zare the coordinates of a surface in the parameterghen the coordinates,
y’, z’of the parallel surface at a distancwill be:

(18) X'=xX—pa, y'=y—-ub, z'=z-—yuc.

If one defines the fundamental quantities for thsface then one will get the values
r, =ri+ 4 r, =r,+ ufor the radii of principal curvature, which wouddso follow
geometrically from the fact that both surfaces pessthe same normals, so they will
have corresponding lines of curvature. Thereftive,mean curvaturk’ of the parallel
surface will be:

+

(19) h’= h—2,uk2

1+ uh+ ok

Now, k = 1 : 474, so it will follow thath’=1 : /. (Q. E. D.)

The differential equations (12), (13) or (14), X1@7) can be integrated only under
restricting assumptions.

As asecond applicationwe give thelifferential equation for surfaces with isometric
lines of curvatureg?). If one chooses the lines of curvature to bephmmeter curves
then one will have:

() Bonnet, Nouv. Ann. de Math12 (1853), pp. 437.

(® H. Stahl, J. fiir. Math., v. 111. If the equation of the surfaagiven in the fornF (x, y, 2) = 0 then
F will be determined by a fourth-order partial differenggjuation. (This note no longer appears in the J.
fir. Math., since publication of this pamphlet has madetipg it in the Journal superfluous.) Cf,,
Weingarten, Sitzber. d. Berl. Acad. (1883), pp. 1163.
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(20) f=0, d’=0, e=g=A.
Equations (2) then come down to these:

(21) ddr=-21, 9d _ d+d’dlogA 9d" _ d+d" dlog/
2 ov 2 ov du 2  du

in which one has set:
9%log A +62 logA _
ou? ov?

(22) L,

to abbreviate.
If one eliminates the quantity’ from the first and second equation (21) then oitle w
get a linear differential equation d:

2
ﬂ_alog/lderdalog/lL _o.
ov Ju 2 o0v

The integration of this is easy; when one sets:

1. OlogA 1. OlogAa
23 =|L dv=L,, =|L du=L,,
(23) A L vl oIy du=te

to abbreviate, and appends the corresponding equiatd ” that follows from (21), one
will get:

(24) d?=1(U - L), d”?=A(V-L),

in which U is a function olu, andV is a function of.. In that way, the first equation in
(21) will go to:

(25) 40-L)(V-L)=L%

That is thedesired differential equatiothat determined as a function ofi, v. It
already contains two arbitrary functiobs V; its solution will bring two more arbitrary
functions ofu, v with it. If (25) is solved o is determined then one will gkt andL, or
d andd” by quadratures. The six fundamental quantéjdsg ; d, d’, d” are ascertained

with that. The quadratures that deterndrendd ” can be avoided when one defin%%
u

n 2 2N
and — from equations (21). When one sets the two va“mlesﬂ or equal
ov ouov ouav
to each other, one will then get an equation offthen A d? + B d”? + C = 0 whose
coefficients are known and which will yield thestirequation in (21) that coupldsand
d”.
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One easily convinces oneself that the differential egud16) is only a special case
of (25). The latter equation will then be satisfied wbee sett) =V = 0 and:

L:E _1—1 .
2\ 1P

A further applicationrefers to the problem of ascertaining tiending surface of a
given surfacd") or that of determining the surface whe, g are given as functions of
(u, v). Here, one seeks the quantittesd’, d”, or from [87, (7)], the quantities, t’, t”.
One must solve equations (8) and (10) afi@ order to determine them. The latter has
the formt t”— t’? =k, in which the curvaturk is a given function oé, f, g or of (U, v). In
order to arrive at a single differential equation f6in a symmetric way, one must

eliminatet andt”. One could, say, introdude= u(t' +i\[k), t” = %(t’—i\/E) into

equations [&, (8)] and eliminate the functiom by repeated differentiation. In regard to
that, one must remarK)(that the resulting differential equation tihwould possess a
number of integrals that would exceed that of equat(8) and (10) in §, which one
started from. However, the isolation of the foreiglements from the solution to the
problem would encounter grave difficulties.

One will arrive at a similar outcome when one aduices the equation of the
asymptotic lines in the formg = a, /= b (with parameters, b), instead of introducing
the quantitied, d’, d”, which represent the coefficients in the differ@nequation of
those lines. Il is a proportionality factor then one will have:

t=A¢1¢n, tU=A(d1 ¢+ th ), t"=A 2 4,

and one will get two partial differential equatiofies the determination of the functions
¢ and ¢, in place of equations [ (8)] ¢). Solving them would yield the factdrfrom
the equation t”— t’? = k, which would determind, d’, d”.

The best solution of the problem seems to be tigetbat is directly connected with
Gausss equations [&, (9)] (). The quantities to be determingdd’, d” are expressed
by a single quantitx in them. However, in order to determixefrom [82, (17)], one
has the equation:

(26)  (ui—PX—0%)(2—P"X—0"%) — (x2— P’ % — 0" %)* = 37 [k[1 — & (¥)],
in which the coefficients depend upon os)y, g, so they are known. That equation can

be regarded as the differential equation for thiéase; in fact, any solution of it will give
a surface of that kind. K, f, g are real, and should the surface be real, theti, d”

() That problem, in particular, was treated in detailaaspecial case Wour, J. Ec. Poly. Cah39
(1862) andBonnet, ibid., Cah.41 and42 (1865).

() Weingarten, Festschrift der techn. Hochschule zu Berlin (1884), pp. 32.

() Darboux, Lecons lI, pp. 285.

() Bour, loc. cit, pp. 15;Dini, Giorn. di Mat.2 (1864), pp. 287Bonnet, loc. cit, Cah.42, pp. 3;
Weingarten, Festschrift, pp. 3%t seq.
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would also have to be real, and fromZ89)] one would then have to add the condition
that 1 -0’ (x) > 0. Any real-valued solution of (26) that satisfieat tbondition would
correspond to a real solution of the problem.

Equation (26) forx is linear inxis Xo2 = X5, X11, X12, X2 . From [82, (9)], the
differential equation of its characteristics is:

ddf+2ddudv+dd¥=0;

i.e., the characteristic of the differential equat{@®) are the asymptotic lines of the
surface ). That remark is important for certain bending problesash asinter alia,
the problem: Deform a given surface in such a way that\gedhat lies on it will go to a
prescribed space curve. [CDarboux, Lecons Ill, pp. 277; in a different treatment,
Weingarten, J. fir Math.100(1886), pp. 296.]

In conclusion, we shall mention the surfasath one or two systems of planar or
spherical lines of curvature.lf one chooses the lines of curvature to be the paterm
curves (I, v) thenf = d”= 0, and the three differential equations (6) and (9)) exist
betweerg, g, d, d”. If one now lets (cf., 84 and 815) p, andp, denote radii of absolute
torsion for the lines of curvatuke= const. andi = const., resp., and lefs andR,, resp.,
denote their radii of osculation then the conditiond family of lines of curvaturev(=
const.) to be planar will be thag =~ . The condition for the two families to be plarar i
that g, = 0 andp, = © . Furthermore, the condition for a family € const.) to be
spherical is thaR, =V, and the condition for both families to be spheris®, =V and
R, = U, whereU depends upon andV depends upoi. When one appends one or the
other of those conditions to equations (6) and (9), otiehave the partial differential
equations of the corresponding problem that the quangjtgesd, d” must satisfy.

Under some further simplifying assumptions, those pariftdrential equations can
be converted into ordinary ones, or also solved completétywvever, a direct evaluation
of the simplified assumptions will often reach the otij@ more rapidly{). Another
treatment of surfaces with planar lines of curvaturéhbeilindicated in 8 1.

§ 10. — Application to a triply-orthogonal system of surfaces’).

The equations that were developed in7&nd8 also prove to be useful in tistudy
of a triply-orthogonal systems of surfacehe equations:

1) X=X (u, v, w), y=vy(u,Vv,w), z=z(u,v,w)

() Darboux, Lecons I, pp. 252.

(®) From the literature that refers to that problevacite:

Monge-Liouville, Appl., pp. 161.Joachimsthal Programm des franz. Gymnasium in Berlin (1848) and
Jour. f. Math 54 (1857). Bonnet, C. R. Acad. Sc36 (1853). Serret, C. R. Acad. Sc36 (1853). Enneper,
Abh. d. Kgl. Ges. d. Wiss. zu Gotting28 (1878). Pirondini, Giornale di Mat22 (1884).

() Lamé, Jour. de Math5 (1840), pp. 313ibid., 8 (1843), pp. 397 and_econssur les coordonées
curvilignes(1859).
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represent a system of infinitely-many surfaces in eetfo&l way, since, e.g., each value
of w corresponds to a surface with the parameter cuyed.( In order to be able to
apply the previous formulas, nothing more will be necgsbasides exhibiting the six
fundamental quantities, f, g ; d, d’, d” for the surfacav = const. The corresponding
guantities for the surfacas = const. andv = const. will then be obtained by cyclic
permutation ofi, v, w.

The fact that the surfaces of the system (1) inteimghogonally along the parameter
curves is expressed by the equations:

XX _ X Ox _ Ox OX

=0, = =0,
ou ov ov ow

owou

(2)

in which the summation extends over three expressioxsyjrz that take the same form.
The line elementls of space between two pointg ¢, w) and (1 + du, v + dv, w+ dw) is
then determined by:

(3) ds = H2du?+ H2 dv?+ HZ? dw,
in which:

ox ox\ ox \’
4 HZ = =1, HZ = — 1, HZ = —|.
@ w=X(E). wexF) wex(F)

It can be shown that the three quantitigs H,, Hs are fundamental and definitive of
the character of triply-orthogonal systems. Fakall, from (2) and (4), thérst three

fundamental quantities e, f, g of the surface gonst. will be equal té1?, 0, HZ, resp.
One further finds the expression:

9(x,y, 2
=Hi H, H
a(U,V,V\I) 12 H3

for the functional determinant @f y, z with respect tai, v, w from equations (2) and (4),
which is implied immediately by squaring the le&rd side. If one differentiates the
three equations (2) with respectvpu, v then one will get:

X 0°X 0X 0°X | _ 0x 0°X  0X 0°x ) _
| oon s = Zlavauaw vwsmy <O
ou ovow 0vouw w ovouow owouw v
0x 0°x  0x 0°X ) _
>\ pwsoor suda) =°
owoudv ouovww

resp. If one adds the first and third of theseaéiqus and subtracts the second one then it
will follow that:
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2 2 2
(6) %GX:O, %GX:O, %axz
ou ovow ov owou ow duov

in which the last two equations are obtained from tts¢ dine by cyclically permuting,
v, w. Moreover, when one differentiates the first equaiio(d) with respect ta, v, w
and recalls (2), one will get the equations:

%a_zx = H aHl
ou ou? You’
2 2
(7) %GX:_ %a_i( :Hlﬁ,
Ju duov ov ou ov
X FX G xPx_ |, 0H,
ou duaw ow AU? tow '’

which correspond to equations18(6)].

If one letsas, S5, )5 denote the cosines of the inclination angles thahohmal to the
surfacew = const. at the pointu( v) makes with the coordinate axes then, froni|8
(22)], one will have:

(8) az3= ——, ,33:——, yg:___

One will now get thdast three fundamental quantities d, d”for the surface w=
const. from this when one starts with the defimitj§ 2, (1)] and employs equations (6)
and (7):
0°x 0%y 0%z _ 1 < 0x0°x _ H,0H,

6u2+'8‘°’6u2+y3 "H. Lol

a )
° o’  H, <~ owou’ H, ow

9°x 9%y 0°z _ 1 < 0x 9°x _
as, +:33 Vs = Zaia., -
ouov oudv ""ouwv H;“~owouov

(9)

9°x 9’y 9’z _ 1 Zc’)x 0°x _ _H, 0H,

a + + =
3 ov? ﬁ?’avz y3av2 H,

wov  H, ow

One will then have the followingummary of the values of the six fundamental
guantities e, f, gd, d}, d”, when they are referred to the three orthogonatesys of
surfaceq1) w=c, u=4a, v=D0b (a, b, c constants) with the corresponding parameters (
V), (v, W), (W, U):
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u v w f g d d d

w=c|lu v H 0 H _Hi0H, 0 _H,0H,

H, ow H, ow

(10) u=a|lv w H 0 H _H,0H, 0 _H,0H;
H, du H, ou

v=b|w uU H§ 0 H12 —iaH3 0 _iaHl

H, ov H, ov

One can then express all of those fundamental giggnn terms of the functiortsd; , Ho,
Hs , and their derivatives with respectuov, w.

One can infer a series of consequences from thke td0) and the previous
developments, of which only the most important Isbal mentioned, for the sake of
brevity.

Dupin’s Theorem (%) follows from the vanishing dfandd’ for the three systems of
surfaces:

When three families of surfaces intersect orthogonally, the icteysecurves will
always be lines of curvature of the surfaces.

If one denotes the radii of principle curvature tle lines of curvature = b andu =
a on the surfacev = const. byrs; andrsy, resp., then equations € (5)] will give them
the expressions:
(11) 1__ 1 6Hl, 1__
r31 H1H3 aW r32

1 0H,
H,H, ow’

along with the corresponding ones Qg, ris, andr,s, ro;, and a series of relations
between the radii, that we shall pass oved)(

We shall further define thundamental equationef 8§ 7 for a triply-orthogonal
system of surfaces.

If one denotes the direction cosines of the nosrt@akhe surfaces=a, v=b,w=c
(a, b, c constants) bydi, Bi, W), (a2, B, 1), (a5, Bs, ), resp., then from [§, (22), cf.,
also (8)], one will have:

(12) a =

eglong with the corresponding equationsfhy) and (; z2). The system [§, (2)] leads to
©):

() Dupin, Développementgp. 239.
(®) Lamé, Lecons pp. 80t seq.
() Lamé, Lecons pp. 89, eq. (28) and pp. 91, eq. (30)
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oa, _ 1 0H, 1 0H, oa, _ 1 0H,
2T O Al YT G VTR LY
ou H, ov H, ow ov. H, du
60'2: iﬁap 60'2: i%as—iaHz a,,
ou H, ov ov H, ow H, du
oa, _ iaHlal, oa, _ iaHzaz,
ou H, ow ov H, ow
(13)
%: iaH:”

a,,
ow H, ou

oa, _ 1 0H,

_ars,
ow H, ov

da, __10H;, 10H,

a, a,,
ow H, ou H, dv

along with the corresponding equations/f, (5, ) and (4, )5, )5) . It follows from
(12) that:

(14) x= [(a,H,du+a, H,dv+a, H, dy).

For an orthogonal system of surfack®inardi’s equations [87, (6)] or [89, (6)]
reduce to three equations, nameé}y (

0°H, _ 1 0H,0H, 1 0H,0H,
=z 14 21
ovow H, ow ov H, dv dw

(15) 62H2 :iaH3 6H2 +_16H16H2
owou H, du ow H, ow du’

O°H; _ L oH, 0H,, 1 0H, oK,

ouov H, av du H, du ov

Gausss equations [§, (10)] or [89, (9)] take on the fornfY:

() Lamé, Leconspp. 76, eq. (8).
() Lamé, Leconspp. 78, eq. (9).
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6[16H2+6(16Hj+16H OH,
d

av( H, ov H, ow) H du Ju_
(16) O[L0H), 0 10H,), 10H,0H,_,
ow|\ H, ow ) dul H, du ) H? dv av
O(10H;| of 10H +1aHaH
ou{ H, du ) ov( H, H ow dw
If one sets:
1 oH 10
17 o = Ha, ——32 =Hys, etc.
() H, du 12 H, 13

then one can replace the six equations (15) andiflthe three quantitied; , H, , Hs
with the following nine equations in the six furetsHi2, Ha1, Hos, Hao, Ha1, His ()

oH oH oH
2 =Hj; His, —3 =Hsy Ha, —2 =Hj3Ha,
ou ov ow
(18)
oH oH oH
—32 =Hg; Hyo, —2 =Hjp Has, —2 =Hy3Hay,
ou ov ow
and
My My, Hs1 Ha2 =0, OHz M, Hi2Hi3=0,
ou ov ov
(19)
My M g
ow Ju

One gets the following equation from (19) by asye@ombination:

a(H23H32) — a(H31H13) — a(H12H21)

% v W =Hi2 Hoz Ha1 + Hz1 Hao His .

(20)

Equations (13) to (16) solve the problem of figdithe most general triply-
orthogonal system of surfacesThe solution divides into three parts: The fipstrt
consists of determining the three quantities H , Hs by integrating the systems (15)
and (16), the second part involves determininggurentitiesa; , 43 , y, and with that, the
coordinates, y, z will be obtained by integrating the system (13ust as in 8, one can
show that an orthogonal system of surfaces is deéfimiquely (up to its position space)
by each system of valudd; , H, , Hs that satisfy equations (15) and (16). The
determination of the three quantitids , H» , Hs from the six equations (15) and (16) is
possible in infinitely-many ways. In fact, it wile shown below that the problem of

() Lamé, Leconspp. 76 and 79.
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finding the most general orthogonal system of surfazzes also be reduced to the
solution of a single third-order partial differential eqomat

The problem of determining an orthogonal system of sesfeor of integrating
equations (15) and (16) can be reduced, and in that way sedplifnen one adds the
condition that thehree-fold system is at the same time isomet@oe can then give the
form of the functiondH; , H>, Hz more precisely from the outset. NamelyUifU,; are
functions that arendependentf u, V, V; are independent of, and finallyU, U; are
independent o, then from [83, (8)], one will have the conditions:

H1:H2:UZV1, H2:H3:VZW1, H3ZH1:WZU1.
It follows from this that:

UV W=UViW, SO U =U, V1=V, W =W,
SO:

(21) ds =K (U dif +V dv¥ + W dwf) = L (V' W du# + W/ U dV? + U’V dw) ,

whereU’, V', W are functions of the same kind dsV, W, andK or L are functions of
(u, v, w).

Lamé (%) has shown that the further assumption thi a constant in (21) will lead
to the system of second-order confocal surfa@rboux (%) has treated the question for
generalL, determined the values bfy , H,, Hs , or the form of the line element for all
orthogonal and isometric systems of surfaces, an@xXfabited the surface equations for
one part of those cases.

One can further empldyamé'’s formulas to prove ththeorem (°):

The only conformal map of space onto itself is a similarity and irorerby
reciprocal radii.

Namely, ifu, v, w are the rectangular coordinates of a spatial poimt,xag, z are
those of the image point then one will have the foitmcondition for the two spaces to
be conformal to each other:

(22) ds’ =dxé +dy? +dZ = A2 (dUP + dV? + dwf),
in which A is a function of ¢, v, w). A series of equations will serve to determine them

that are implied immediately byamé’s equations when one seis = H, = Hz = A%,
Equations (16) will then lead to the conditions:

() Lamé, Lecons pp. 93¢t seq.

() Darboux, Ann. Ec. Norm., v. lIl, 1866, pp. 130 and C. R. Acad. 884, pp. 298; cf. Maschke,
Diss. Gottingen, 1880.

() Monge-Liouville, Applications Note VI, pp. 609¢t seq.
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A A _ A %A _9%A 9024 _1](0A) (aA) (a1
(23) >t =—* = t——= | = | =] ¢
ou> oV  ov¢ ow ow' adu® A |\du ov ow

and equations (15) will lead to:

) _ 0% _ 0%
duov ovow oOwodu

(24)
The latter yield:
(25) A=U+V+W,

in whichU, V, W are functions ofi, v, w, resp. WhetJ “andU ” are the first and second
derivatives otJ with respect ta, resp., it will further follow from (23) that:

UIZ +V12 +W12

(26) UI+VII:VI+WII:WI+UII:
U+V+W

Hence, each of those expressions is independent/ofv and one will have:

(27) UII:VII: WII: E,
C

in whichc is constant that is independentupf, w. With that, one will have:

U=2fu-af+al,  VEI[v-hPebl W= l{w-of+c]

and one will get from (26) that:

(U-a)Y+V-hy+Ww-g)f’=u—-a)’+VvV-h’+W-g)i+a+b+c,

or
a+hb,+c,=0.
If one locates the coordinate origin at (b, , ¢z) then one will finally have:
1 5
A== (0 +V +w),
c
or
2
(28) 2 + dyf + 2 = o2 (I AV + dvf

(W +V+w)?

If one setar + vV + W = p, to abbreviate, then one will have:
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Hi=H,=Hs=cp™
If one then exhibits the system (13) and integrateit thwill follow that:
a=1-2p" 4 m=1-2ptuy, @wm=1-2puw
and one will get from (14) that:

(29) « = cu y= cv L= cw
w+v+w' w+v+w' W+v+w

However, that is an inversion through reciprocal reslitive to the spheng® + \* +
w? = ¢ There will be an exception when= . From (27) and (26)J, V, W, andA
constant are constant then; i.e., the map consistsiofilarity. (Q. E. D.)

The study of triple-orthogonal systems of surfaces &lso be carried out in such a
way that one does not start with equations (1), but their solution in terms af, v, w
(*). One will then have:

(30) ulxy, 2 =u, v(X,y,2 =V, w(X Y, 2=w.
The orthogonality of those three systems of equaigagpressed by the equations:

Juodv _ ovow _ ow ou

(31) ~ A ’ -~ L~ = 01
0X 0X 0X 0X

ox ox

in which the summation is once more extended &vgrz. Furthermore, one has:

_low ,_1low  _1low
(32) a3_h36x’ B h oy’ ¥ h 0z
when:
@) 5= (555

along with the corresponding equations for thexntl@ndu or the index 2 and.
Since, from (30) and (1):
awox awdy owdz _,

OXOow 0yow 0zdW
it will follow from (8) and (32) that:

(34) Hih=1 i=1,23).

() Lamé, Leconspp. 7.et seq.
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The problem of determining a triply-orthogonal systensufaces will now lead to
thetheorem (%):

The necessary and sufficient condition for a system of equati@gy/ve) = w, with
the parameter w, to belong to a triply-orthogonal system is a third-ordetiapar
differential equation for the function (&, y, 2).

When one differentiates the three equations (31) w#pect tax, y, z one and two
times, that will yield 3 + 9 + 27 = 39 equations, in all, imtbich 2 (3 + 6 + 10) = 38
different derivatives ofi andv with respect to, y, z will enter. One will then obtain a
single third-order partial differential equation for daectionw (X, y, z) by eliminating
the latter. We refer to the literatur® for the exhibition of that equation and the proof
that it is also the sufficient condition for the gence of a triply-orthogonal system or
that every system of surfaces(x, y, z) = w that satisfies that equation is associated with
two other onesi (x, ¥, 2) =uandv (X, Yy, 2 =V that define an orthogonal system with the
first one.

That is connected with the following remark: FromZ8(9)], one also has the
equation:

9°x _ 1 0H, ox 1 oH, ox
ouov H, av du H, du oV’

which is also included in the system (13), alonghwhe corresponding equationsyin
andz. A comparison with the last equation in (15) whiow that the quantiti¢4; satisfy
the same differential equation ®sy, z, and more generally, so will the functian(¢ +
Y +7) +Bx+ yy+ dz+ & inwhicha, B, y d, €are independent of v. That includes
the theorem that a family of surfac®gx, y, 2) =w that satisfies the differential equation:

(35) %=a(><2+y2+22)+,6’><+yy+52+a

in which hz is determined by (33), ana, B, ) o, € are arbitrary functions oy, will
always belong to an orthogonal systéln (

8 11 — Spherical map. Plane coordinates. Applications.

If one interprets the quantitiesb, ¢ (§ 1), which are coupled by the equatiam+ b
+ ¢? = 1, as the coordinates of a point on an auxil&@yiereK of radius 1 around the
origin then one will have thepherical map of the surfadbat Gauss introduced ).
Every pair of valuesy, v) simultaneously corresponds to a point on theaserfand an
image point on the sphere in such a way that bothtg have normals that point in the

Bouquet, Jour. de Mathl1 (1846), pp. 446Bonnet, C. R. Acad. Sc. (1862).
Darboux, Ann. Ec. Norm3 (1866), pp. 110Weingarten, Jour. f. Math83 (1877), pp. 1.
Darboux, Ann. Ec. Norm. (2) (1878), pp. 110Weingarten, loc. cit, pp. 11.

1
.
(3
(") Gauss Disq. gen. art. 6.

~—
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same direction. In order to study the spherical mapshall denote all quantities that
refer to the sphere in the same way as the corresgpodes that refer to the surface,
except with upper-case symbols, instead of lower-case ddence, the image point of
x,y,2 —ie., @ b, c)— will be denoted byX, Y, Z), the cosines of the inclination angles
of the normal to the sphere, 4, B, C), etc. We will then have:

(1) X=A=a, Y=B=bh, Z=C-=c
2) X2+Y?+72%=1
From [82, (3)], whend’= 0, that will imply the followingheorems

1. The spherical image of one of two conjugate directions is perpendiculdnet
other one

As a result, since the tangent plane to the surfagdghentangent plane to the sphere are
parallel at corresponding points:

2. The spherical image of the direction of an asymptotic line is perpendicuthat
direction.

3. The spherical image of the direction of a line of curvature is partdiethat
direction.

As was remarked before &), those theorems can also be used as definitions of
conjugate lines, asymptotic lines, and lines of curvature.

Most important of all are the shundamental quantities,B, G ; D, D, D”that are
defined for the sphereSinceGausss auxiliary sphere represents a surface whose points
are given by equations (1), one can set Bpyhz anda, b, c equal toX, Y, Z, resp., in the
previous equations. Moreover, the quantige g ; d, d’;, d”can be set t&, F, G ; D,

D, D" resp., and the quantitipsp’, p”; 9, 9’ q” which are constructed froef, g, can
be set to the corresponding quantitiesP’, P”; Q, Q) Q7 resp., that are constructed
fromE, F, G. It will then follow from equations [g, (3)] that:

(3) D=-E, D'=-F, D”=-G,
and furthermore, equations 2§(6), (7), (16), (17)] will imply that:
(4) E=hd-ke F=hd-ki G=hd"-kg

and from this:
H=-2, K=1, RI=R=-1.

Finally, one will have:
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" __ 12
(5) A=.JEG- F? :k5:¥,

and the line element on the sphere will assume time: for
dS? =dX?*+dY?+dz?
(6)
=h (d dif + 2d’du dv+d”dv?) —k (e dif + 2f du dv+ g dvf).

(4) implies theheorems

The lines of curvature on the surface will go to an orthogonal system @phleee
under the spherical map.

That is because= 0,d”= 0 implies thafF = 0.

Conversely:Of the orthogonal systems on the surface (when it is not a minimal
surface), only the lines of curvature will go to an orthogonal systetheogsphere.

That is becauske= 0, F = 0 will imply thatd”= 0 when one does not have- 0; i.e.,
when the surface is not a minimal surface.

It follows from (4) that:
7) E g-2Ff +Ge =% (h*-X),
(8) Ed’—2Fd’+Gd =J?hk.

If one combines the last equation with (5) then onégeil the following expressions
for the mean curvatuteand the curvaturk of the surface'};:

_Ed'-2Fd + Gd _EG-F?
h_ " 12 ! k_ " 2 "
dd'-d dd"-d

(9)

If one substitutes the valuestoaindk from [§8 2, (16) and (17)] in (4) then one will
aer 0’E=ed?-2fdd +gd?
(10) O’F=edd’—f(dd'+d’?)+gdd,
0°G=ed”?-2fd’d"+gd?

Solving these will yield equations feyf, g that have a similar form, namely:

() Weingarten, Festschrift der tech. Hochschule zu Berlin, 1884, pp. 41.
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Ne =Ed?-2Fdd'+Gd?
(11) Nf =Ed'd’-Fdd’+d’?)+Gdd,

N’g =Ed"”?-2Fd’d"+Gd">

The plane coordinates of the surface shall be givenasofunctions ofy, v), instead
of the point coordinatesx(y, z), and the formulas that will serve to investigate th
surface shall be summarized briefly. (Let the equation of the tangent plane at the point
(%, Y, 2) be:

(12) XE+Ynn+Z{-T=0,

if &, n, {are the running coordinates.
The coefficientsX, Y, Z, T are theplane coordinates of the surfaceNe add the
condition that:

(13) X2+Y2+272%=1,

which is no loss of generality, since one needs onlyvidalihe coefficientX, Y, Z, T by

\J X?+Y?+ Z% when that condition is not fulfilled. Under the asgtion (13),X, Y, Z

will be identical with the values (1) — i.e., with thesmes of the inclination angles of the
surface normal with respect to the coordinate axes -eWhiteans the distance from the
tangent plane to the origin.

We shall next show how one can get guwnt coordinategx, y, z) of the surface
when the plane coordinat&sY, Z, T are given as functions afi,(v). Since X, YV, 2) is the
contact point of the tangent plane (12), one will have:

(14) XX+yY+zZ-T=0

identically.
If one differentiates with respect andv then from [82, (2)], when one uses the
abbreviations in [, (2)], one will get:

XX+yY+z4-T, =0,
(15)
XX+yYo+z224-T,=0.

() The equations of the point and plane coordinates will fiessome completely dualistic when one
introduces a general second-order surface at infinitydoepbf the imaginary spherical circle as what is
definitive, using the process Af Cayley, Phil. Trans149(1859), pp. 61.
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The three equations (14) and (15) are solvea,fprz. From [81, (24)], the common
denominator will be equal th. When one applies [§ (23) and (25)] (defined in terms
of X, Y, Z), the numerator of will become:

T Y Z
T, Y Z|=ATX+[T1(G X —F X)) + T2 (E X —F Xy].
T, Y, Z

One will then have:

(16) X=XT+AXT), y=YT+A (Y, T), z=ZT+A"(ZT),
when one sets:

(17) A(X,T):[EXsz—F(X]_T2+T1X2)+GX1T1],

to abbreviate (cf., [87, (8)]).

We shall further develop sorpartial differential equations for the quantiti¥s, Z,
T that are analogous to equation[§9)] for x, y, z If one recalls (3) then [&, (9)] will
immediately imply the following equations fir:

Xu-PX-QX +EX=0,
(18) xlz—P'X]_—Q'XZ +F X=0,
Xzz—P”Xl—Q”Xz +G X=0.

Corresponding equations with the same coefficientsraesforY, Z. The equations
for T read somewhat differently. When one differentigfiés) with respect ta, v and
recalls [82, (3)], one will get:

XX1+YyVYi1+2z24:-Tii=d,
(19) XXio+yYi2+2Z,-Tio=d,
XXo2+Y Ya2+2 =T =d".

If one multiplies equation (14) by and equations (15) by P and —Q, resp., and
adds them to the first equation in (19) then, due to (18)yoihget ¢):

T.,,.-P Tl—Q T, +ET=-d,

(20) le—P'Tl—Q'Tz +FT:—dl,

() Weingarten, Festschrift, (1884), pp. 41.
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Tzz—P”Tl—Q”Tz +GT=-d"

With that, thesix fundamental quantities of the surfacd,ea ; d, d’; d”, and their
derivatives with respect to, u are represented in termsXfY, Z, T. Namely, one gets
the quantitiesl, d’, d”from (20) and then the quantitiesf, g from (11).

In order to now return to the plane coordinates, wal sitso present the quantities
here that are important for tlstudy of a surface curve viz.,ds’, L, M, N (§ 14) —
terms ofX, Y, Z, T, and their derivatives with respectuov. From (11), one will have:

(21) A?d$=E (d du+d dy?>—F (d du+d dy) (d du+d dv) + G (d du+ d dy?

for d<’.
The expression fdr is obtained immediately from the valuesdpfl’, d”in (20), and
upon consulting equations (18), it can be easily broughtetdorm:

(22) L= |X X1 X0 Xnia CILI2 + 2 X1odu dv+ Xoo CI\/2 |,

in which the determinant on the right-hand side includas fows that are formed in the
same way, of which, only the first one is written out.
In order to represem, we use (4) to form:

E du+F dv=h(d du+d’dv) —k (e du+f dv),
Fdu+G dv=h(d’du+d”dv) —k (f du+g dv),

from which, we will obtain the expression figk:

+ E F
(23) _1‘ddu ddv Edw dt

T Ald'du+ d' dv Fdur Gdl

If one substitutes the values @fd’, d” in (20) and arranges them in terms of the
derivatives ofT then one will get the differential equation for tirees of curvatureM =
0):

(232) R C ETRLL ER

in which the coefficient®\;, A, B;, B, have values that are easy to give. Since, from
(18), equation (23a) is also true ¥y Y, Z with the same coefficients, if one eliminates
those coefficients then one will also get the equdbomhe lines of curvature in the form

():

2121430142
I I I

:O,
u \Y Ju ov

() Darboux, Legons|, pp. 240.
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with the same abbreviation as in (22).

Finally, the expression foN, which will yield the differential equation for the
geodetic lines on the surface when it is set equal to, 2ermore complicated, and
therefore also less interesting. One constructegtmimply from [814, (1) and (2)]:

oX  0X
ou ov

(25) AN=|X  dx d2><1[~]x

by multiplying those two determinants, whose second thivgs rare defined the same
way in terms ofY, y andZ, z, as the first one was in termsXfx.

We shall also add a pair applications. From (11), the condition for the parameter
curvesu, v to be orthogonalf = 0) is:

(26) Ed'd’"-F(dd"+d"9)+Gdd=0.
Moreover, from (20), the condition for the parametewesu, v to be conjugated( = 0):
(27) T2—P'T7h—-Q'T,+FT=0.

If one couples equation (27) with the corresponding equa{ib8) inX, Y, Z then the
condition for the parameter curves to be conjugate witbg®):

(28) X2 X1 X2 X|=0,

in which the determinant of the left-hand side is writtgtlh the same abbreviation as in
22).

( )Finally, from (4) and (20), and when one substitutes/éihges forP”andQ’, the two
conditions for the parameter curvgsv to be the lines of curvature of the surfate Q,
d’=0) will be:

9T _dlogE dT dlog,/ G aT _ 0
ouodv v du ou av

(29) F=0,

from which, in conjunction with the corresponding equai¢bd) inX, Y, Z, one can
once more derive the vanishing of certain determinaritstiviee terms in them.

A second application might refer to the derivatibsurfaces of a certain kind. If the
spherical image of a surface is given.e., if eitherX, Y, Z are given as functions of two
parameterss, v with the condition thal 2 + Y2+ Z? = 1 or ifE, F, G are given as
functions ofu, v with the condition thakK = 1, whereK is theGaussan expression for
the curvature in terms &, F, G (i.e., the right-hand side of equation78(10)], when it

() Darboux, Lecons|, pp. 121.
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is formed in terms oE, F, G) then the surface will still not be defined by that, sihas
still an arbitrary function of the parametarsv. In order to determine the surface, a
further condition will be necessary; we shall consitierfollowing cases:

1. Let the surface be arranged such thap#tameter curves are orthogonl= 0).
That suggests equation (26), or when one denotes the feftdides in (20) byT)q1,
(M2, (T)22, resp., the equation far:

(30) E(Mi2(Ma2—F [(Muu(M2+ (MZ]+ G (Mi1(M2=0,

which can be regarded as the differential equation aduhface. IfT is ascertained from
(30) then one will findx, y, z directly from (16) wherX, Y, Z are given. By contrast,
whenE, F, G are given, one can fird| d’;, d”from (20) ancg, f, g from (11), from which,
the surface will be determined uniquely.

2. Let the parameter curves of the surface be conjugHte 0). One will then have
the differential equation of the surface in (27).

3. The given quantitieX, Y, Z be arranged such that= 0, and the desired surface,
such that thg@arameter curves are the lines of curvature of the surfaee0,d’ = 0).
The differential equation of the surface will then beation (29) inl (%).

4. Let themean curvature h be constaor the surface [or also given as a function
of (u, v)]. From (9) and (20), the differential equation of gwface in terms of will
then be ):

(31) E(Mz—2F (Miz+ G (M +h [(T)1 (M2~ (T)5,] = 0.
5.
(32) K[(M1(M22+ (T)5,]=EG-F~

One can evaluate those conditions in order to dstiviaces with a system of planar
lines of curvaturdcf., 89, as well as the literature).

From Joachimsthals theorem (815), the spherical image of a planar line of
curvature is a minor circle whose plane is parallegh plane of the line of curvature.
One now gets the most general simple infinitude ofesron the sphere (2) when one
intersects it with a plane whose equation has tha:for

(33) U X+U,Y+U3Z=1,

() Enneper, Nachr. d. Kgl. Ges. d. Wiss. Géttingen (1870), pp. 78) widifferent derivation.
() Weingarten, Festschrift, pp. 42.
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in whichUsy, U, , Us are arbitrary functions of one parameaterOne can perhaps regard
that plane as the normal plane to an arbitrary, buhgsgace curve.

We focus on the circular sections of the planes (3&) Wie sphere (2) as a first
system of curve€, with the parameteu, and the orthogonal trajectories to them on the
sphere as a second system of cuewith the parameter. In order to find the curves
C,, one can use stereographic projection. The systetiradés C, on the sphere will
once more go to a system of circlesin the plane under that projection. If one seeks the
orthogonal trajectorie, to E, and carries them back to the sphere then one will theeve
systemC, . One now expresses the coordinadsy( Z) of a point on the sphere (2) in
terms of the coordinateg, () of its stereographic projection by way 0f38(18)] using
the equations:

2 2
(34) X:#, Y:#, Z:%_
o +nT+l o +nT+l ¢ +nt+l

If one substitutes those values in (33) then oilehave the systerk, in the plane {,
n) in the formf (& n, u) = 0. If the orthogonal systemk&s : ¢ (¢, 77, u) = 0 then upon
substituting the values o,(7) in (34), one will get the syste@ in the form:

(35) ® (XY, Z V) =0.

The coupling of equations (2), (33), and (35) gitke coordinate¥, Y, Z of the
spherical map of the desired surface as functibtiseoparameters, v.

One knows the quantitigsandG (while F = 0), moreover, and only has to solve the
differential equation (29). That is entirely pddsihere. From 85, the condition that
the system of lines of curvatute= const. is planar says that the associated rafius
torsion g, = o, or from [8 14, (26)], thatH, is a function ofu, or finally, from [§ 14,

(25)], that:
1 0G _

1
JEG du U’

in which U is a function olu. The differential equation (29) far will then assume the

<o \/E:UalogJ/E’

form:
19T _of 1 0T
Uov ov(,JE du |
One will get:
oT _ JE
_:_T_
PTRET (T—W)

as a first integral, and when one sets:

(36) exp{j% duj =P, \/EUO =Q,
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to abbreviate, one will get:
(37) T=P (V- [P?Qdu)

as a second integral, in whidhis a function ofv. The problem is solved with that.
Apart from the quadratures in (36) and (37), the solutionregjuire only the integration
of a first-order ordinary differential equation, which lwileld the orthogonal trajectories
(35) of the system of curves= const. on the sphere. Five arbitrary functionsreinte
the solution, namely, a functiohofv and four functionsJy , U; , U2, U3 of u, since one
can seU =u.

Should the surface posséa® systems of planar lines of curvattinen the spherical
image would be given from the outset. Namely, the imadewo systems of lines of
curvature will be two systems of minor circles thaeisect at right angles. However, as
is known, or as would follow from stereographic proatitwo such systems of circles
will only consist of the intersection curves of the spheith two pencils of planes with
the parameters, v whose axes are reciprocal polars of the sphere. Whertlwooses
such axes arbitrarily, one will g&t, Y, Z immediately, and one will then gé&tas a
function of (, v) from (29). From (36) and (37), the solution of the probleiththen
require only two quadratures and will lead to only twoteaby functionsUp andV. A
geometric consideration gives ttheeorem:

For every surface with two systems of planar liokesurvature, the planes of the one
system are parallel to one line g, while thosehef ather system are parallel to a ling.g
Those two lines are perpendicular to each other.

§ 12 — Application to minimal surfaces.

Minimal surfaces ) — i.e., those simple surfaces that have the smaltes for a
given boundary — are characterized geometrically byciwdition that the radii of
principal curvature; andr, are equal and opposite at each point. They are theredefi
byri +r,=00rh=0, or from [82, (16)], by the equation:

(1) ed’-2fd’+gd=0.
That will imply the followingproperties of minimal surfaces:

Their minimal lines are conjugate

That is because it follows from=g = 0 thatd"= 0.

() Exhibiting the differential equation of minimal sués by means of the calculus of variations was
presented byLagrange, Misc. Taur. (1760-61)Oeuvres I, pp. 335. Meusnier gave its geometric
interpretation (viz..h = 0), Sav. Etr.10 (1785), pp. 477. The integration was performedMmnnge-
Liouville, Applications pp. 211gt seq.
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Their asymptotic lines are orthogonal.

It follows fromd =d” = 0 thatf = 0.
The converses of those theorems are obviously tsugell namely:

If the minimal lines on a surface are conjugate or the asymptoticdirgesrthogonal
then the surface will be a minimal surface.

The fact that the lines of curvature of minimal suetaare isometric was proved in §
9. It likewise follows from equations [&, (6)] that the asymptotic lines are isometric.
In 8§17, it will be shown that a system of isometric lirees also be obtained from each
system of parallel planar intersections and itsagtimal trajectories, so, e.g., from the
level curves of the surface and the lines of greateshatn.

Furthermore, from [81, (4)], one will have for the spherical map on the spler
that:

(2) E=-D=hd-ke F=-D’=hd-kf G=-D"=hd"-kag.
When one setis = 0, these equations will yield the followitigeorems

1. The spherical images of the minimal lines are once more minimal lames
likewise asymptotic lines (viz., the rectilinear generatorthefsphere).

That is because it will follow frolm=g=0thatE=—D =0,G=-D" = 0.

2. The spherical images of isometric lines (in particular, the linéurvature
again) are again isometric lines.

That is because it follows froe=g,f = 0 thatE =G, F = 0.

3. The spherical image of a minimal surface is conformal to the original one
(Urbild) (4.

That is because (2) implies thd§ = - k d$ or ds = r dS whenr is the radius of
principal curvature of the surface.

Those three theorems are, in turn, characteristiioimal surfaces; i.e., they can be
inverted in the following way:

4. If the spherical images of the minimal lines on a surface are again alifimas
then the surface is either a minimal surface or a sphere.

That is because wha=g = 0 andE = G = 0, it will follow from (2) thath d=0,h d”=
0, so:

() Bonnet, Jour. d. Math5 (1860), pp. 227.



66 Il — Deriving a surface from given properties.

eitherh = 0O; i.e., the surface is a minimal surface
ord=d”=0, so from [, (10)],r1 =12 ; i.e., the surface is a sphere.

5. If the spherical images of isometric lines on a surface are agamasic lines
then the surface is either a minimal surface or a sphere.

That is because, from (2),a=g,f=0andE=G,F=0therhd=hd”, hd" =0, so:
eitherh=0o0rd=d”,d’= 0, so, from [, (10)],r1 =r2.

6. If the spherical map of a surface is conformal to the original thersdinkace is
either a minimal surface or a sphere.

That is because (2) implies the following conditioos d surface to be conformal to its
spherical image:

hd-keue hd—kf=uf, hd’-—kg=ug,
in which g is a factor that is yet-to-be-determined. If onetiplgs those equations,
once byd”, — 2d’, d, resp., and then ly, — 2f, e and adds them each time then, fron2[§
(16) and (17)], one will get:

2hk=h (1 +K), h?=2 (u+Kk).
It then follows that:

Eitherh =0, 4 =-k; i.e., the surface is a minimal surface

Or u=k h?*=4k sor; =r,; i.e., the surface is a sphere.

For the further study of minimal surfaces, dexive their equation using the methods
of § 8 (). Next, the fundamental quantitiesf, g ; d, d’, d” will be presented. If one
chooses the minimal lines to be the parameter cuwve’ then:

(3) e=g=0, d’=0.
When one setd =d” = 1, one will then have to integrate the differentigbation [8

9, (14)], under the assumption that «. According toLiouville (%), the general integral
includes two arbitrary functiond andV, the first of which depends upon onlywhile

() Enneper, Zeit. Math.9 (1864). Enneper's derivations has been altered here in such a waytieat
can immediately geéVeierstrasss [Sitz. Berl. Acad., (1866)] fundamental form for théram his well-
known investigations on minimal surfaces.

(® Monge-Liouville, Applications Note 1V, pp. 597.
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the second one depends upon only We shall change the treatment somewhat and
likewise introduce two such functiokk V when we set:

(4) d=-U, d’=-V.
The equation fof will then go to:
2
ff o9t _yy,
ouov

It is satisfied by a particular integral; one such is:
(5) f=1UV (1 +uv)>.

The six fundamental quantities of minimal surfacesdatermined by the equations
(3), (4), (5). One gets thime element ds= 2 du dvfrom them:

(6) ds’ = UV (1 +uv)? du dy

as well as theadius of principal curvature =f:./dd":

7) r=1JUV (1 +uy?

Moreover, one gets thadifferential equation for the lines of curvature:

(8) Ud#-VdF=0

and thedifferential equation for the asymptotic lines:

9) Ud#+VdF=0.

& The lines of curvature and the asymptotic lines are theerrdeted by quadratures
| From the form of (8) and (9), and the differentigliationsdu = 0, dv = O for the

minimal lines, one will also find that the differedtequations of the minimal lines, the

lines of curvature, and the asymptotic curves for minimdéasarthat is given in terms of
arbitrary parameters are also integrable by quadratires (

() Roberts, J. d. Math11 (1846), pp. 300.

() From the equations of § the theorem is true for surfaces of constant mearmtire, while for the
surfaces of constant curvature, only the differential #ops of the lines of curvature and asymptotic lines
can be determined by quadratures, and for surfaces wittetisortines of curvature, that will only be true
of the latter lines and the minimal lines. The comnsomrce of those, and similar, theorems is the
following theorem thatie proved in the theory of multipliers: If one knows tlzatinear relation with
constant coefficientZ = A X + i Y exists between the integrats= a, Y = 5, Z = y(wherea, [, yare
integration constants) of three first-order ordinary edéhtial equations then those three differential
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One must novintegrate the simultaneous systf@?, (2)]. In our case, it reads:

%: 2822 ’ aﬁ:—Ua+( Gl +ija1,
ou (1+uv)'Vv ou l+uv U
%: 2812 , a;aZ:—Va+( 2u +lja2,
ov (l+uv)'U ov l+uv V
. Oa, _ Oa _ : : .
while v 0. One easily obtains three systems of pdati@) a;, a, whose
u vV

determinant does not vanish, namely, with the martatof 88 :

%o = 2u Yo = 2v 2 = uv-1
1+uv’ T 1vuv’ 1+uv’

X, = - Uu?U, yi= U, z=uV,
Xo= V, Vo= — V2V, =VvV.

It follows from this that:
M11 =Mz =Mz =Mz =0, M3z =1, M2 =2,
and as the second-order equation of the surfa8e(B]:
4én+{*=1.
The coefficients § , 771, §) are determined from the associated equations:
4&nm+{f =1, 2E& m+ni &)+ 4G &=0.

The system of values (or the position in space) ¢tbaresponds to thé/eierstrassform
is:

: 51:—-

i i
éo=M=3% > /7125, $=1, o=a=&=n=0.
With that, equations$, (4)] will become:
u+v .v—u uv-1
= , b=i , c= ,
1+uv 1+uv 1+uv

equations can be integrated by quadratures.L{gtScheffers Vorlesungen tber Differentialgleichungen
Leipzig, Teubner, pp. 163, as well as pp. Hi%eq(1891).
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1 2 [ 2
(10) 61125(1—U)U, b, = E(l‘l‘U)U, ct=uy,

aZ:%(l—vz)V, b2:—i§(1 +V)V, c=vV

If one then sets:
(11) U=F (u), V=0 (V)

then, from [88, (11)], one will ultimately get the equations for thenimal surface in the
form ():

1 , 1
X = Ej(l—u )F(u) du+§j(1— V)P (V) oy,

(12) = %j(:uuz) F(u) du—i_zj(1+ V)D (V) dy,

z=[uF(u) du+ [ V(Y dv
For:

(13) U=f"(u), V=¢"(v,

one will get:

X = %(1 —?) f7(u) +u f (u) —f (U) +% (1-V) " (V) +V @' (V) — ¢ (v),

(14) y= i5(1 FU)F7(U) —i uf ) +i f () —‘5 (L+?) g7 () +iV §’ (V) —i 4 (V)

z=uf"(U)-f'(W+ve”(V)-¢'(v) .

This derivation of the equation of a minimal sudas purely analytical. One can
abbreviate the solution when one uses the geontb@rem that was proved above that
the spherical map of the minimal lines on a miniswaiface will again be minimal lines
on the sphere. Now, represent the coordinads, €) of a point on the sphere of radius
1 in terms of the parameterns ¢) that belong to the minimal lines as in38(15)] using
the expressions in (10). If one substitutes thadeges, as well as the values (3), (4), (5),
in equations [&, (6)] then one will get equations (12) by quadratu

() Weierstrass loc. cit, pp. 619. If one sets:

J2Udu=da, J2Vdv=d3 u=A(a) v=B(f, so u=%, v=f1,2

then one will geEnneper's equationsloc. cit, pp. 107.
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Monge (%) gave the shortest path to the equation of the minsmehce. One must
satisfy equation (1), or when one once more choosesmihanal lines to be the
parameter curves, the equatians- g = 0; d’ = 0. Upon applying them, the middle
equation in [, (9)] will go to:

9°x —o 9%’y 0 9°z

(15) =0, =0, =
Juov ouov Juov

Hence:

(16) Xx=U; +Vq, y:U2+V2, z=Usz+V3.

The equatiord’ = 0 will be satisfied with that. The equations 0,g = 0 will then give
the following conditions for the functiorn$ andV in (16):

(17) U;®+U2+U= 0, V/2+V,2+ V% = 0.

One can now set andy equal to the values that were given (12), and one wili the
also get the value afthat was given in (12) from (17). It follows from (16)da(17) that
the line elemends of the surface will be:

(18) ds’ = 2 [dU; dV; + dU, dVs + dUs dVs).
Equations (16) and (17) include tteorem:

The general minimal surface can be generated by translating a minimal @uove
system along a minimal curve of the other system.

That theorem defines the foundation for further imparstndies of the degree and
class ofalgebraic minimal surfaceand the determination of such surfaces from given
elements. We refer to the literatufefor that theory.

The following considerations are connected Withierstrasss form (12) or (14) for
a minimal surface. When one chooBeand® orf and ¢ to be arbitrary functions, those
equations will represent all possible minimal surfagsl$of those surfaces are related to
each other by the parameteus \() in such a way that they will have parallel normals at
corresponding pointsi(V) [eqg. (10)]. The minimal surface (12) or (14yesl when and
only whenu andv are complex-conjugate variables, and whkeand® or f and ¢ are
conjugate functions such that each functiofu) or f (u) of the complex variabla will
belong to a well-defined real minimal surfadk (

Under that assumption, one can write the equations ¢I®eaiently as*j:

() Monge-Liouville, Applications pp. 211gt seq.

() Lie, Arch. fgr Math.2 (1877), pp. 295. Math. Anri4 (1878), pp. 331 and5 (1870), pp. 465.
Darboux, Legons |, Book Ill, Chap. VI-IX.

() Bonnet, C. R. Acad. Sc37 (1853), pp. 529.

(") Weierstrass loc. cit., pp. 619.
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(19) x:mj(l—uz)F(u)du, y:mji(1+u2)F(u)du, z:mjzuF(u)du,

in which the leading symbdk means that one should take the real part of th@nfimg

complex quantity.
One can further show that the minimal surfacalgebraicif and only if the function
f in (14) is an algebraic functioh)( From (8) and (9), an algebraic minimal surfad

have algebraic lines of curvature and asymptomiesliwhenj f"(u)du and j @"(u)du

are algebraic functions afandv.

Equations (12) or (14) give the general minimafate in terms of point coordinates
(X, y, 2. One gets the equation of the surface in plaaardinatesX, Y, Z, T) from them
by using the formulas of 1. From (10), one has:

(20) x= 4V y=iy 4 z=W"1
1+uv 1+uv 1+uv

In order to formT in terms of (, v), one must substitute the values (20) and (12) or
(14) in:
T=xX+yY+zZ.
One will then get?):

(L+w) T=[U-w)@+uy F(y) dy+ [ (v Y+ (Y d

or

(21) T=f/(u) + ¢/ () - = [ f(“)+¢(")}.

1+uv| u \Y}

This expression is, at the same time, the genetabial of the partial differential
equation:
2

T =0,
@+uv)

T2+

which one gets from the middle equation irnL[g (20)] for the values (20) o, Y, Z, and
the value€ =G =0,P’=Q’= 0 that one gets from=g=0,h=0,d’=0.

One will get the equation for the minimal surfaiceterms of only the planar
coordinatesX, Y, Z, T) by eliminating ¢, v) from (20) and (21). One will have:

i .
(22) u:X |Y, V:X |Y,
1-7 1-Z

and from that:

() Weierstrass loc. cit, pp. 621.
() Weierstrass loc. cit., pp. 623.
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o XY o X=0YY X+iY)y o . X+ iY
T_f(l—z j+¢(ﬁj (X |Y)f(—1_z) (X |Y)¢( 1_2)

If the surface is real, doand ¢ are conjugate functions, then one can give afoead
to this equation. Namely, if one sets:

X+iY

J=prian =g XX =P-ic

f(u):f(

then it will follow that:

P _ fiu)+4'(v)

P=21[f(u)+¢ Wl X 2(1-2)

and one will have:

(23) T:2(1—Z)g—;—2(xP+YQ).

One will then have, e.g.:
T= 2(2-Z)(X*-Y?)
1-zy

for f (U) = u’.

Some special minimal surfactsat are of interest shall now be mentioned. né o
sets:

(24) u=rée?, v=re™, Fu=€"u? D (V) =e'V?
in whichr, ¢, @ mean real quantities, then an easy calculatiolhgivié one the surface:
-x=rcos@+a)+r'cos@-a),
(25) —y=rcos@+a)+rtsin(@-a),
z=2logr cosa—-2psina

for a suitable determination of the constants.
If one setsr = 0 and inverts the signs waindy then one will have the surface:

(26) X=(+rcosg, y=@+r)sing, z=2logr

or

/X2+y2 :I'+I'_l:eZ/2+e_Z/2.
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By contrast, if one sets = 77/ 2 and inverts the signs gfandz then one will get the
surface:

(27) X=(-rYsing, y=(-r)cosyp, z=2¢
or

z X

— = arctan—.

2 y

Equations (25) represent a helicold gquations (26), a surface of revolution (viz.,
the catenoidf), and equations (27) represent a ruled surface [namelfetiual conoid
(die flachgangige Schraubenflagh€®). Those surfaces can be developed to each other,
since for the values (24), the expression (6) will go to:

ds’ =r™ (dr? + r? dg?),

so the line element will be independentapfor it will be the same for the three surfaces
(25), (26), (27).

One easily convinces oneself that equations (25), (26), @xesent the only
helicoids, surfaces of revolution, and ruled surfaces dha at the same time, minimal
surfaces 9. We shall show this briefly for the surfaces ofaletion. The general
surface of revolution has the equation:

X=pcosy, y=psiny, z=P,

in which P is an arbitrary function gb. If one denotes the first and second derivatives of
P by P"andP”, resp., then one will get the values:

h= PP"+ P (1+ P?) K= PP
p(1+ P12)3/2 ! p(1+ P12)2

for the mean curvaturk and the curvaturé& . The minimal surfaces that are found
among the surfaces of revolution are then deteminoyethe differential equatior & 0):

pP”"+P’ (L +P"%) =0.

Whena is the integration constant, the first integral is

[N

Scherk, J. fur Math.13 (1835), pp. 185.
Meusnier, Sav. Etr10 (1785), pp. 477.
Meusnier, ibid.

Catalan, J. de Math7 (1842), pp. 203.

AT
~— N
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and a second integration will give the equation of thtasaras:

o+ /pz_az
a

z=P=-alog or p:%(ez’”+e‘”").

Furthermore, we pose tpeoblem:

Determine those minimal surfaces for which the spherical reptagon of the lines
of curvature is a given system of isometric lines on the sphere.

From [8 3, (22)], the differential equation of the most genekatesm of isometric
lines on the sphere has the form:

P (u) di —Q (v) dV* = 0.

On the other hand, from (8), the differential equatidrthe lines of curvature of the
minimal surfaces is:
U duv -V dv = 0.

Therefore, ifP andQ are given thety andV can be determined from the equations:
(28) U=P(u), V=Q (V).

An example of that is defined by the determination efrthinimal surfaces that have
two families of planar lines of curvatu(d.

The two families of planar lines of curvature corregpto two mutually-orthogonal
systems of minor circles in the sphere that aregatged by two pencils of planes whose
axes are reciprocal polars of the sphere (cL1)8 Under stereographic projection, the
two families of circles in the plané,(7) map to a pencil of circles that go through two
fixed points and the associated orthogonal system olesir One puts the two fixed
points at the points & and —a on theé-axis. The equation of the pencil of circles with
the parameted is then:

(29) 2+ p?-a?=21¢.

The coordinates( ;7) are coupled with the parameteus\) of the minimal lines on
the sphere by equations 38(19)]:

(30) u=&+in, v=_&+in.

When one solves (29) fa, it will then follow that:

() Bonnet, C. R. Acad. Sc41 (1855), pp. 41.
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uv— &

u+v

= A,

and the differential equation of the pencil of ciradeshe first system of minor circles on
the sphere will become:
du dv

2 2+ 2:O'
w+a®> Vv+a

One gets the differential equation of the second odhalgsystem of minor circles from
this when one replacex, dn with —dsg, dé§, resp., or from (30)du, dv with i du and
—idv, resp.:
du  dv _
w+al V+a

The product of the last two equations is the diffee¢@guation of the given system
of isometric lines on the sphere. From (28), the @ated minimal surface with two
systems of planar lines of curvature is then determiyeitie functions:

1 1

(31) U:F(U):m, V:q)(V):m.

The casea = 0 anda = « are interesting; both assumptions lead to the samface
(%), as is easy to see. Far= o, U andV are the same real constants. From (29), the
system of circles in the plane that correspondhlines of curvature on the minimal
surface will become lines parallel to the aX¥e® ; therefore,é, 7 are the parameters of
the lines of curvature of the minimal surface. Bheface itself is algebraic and has order
nine, while the lines of curvature are third-orgiame curves. If one sefgu) = ® (v) =
3, define, y, z using (12), and replacesv with the valuesf, 77 from (20) then one will
get:

(32) X=3E+3E &3 —y=3n+3n&-1p, z=3"-37.

Eliminating 7 or & will give the equations of the planes in which thees of
curvature¢ =aandsn =b lie:

X+&z—38-28%=0, y+nz+3n+27 =0,
resp.

Theline element of the minimal surfao&hich is determined by (6), is connected
with some further considerations in regard to thefarmal map and the development of
minimal surfaces onto other surfaces. The conformap onto the spher& was
mentioned before on pp. 66. For tbenformal map onto the plan@ne must only

() Enneper, Zeit. Math.9 (1864), pp. 108 and Gétt. Nachr. (1882), pp. 40.
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introduce two complex-conjugate quantiti&s+ i 7, andé& — i 7;1 in place ofu andyv,
resp., and consides and/; to be the rectangular coordinates of a point in taael
If one starts from, e.q., the differential equationhaf lines of curvature (8) and sets:

JUdu+Vdv=2d&, JUdu-Vdv=2dn

or

(33) JU du=dé& +idn, JV du=d& -idm

then it will follow from (6) and (7) that:

(33a) dg = JUV (1 +uv)? (d&2 +dp?) = 2r (d&Z +dn?)

with which, one will arrive at a conformal map of thenimal surface for which the lines
of curvature correspond to the parallels to the &esai, 71 = 1, and the asymptotic
lines correspond to the parallels to the bisectorbefikis angleg; + m1 =y, & —1m =

a.
By contrast, if one sets:

(34) u=¢+in, v=¢-in
then it will follow from (6) that:
(34a) ds’ = (L +&%+ /) F (E+in) @ (E-in) (dE? +drp),
and one will have a conformal map of the minimal surtade the plane under which the
point (¢, 77) in the plane that corresponds to the pain¥) on the minimal surface will be
obtained when one projects the spherical image pajnt) (stereographically onto the
plane (cf., 83).

That suggests certadevelopment problemslf one introduces polar coordinates (
@) in the plane, in place of the rectangular coordingfes), and one sets:
(35) u=&+in=re'?, v=~&-in=re? uv=r? u:v=e??
then one will get:
(36) d =1 +rAF (re') ® (re "% (dr* +r?dgd),
in place of (34a). For:
(37) Fu=Au" ®(V)=Bv™

in which A, B are arbitrary anan is a real constant, the produet(u) ® (v) will be
independent of, and one will get:
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(38) ds =AB (1 +r 2 r 2™ (dr® + r* dg?) .

A comparison of that expression with§8(17)] will show that the minimal surface
that is defined by the functions (37) can be developed ostwface of revolution that is
determined by the equations:

ﬂ:—“l-{_PIZ d

: ; 0, JABL+r?)r™=p

In that way, the parallel circles of the surfaceefolution correspond to the curves
uv = const. on the minimal surface. That is, the cautixat go to parallel circles on the
sphere under the spherical map and the meridian cumvetheo surface revolution
correspond to the curves: v = const. on the minimal surface; i.e., to curves twto
the meridians on the sphere under the spherical map.

It can also be shown that the minimal surfaces dhatdetermined by (37) are the
only ones that can be developed onto a surface of rewo|(i}i

We further treat the question of findiad) minimal surfaces that can be developed
onto a given minimal surfacg). For a given surface (12), one can construct a second
surface by replacing, y, z, u, z, F(u), ® (v) with X1, y1, z1, U1, z1, F1 (U1), P1 (v1), resp.
Should both surfaces be developable to each other theruld imave to be possible to
determineu;, v1 as functions of, v in such a way that one would hage= ds;, or from

(6):
(39) (1 +uv)® F (u) @ (v) du dv= (1 +uvi)? Fy (Ug) D1 (1) dug dvs .

However, if one sets:

du; = a—udu+aul dv, dvlzﬁdu+%dv
ou ov ou ov
then equation (39) will give the COﬂdI'[IOHaSu— 0N %%: 0, from which, it will
Ju du ov dv

follow that u; is a function ofu andv; is a function ofv, or conversely, that; is a
function ofu andu; is a function ofz. We setu; = A (u), vi = ¢ (v). The functionst and
M are then determined from:

(L+u)*F W) ® V)= (L +A)°Fr (D) @ () A

If one takes the logarithm and forms the second derestvith respect to andv
then it will follow that:

(40)

1 _ A or 4dudv _ 4du, dy
@+uv)’ @+ M) @ruvy (L)

() Schwarz Jour. fiir Math., Bd. 80, pp. 295.
(®) Bonnet, C. R. Acad. Sc37 (1853), pp. 532Darboux, Lecons |, pp. 334.
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That equation says that the spherical imatfganddS that correspond to the line
elementsds and ds; on the two minimal surfaces are equal to each othehairthe
spherical images of two corresponding figures on the mwamal surfaces are either
equal or symmetric. Here, they must be equal, sinceawe taken; to be a function of
u andv; as a function of, and sinceu; must go tou andv; into v under a continuous
change in the coefficients of and ;. By a suitable orientation or placement of the
second surface, one can make= u, v; =v. One will then get the following condition
from (39):

F ) ®(v)=F1 () P1(v),

which can be satisfied only when one sets:
(41) Fiuy=e'“F@), di(V)=e "D (),

in which a is an arbitrary constant. The second surfagey(, z;) that is determined in
that way is called aassociatedsurface to the first one, and wher= 77/ 2, itsadjunct
surface. One then has tteeorem:

The minimal surfaces that can be developed from a given minimal safaades
associated surfaces.

The constant quantity in (41) has a simple geometric meaning: It is equal to the
angle# that two corresponding line elemerdisandds, on both minimal surfaces define
with each other. That angle is then the samergrtao corresponding elemerds and
ds . Infact, if one defines the valuesd{ dy, dzfrom (12) and recalls (41) in order to
define the associated valuesdef, dy:, dz then one will get:

_ dxdx+ dydy+ dzd:_ €7 +e"”

(41a) cosy
dsds

= C0osaq,

from whichZ=¢a. (Q. E.D.)

If one sets:

U, :%J.(l—uz)F(u)du, U, :i_zj'(l+u2)|:(u)du, Us = ju F(u) du,
(42)

A :%j(l—\ﬂ)cb(v) dv, Vo= —%j(1+v2)cb(v) dv, Vs=[vo(y)dy,

to abbreviate [cf., (12) and (16)], then one walh:

(43) Xt =U1+Vy, y=U;+V,, z=U3+ V3
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for a point &, y, 2) on the original surfacea(= 0):
(44) Xo =1 (U1 —Vy), Yo =1 (U2—Vy) 2 =i (Us—V3)
for a point ko, Yo, 20) on the adjoint surfacea(= 77/ 2), and:
(45) xg=e'%Ui+e 'V, y,=e'%U,+e 'V, z,=e'9Us+e 'V,
for a point ., Y, Zz) On the general associated surface, or:
Xg =X COSa + Xy Sina, Yo =Y COSQ + Yo Sina, Z;=zcosa+zsina.
Examples of these three mutually-developable minimdases are defined by the
ruled surface, surface of rotation, and helicoid thatweentioned on pp. 73.
The quantitya in (41) can be regarded as a variable parameter. ltereftine
possible to bend parts of a minimal surface continualguch a way that it will remain a
minimal surface during the bending. Since the minimalksed that are defined by the

functions in (37) can be developed onto a surface of resn|uhey can also be bent into
themselves continuouslinnepers surface (32) will serve as an example of that.

With that, we conclude with some further remarks tnlitlead to thedetermination
of a minimal surface from a curve that lies on i u andv are complex-conjugate
guantities, and= and® are conjugate functions then the surfaces (43) and (4é4pavil
real. It will follow from (43) and (44) that:

(46) A =x-ix, U, =y-ivyo, s;=z-iz.
Furthermore, one has:

Xdp+Ydpy+Zdz=0, dxdy+dydy+dzdz=0
[the latter is true from (41a)], and as a result, wh&ha proportionality factor:

47 pdx=Ydz-Zdy pdp=Zdx—-—Xdz pdz=Xdy-Y dx

The factorpis equal to + 1, as a direct construction of the $wies of (47) using (43),
(44), and (20) will easily show. One will then have ¢l@ations:

(48) zulzx—ij(vdz—Zdy, zuzzy—ij(de—Xd», 2U3:z—ij(Xdy—Yd>).

The expressions will serve as the solution to dfleviing problem (%):

() Posed byBjarling, Archiv far Math.4 (1864), pp. 290. Solved WBonnet, C. R. Acad. Sc40
(1855), pp. 1107, and (1856), pp. 532.Schwarz gave the solution above and equations (48) in Jour. fur
Math. 80 (1875), pp. 291.
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Determine a minimal surface that goes through a given curve and has thgisame
normals (or tangent planes) along it.

Let the coordinate(y, 2 and direction cosineX(Y, Z) of the normal to the desired
surface be given as analytic functiohsdf a real parametérat each point to the curve,
such that the equations:

(49) X2+Y2+2722%2=1, Xdx+Ydy+Zdz=0

will then be satisfied identically. The functiokg, U, Us; can then be determined for
real values ot using equations (48), up to additive constants that influente the
position of the surface in space. From (49), those fumgsatisfy the equations:

(50) XdU+Ydy+ZdU;=0, dU?+dUuZ+du?=0

identically.

Now, U;, Uy, Us also have a well-defined meaning as analytic functiortsforf all
complex values of thatt can assume as the argumenxk,of, zandX, Y, Z. If one then
allows the variablé to also take on complex values then the equations:

(51) x’= 2% (Uy), y'= 29 (Uy), 2= 2% (Us)

will represent a minimal surface with the desired behavidamely, it will go through
the given curve and have the same normals alongnte ghe mean of the complex
values oft that is defined by the values »fy’, z”andX’, Y, Z’for realt will go to the
given values ok, y, zandX, Y, Z

The determination of the surface is unique. At the same has theorollary (%):

Any straight line on a minimal surface is a symmetry axis dfulface.

That is because the parts of the surface that arelfon the two sides of the line will
have the normals along that line. If one then rettie one part through 18@round the
line then its normals will coincide with those of tbeher part. Therefore, the first part
will cover the second one. Similarly, one has:

Any plane that cuts a minimal surface orthogonally along a curve is a synmet
plane of the surface.

TheBjerling problem includes the following special probleth (

Determine a minimal surface on which one is given either a geode&¢ dn
asymptotic line, or a line of curvature.

) 1. e., functions that can be developed in power seniésatended to complex

()
() Weierstrass cf., Schwarz Jour. fir Math., Bd. 80, pp. 292.
() Bonnet, C. R. Acad. Sc42 (1856), pp. 532.
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That is because in all three cases, one knows thmeat®to the surface along the
given curve. In the first case, they are the principaimals, in the second case, the
binormals, and in the third case, they are a normaesystf the curve that defines a
developable surface.

Some examples that belong with those are:

The minimal surfaces for which a parabola is a geodetic(fine
and:

The minimal surfaces for which a prescribed algebraic curve is a geduohetj when
applied to conic sections and their evolutes, a cycloid(3tc.

For the case of the ellipse, e.g., one will getamdcendental minimal surface on
which a simply-infinite family of fourth-degree space @svlies, each of which
possesses an isolated double point and has confocal ghharic sections for its
spherical images.

We shall briefly discuss thmore general problem

Lay a minimal surface through a closed (or open) line that is simpleamnithuous
inside of it.

This problem was posed Iyergonne (%), and its various solutions were made intuitive
experimentally byPlateau (*) using films of soapy water with glycerin.

Analytically, the problem has been solved up to now onlyhan case where the
surface is bounded by rectilinear polygofsdr also be rectilinear line segments and
planes that intersect the surface orthogondlly Since every line on a surface is an
asymptotic line, because the tangent planes to the suafang the line are osculating
planes of that line and since every plane curve onfacguwhose plane cuts the surface
orthogonally is a line of curvature of the surface,dose the successive surface normals
along the curve intersect each other, one can alsesxfhme latter problem as:

Determine a minimal surface M that is bounded partly by planar lafiesurvature
and partly by straight asymptotic lines.

() Catalan, C. R. Acad. Sc41(1855), pp. 1019. Jour. Ec. poly. C&8@.(1858), pp. 160.

() Schwarz Jour. fiir Math80 (1675), pp. 293.Herzog, Vierteljahrschrift v. Wolf Zurich20 (1875),
pp. 217.Henneberg Diss. Zurich 1875 and Zeit. v. Wit (1875), pp. 17.

() Gergonne Ann. Math. pure et appl. (1816), pp. 68, 143-147.

() Plateau, Statique expéret théor. des liquide§hent and Leipzig, 1873.

() Riemann, Ges. Werke(1867), pp. 283 and 41AVeierstrass Montsber. d. Berl. Acad., 1866, pp.
855.

(®) Schwarz, Monatsber. d. Berl. Acad. 1865, pp. 149 &estimmung einer speciellen Minimalflache
Berlin, 1871.
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We shall briefly suggest the solution to that probl&m (et the minimal surfack!
be referred to the parameteus\) of the minimal lines, and let it be assumed to liaee
form (19).

The surfaceM is first mapped conformally to a plaig with the axesé;, 7: using
equations (33), so by:

(52) J F(u) du=dé +idn,

such that the images of the lines of curvature are thexllgdao the axes, /1, and the
images of the asymptotic lines are parallel to the s&dtthe angle between those axes.

Secondly, the surfadd is mapped conformally onto a sphéteof radius 1 around
the origin, which will make the image of a planar liffecarvature parallel to a great
circle in the plane of the line of curvature, and ttliage of a straight asymptotic line
parallel to a great circle in the normal plane to thatotic line. Moreover, the sphere
K will then be mapped stereographically, and thus confdypahto a planée with the
axesé, 1 using equations (34), so by:

(53) u=g+in,

which will make the great circles ¢ficorrespond to certain circles &n

With that, the piece of the minimal surfddethat is bounded by the asymptotic lines
and lines of curvature will be mapped conformally to two diffie planes; andE. The
image in the plan&; is bounded by straight lines with well-defined positicansd the
image in the plan& is bounded by circles with well-defined positions. Fré&®)(and
(53), the desired functiof (u) depends upon the point&(71) and &, 7) in the planes
E; andE by way of the equation:

_ d¢é +idnp,
(54) J F(u) = dexidn

One still has to represeét +i /1 as a function o€ +i1 7 =u. That emerges from the
fact that the circular polygon in the plaike will be mapped conformally onto the
rectilinear polygon on the plari® . That problem will be solved most easily when one
maps both polygons conformally onto the upper half ofra ghianeE, with the axes,

o, and thus represents+i 7 andé +1 7: in terms of that third variablé, + 1 70,
which can always be done, from considerations thamnlgetio the theory of functions.

As a simplest example of a solution to the problem,sWall determine the minimal
surfaceM that is bounded by two arbitrary lines in space.

The images of two lines oMl on the spher& are two great circles that one can
regard as meridians (th&axis is the polar axis), one of which, viz., the zerridian
(the XZ-plane), makes an angle ak with the other one. Hence, the images of the two
lines in the plan& will again be two lines that go through the origin, subt the angle
ak, and the first of which falls along tlfeaxis. By contrast, two lines on the surfide

() One will find a beautiful and thorough treatment of tatblem inDarboux, Legons |, Book I,
Chap. X-XIII.
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map to two parallel lines in the plaBg that subtend an angle af/ 4 with the&-axis.
One will then have to map, on the one hand, a sedtthe E-plane, and on the other
hand, the parallel strips in tii&-plane conformally into th&,-plane. It is known that
this will happen as a result of the equations:

(55) E+in=(+im’ e' ™% (& +im)=COog (& +i ),

as one also easily verifies by introducing polar coordinato the plane& and Ep .
From (54), wherf +i 77is again replaced witlh, one will then have:

(56) JFQU) = %e“”"‘u’l, F(u=iKu?

in which K is a real constant. One will get the desired surface uqtooducing that
function into (19). As a comparison of (56) with (24) velow, it is identical with the
helical conoid, which could also have been predicted gemalt. The constanK in
(56) can be determined when one knows the shortest ckstdrom the two lines to the
minimal surface.




CHAPTER IlI

STUDY OF GENERAL SURFACE CURVES

8 13. — The general space curve.

Direction cosines of:

AB=a,L5 vy
EM=I,mn

EK=A 4 v

Figure 1.

For our study of surface curves, we shall briefly pret@ndefinitions and equations
that will be true for ajeneral space curv@). (Fig. 1):

1. LetA B, C, D, ... be successive points on the curve, and)dt, G, ... be the
midpoints of the arc elememd, BC, CD, ...

2. Let ABCM be theosculating plane of the point, Bet MEK be thenormal plane
and letAEK be therectifying plane Let BCDM;, M;FL, andBFL, resp., be the
corresponding planes at the pdnt

3. Let ABC’ be thetangentto the pointE, let EM be theprincipal normal(viz., the
normal in the osculating plane), and EK be thebinormal (viz., the normal

() Clairaut, Recherches sur les courbes a courbutg81.
Lancret, “Mémoire sur les courbes a double courbures,” Savl €1805).
Monge-Liouville, Applications pp. 392, 407, 41&t seq.and pp. 547 (Note I).
Saint-Venant, J. Ec. poly., Cal30(1845), in which the older literature is also summarized.
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perpendicular to the osculating plane). IBE, FM,;, and FL, resp., be the
corresponding lines at the polat

4, LetM be thecenterand letAM = BM = CM be theradius of thecurvature circle
atE; i.e., the circle that goes through the three pdn3, C. LetM; andBM; =
CM; = DM;, resp., be the same quantities for the plBint

5. LetN be thecenterand letNA = NB = NC = ND be theradius of the osculating
sphere of the point B,e., the sphere that goes through the four pa&ing C, D.
The cente is the point at which three consecutive normal plaatds, F, G
intersect.

6. Let MN be thecurvature axis(polar line) of the pointE ; i.e., the line of
intersection of two consecutive normal planek andF. The curvature axiSIN
is parallel to the binormaEK, and the pointM is the point at which two
consecutive curvature axestEandF intersect.

7. LetCBC’= AMB = EMF be thecontingency anglef E ; i.e., the angle between
two consecutive tangents or normal planes ahdF.

8. LetMNM; be thetorsion angleof E ; i.e., the angle between the two consecutive
binormals or curvature axes or osculating planes gidiesE andF.

The envelope of the normal planes or the locus ofature axes is a developable
surface, namely, thpolar surface of the space curvelhe centers of the osculating
circles define the edge of regression of that surface.

Let the followingnotations be defined for those quantitesa point X, y, 2 on a
space curve:

The cosines of the inclination angles between theetlprincipal direction and the
coordinate axes:

a By for the tangent,
[,mn for the principal normal,
UV for binormal .
Furthermore, let:
ds be the arc length of the curve,
dt be the contingency angle,
dr be the torsion angle,
do be the angle between two consecutive principal namal
r= ds be the radius of curvature,
dt
_ ds . .
p=— be the radius of torsion,
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R be the radius of the osculating sphere,
x,y,z be the coordinates of the center of curvature,
XY, Z’ be the coordinates of the center of the osculatingreph

The definition of the radius of torsigmis only an analogue to the radius of curvature
r . Atorsion circle that would correspond to the curvafircle does not exist.

In order torepresent those quantities analytically, let the coordinates(y, 2) of a
point of the curve be given as functions of one paramédae will then have:
(1) ds’ = dx¥ + dy? +d7, ds d?s=dx d*x +dy d?y + dz d*z
for the arc length elemedsat the pointX, y, 2), and:
(2) IX—x dx d’x|=0

for the equation of the osculating plane wbgry, Z are the running coordinates.
Moreover, one has:

F+pB%+y*=1, lA+mu+nv=0,
(3) 12+mP+n® =1, Aa+ufB+vy=0,

AP+u?+v?=1, al+ Bm+yn=0,
SO as a result:

(4)

N~ — Q

T 3™

R o<
1
I+
H

Under the assumption that the + sign has been chesethe positive directions of
the tangent, principal normal, and binormal have the safadonships to each other as
the positivex, y, andz-axes, one will have:

(5) a=mv-ng, l=puy-vp A=Bn—ym

along with the corresponding equations fw; m, n, andy, v.
First, wecalculate the quantitieg, |, A ; one obviously has:

dx d dz
(6) a==>, p=2, =<
S ds

Furthermore, it temporarily represents a proportionality factor then witkeobtain
the osculating plane from equation (2):

() Frenet, Thesis Toulouse, 1847, and J. de Malf7.(1852), pp. 437.
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_ T 2, _ _r 2, 2 _r _ 2
(7) )I—E(dydz dz d%), u dsz(dzdx dx d%), v dsz(dxdzy dy d*x),

and from (6) and (7), using (5):

r 2 2 da
8 | =—(dsd°x—dxd“s)=r—,
(8) OI32( ) 4

along with the corresponding values for n. Sincel® + n? + n? = 1, the factor is
determined from (8) to be:

(9)

1. da? +dB*+ dy?
r? ds’ '

Secondlywe expressa, dl, d1 froma, |, A ; from (8), one has:

(10) 29 - n

wn
= |—
o
wn
—
wn
—

Furthermore, from (3), one hd<ddA + ydu + vdv =0, and from (3) and (10§ dA +
L du+ ydv = 0; therefore, when one recalls (5):

dA:du:dv=I1:m:n,
or, whenp temporarily represents a proportionality factor:

(11) ﬂ:l_, %: m, %: n.
ds p ds p ds p

Finally, it follows from the middle equation (5), wheneotakes the differential and
uses (10) and (11), that:

A= Lp—my+ Zmy-np.
ds r P
or, from (5):
(12) ﬂ:— Z+i , d_rn:— £+£ , @:— Z.}-K .
ds r p ds r p ds r p

From (11), the factopis determined by the equation:

1 dA*+du’+dv?
13 == .
(13) yig e
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Finally, one easily convinces oneself that the quastitieand p, which were
introduced temporarily as proportionality factors, are mgthuut theradius of curvature
and theradius of torsion In order to do that, we determine the valuedt@inddz.

As is known, one has:

COSV = cosa cosa’+ cosb cosb’+ cosc cosc’

for the angles between two lines whose angles with the axesaate, €) and @, b’, c”).
It will follow from this that:

4sin2%= (cosa’— cosa)® + (cosb’— cosh)? + (cosc’— cosc)>.

.,V
If one now seta’=a + da, so cosa’— cosa = d cosa, and 4SII‘12§= dv2, then one

will get the angledv between two lines whose directions differ infinitédgte:
dv’ = d&” + db” + dc”
When that is applied to tangent and the binormal, thibgiwe:
(14) dt? =da?+dB? +dy? dr2=di +du?+dv?

A comparison with (9) and (13) shows that, in facts identical to the radius of
curvature, angb is identical to the radius of torsion. It will thewlldéw from (12) that:

(15) d¢ =dl?+dm?+dn?=dt? +dr?
Finally, one has:
(16) X'=x+rl, y'=y+rm, z'=z+rn

for the coordinates«(, y’, z") of the center of curvature.
Equations (6), (10), (11), (12) give ttieorems

The higher differentials of the coordinates x, y, z of a point orctinee can be
represented in terms of the nine cosifesg, )), (I, m, n), (A, & V), along with two
guantities r ando, and their differentials.

If (a, B, )) are given as functions of the arc length then one can derive the @lues
and |, m, n fron{9) and(10), and the values g, and A, , vfrom(13)and(12).

One can further prove ttibeorem:
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A space curve is determined uniquely (except for its position iespden its radius
of curvature r and radius of torsigmare given as functions of the arc length s.

Theradius Randcenter(X’, Y, Z") of theosculatingsphere at the poinky, 2) still
remain to be determined. As the point of intersecticthree consecutive normal planes,
the center is determined from the equations:

X'=-Xxa+Y'-y)B+{Z' -9 y= O,
a7 X' =X1+Y'-ym+@Z -2n= r,

, , , dr
X =XA+ Y =y)u+Z —Z)V=—pd—s,

of which, the last two are formed by applying (10) to (12)atdirst and second
differentiation of the first equation.
Upon solving that, one will get:

(18) X'—x=r|—p£)l, Y’—y=rm—p£,u, Z’—z=rn—pﬂv,
ds ds ds
and upon squaring and adding:
2
(19) RE=r?+p° (ﬂj .
ds

For variable parameters, equations (18) represent the édggressionC’ of the
developable polar surface of the original cu®e There is nothing difficult about
presenting the corresponding valuesg, ), (I, m, n), (1, &, v), r, p, R for the curveC’,
and deriving a series of theorems on the connection bettieecurvesC and C’ by
analogy, such as, e.g., ttheeorems

The principal normals of the curves C andate parallel at corresponding points.

The binormal of each of the two curves C antdisCparallel to the tangent of the
other.

We refer to some other presentations for the evotftaspace curve)

() This was first investigated Byonge-Liouville, Applications pp. 396.
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8 14. — The general surface curve. Determining the radius.

For the study of the general surface curve, the ragjiR, and the anglesx( 5, ), (,
m, n), (A, & V), that appear in 83 must be represented in terms of the parameaters|f
one then let$l denote the angle between the surface normal and tiggadi normal of
the curve then one can show that taéii r, o, R and the angle H can also be expressed
very simply in terms of the four quantitie,ds M, N which will represent the most
important surface curves when they are set to Zgrd\amely, we let:

d$=0 define the differential equation of the minimaks,
L=0 define the differential equation of the asymptotied,
M=0 define the differential equation of the lines of ctuve,
N=0 define the differential equation of the geodetic lines.

From 884 and5, one has:
L=ad?’x+bd?y+cd?z
(1) M=|a da dx,
N=|a dx d*x]|.
The last two forms can be represented directly in teritee parameters, v, and their
differentials when one multiplies them by the expoes$s§ 1, (24)]:

(2) 5:‘a % 2(
ou ov

One then gets:
ds’ =e dif + 2f du dv+ g dV,

L=dd + 2d’du dv+d”dV,

- o Ledus fav ddw ¢ d
Ol fdu+gdv ddu ¢ dy
1

edu+ fdv mdéd+2 mdudv 'mé&y édru f
fdu+gdv ndd+2 hdud¢ 'ndw fdu ¢d|

o

() The form and the proof that we shall give to théofeing equations also makes it possible to extend
to non-Euclidian geometry and higher-dimensional spacehwitsis been done up to now for only one part
of the theory of curvature.
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If one sets:
Ny =p dif + 2p’du dv+p" dv +d? u,
(4)
N, = q dif + 29°du dv+q" dv +d?v

thenN will assume the form:
5) N=0(N2du— N dv),
and from [82, (9)], the second differential afwill become:

ox 0X
6 d?x=La+N,—+N,—=.
©) You  Cav

91

If one squares the middle equation (1) and uses the @léeand (17) of & then it

will follow that:
(7) M2=hLd$-L?—kd$.

If one multiplies the determinantid dx o x | times (2) then one will get:
(8) |da dx x| =L M.

Finally, from (1), and due to [& (4)], one will have:

(9) MN=|a da &| |a dx x| =—ds(L d*s+ds> dad”x).
o, B K 5
4 apy
/ 7 i, B, Vo
/ - >
/ Z ==
6
= &
—— o
; sinH..~~
e E  Normal plane to the surface
cosH X curve
// //
Vi E E; Tangent plane to the surface
A v
\
v \
ab,c \
[,mn

Figure 2.
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With these preparations, we shall go on to the detetimmaf the radiir, p, R, and
the angleH. From (7) and (8) in 83, one will have (cf., Fig. 2):

r
cosH=al+bm+cn=—> ad?x,
=)

(10)
o o
smH—a)l+b,u+cv—E‘a dx d2x‘.
Hence }):
cosH L sinH N
11 =, LIS I
(11) g g

That will then imply theangle Hand theradius of curvature of the curve from:

2 2
12) anz N L _NeUds

Lds’ r ds?

If one differentiates the second equation in (10) and tee$ormulas [813, (11)] then
one will get:

cosHdH =) adA+> Ada :%SCOSH +é‘ da dx o >{

When one recalls (8) and (11), that will imply tlidlowing formula for theradius of
torsion (4):

1 dH M
13 e L
(13) o ds d$

The expression fodH that one obtains from (12) contains the thirdedghtials ofu
andv, in addition to the first and second ones.

Finally, in order to represent tihadius of osculation Rone must gedlr from [8 13,
(19)]. If one differentiates the first equation(irl) then one can determidefrom:

(14) Tdg T dg’

cosH dr sinH dH _ 1 ( L j_ dL d*r
L == 2L
r’ ds r ds ds (d$

This equation can be converté}l (Due to (9), from (11) and (13), one will have:

2sinH(1_dH) __2MN _2Ld$ 2) dad’x
r \p ds ds’ ds’ s

() Minding, J. fir Math 6 (1830), pp. 159.

() Bonnet, J. Ec. poly., CatB2 (1848), pp. 14, in which the equation is first given whenghrameter
curves are lines of curvatur®arboux, Lecons I, pp. 357 and 386, in a different form.

() Laguerre, Bull. soc. philomathiqu@ (1870), pp. 49.Darboux, Lecons I, pp. 395.
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If one adds that to (14) then it will follow that:

_cosH dr sinH( 2 _dH
r2ds r \p ds
(15)

_dL_2) dad’x_

=gt (Zdadzx—z dxd 3.

This expression, which will be denoted Bywill be completely free ofl “u andd v
when it is represented in termswéndv. A simple calculation will yield the expression

for Pds:

Pds =) dad’x-)_ dxd ¢

(16)
=Pao dU3 + 3Py dU2 dv+ 3P>du d\; + Po3 d\F,
in which:
PSO—@_Z(pd"'Qd”) Plz—ﬂ—Z(pd+q d”)
ou ou
(17)
P31:@—2(p'd+q’d’), Pos—ﬂ—Z(p"d +q”7d”).
ov ov

If one applies equation (15) to a normal sectibthe surface, so one séis= 0, then

the left-hand side of (15) will reduce t(;és(%j le.:

The third-order differential equatidh= 0 (16) defines the curves on the surface for
which the contacting normal section at each p@rtontacted by its curvature circle at
four points ).

Some further representations are connected with@ From (17) and (6) in &,
the partial derivatives af, d’, d” with respect tay, v are expressed in terms&ff, g ; d,

d’, d”, and the four quantities, P,1, P12, Pos . That will lead to a simple representation
of the derivatives oh andk with respect tau andv. Namely, if one differentiates the
equationd? k =d d”— d’?[§ 2, (12)] with respect to then one will get:

PNy LS WL
ou oJu ou ou’

or, from[8 1, (7a)], [%, (6)], and (17):

() De la Gournerig J. de Math.20 (1855), pp. 145, in which that differential equation was first
presented for the form=f (x, y) of the surface. CflL.aguerre, loc. cit, Knoblauch, J. fir Math.103 pp.
32, et seq.Darboux, Lecons I, pp. 396.

() Knoblauch, loc. cit.
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52%: ~2(+q) (dd-d?) - 2" (P +dp'+d’p+d'q’+d”q)
u

+ d”(P3o+ 2dp+ Zd'CI) +d (P12+ 2d'p'+ 2d”q’),

or
(18) 52%:dllp30_2dlp21+dplz, 52%:(1 P03—2d'P12+d”P21 .
ou ov
Similarly, one finds that:
(19) 52%29 Pyo—2f Py + e Py, 52%: eRys - 2f P12+g Py .

Equations (18) and (19) can be used in order to represequalaeatic covariant of
the cubic form (16), namely:

1|P,du+B,;dv B du B d

(20) ra ’
0°|B,du+ R dv R du B, d

in terms of only the radius of curvature of the normal section that belongs to the
directiondu : dv and the radii of principal curvaturgandr, .

In conclusion, we shall now give the valuesdst, L, M, N, or of H, r, o for the
parameter curveghat are used most often in applications. If onxedfisubscripta and
v to the elements that refer to the curvesconst. andi = const., resp., then:

d$ =edd, L,=ddd,
(21)
dg =e dv, L,=d”dV,

My=ed-fddit, N,=En-Ffmduw*=0%qd,
(22)
M, =Ffd—ggd?, N=Fn"—fm’)dv=-2%p”dv,

and as a result:
(23) sinH, _ N, _ O sinH, _ N, _

a4 =
r d§ e3/2 ! r d§ g3/2 '

u \%

If the parameter curves anehogonal sof = 0, then one will have:

(233) sinH, _ 1 6\/_e sinH, _ 1 6\/6

. Jeg ov r,  Jeg ou

If the parameter curves drees of curvaturein particular, sd =d = 0, then one will
have:
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(24) cosH, _ i’ cosH, _ i,
ru rl rv r2
tant, = - ofe__ 1 aﬁ’
Jeg ov  JEG ov
(25)
tanH, = + r, 6\/E:+ 1 6\/6’
Jeg au JEG du
and
(26) i: iaHU i: iaHV

p Jeou'  p g ov
in addition to (23a).
From (23a), one easily proves theorem:

If two systems of curves of constant geodetic ¢urgaare orthogonal to each other
then they will define an isometric system

and other similar theorems.

8§ 15. — Theorems on surface curves.

The formulas that were developed inlg imply a series ofjeneral theorems on
surface curve$'). We appeal to the usual notatiGhgnd call:

N? + ’ds’
1_yN+¥Los the (absolute) curvature
r ds’
cosH _ L
=— the normal curvature
r ds’
(1) SinH__ % the tangential or geodetic curvature
r
1 = aH_M the (absolute) torsion
0 s dg

() Cf., Darboux, Leconst. I, Book V, Chap. III.
() The reason for the term “geodetic torsion” will éoll below, and the reason for the term “geodetic
curvature” will follow in §16.
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é __M the geodetic torsion.
yoj ds’

For a curve whose osculating plane always cutsstintace athe same angleone
will have H = const., while one must spt= o« for aplanar surface curvand sefR =
const. forspherical curve The following statements are also true:

1. If asurface curve is an asymptotic lined one denotes itsp, p byra, ou, 2.,
resp., the. = 0,H = 9C°, so wherN # 0 ():

N 1_1__ M 1_ 1

2 , A ==
( ) d§ pa pa dSZ Ioaz rlr2

The last equation is obtained as follows: Sibce O, it will follow from [8 14, (7)]
thatM 2 =-k d$, so:

Equations (2) give thitheorems

The absolute curvature of an asymptotic line is ge®detic curvature; both are
determined by the first equatig).

The absolute torsion of an asymptotic line is eqaahe geodetic torsion; its square
is equal to minus the curvature of the surface, so:

The asymptotic lines on a surface of constantature all have the same constant
torsion.

One likewise has E Ofor the curve that contacts that asymptotic liree, s

Either H# 9¢° and r = », such as, e.g., for all planar sections that conttu
asymptotic lines without falling in the tangentmma..

One can then also regard asymptotic lines as tinees for which every planar
intersection curve that contacts them (but notithersection curve of the tangent plane)
will have an inflection point at the contact point.

...or one has H 9C° andr is finite.

In the latter case, sindd andP [8 4, (16)] include only the first differentiattu anddy,
they will have the same values for the asymptatiesl and the curves that contact them.

() Enneper, Nachr. Kén Ges. Wiss. zu Géttingen (1870), pp. 499.
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Now, H = 9¢ for both curves, butiH : ds vanishes only for asymptotic lines, so it will
follow from (1) and (15) of 84 that:

1 dH_1 1( 2 _3dH _ 2
p ds p,’ rip ds Py
The elimination ofiH : dswill yield the relation:

3__ .=
pa rapa

3)

Q-

One has, e.gr, = o for the intersection curve of the tangent planthwhe surface,
so: & =3, (Y.

2. If the surface curve is a geodetic litienN = 0,H = 0, hence, wheh # O:

U S V]
ds’ o P ds

(4)

= |k

l.e.: for a geodetic line, the absolute curvatgrequal to the normal curvature; both of
them are determined by the first equation in (4).

Furthermore, the geodetic torsion of an arbitamye is equal to the absolute torsion
of the geodetic line that contacts it; that was thetivation for the term “geodetic
torsion” for 1 : p in (1).

3. If the surface curve is a line of curvatureenM = 0.

Hencel: p =0;
i.e., the geodetic torsion of a line of curvatiwwequal to zero.

anddH =ds: dr:

i.e., the angle of torsion of a line of curvatuseegual to the differential of the andie
between the surface normal and the principal nooftie curve?).

That further impliesloachimsthal’s theorem and one then has its generalizatin (

If the intersection curve between two surfacesaffld F is a line of curvature for
each of them then the angle between both surfatldsevconstant.

() Beltrami, Nouv. Ann. de Math. (2 (1865), pp. 258.
(®) Lancret, Mém. sur les lignes & double courbut®06.
() Bonnet, J. Ec. poly., Cah. 35 (1853), pp. 119.
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In fact, sinceM; =M, = 0, one has:

dHl_i_ de_l_
ds p ds p

and since the value lo— i.e., the torsion of the intersection curve this same for both
sides, it will follow thatH; —H, = const. (Q. E. D.)

Conversely, when two surfacés andF, intersect each other at a constant angle, if
the intersection curve is a line of curvature o enrface then it will also be one for the
other surface.

It will then follow fromdH; = dH, thatM; = M5 ; i.e., if M1 = O then one will also
haveM, = 0.

One gets the specidieoremsfor planar and spherical lines of curvatue (

When a line of curvature is planar or sphericak ftlane or sphere will cut the
surface at a constant angle, and conversely.

When a plane or a sphere cuts a surface at a cohstagle, the intersection curve
will be a line of curvature.

Furthermore:

The spherical image of a planar line of curvatuseai minor circle whose plane is
parallel to the plane of the line of curvature.

Finally, one gets some theorems on radii of cumeat If one considers an arbitrary
curve and the normal section that contacts it at gbint (¢, v), while the normal
curvature of that curve is Irg then sincd. anddsare equal for both curves aHd= 0 for
the normal section, one will have:

(5) 1 _ CosH .
o r
That isMeusnier's theorem(%):

The radius of curvature of an arbitrary curve isuafjto the projection of the radius
of curvature of the associated normal section dhéosculating plane of the curve.

From (1), the normal curvature of a curve at thimtp(u, V) is:

ddw+2d dudw 4 d¥
edif+2 fdudw gd¥

©) 1=
rO

() Joachimsthal J. fiir Math.30 (1846), pp. 347.
() Meusnier, Mém. des Sav. étrangei@(1785), pp. 477.
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The directiongu : dv for whichro is @ maximum or a minimunt)(are determined
from this to be:
ro(d du+d’dv) — (e du+fdv) =0,
(7)
ro(d’du+d”dv) — fdu+gdy =0.

Those equations are identical withg8(9)]. Eliminatingro will lead to thedifferential
equation for the lines of curvatyrand eliminatinglu : dv will lead to theequation of the
radii of principal curvature. Therefore, the lines of curvature are also the cuovethe
surface for which the normal curvature is a maximum iarmum.

Euler's expressionfor the radius of curvaturey, of an arbitrary normal section in
terms of the radii of principal curvatureandr; also follows from (6). If one introduces
the lines of curvature as parameter curves, suchf thad andd’ = 0, and denotes the
elements of the lines of curvature dy andds,, the element of the normal sectiondsy
and the angle between the normal section and the gure®nst., betweeds andds,, by
©; then one will have:

ds = ./ edu=dscos®;, dg=.gdv=dssin®;.

Hence, from (6):

1_ddi+dad E(EJZH_"(EJZ
3 ds’ clds) gl ds)’
or, from [89, (5)] @):
- 1_cose, N Sirf @, |
I’O r]_ r2

4. If the surface curve is simultaneously a line afvature and a geodetic line then
M=0,N=0,H=0,L #0; as aresult:

P=;
i.e., the curve is planar and lies in a normal @lahthe surface.

If the curve is simultaneously an asymptotic linel @ geodetic line, so=4L.0,N = 0,
then:

[ =00 ]

i.e., the surface is a ruled surface, and the cgreee of the rectilinear generators.

() Dupin, Développementgp. 106.
(®) Euler, Abh. d. Berl. Acad., 1760.
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If the curve is simultaneously a line of curvature and an asymptotithiemeL= 0, M
=0,H=9C, p= p =, and:

rirp=o00;
I.e., the surface is a developable surface, and the muove of the generating lines.

The same thing will be true when the curve is simuttasly an asymptotic line, a
line of curvature, and a geodetic line.

8 16. — Calculating the angle. Applications.

In § 14, the angled and the radir, p, R for a surface curve are represented in terms

of the parameters, v ; the cosinesd, 5 ), (I, m, n), (A, & V) shall now be likewise

represented in terms afv. One first has:

_dx _0xdu o0xdv
() ==t
ds oduds 0dvds

However, at the same time, ttigee cosines, |, A can be represented in terms of a,
a1, az, in conjunction withay H, and two auxiliary angle®:, ©,, and all that will
remain is to expre€d;, @, in terms ofu, v. Hence, we let:

©; and ©, denotethe angles that the curves=vconst.and u= const., respdefine
with the surface curveand are measured in such a way that:

(2) 0:+0,=w.
If one chooses the upper signs in equatioris3[§4)] and [81, (20)], as before, so in:

a Ly a b ¢
3) Il m nl=x1, a, B, y|l=rsina
A u v a, B, V,

then the positive senses of the six directions velebtablished in a certain way, such as
is given in Fig. 2. One will now get the following equatipeither analytically or from
known theorems in spherical trigonometry:

Y aa =0, D la =cosH, Y Aa = sinH,

(49  Daa,=cos®;, Y la,=-sinHsinOy, > Aa, = cosH sin@y,
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Y aa,=cos®;, Y la,= sinHsinG;, Y Aa,=-cosH sin®;,

when one setga+ b+ yc= Zaa, etc., to abbreviate.

If one solves these equations fax, G, )), (I, m, n), (A, &, V), and recalls (2) and (21)
in 81 then it will follow thata, I, A have the values:

asinw=a; Sin®; + a; SiNO;
(5) | sin w=a cosH sin w— a1 sinH cosO, + a, sinH cos®; ,
A sin w=a sinH sin w+ a1 cosH cos®, — a, cosH cosO; .
Along with a, I, A, the differentialda, dl, dA are also represented in termsupiv

using (10), (11), and (12) inB3. The angle®; , ©, must then be expressed. It follows
from (1) and (22) in & that ¢):

edu+ fdv . odv
cosG =) aa,= ———, Sin@; = ——,
DIy e Y

(6)
cos@Z:Zaazz f du+ gdv SiN@, = odu

ds/g s/’

The differentiald ©; andd ©; are also important. If one differentiates thet feguation
in (6) then it will follow that:

-sin®;dO; =) ada, +) a,da.

From [§13, (10)], (4), and [8L5, (1)], one has:

ds sinH sin®.ds N .
ada=—» al=- = = sSin®,,
2 r 2 r ds’ !

and furthermore, from [8, (11)] and (6):
Zadal =- qd%qdc(f cosO; — /e gcosOy) = g(q du+q’dv) sin©;.

Thus, one has:
% do,=- 2 (qduq’dy +
! e ds?’

() Gauss Disq. gen,.art.12
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and similarly:
1) N
do;=- —(p’du+q”dy) ——.
Equation [81, (13)] will again follow upon adding these two values.
From [814, (5)], (7) will imply that:

@:—@+5N2 @:—5_(1'+5N1

ou e d$’ ov e dg’
(8)

00, __op _oN, 00, __Jp’, ON,

ou g ds’ ov g ds’

which are equations that will be used later.

We shall now give twapplicationsof the formulas that were developed.

First, let a second definition of thgeodetic curvatureg’) of a surface curve be
mentioned. (Eq. [85, (1)]) If one refers to the angtée between the two geodetic lines
on the surface that contact the line elemésitof the curve at the endpoints as the
geodetic contingency angdé the curve then one will have ttileeorem:

The geodetic curvature of a surface curve is etiuahe geodetic contingency angle
de divided by the line element.ds

That property gives rise to the terminology “geodeticvature” and “geodetic
contingency angle.”

In fact: ©, is the angle that the curve= const. defines with the line elemeistof the
surface curve at the point,(v), so®; + d ©; will be the corresponding angle for the next
line element. Therefore, ®, + d©; denotes the corresponding angle for the geodetic
line that contacts the surface curve then, sice O for a geodetic line, it will follow
from (7) that:

do;= - g(q du+q’dv) .

If one subtracts this from (7) then one will get:

N sinH de¢
9 de=dO; - de = — or = —
©) ! Yode r ds

for the geodetic contingency angle. (Q. E. D.)

() Bonnet, J. Ec. poly., Cah32 (1848), pp. 42, eq. (a)Monge-Liouville, Applications Note II, pp.
574.
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A second applicatiorrelates to thegeodetic lineson a surface. Their differential
equationN = 0 has order two, but, @&aussshowed {), it can be decomposed in the
following way: ForN = 0, one will get from (7) and (6) that:

d@l:—é(q du+q’dy), Cosel:ededV
e ds\ e
(10)
d@zz—é(p’du+p”dv), Cosezzwl
g dsy/ g

The upper, like the lower, pair of these equations isvatpnt to the differential
equation of the geodetic liieé= 0. If one again combines the equations of each pair th
one will get one or the other of the following two equagicinstead ol = 0 f):

2dst(Mvj = %42 +29" quaw 29 g9,
ds Ju ou ou
(11)
2dst(Mj = %42 +29 quaw29 g9,
ds ov av ov

From equations (10), one proves theorem (°):
For surfaces whose line element has the form @heLiouville form):
(12) ds = (U +V) (dU +dV),

in whichU depends upon only u and V depends upon onlyevcan get the equation of
the geodetic line, as well as the arc length, froere quadratures.

Namely, if one chooses isometric coordinatesthen one will have:

19/ 19/
13 e=g=A  f=0 q=-—+9 =19 4.0,-=
(13) g “TTon YT aw !

NN

It will then follow from (10) that:
(14) dscos®; =,/ A du, dssin®; =\/4 dv, cosO;dv=sin®;dy,

and

() Gauss Disg. gen.art. 18.
(®) Darboux, Lecons I, pp. 405.
() Monge-Liouville, Applications Note III, pp. 579.
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(15) 21d0, = 2 qu-92 av.
ov ou

If one multiplies the last equation by € cos®; and uses (14) then one will get:

(16) Ad (sirf ©1) = cog O, 94 Gy—sir? elﬂ du.
ov Ju

Now, if A=U +V, as in (12), then i)/, V" are the derivatives a&f, V with respect to
u, v, resp., it will follow from (16) that:

U d (sirf ©y) + U’sirf ©; du=V d(co€ ©,) + V’cos O, dv,
or upon integration:
(17) U sirf ©; -V cos ©, = a,

in whicha is a first arbitrary constant. One then has:

(18) c0do,= 22 sif @, = 1 2
U+V U+V
or, from (14):
tan@l—% = V+a.
du U-a

Hence, a second quadrature will give the differential @oudor the geodetic lines
on the surface with the character of (12) in the form:

(19)

du
IJU _jJV+a_

in whichb is a second arbitrary constant. However, from (1d)(a8), the arc length of
the geodetic lines is:

(20) ds= /A (©1cosdu+0@; sindy) = \/U —adu+./V+ ad,
so it is likewise determined by quadrature.

That method of integration finds applicatiomger alia, to second-order surfaces and
surfaces of revolution. As for the latter, one \Wwéle:

(21) ds’ = (1 +P’?) dp? + p?dv? = U (dU/? + dVP)

for the line element (cf.,§, (17)]), when one sets:
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U=p

and du=./1+ P’Z%O.

Hence,V = 0 here, and, from (17), the first integral oé ttiifferential equation of the
geodetic line will giveClairaut’s equation

(22) £ sSin®; = const.

l.e.: For all points of a geodetic line on a suefad revolution, the product of the radius
vectorp with the sine of azimut®; will be constant.

A third applicationleads toGausss theorems on théotal curvature of a surface
patch(®). If one denotes the spherical map of the surédementdo by dO then, from [§
1, (11)], one will havedo = ddu dy dO=A du dy so from [811, (5)], one will have:

(23) @_é_ :i
do O rr,

Gausscalled the spherical image of a finite surface patobits total curvature; from
(23) and [87, (11)], one will have:

(24) 0= [jo2uc jj{%(ijj—aiu(ijﬂdu dv

St

Now, when two function® andS of (u, v) on O are single-valued and continuous,
and possess derivativésreen's theorem will read:

jj(gﬁ Z\Fjd udv = j(Rdu+ S dy,

in which the double integral on the left-hand sedéends over the surface, while the
simple integral on the right-hand side runs arokséoundary, such that the surface lies
to its left.

Hence, it will follow from (7) that3:

S|nH

:—j (qdu+ d dy = jde deZ jde j
(25)

() Clairaut, Recherches sur les courbes a double courtilifg1.
(®) Gauss Disg. gen. Art. 6.
() Bonnet, J. Ec. poly., Cah. 32 (1848), pp. 184seq.Darboux, Lecons I, pp. 126.
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sinH
r

o:+jg(p'du+ p’d\):—jdez—j%:—jdez—j ds.

One getsSauss theorem {) for the geodetic triangle from this. For itsesidone has
N = 0; hence, iA, B, C are the angles of the triangle then one will hdneem (25), that:

(26) 0=[d®,=27-(p-A+77-B+7-C)=A+B+C~ 1.

8 17. — Conversions. Differential parameters. Applications.

In the derivation of the fundamental formulas dosurface curve (84), the behavior
of the curve in the neighborhood of its poinis\) was thought to be determined by the
first and second differentials of v. It shall now be assumed thhe surface curve has
the form¢ (u, v) = a (wherea is a constant), and the equations d#&hall be converted
accordingly. One will then arrive at the known megsions for thedifferential
parametersinter alia, in the most natural way.

If one sets:

0¢ _ 0¢ _
(1) FTREGAT YRl

to abbreviate, then the equatidg (u, v) = 0, which is true for the first differentials of
andv, and when one applies a proportionality factocan be replaced with:

() du=Ag,, dv=—Ag.

From §14, our problem consists of merely forming the exgi@ss forL, M, N, d<.
On initially has for. andM that:

L= /]Z(d ¢22_2d'¢1¢2+ d"¢12),
)
_A°

M=2—
o)

[(ed- fd¢;-(ed- glgg,+( 8- gygi].

The vanishing of these expressions is the comdibo the system of curveg = a,
with the parametea, to represent one family of asymptotic lines ae$ of curvature of
the surface.

If one further sets):

() Gauss Disq. gen. Art. 20.
() For the following, cf.Beltrami, Giorn. di Mat.2 (1864) and3 (1865). Math. Ann1 (1869), pp.
575, et seq.Darboux, Lecons lll, Book VII, Chap. 1.
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(4) 5(@) =5 ledi-214,6,+ 081,
- 5'"("’):%[@1{%_f¢2J+i[e¢2_ f@} |
ul oy (@) | ovl oy d'(d)
to abbreviate, then one will gd¢ andN as:
(6) ds =12 32 & (9), N=-1%8%(5 ()2 " (¢) .

The expression fax requires proof. From [§6, (6)], one has:

56 :%B(edm fdvj_i( f dur gdﬂ
\% ds ou ds
1 9 )
= E[E(\/_ecos@l)—%(\/_g co@z)} :

If one performs the differentiation and uses folaay6) and (8) of 86 and [815,
(1)] then one will get'§:

(62) 5 (g) = 2N d(‘j’;z N, dy _ _OII\SI2 __ SirrlH |

(Q.E.D.)

The functiond”” (¢) can be replaced with another similar functiomedy:

e L)

In fact, if performs the differentiation with resg tod’ (@) in (5) and sets:

(8) O (@ Y)=[edyp—f (P ¢+ tn ¢2) +0 ¢ Y]
then:

9) o=@ 156.0@)

Jo@) 2 @@y

() Bonnet, J. de Math. (25 (1860), pp. 166.
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Following Lamé’s process for the special case of the pldheBeltrami called the
expressiongY (¢) and d” (¢) thefirst and second-order differential parametéfsof the
functiong, and he calle®’ (¢, ) themixed parameter of the functiogsand . 0" (@)
can be expressed in terms of them using (9). It is convetoeintroduce yet another
abbreviating expression, namely:

(10) 94, W:%(¢1¢/2—¢’1¢2)-

It can be expressed in terms of the first-order diffeaé parameter, since, as is easy
to see:

(11) 92 P +° (Y=Y .

If ® andW are functions of¢g, ¢) then one can expregs (®),7 (P, W), &' (P, V),
o0"(®) easily in terms ob’ (@), & (¥), 2 (@, ¢¥), & (¢, W), " (@), " (¢), as well as in
terms of the partial derivatives d@f andW with respect tag, ¢, which is required for
certain transformation$)(

Besides the functiongp and ¢, the differential parameters contain only the
coefficientse, f, g of the line element and will remain unchanged wtten surface is
bent. They then play an important role as bendiagriants (cf., 8.8) in all problems of
surface theory that depend upon only the form eflithe element, and in particular, the
problem of geometry on a surface.

We shall now give somapplications of the differential parameters.

First, theline element def the surface can be expressed in terms of twtess of
curvesg = a, ¢ =v. Namely, if one setg =u, ¢=v then:

= 9 s s = -1
5(u)—?, 5(v)—?, o' (u,v) = 5 J(u, V) 5
or
12) e= O :ICA 0N
Z°(u,Vv) Z°(u,Vv) Z°(u,Vv)
Therefore:

122 IMAr =25 (uy) dudwd(y oy
9%(u, V) ’

() Lamé, Lecons sur les coord. curvitl859, pp. 6. If the surface goes to a plane, and ¥ @re the
rectilinear parallel coordinates in it then one willea=g= 1,f = 0, so:

ro-(2] (2], =225

() The differential paramete¥ (¢) had appeared already®auss Disq. gen.
() Beltrami, Giorn. Il, pp. 367.
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or due to the invariant property of the differential pare@mécf., § 18), when one
introduces the general parametgrs/, instead ofi, v :

(13) g = SW)AP° =204 ) dp dp+ 5 (@)
2°(9.¢)

Furthermore, from [§, (18)], the angled, ) that the two surface curves= a and
(¢ =b make with each other is determined by:

I@y) sn g, g =208
NEOE NEOE

Hence,d” (¢, ¢) = 0 is the condition for two curveg = a and ¢ = b to intersect
orthogonally. We shall use that in order to expridee differential parameters of the
orthogonal system, which will be denoted gy b, to the system of curveg = a (with
the parametea), in terms of the differential parametergf By assumption, one has:

(14) cos @, @) =

pEep—tg) -y f$—g¢1) =0,

or wheny is a proportionality factor:

Y= u(eg:—f @), =Y =19 ¢ -1 ¢),
or

ep—tyh=-0"up, g-fp=0"ug.

Hence, from (4) and (5):

(15) (W) =-u (P gp— gn §2) = 3° 1 5 (9),

=L 9| P |_O|_ &
(16) ? m'a{au{q/;(mJ av{q/a(mj

09'(¢) _
ou

:—%M@W”pz 4,

which we shall make use of later.
We further considesystems of curveg = a of a well-defined characterpne
immediately has the theorems:

65’(¢)}
ov |’

l. 0" (@) = Ois the necessary and sufficient condition #o= a to be a system of
minimal lines

2. 0" (@) = 0Ois the condition fog = a to be a system gkodetic linesand
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0" (@) = F (¢) is the condition forg = a to be a system dihes of constant
geodetic curvatureand finally:

3. 9 (@) =F (¢) is the condition fow = a to be a system gkodetic parallelsand

o0’ (@) = lis the condition fog = ato be a system of geodetic parallels and, at the
same time, fop to be the arc length of the associated geodetic [Hes

The last one requires proof. ¢f=ais a system of geodetic parallels, ane b is the
system of associated orthogonal geodetic lines, and slgpbk the arc length of the
geodetic lines, when measured from those geodetic paraiteds, the problem of
determining the systeg = a will lead to that of ascertaining three functighsy, Q of u,

v in such a way that square of the line element will takéhe form:
(17) d¥=edf + 2fdudv+gdV =dg?+Q dy?.

One will then have:
e= g2 +Qu?, f=¢g1+Qun i, 9=¢;+Qu;.

Eliminating the two quantitie:»:/ﬁzpl and \/61//2 will lead to a partial differential
equation ing, namely:

(18) ep; -21p, ¢, +gy;=09° so I (#) =1

If one drops the condition thgtis the arc length of the orthogonal geodetic lines and
introduces an arbitrary functig#' in place ofg then one will have:

o dg _ g __ 4
s wme TR

Hence, (18) will go ta¥ (¢”) : F (¢) = 1.
(Q.E. D))

One treats the problem of determiningyastem of isometric lines (isothernos) the
surface similarly. g =aandy =Db are the two families of an isometric system then the
solution will emerge from the problem (cf.,3& of bringing the line element into the
form:

(19) ds’ =e dif + 2 du dv+ g dV¥ = ey dgp % + go dy/?,

in whichey andgp are functions o$ and ¢ with the condition:

() Gauss Disq. gen.art.22. Beltrami, Giorn. Il, pp. 277.
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0*log [g_j “0  or M[Q_j —2F ()
20y &, 24 | |

and F (@) is a function of onlyg. Now, when the differential parameters that are
constructed from the quantities, go are denoted with the subscript 0, from (4) and (7),

one will have:
_ ! g, _ 1 dlog| g,
S@)=—, &@)= — e e —[—j

\/eogoafﬁ 0¢

It follows from this that:

(20) %9) 3"'”@} =F@) o 2D gy
%) 2 09 % (9)
when one considers the invariant nature of thedfitial parameter. (cf., 8).

If ¢ (u, v) is any solution to the partial differential eqoat (20) theng = a will
represent one family of an isometric system with parametera. The associated
orthogonal familyy = b with the parameteb is obtained by integrating the differential
equation:

(21) %[(e B2 —F 1) du— (g g1 —f §) V] =

which can be solved by quadrature, since the iatewy factor is a function of only, as
one proves easily with the help of (20). difand ¢ are ascertained thes andgo will
follow from 1 :ep = 97(¢), 1 :go = 9" ().

Should ¢ and ¢ be simultaneously thermal parameters,es& go = Ao, then the
condition (20) forg would go tod, (¢) = 0 ord” (¢) = 0. Therefore, the left-hand side in

(21) will be a complete differential, @ will be determined from:
1
(22) dw=g[(e $2—f ¢1) du— (9 ¢1 - #2) AV},

and o will be determined from 11, = &’ (@) = ' (¢). We then find théheorem (%):

IV. 0" (@) : 0" (@) = F(@) is the necessary and sufficient conditiondor a to beone
family of an isometric systewith the parametes, and:

0" (@) = Ois the condition fo = a to be one family of an isometric system and,
at the same time, fa# to be its thermal parameter.

Therefore, this will imply, e.g., from [8, (14)], thetheorem:

() Beltrami, Giorn. Il, pp. 369.
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The intersection curves of a minimal surfgbhe= 0) with parallel planes will define
one family of an isometric system

Il and IV will also imply thetheorems(%):

1. If a system of curvg = a (with the parameter a) exists on a surface, and its
curves are both geodetically parallel and have constant geodetic curvaherm,tie
system will also be isothermal

That is because from (99" (@) = F1 (@), and 0" (¢) = F3 (¢) will imply that o”(¢) :
o' (¢) =F (¢), so from (8),F(¢) L&' (¢) .

2. Conversely: If a system of curvgs= a that is both isometric and geodetic exists
on a surface then the curves of the system will also have constantigeadeature.

That is because, from (9% (@) = F1 (¢) and d”(¢@) : J'(¢) =F (@) will imply that
0" (#)=Fs(¢) .

3. In both cases, the surface can be developed to a surface of revolution, under
which the geodetic parallels will go to parallel circles on the surfaselution.

That is because in both cases, one will then lE@) = F1 (@) and 0" (¢9) = F, ().
Now, if (u, v) are geodetic coordinates (i.e.,= a are geodetic parallels; = b are
geodetically orthogonal, and if, in additianjs the arc length of the geodetic lines, when
measured from one of the geodetic parallels) thenwaill haveds’ = du + g d; as a
result:

10logg

FW=1,  FM=370 =),

Henceg = UV, in whichU depends upon, andV depends upon only; therefore:
dg =duf + UV dv =duiP + U dVZ;

i.e., the line element of the surface is, at thmeséime, the line element of a surface of
revolution. (Q. E. D.)

Finally, we shall give an application of the drifatial parameters to thene of
striction of a system of curvé§ ¢ = a, with the parametes. One understands that to
mean the locus of point on the curves of the sydtamvhich the distance to the next
system of curves is a minimum. One must first Wake the normal distance between
two curvesg andg¢ + d¢ . Letu, vandu + du, v + dv be two consecutive points @h

() Beltrami, Giorn. IlI, pp. 89 and 90.
() Beltrami, Giorn. Il, pp. 276 and lIl, pp. 230.
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and letdsbe the associated line element, and furthermore+edu, v + ov be a point at a
distanceds from (u, v) through which the curveg + d¢ goes, such that:

op=¢g U+ @, .

Finally, letJ be the angle between the line elemeistand ds, and letdn be the distance
between the curvggandg + o¢ at the pointy, v). From [81, (8)] and (6), one will then
have:

_ . _ du dv _ @ ou+g,ov _ O
23 n=:3s I=90|— v—— Au|= = )
(23) o [ds " ds ”} 7o) o@D

The line of striction is the locus of points {) for which dn is a minimum. Hence,
when one consider®y to be constant, it will be determined from the conditi

qr JM»ZQOK

(24) 99 (9) du+65’(¢) dv=0 or @, 99 (9) —¢165’(¢) =0.
ou ov ou ov

However, from (16), that equation will be identicald@ (¢) = 0 wheny = b is the
orthogonal top = a with the parametds. Hence, one has thieeorem:

The line of striction of a system of curyes a is the locus of points at which each
curve of the orthogonal systegn=b has geodetic curvature zero.

8 18. — Transforming the parameters. Application.

At the conclusion of this general study of surfacessamthce curves, we shall briefly
considertransformations of the parameteasid the expressions that amgariant under
such transformations. It is geometrically clear thateries of metric quantities, such as
the radii of principal curvature andr, , and furthermore, the line elemats the angle
(C, Cy) between two surface curves, and finally the quantifies o, R that determine
the character of a surface curve, are independentdiutidamental parameteusv or
that the values of those quantities do not change wheimntroduces new parametess,

Vo, instead ofi, v (*). However, one can also easily convince oneself afahalytically
when one looks for the invariants of the transformat@nparameters; i.e., the
expressions that will be constructed in the sameamayhave the same values in terms of
the old and new parameters.

Let:

(1) U=p(UV), Vo=0(,V)

() Gauss Disq. gen.art. 21. Weingarten, Festschrift der tech. Hochschule zu Berlin, 1884.
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be the equations that couple the old and new parametbhish effect the following
transformation:

(2) X=XUV)=X (Uo,Vv), VY=Y, V)=Yo(Ww,v), z=z(u,V)=2 (U, Vo),

and which implies the following equations for arbitraryface curvep =a, ¢ =Db, ...:

(3 @ (U, V) = ¢@o (Uo, Vo),

We denote all of the quantities that are defined in devhthe new parameteus, vo
with a subscript 0 and set the determinant of the tramsfon to:

YU, V) = ¢b (U, Vo) .

ou, 0y, _ 0, 0\,

@) —2-0-"0°5 =0
du ov Ov du
One next has:
ou, ? ou, 0V, v,
e= —2 | +2f —=2—2+ 0
e“(auj °au du g"(auj
ou, 6u oy, dV, ava ovo
(5) = g0 f( whad %j PERALAS
ou 6v Ju av au ov ouov
ou, ? ou, 0V, v,
= —2 | +2f =2+ 0
J e“(avj ov ov g"(avj

The same equations will be true wheeih, g andey, fo, go are replaced witd, d’, d”
anddo, d;, d;, resp., or als&, F, G andEy, Fo, Go, resp. It follows immediately from

these equations that:

0 eg-f* dd'-d*_ ed-2fd+gd _ .
(6) _2_ 2 = n 2 U _Q ’
50 &~ fo dodo_do %do_2f0d0+goct

i.e., the mean curvatuteand the curvaturk are invariant under transformations of the
parameters. The same thing is true of the cosinbsc that the direction of the surface
normal determines. They are the most importaniariants that appear in the
investigation of the surface itself. The partidfetential equations (6) and (10) in78
between the six fundamental quantiteed, g ; d, d’, d” will likewise remain the same
under the transformation)(

It further follows from (5) that:

edu+fdv=(e du)+fd\/o)% + (f dw + g dw) %
ou ou
(7)

() For more detailsiVeingarten, loc. cit, pp. 19.
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fdu+gdv:(edub+fdvo)% +(deo+gd\b)%,
ov ov

along with the corresponding equations when one defirses it terms ofl, d’, d”or E,
F, G. It will then follow that {):

ds=dg, L=Lo, M =Mo, N=No;

i.e., the metric quantitigd, r, p, R are invariant under transformations of the parameters.
The expression fodS the expression foP [§8 14, (16)], and the expression that
appears in [&, (8)]:

(8) edudu+f(dudv+dvdu) +gdvdyv,

are likewise invariant. Those are the most importardriants that appear in the study of
a surface curve. In addition, the expressions thagetsefromN when one replaces f,
gwithd, d’, d”, resp., OE, F, G, resp., are also invariant.

The differential parameters and converted forms wppear in place of these
invariants when one defines the surface curve by an equafiorv) =a. One has:

© 20 00,0u, 00,0y 00 _04,0u 09,0y,
ou du, 0u 0y, du AV  du, ov Ay, OV

It will then follow from (5) and (6) that:

1(3%_&}:1 e, 0% _ (00, |0, [ 0Fy_ 00,0V, |
o\ ov ou) O ov, oy, ) 0u [GAVA oy )ou

i(f%_g%jzg o 00 (08, \uy [ 08y 09,)0v,|
o\ ov Jdu o ov, au, | ov v, oy, ) ov

One next ha®’ (@) = J, (¢,) then, whered, is the first-order differential parameter that

is constructed from the quantities, fo, go . Furthermore, when one differentiates the
first of equations (10) with respectv¥and the second one with respectitand subtracts

them, one will getd” (@) = J; (¢,) . One will then have:

(10)

(11) o'(9) = 3 (9o) , (9, P = 6 (9o:lo) 9" () = % () ,

and then also:

(@, ¥) = 5o (¢o, ), " (#) = &(9o) -

) The proof of the last equatidh= N, is easy to carry out by means of some computation.
p q y
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The first and second-order differential parameterstlaga invariant. However, the
expressions that one obtains when one replaces thétepsas f, g with d, d’, d”, resp.,
orE, F, G, resp., are also invariant.

Among the invariants that have been enumerated, one fimgsarticular, the so-
called bending invariants(!); i.e., the invariants that also remain unchanged uader
bending of the surface.

We shall not consider one and the same surfacg, ¢, which is referred to two
different parameter systemsv anduy andvp, as we did up to now, but two different
surfacesX, y, 2) and &', y’, z’) that are referred to the same parameter sysiew (The
equations and definitions at the end & will then be valid.

Bending invariants are those of the invariants thaewensidered above that include
only the three fundamental quantited, g, and their derivatives, but not the quantites
d’, d”. They include, first of all, the expression for thevaturek (%), and then the
expressionsls N, and the expression (8), which still includes the difitials ofu andv,
and finally, the corresponding differential parame&r&p),d” (¢, ¢),0” (¢), which still
include the derivatives ap and ¢ with respect tau andv. Of the metric quantities, the
bending invariants include not only the curvature of theasetfbut also the geodetic
curvature of any surface curv®,(and the angle between two surface curves, which is
also geometrically clear.

It is clear that one will get further bending invarg&amnthen one repeats the processes
J, &, ando” on one or more functiong, ¢, ... Conversely, every bending invariant can
be represented in that wa.( In fact, if:

(12) = F(eﬁ. 0¢ oY j

P a ¥ u

is a general bending invariant that incluge$, g, ¢, ¢, ..., along with the derivatives
with respect tay, v, then one can represent all of its elements bgatul application of
the operations? and d’ to the functions, v, @, ¢, ... That is because, from [§, (12)],
g f, g, ocan be expressed in terms of #iéu), o’ (v), J (u, v), and from [8§L7, (10)], one
has:

(13) ‘3—¢ =590y, 2= )
u ov

SO

2
99 _ 59 (%’Vj = 3I[39 (p V), V], etc.
If one now introduces two of the functiogsand ¢ that appear id in place ofu andv
then one will get the representationJdhat was given. If only one functighenters into
J then one can replaceandv with ¢ and &" ¢ or 0” ¢ and then get all invariants of a

[N

Beltrami, Giorn., Il, pp. 356.

Gauss Disqg. gen, art. 12.

Minding, J. fir Math. 6 (1830), pp. 159.
Darboux, Legons I, pp. 204.

AT
~—
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single functiong by repeated application of the procéssind 0” when they are applied
to that function.

As an application of the formulas for the bendinganmants, we shall develop the
criteria for two surfaces with arbitrarily given parameters:

(14) X =X (u, v), y=vy(u, V), z=z(u,V),
and
(15) Xo = Xo (Uo, Vo), Yo = Yo (Uo, Vo), 2o = 2o (Uo, Vo)

to be developable onto each otl{ex The two surfaces are related to each other point-
by-point by means of two equations between the parametefsand (o, Vo):

(16) @ (U, v) = @o (Uo, Vo), ¢ (U, V) = ¢b (Uo, Vo),

with the condition that and ¢ are mutually-independent functions, so the determinant
@1 U — Yn ¢, does not vanish identically. The necessary and sirfficonditions for the
developability of the surface (14) and (15) to each othértinen be contained in the
three equations (5). It is preferable to give those tiongia different form. Namely, if
one useg and ¢ as parameters on the surface (14) éndnd ¢y as parameters on (15)
then the form [817, (13)] of the line element will imply the necessaryd asufficient
conditions for developability in the form:

(17) o'(9) = 3 (9o) , I(WY =W, I Y=3(9¥0),

in which differential parameters that are provided witd index O refer to the surface
(15).

If one assumes that the surfaces (14) and (15) tha¢ telatach other by means of
equations (16) are mutually-developable then it will be r'=agghat the curvatuteand
the first and second-order differential parameters muste hthe same value at
corresponding points, or that one must have:

(18) k=ko, K =g(k), 9 (K=0(k), 7K =7d(k),

in which the third or fourth equation is a consequendbefemaining three.

The first of these equations= ky , says that the curves on both surfaces with equal
constant curvaturk = const. must correspond to each other. The secondaysethat
along the curves witk = const., points for which the normal distamebetween the
curvek andk + dk is the same must correspond to each other (c17,[§3)]). The third

() Minding, J. fiir Math.19 (1839), pp. 180. Monge-Liouville, Applications Notes IV and V.
Bonnet, J. Ec. poly., Cah41 (1863), pp. 211et seq. The presentation above is connected with the
discussion irDarboux, Lecons 11, pp. 223,et seq.



118 Chapter 11l — Study of general surface curves

or fourth one says that the geodetic curvature of theedur= const. must also be the
same at corresponding points (cf. 1§ (6a)]).

One now asks, conversely, whether and under what eamadinh the given equations
(14) and (15) one can find two equations of the form (16) sty and ¢ (and as a
resultgo and¢o, as well) will be independent of each other, and as#mee time, that the
three equations (17) will be satisfied, or to examine hdretand to what extent, the
necessaryconditions (18) for the developability are alsafficient There will then be
several casew distinguish:

1. Under the assumption thktand k, are not constant and that (k) is not a
function ofk, and d; (k,) is not a function oky, one sets:

(19) k=ko. &K= (k).

One will then have two equations of the form (16) betwg, v) and (o, Vo), from which

two well-defined families of curves on the two surfaceghwhe aforementioned
geometric meaning will be related to each other. Thificent conditions for

developability are then that the two equations:

(20) o' (0 K =09, (k,), o'k 0 K =29, (K, k),
will also be fulfilled by means of equations (19).

2. By contrast, i’ (k) is a function ok then if developability is to even be possible,
one must also have théj (k,) is a function oko, and in fact, the same function.

Therefore let:
(21) o' (K =f(K), O (k) =f (ko) .

The two equations (19) will then give only the first qliations (16) or only one relations
between , v) and (1o, Vo) . Under the assumption that” (k) is independent df and
9, (k,) is independent df , one appends the equation:

(22) 0" (K) = dy (ko)

to (19).

From (21), the surfaces (14) and (15) will have the spdarah that makes the
system of curvek = const. at the same time a system of geodetic plaralldom (21),
those curves on the two surfaces will relate to edioar for which the curves= const.
will intersect at point of equal geodetic curvature.

Moreover, from (17), the sufficient condition foretldevelopability is the one that
follows from equations (19), (21), and (22):

(23) 9’ (07 (K) = % (5 (k) -
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The further condition that:
(24) o' (k, 0"K) = I (k,, Iy Ky,)

which is included in (17), is fulfilled by itself by means (@®), (21), and (22). That
follows from an identity fork into which equation (21), which is characteristic of the
surface in question, can be converted, and which includeskoahld its differential
parameters. Namely, if one introduces a system of geocsbrdinatess, vi) on an
arbitrary surface (8) then the square of the line element will assuméaiha:

(25) ds’ = du? + g, dVf,
in whichuy, v1, g1 are well-defined functions ofi(v).

Moreover, when one applies the differential parangetfor the index 1 that are
constructed for the form (25), one will have:

I 02
(26) Fu) =1 Ju)=00% apg k=- 1 9VG
ou, Jog, ou

in which the last equation is inferred fromdg(4)].
Eliminatingg; will give the relation:

(27) 51'(U1, 51’ ul) =-k- [51"U1]2,

which will be true for any surface. For the suesc¢hat are characterized by (20
const. will now be a system of geodetic paralldfsone introduces that system into (25)
in place ofu; = const. then a comparison of (25) withl[g (13)], in conjunction with [8
17, (15)], and when one recalls the invariant natfréhe differential parameter, will
yield:

(28)

j\/é’(k) j\/f(k)

If one substitutes that value in (27) then, sinbe differential parameters are

invariant, and since:
dk
5" o — 5/// k,
{ | TKJ ()

{j j j F o (k, 07K,

one will get the desired identity fér:

SO
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1
\J Ok

However, due to (19) and (22), the equation (24) will folloawnfrthat. (Q. E. D.)

(29) F(k, 3K = —k— (5" K>

3. If not only iso” (k) =f (k), but alsod’” (k) = f1 (k), then developability will first
require that in addition tad, (k,) = f (ko), one also hasj,(k,)= fi1 (ko) . Those
assumptions are already sufficient for developabiéityd the latter is also possible in an
infinitude of ways. One gets that equation and the seequodtion betweeru(v) and
(uo, Vo) that is appended to=k, as follows:

The conditiond’ (k) = f; (k) further characterizes the surface (14) by the facttheat
geodetic parallel& = const., which already relate to each other, are easéiine time
curves of constant geodetic curvature. If one again lbhsderm of the line element on
(25) then that condition will also lead to a determorabf the value of the quantity by
a quadrature. Namely, it follows foréi” (k) =1 (K) that:

log./
(30) oy (u)= % = ¢1 (W), from which, /g, =Us;
ul

i.e., y/ g, will be equal to a well-defined function of whenv; is chosen suitably.
Therefore, we now have:

(31) ds’ = du? + U? dV

for (14), in whichv; is a well-defined function ofu( v). However, since& or u; and
0" (k) or U; is the same for both surfaces, the line elemethe®urface (15) will have

the form:
d$ = du2 + U? d\2,

in whichv; is a well-defined function ofi, vo). When one setdy’ = dV or:

(32) Vi =V, +C,

in whichc is an arbitrary constant, one will get the secaalation betweenu v) and (o,
Vo). Due to the arbitrary constant the development will be possible in a simple
infinitude of ways. In fact, it will be determinedhen one associates an arbitrary point
p1 on the first surface that goes through a clewea with an arbitrary poinp, on the
corresponding curvie = a on the second surface. The double sigm.dn (32) says that
one can carry out the bending of the second sudate the first one on either one side
of the curvek = a or the other.

From (31), the mutually-developable surfaces Hrattreated here are, at the same
time, developable onto a surface of rotation. Hattway, the meridian curves will
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correspond to the curves = const., and the parallel circles will corresponth curves
u; = const. ok = const.

The derivation of equation (31) or the determination efgbantitiess;, U;, andv; as
functions of (1, v) required only quadratures. That is becayss known from (28)J;
is known from (30), ang; follows from (31):

dvlzui«/dsz—dtf.

1

The same thing can be inferred from the fact tht $ystemk = const. is both
geodetically parallel and has constant geodeticature. Hence, from Theorem 1 on pp
112, it will also be isometric, and the associatgtiogonal family will be obtained from
[§ 17, (21)] by quadrature.

4. Finally, the case can arise that thevature kof the surface (14) is not a function
of (u, v), but only aconstant. It will then be necessary for developability tithe
curvature on the surface (15) must also be constahthave the same value. However,
that condition is also sufficient for developalyilitwhich is also true here in infinitely
many ways, but in a different sense.

Namely, if one introduces geodetic polar coordsag84) on the surfaces (14) and
(15) then the square of the line element will héngeform:

(33) ds = du? + g dVf, ds = du? + g, d¥,

and from [89, (4)], g1 andg, will be determined from the equations:

2 2
aaﬁ?w@:o, N,

Tz V%0

2

One will then have that)

J g, will be equal to sir(ul\/_k), sinh(ul\/_k), U,
Ja, " " sin (uzJ_k), sinh (uzJ_k), Uz,

according to whether:

(34)

k >0, <0, =0,

respectively.

() Inwhich sinh ¢) = 1 (¢" -€e™).
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If the poles of the polar systems on both surfaceg@arcorrespond then one would
need to seti; = Uy, since those values represent equal geodetic lengthsill then

follow from (33) thatdw’ = dv; or thatv; =+ v, +c.
That will give thetheorem:

If two surfaces have the same constant curvatures then they vdévedopable to
each other in a triple infinitude of different ways.

Namely, one can associate two pomtsindg: on the first surface with two poinps
and gz on the second surface in an entirely arbitrary waylendssuming only that the
geodetic distance between those point-pairs is the sarboth surfaces.

From (33) and (34), the surfaces of constant curvatucan be developed onto
surfaces of revolution of the same constant curvdtuieork = 0, that surface will be the
cylinder of revolution or the plane, far> 0, it will be the sphere, and fax 0, it will be
the pseudo-sphere, whose simplest manifestation hasttext(viz., the evolvent of the
catenary) for its meridian curve.

The derivation of the form (33) or the determinatiothefgeodetic lines on a surface
of constant curvature requires one to integraécatti differential equation'j.

() Darboux, Lecons I, pp. 223.



