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l.
Generalities. The principle of duality.

The modern investigations of non-Euclidian geometry hthesr origin in the
continuing, century-old but always unsuccessfalattempts, to show that Euclid’s fifth
postulate — the so-called parallel axiom — is superfluous.e €aeks toprove the
statement that is included in that — i.e., its contebty—purely logical tools from the
remaining assumptions that were made in the Euclidiaremsystf geometry and to
deduce it from them alone. This question can be regardedvasy been solved today.
Three different mathematicians — namely, Gauss, lobkaski, and Johansif] Bolyai
— which were, as we now know, independent of each otmmstructed a system of
concepts that started with one general assumption amesketo contain no logical
contradictions that is precisely non-Euclidian geomefrigereupon, Beltrami, as well as
Cayley and Klein, showed in various ways that one cam ailrive at this general system
of concepts by a special interpretation of the firmitaklkshed formulas and theorems of
ordinary analysis and geometry, and that any possiliiiat a contradiction might
perhaps be found in the future is therefore excluded. tNdth the aforementioned main
guestion is, as we said, resolved. However, the itteresnathematicians in non-
Euclidian geometry itself is not exhausted with that. estigations into the systematic
establishment of the basic concepts of mathemateslao sufficiently worthwhile- in
particular, investigations in geometry into the questbnvhether a geometric theorem
must be regarded as an axiomalthough the material content of the individual
disciplines is stilworthwhile on whose account alone that sort of investigatiohhawe
any purpose at all, and non-Euclidian geometry belongsctodiscipline, moreover.

Now, it can generally seem at first as if the furtdevelopment of non-Euclidian
geometry has only a secondary interest, as if thengew, whose heart is in the study of
the space in which we live, does not necessarily needwtoy about that. Indeed, the
indistinctness of our presentation of space has a,pfaejust for the system that is

() Except for some meaningless formal alterations amdesadditional remarks that are enclosed
within [], this paper is a verbatim transcription fréhe Festschrift of the Greifswald Philosophical faculty
on the fifty-year doctoral jubilee of Heinrich Limphic (Greifswald, 20, 111, 1900.)
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referred to as non-Euclidian geometry as such, along itgittubordinates, but also for
many enveloping conceptual constructions. Such speculatioms Wwwwever, be able
to take on an immediate practical meaning only when ioepi@cedures compel us to
subject the conventional, and undoubtedly nearest, systggometry, at least, to a more
detailed examination. However, up to now, no facts arevikrthat would also make it
only obvious that any other system of geometry corresptmddbserved phenomena
better than Euclidian. Therefore, up to now, the plistsias well as the geometer, has
regarded his study as an analysis of the empiricallyrgsmace, while his theoretical
statements might be based upon the system of Euclideanegey.

Admittedly, non-Euclidian geometry will also find aapé in the circle of ideas of this
geometer. However, the position in which this geometiscipline is found lies not in
the roots of the geometric study. The geometry of sesfaaf constant negative
curvature, in which the theorems of Beltrami on plar@r-Euclidian geometry find their
realization, can hardly attract a higher degree ofastefor our geometer than the theory
of other special classes of surfaces, like, e.g. hhery of minimal surface that is so rich
in beautiful theorems, and Cayley’'s “absolute metric,” cehnon-Euclidian geometry
realizes in a three-fold extended space, will be ptedetio any geometer as a section of
the theory of second-degree surfaces, and thus, as apexial situation. Thus, if our
geometer wished to explain that it would be impossibldiiorto deal with all particular
guestions of geometry, and that he was not especiallyestezl in this precisely this
situation, then he would be well within his rights.

However, in mathematics one cannot be careful enougnwilealing with value
judgments that arise from the use of the concepts ‘@Pemd “general.” We fear that
our geometer (who is, moreover, not merely a compietien) might have committed a
mistake. (Namely, he has not observed that for infimtnifolds the totality can be
mapped onto a subset.) The conception of geometry a@graes of experience is only
one of many possible ones, and the standpoint of théieistpis, in no way, the most
insightful standpoint in regard to geometry. He would thetnbe justified in his single-
minded view of the fact that the mathematical scieacesntertwined with each other in
various, and often surprising, ways in such a way thatreality, they define an
indivisible whole. Although it is possible, and indeedyendesirable, that any discipline
be developed with the tools that are specific to it amdependently of the other
disciplines, one would be deprived of one of the mogbmant tools for analysis, which
would not consider the manifold connections between thieus disciplines. When
applied to Euclidian and non-Euclidian geometry, thisyteglif-evident- but at the same
time, unheeded- truth leads to the following somewhat paradoxical assioh thatin
some situations, the knowledge of non-Euclidian geometry cannot be depravedood
penetrating understanding of a very elementary portion of Euclidian geometry.

The author believes that the fact that things actuatigkwhat waycan be shown by
an example that is especially educational, due tanmiglieity. Along with the so-called
force parallelogram, one can also present two othestgantions that are equivalent, but
still essentially different from the parallelogramtiwwhose help, the combination of two
forces that act upon the same point can likewise bemeeti. These constructions, each
of which, like the parallelogram, can define the startinmtpior further developments,
can also be made understandable to a non-professioralnwiteffort. Despite its
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simplicity, and despite uncommonly numerous versionghef situation, the detour
through non-Euclidian geometry is, in fact, necessaryt$ discovery.

In the following, we now wish to demonstrate some up-tw-apparently unknown
or not sufficiently appreciated facts that, in part, lilksestablish a connection between
Euclidian and non-Euclidian geometry, and are, morea@lso, suitable in other respects
for shedding some light on the systematic and heurisiganing of non-Euclidian
geometry. We will thus confine ourselves to some lessactexistic theorems. Partly
due to nature of things, a thorough presentation with fupglications that present
themselves in greater numbers, but necessitate the deexlomf a sizable formal
apparatus, must be postponed to a later publication.

We begin with some remarks on the so-cgtiedciple of duality.

As is known, one finds conspicuous analogies in Eudidi@ometry between
theorems in which the concept of the distance betw&erpbints appears and ones in
which the concept of the angle between two planes app®&ir®, as one knows, these
analogies find their explanation in properties of non-Euaicpace and in the fact that
Euclidian geometry represents a limiting case of noniéiacl geometry. One can
generalize this remark to the theorem that the conadpte®n-Euclidian geometry are
associated with each other in pairs that can ememya feach other by a trivial
transformation — viz., thabsolute correlation- and that various concepts of Euclidian
geometry are, or can be, obtained from such associate@gts by passing to the limit.
This remark, which already includes very fruitful methoflamalysis in it, now admits
various extensions.

First, it must not at all be taken to be true that ¢bncepts and theorems of non-
Euclidian geometry are associated with each other pag-wis general, one can only
say that they are associated group-wise, where the muohlibe statements that are
united in a group can be any arbitrary number. Thus, iafthementioned example of
the composition of forces, three different consiong belong together, each of which
will produce another theorem under passage to the Eucgzce.

Second, it must be remarked that one can conceivahly cat the passage to the
limit itself in several different ways, in such awthat several different conceptions of
Euclidian geometry can emerge from a single concepifonon-Euclidian geometry.
We clarify this with an example:

In a non-Euclidian space of positive curvature, the ro&thibf rotations — i.e., all
motions of a rigid body that leave all points of meliat rest — is identical with the
manifold of all motions that leave all planes throaglne at rest. Such an identity does
not exist in Euclidian geometry: The manifold considededomposes the limit into
the manifold of rotations, in the usual sense of the wand, the manifold of “screw
reversals,” which are screw motions for which the argjlrotation is equal to two right
angles. The analogy between the following two theer¢hat belong to Euclidian
geometry ¥) will find its explanation in this, and in the principéduality:

“If one represents a motion in all possible If one represents a motion in all possible
ways as a sequence of two rotations, onevedys as a sequence of a rotation and a
whom has a constant angle of rotation, thearew reversal whose pitch is constant, then

() Here, we consider only the so-called general caseranit merely involves the basic ideas. We will
communicate a precise formulation in another place.
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the locus of the associated rotational locus of the associated screw axes will
will be a “cyclic” ray complex, be a “cyclic” ray complex,

namely, a line complex that is different from thegant complex to a cone whose plane
complex curves are circles, and whose complex conease of rotation.
That complex will also be preserved:

when one subjects all tangents of a circle when one subjects all generators of a cone

all screws around a line that cuts a diamet#r rotation to all screws around a lines

of the circle perpendicularly. whose shortest distance from the axis of the
cone meets this axis at the vertex of the
cone.

Finally, it is worthy of mention that associated ttens can become partially illusory
under the passage to the limit, or they can assumenathat is so different that their
intrinsic kinship is no longer recognizable. An exampléheffirst remark is defined by
the non-existence of one of last two analogous thenremwhich two screw reversals
would appear in place of the two rotations, or in pla€e¢he rotation and the screw
reversal. The second remark will be clarified by tHe¥ang well-known theorem of
planimetry:

If one stretches a string of constantfone lets a line move such that it cuts out
length around an ellipse from a pojm piece of constant surface area from an
outside of that ellipse then the locus of frelipse then this line will envelope an
point is an ellipse that is confocal to thellipse that is similar and concentric to the
given one. given one.

(Graves'’s theorem)

Many investigations into the metric properties of secomldosurfaces and other
figures that are not inessential in content and intemdktoe achieved by a thorough
consideration of such quasi-dualistic relationships. its fecundity, however, will be
first shown by such considerations once the algelanadcdifferential geometry of non-
Euclidian space, which is still in its beginnings, istié&eunderstood.

We now turn to the exposition of a second connedbetmveen Euclidian and non-
Euclidian geometry that is of an entirely differenacki We thus find it preferable to
distinguish manifolds of positive curvature from ones @dative curvature. We direct
our immediate attention to just the so-called ellipticd hyperbolic spaces; as for the
spherical and pseudo-spherical space forms that are destiogguished, the things that
will be said can be carried over with mostly only nmiradterations. For the sake of
simplicity of representation, we will set the curvatuneasure of elliptic space equal to
positive unity, and likewise choose the curvature measuhgperbolic space to equal
the negative unity. The fact that the establishedicgstr to real figures is inessential in
all of the theorems to be posed in § 2, as well asnmesof the ones that are posed later,
is self-explanatory; therefore, an entrance intagmary figures would necessitate much
more involved arguments. — In each of the two methodsamilidie described in 8§ 2 and
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8 3, one will recognize an extension of Gaussathod of spherical images non-
Euclidian space.

Line geometry in elliptic space.

As one knows, the concept of parallels has two analogué®ply-extended non-
Euclidian space.

One of them occurs as a real figure only in spaces@étive curvature, while the
other one — which was discovered by Clifford — has analogulysin spaces of positive
curvature. One calls both of these two figures “palall That does not seem suitable
for us. One can deduce no adjective in the German landaat€liffordian parallels.”
However, one can still not avoid the consideratiomadginary figures in much deeper
analyses. One thus comes to the awkward positiogfefring to two different things by
one and the same word. On these grounds, we shall alloselves to propose another
terminology: We will call the “Cliffordian” parallslparatactic lines Leaning on the
usual terminology, we will further distinguish the twdfelient types of parataxy aesft-
handed and right-handed This distinction will then correspond to the distian
between the two invariant three-parameter subgroupseodribup of motions in elliptic
space aseft-handedandright-handeddisplacementsn such a way that displacements
will be called “left-handed” when their one-parameter gsabps have left-handed
paratactic lines for their path curves. — We can, ma@eallow a new concept to emerge
from the concept of straight line by a process thatrefer to asorientation which
consists in the determination of the value of a cedgirare root, namely, the concept of
aspear.

A spear is a line with a distinguished “positive” diren. It is distinguished from the
unoriented line by the fact that the goniometric tangdnthe distance between two
points taken from the spear has a well-defined sigrgrasds these two points are taken
in a particular sequence. If a line were oriented, sowauld be dealing with a spear,
then one could rationally separate the orientatiohsall lines that are — e.g. —
paratactically left-handed to it. Thus, two new congegtise from the concept of
paratactic line, namely, those of the (left-handed ghtshanded)syntacticand anti-
syntactic spearswhich do not need to be specified in greater detail. lligjnd is
recommended that one introduce a special word for theefithat consists the absolute
polar of a line. This figure, when seen from any poinediiptic) space, takes the form
of the image of a cross with a right angle. We ttalkit aline cross.

With these preparations, the following two theorems balnderstandable:

I. The manifold of all real line-crosses in elliptic space can be mappedpne-to-
one manner, to the manifold of all real spear-pairs that one can define fragnad two
bundles (e.g.) in Euclidian space, in such a way that the left-handed disgelaisewill
be associated with the rotation of the one (viz., left) bundle and right-iande
displacements will be associated with the other (viz., right) bundle.

II. The manifold of all real spears in elliptic space can be mapped, in a Iyique
invertible way, to the manifold of all real point-pairs that one can ddfom points of
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two spheres of radius one in Euclidian space in such a way that thkatefed
displacements will be associated with the rotations of the one gj#fere surface and
the right-handed displacements will be associated with the rotations otlibe (right)

sphere(*).

If one introduces the line cross or the spear as phaeeselement in elliptic (or
spherical) space then the facts of the associatednoldian geometry will be put into a
certain invertible relationship with certain facts of Edieln geometry.

Due to the vast scope of the situation, we will bedd to restrict ourselves here to
making the import of these theorems tangible by wasoofe examples. We would next
like to explain Theorem Il by juxtaposing a number afaEpts of elliptic geometry with
the associated concepts from the geometry of our twaesshefaces. We will assume
that the structures in question are analytic and real.

The two normal distances between two One-half the sum of and one-half the
spears (the stationary distances betwedifference between the spherical distances
points). between two point-pairs (determined up to
sign and mod3.

Point as locus of spears. Congruence relation (map) of the two
spheres.
Plane as locus of spears. Symmetric relationship between the two

image spheres.

Each point (plane, resp.) in elliptic space will tleemrespond to a real (imaginary,
resp.) ternary orthogonal transformation. The homomemeoordinates of the point
(plane, resp.) are identical to thiler parametersof orthogonal transformation for a
suitable choice of coordinates.

Tangents to an oriented curve (or spearsPair of isometric point-sequences (pair
of a cone). of mutually-mapped curves with equal
length arcs between corresponding points).

Congruence of left-hand syntactic Points of the left sphere (linked with all
spears. points of the right sphere).

It then follows that the geometry of a congruenceayoftactic spears is completely
identical to spherical geometry.

() We further mention that the author has already puidistieipz. Ber., v. 9, January, 1899) an
application of Theorem I. He communicated Theoreimn H talk that was given at a naturalist meeting in
Munich (Sept, 1899).
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Special congruences of translations thatPairs of curves (i.e., each point of a
are generated in two ways by displacingcaarve in the left sphere is linked with each
surface that is composed of syntactpoint of a curve in the right sphere).
spears.

Likewise special congruences that Association between the points of a

consist ofo’ surfaces that are composed @firve in the one sphere and curves in
syntactic spears. the other sphere.

Congruences of a general sort. Reciprocal map of both spheres by a
point transformation.

Normal congruence to a family of Curve-pair(cf., above)
parallel surfaces of zero curvature.

Normal congruence of a general kind. Real, surface-preserving map.

Translation complex that consists cof Curve on the left sphere (linked with all
left-hand-syntactic ~ congruences  (cfpoints of the right sphere).
above).

Complex whose spears can |be Association betweemw® curves in both
distributed into ' congruences ofsphere surfaces.

translations.

Line or spear complex of a general kind. Contact transformation.

This summary, brief and fragmentary as it is, wiill show us what a wealth of new
problems arise from Theorems | and Il. They will giekew classification principles for
algebraic surfaces, complexes, etc. Problems of diffed geometry that are not so
simply accessible by other means can admit a simplenamediate solution. A closely-
related consequence of our theorem is, e.g., the thettr@a single surface of zero
curvature can be drawn through any analytical strips whosmals are not paratactic;
one further finds that one can integrate the diffeaéreéguation of these surfaces in
closed form. Even further properties of these spetaskes of surfaces whose study
we can thank Bianchi for' - can be derived in this way. Tlseereometric addition of
motors which is a process for the geometric compositioroodefs §), was found by the
author in just that way. It also yields important ssaquences for the theory of
transformation groups. We can pose the following probéamgng others:

Find all transformations of straight lines in elliptic space that alwagserge from
some line of a normal net of a line.

() “Sulle superficie a curvature nulla in geometria ebificAnnali di Matematica24 (1896).
(®) Confer the boolkGeometrie der Dynameheipzig, 1901.
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One gets the solution from our Theorem | with no dation. One maps the
manifold of line crosses in the given way onto the pays of two bundles, or, more
intuitively, onto the point-pairs of two planes. Hethen subjects each of these bundles,
or each of these planes, to an arbitrary collineaistommation then a transformation of
the desired property will arise in elliptic space, and lilsemwmvhen one associates the one
plane with the other one, and conversely. All tramafdions in question will be found
in this way. They then define a so-called mixed group WABhparameters whose
continuous subgroup is semi-simple. The theorems ofginagegeometry on two planes
find a surprising, if not entirely simple, interpretationthe kind of line geometry that
belongs to this group (which is naturally completely edgint from Plickerian line
geometry). This new kind of line geometry is, howewsly one among many that arise
in similar ways. One can extend the group of circendformations, the groups of
conformal and surface-preserving transformations, and theipgrof all point
transformations in the same way. The latter extensiolndes, e.g., the solution to the
problem:

Find all transformations of straight lines in elliptic space that can abvaryse from
the normal congruence of a family of parallel surfaces of zero curvature

Another infinite group is then defined in such a way thatonverts nothing but
normal congruences into other ones. Its transformaam be likewise determined in
other ways; one can also give the intersection of aibps, and much more.

The possibility of another sort of application of feuaclidian geometry opens up
when one remarks that (except for trivial exceptionaksa®ach pair of mutually
developable surface tBuclidian spacehat is determined up to its form is linked with a
line complex (spear complex) in non-Euclidian space thabmpletely-determined, up
to a motion, and whose complex lines can be assoaiatiegblanar pencils.

Finally, we would like to mention another fact thaéss to us to be of fundamental
significance to a deeper algebraic foundation of theEacelidian geometry. As a first
main problem in the theory of invariants for the generajgative group in space, one
can consider the exhibition of types of invariants in anounded system of linear and
alternating forms that represent points, planes, and lit@aplexes when they are set
equal to zero. This as-yet-unsolved problem can be expladth a simpler one that
pertains to various subgroups of the general projectivapgrén particular, in the case of
the group of a second-order surface with a non-vanishingirdiseint — hence, also in
the case of the group of motions in elliptic spack is sufficient to consider just one
kind of linear form in addition to the alternating fas. However, this problem leads
back to a problem in the theory of binary forms by angimay transformation. It
consists in the determination of simultaneous invariahtgrtain forms with variables in
two different binary domains that are transformed intache other by linear
transformations that have equal discriminants, but @lleirglependent. The forms
themselves have two types of characteristics: Fjrdtifnear forms that connect the
variables in both domains (corresponding to the pointsaoreglin non-Euclidian space),
and secondly, pairs of quadratic forms (correspondinméarl complexes), such that the
six coefficients of a pair are to be regarded as dessygtem of homogeneous quantities.
The solution to this problem raises no special difficulty
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The possibility of the suggested reduction is a pecuyliafinon-Euclidian geometry.
The development of a theory of invariants of Euclichamtions is a problem that is not of
equal difficulty.

We shall now turn to a discussion of hyperbolic geomete will consider it from a
different standpoint that we had also been able to takégtis mutandisrelative to the
theorems that were presented in the current 8, moredater on, we will treat some of
the topics that were not touched upon, or only brushed up agairibie current § in
greater detail.

A geometric inter pretation of the so-called imaginary geometry
in the plane or on the sphere surface.

So-called imaginary figures are introduced into geometrytHe same purpose as
imaginary quantities in analysis. With their assis&ga one arrives at a simpler
representation, namely, a synopsis of many otherwsggadite theorems to be stated and
proved into a single expression, which thus gives a simperview,in toto. In its
beauty, the system of geometry, thus-extended, is sugeribre geometry that works
only with real figures to such a degree that attempts awatldail at the association of
real— and thus the simplest possiblgeometric forms with the “imaginary points,” etc.,
the theorems of that imaginary geometry are addiipr@gain subject to a real-
geometric, indeed, intuitive, interpretation. In theecaf the geometry on a singly-
extended manifold, these attempts were accompanied bwygdistned success. The
Gaussian number plane and the various kinds of Riemann esirfagth the help of
which, one studies imaginary geometry on algebraic curaes, in general usage
nowadays.

The fact that an equally intuitive realization of givary geometry is already not to
be found in the case of doubly-extended manifolds lies enrifture of things. A
meaningful success for the attempts that were made Hiesg lines has been achieved
only for the imaginary structures that belonged to v.u@ta theory of projective
geometry. Another very noteworthyin any event, important for the geometry of the
conformal group — Ansatz that goes back to Chasles, argist® in the suggestion that
an imaginary point in space should be replaced witihckeovith a well-defined sense of
traversal, remains completely undeveloped. Furthemattehave had the objective of
associating theo* imaginary points of a doubly-extended manifold with thenelets of
some likewise four-fold-extended manifold of geometric fguthat lies in ordinary
space. The presence of a relationship between the imagiomt and its image that is
invariant — perhaps, under motions will thus not be necessarily assumed. These
attempts have had modest success, because they likewiagnrstuck in the rudiments,
partly because the constructions that are employed argedein such a way that they
would not be easy for a geometer to consider for themw sake. Constructions such as
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the representation of imaginary figures that was glwers. Lie give the impression of
being artificial; they were contrived merely for onemse ).

In what follows, another attempt at associating Bguwvith plane spherical geometry
will be described briefly. The map to be performed slfiteot completely new, as we
would like to emphasize immediately. However, what migghinew, as far as it relates
to the current matters, is the type and extensioappfications, and likewise the path
along which the author arrived at that map, independentidef investigations.

We think of a real or imaginary point in the plane emd represented by a system of
three homogeneous coordinates. For the time being, Jleinterpret the real
components and the real coefficients of the imagicangponents of these coordinates as
Plucker coordinates of thread (i.e., a linear line complex) in a triply-extended cpa
The association of imaginary points in a plane andd¢héthreads in space thus given is
infinitely-many-valued, since the projective coordinateary point are determined only
up to an arbitrary (complex) factor. Any point thus cqoesls to an entire pencil of
threads. Now, this pencil exhibits a peculiar behaviéy:point in general position
corresponds to a complex that contains two differeatways real— pencils of lines,
namely, the so-callespecial complexwhich reduces to a straight line. Two such lines
that determine the associated pencil are polar to aaehn, gelative to a certain second-
degree surface, which has real points, but no real gengrand which therefore — since
projective conversions do not come into play — can beifeehwith asphere. However,
if the square sum of the projective coordinates ofpihiat considered vanishes, so this
point belongs to an (arbitrary, moreover) conic sectf non-vanishing discriminant,
then the entire pencil considered will consist ofigtralines, and they will all contact the
aforementioned sphere in one and the same point. Wéd#wesbefore us an, in general
(1-2)-valued, and in special casesq{jtvalued, map of the imaginary points of the plane
to real lines in space.

A reciprocally-single-valued map can now be derived ftbisimap, with one simple
precaution. Namely, since, one of two mutually polaoeasased lines will meet the
sphere, but not the other, one needs to consider onlypfotie two. One can further
present aotion of equivalenceunder which, all tangents to the sphere that contatt it
one and the same point are considered to be identindl,not further distinguished.
When we arbitrarily decide to consider only those liteé meet the sphere, we arrive at
the following conceptualizations: We call the pieceadine between two points of the
sphere {) aproper ray but any point of the sphere itself improper ray and thus, any
ray with coincident endpoints. We have thus mapped thétyoof real and imaginary
points in the plane to the totality of “rays” in aesto-one, invertible way; the improper
rays correspond to the points of some irreducible cssation.

If we now consider three ratios, moreover, whichhad previously regarded as point
coordinates, to be line coordinates then a point anteanith equal coordinates will be a

() The fact that the mind of a great mathematician Vesisto worthwhile discoveries by such
considerations changes nothing. The path to discovescergainly a detour in the case at hand.

(® As such, another word — perhaps “segment” — might be pedferHowever, there is an analogous
concept in Euclidian geometry that coincides with th&inary concept of straight line only in the real
domain. Therefore, little else remains here exceptltov a split in the terminology to occur, namely, to
use the only two available words “line” and “ray” irffdient senses. We then carry over this distinction,
mutatis mutandisto the situation that is treated in this artichey kind of terminology will do mischief in
such cases.
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pole and polar relative to the aforementioned conicaectiWe thus obtain immediately
the rays on the points of an image of the ray manidlthe real and imaginary straight
lines in the plane with our map. This remark permits tigtaer conceptualization: We
imagine that the entire ray manifold is doubly-covered] @istinguish betweerays of
the first sheetwhich are associated with points, a@ys of the second sheethich
correspond to straight lines. Rays of both sheetdighaver each other thus correspond
to poles and polars relative to the distinguished conicosecti

What relationship now exists between the images ofiat pmd a line when these
figures are united? The answer is not hard to find: tWeeimage rays intersect, and
each of them, when lengthened, will intersect the polahe other one relative to the
distinguished sphere, in addition. If we then choosesiifiere to be the absolute surface
of a Cayley metric, and we thus consider the interiothef sphere to be a so-called
hyperbolic spacéhen we can say that the two image rays will ietrperpendicularly.
One should naturally understand the teeutangular intersectiorof a proper and an
improper ray to mean the proper ray contains the poithetphere that represents the
improper line.

We would now like to summarize some of what we saidabglosely-related
conseqguence:

[ll. The real and imaginary points and the lines in the plane can be mapped to the
doubly-covered ray manifold in a one-to-one and invertible way. Points aesd iin
united position will correspond to rays of the first and second sheetsinfeasect
rectangularly (in the sense that we explained). A collinear transfioom of the plane
will correspond to “contragredient” transformations of the rays of botheshieunder
which, rectangular intersections of such rays will be preservedndiuintersections, in
general, nor the coincidence of rays on different sheets, nor trengedar intersection
of rays on the same sheet, nor the property of a line being proper oogerp The
aforementioned transformations define a continuous (but semi-simple) groiyteehs
parameters that is simple in real domains.

We would like to call these transformatiomial-collinear transformations in
hyperbolic spaceand thew'® transformations that arise from exchanging rays oh bot
sheets that lie over each othéual-correlative transformations.

In the geometry of these groups, one first finds thesttaction of the linking of
imaginary points by straight lines and the exploratidnth@ intersection point for
imaginary straight lines with their real counter-imagéhe construction of the common
normal on the second sheet to two rays on the fiextts and conversely. However, one
can, moreover, give a real interpretation, as suchangftheorem of the projective
geometry that originates in these constructions, sucthesassociated invariant and
function theory, Bezout’s theorem and Riemann-Rochbrtma, no less than, say, Abel's
theorem in its application to planar curve. The actoi@rést of this interpretation is,
nevertheless, mainly contained in the fact thafithees to which one is led are ones that
deserve to be considered, anyway.

We would like to clarify this last especially importgatint through some examples.

We first extend the group of transformations that wasoduced by adding a
symmetric (which exchanges both families of imaginggnerators of the absolute
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surface) collineation (which is a reallocation in hypeidspace). In this way, two new
families will arise from the transformations thate wenumerated, which we can
summarize aslual-projective transformationsiamely, ones that we will cadual-anti-
projective transformationg’), and ones that we can distinguistdasal anti-collineations
andanti-correlations One then has the theorem:

The dual projectivities and anti-projectivities in hyperbolic space suésaih
transformations of lines that allow a normal net of a ray to emenga inother one.

It can be further shown:

The image of an (irreducible) plane analytic curve is, when thesasrvegarded as
the locus of its points, a “synectic congruence,” namely, the noroajraence of the
first sheet of a family of parallel, analytic surfaces of curvauem®, and when the curve
is regarded as the locus of its tangents, a synectic congruence ettmesheet.

Conversely, any two irreducible, synectic congruences belong togetmrithese
pairs are invariantly linked, not only by non-Euclidian motions and transfars,by
contragredient dual projectivities and anti-projectivities, in general.

They define the tangents to any two mutually-orthogonal (real) families aflgdar
geodetic lines in an arbitrary analytic and real surface of curvature,zeamely, their
common focal surfacg).

A self-explanatoryexceptionto all three theorems is defined by the distinguished
conic section whose image — viz., the absolute surfagge-can, moreover, add to the
other one as aimproper synectic congruencdt is further self-explanatory that the
normal congruences of rays are excluded from the seawhdhad theorem; they and
only they are not paired with other ones. An exceptiothe third theorem which is,
moreover, inessentiat is finally defined bythe synectic congruences whose focal
surfaces reduce to a curve. There is a five-fold infdgtof them. The curve in question
is a real ray that lies in a plane with any two asded rays of both congruences, and
will be constantly cut by these rays at an angleishatipplementary to a right angle.

Any irreducible synectic congruence that is not the normal congruence to an
improper ray (or a family of so-called limit surfaces) mediatgwoper-conformal map
of the sphere surface, and conversely, any such map defines a syoegtieence.

That is, such a conformal map, in the ordinary sefdeuolidian geometry, of the
simply or multiply-covered sphere surface or two pseoé the spherical surfaces for
which the angle is not changed will be mediated by wwe @ndpoints of theo? rays of
the congruences.

() We define these expressions by analogy to a terngpotmt was employed by C. Segre.
() The evolute surface of a surface of curvature zergperolic space has only oskeet(Mante) in
the interior of the absolute surface.
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If one then employs the spherical surface, as ukwahe representation of the value
of a complex variable then one will immediately obtai pair of Riemannian surfaces
onto which the plane curve that belongs to the synecigruence is mapped point-by-
point. If the curve is algebraic then the Riemann sadaeill be closed and have the
same genus as the curve. For the sake of brevity, Weneti go into a thorough
differentiation of the two kinds of algebraic synectmgruences.

The remark that one also obtains the same conforragl oy connecting Hesse’s
transcription principle with the usual representatiorihef imaginary points of a binary
domain by real points of a spherical surface can bendeteto a second basis for
Theorem Il §), and, at the same time, exhibit a path to an infisétées of similar and
more general theorems. The theorem that is without exceptionnamely, that a single
surface of curvature zero goes through each real anatic (in the interior of
hyperbolic space) (cf., § 2), proves to be a consequenaeknbwn theorem of H. A.
Schwarz on conformal maps.

A very closely-related, but unconnected, and especsailprising application of a
mapping method is defined by the following remark: One imagima&sthe rays of two
synectic congruences in the neighborhood of a suitableopaatys are associated with
each other in such a way that corresponding rays odondehe same ray will cut a third
synectic congruence perpendicularly. We would like totkatl/the two congruences are
related to each other “synectically” by this associasiod its analytic continuation.

If two synectic congruences are synectically related to one andathe third one
then they will be related to each other synectically. That isc@imemon normals to
corresponding rays again will define a synectic congruence (which is is&ew
synectically-related to the first two), or a subset of one.

The synectic relationship between two synectic congruences isaimtvander not
only dual collineations and anti-collineations, but, more generally, all t@anshtions of
ray space that take synectic congruences into other ones.

The transformations in question define iafinite group of “synectic” and “anti-
synectic” transformations whose continuous subgroup isirtfagje of the group of
analytic point transformations in the plane.

Naturally, the applicability of our transcription prinlgpalso extends to metric
geometry. Of several consequences that are relatedue would like to cite just one of
them that, in turn, exhibits a connection between Eiaclidnd non-Euclidian geometry.

The intersection of our group of dual collineations ant-@ollineations with the
group of collinear transformations, in the ordinary sesfdbe word, defines the motions
and transfers in hyperbolic space. The group of realom®iin hyperbolic space (which
is long since known) likewise proves to be holomorphicabmorphic to the group of
real and imaginary collinear transformations in then@lehat fix a certain conic section,
namely, the much-discussed distinguished conic sectida.would now like to assume

() In fact, one already comes close to Theorem Ithis way. Cf., F. Klein, Math. Ann22 (1883),
246. Lindemannyorlesungen Uber Geometrill, pp. 613. The cited authors then remain within the
circle of ideas of ordinary projective geometry. Theyehaonsidered no transformations that take the
points of the absolute surface to straight lines.
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that the polar system to this conic section, alondp wie initially-employed coordinate
system, is real in such a way that the conic sedtsetf should have no real point. We
further consider the conic section to be likewise dhsolute curve of a Cayley metric,
and go from elliptic to spherical geometry by introducirdpable covering of the plane
by way of a known process that was described in papdfsKiein. On the other hand,
we also think of the ray manifold in hyperbolic spacebasg doubly covered in a
different way from what we did before by deriving a nesncept from the concept of
ray, namely, that of aarrow. The “proper arrow” shall be distinguished from the prope
ray by the fact that its endpoints are given in a defsequence, and that, as a result, the
distance between two (real) points of the arrow Haate a definite sequence likewise
keep a definite valué) The “improper” arrow shall be the same thing as thagimary
ray, such that manifold of all arrows will likewise ohef a continuum with a branching
manifold in the absolute surface. On the basis of tHes&minations, one can now state
another theorem:

IV. The manifold of all arrows in hyperbolic space can be mapped in a one-to-one
and invertible way to the manifold of all real and imaginary points of a spirere
Euclidian space in such a way that the real motions in hyperbolic spacebavill
associated with the real and imaginary motions of the sphere.

The real points of the spherical surface will thusabsociated with the arrows of a
bundle whose vertex lies in the interior of thedine surface. Since we have likewise
regarded the absolute surface as a sphere in the setise Béclidian geometry, the
aforementioned vertex can be identified with the Eumtfidcenter of this sphere.
Furthermore, one can let both spheres — viz., the sjphéteclidian space that is to be
mapped and the absolute surface of the hyperbolic spacecideoiOne can then further
arrange the map so that any real point of the firstreplhél be associated with the arrow
of the aforementioned bundle that has its endpoitttatpoint. Arrows that correspond
to conjugate-imaginary points whose rectilinear cariersymmetrically in relation to
the indicated point, in the sense of hyperbolic geomatrg,with the last convention that
we encountered, also in the sense of Euclidian geometry

A theorem that was formulated already now assuheefotlowing form:

The real and imaginary points of an analytic curve on the sphere correspond to the
arrow of an “oriented” synectic congruence, and conversely.

In particular, the intersection points of the sphere being mapped witimfiheely-
distant plane in Euclidian space correspond to the improper arrow, whileetiigoints
correspond to the absolute surface. The two families of imaginary sttanghton the
sphere correspond to the two different kinds of bundles of parallel arrow

The last remarks can be seen, in our Theorem I\fgpoesent an extension of a
known process that was given by F. Klein and employed @ketiares. They likewise
lead to another basis for Theorem 1V itself. Onewdra generator “of the first kind” for

() The concept of arrow is closely related to the cphoéa spear that was introduced in § 2, but we
need another word for our purpose.
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this surface through an imaginary point of the given sphebe mapped; the real point
of this line will be the endpoint of the desired arro@ne then draws a generator of the
second kind through that point, makes it intersect thaiiafy-distant plane, and once

more draws a generator of the first kind through thersatction. The real point of this

second line will be the initial point of the arrow te tonstructed.

In order to make the kind of application of our Theor@mclear, we add the
following: Two proper arrows, even when they do not sget, subtend aangle with
each other that is determined up to sign and mgdwhose sign depends upon the
sequence of the two arrows and the direction that @seascribed to their common
normal. In addition to this angle, which is equalite (non-Euclidian) angle between the
two planes that link the given arrow with its commommal, one has a certaghstance
namely, the distance to the base point of that noresmathe sign will depend upon the
same convention. We now define the concept otitla# anglebetween both arrows for

both quantities. We understand that to mean the foemegle, increased by= /-1
times the distance. If we then set the radius ofsphere equal to unity then we will get
the theorem:

The dual angle between two arrows is equal to the spherical distancedrethe
corresponding real or imaginary spherical points.

The multi-valuedness of the two mutually assodiafeantities is naturally the same.

The fact that one can give a real interpretatmralt of spherical geometry in the
imaginary domain is self-explanatory. An immedied@sequence is, e.g., a theorem that
was asserted by Fr. Schilling, by which the forrautd spherical trigonometry can be
interpreted in hyperbolic spaces by assuming coxrgriguments’j.

Another application of our Theorem IV is the detaration of all transformations of
arrows that take “cyclic’ congruences to other on&syclic congruencés the image of
a real or imaginary circle. Since this generatlynes about by a rotation around a point,
the cyclic congruence will be generated by screwong arrow around another one.
Exceptions are the reducible cyclic congruencess jd dissimilar bundles of parallel
arrows (cf.,suprg, and the congruence of improper arrows that likewmust be
regarded as cyclic.

The transformations in question define a twelveapeter group with four different
families of transformations, two of which come abamder our map as the real and
imaginary Mo6bius circle transformations. The coatius subgroup of this group will be
obtained when one transforms the initial and fipaint of all arrows by two mutually
independent proper circle transformations.

The map of the imaginary points of a sphere onéoarrows in hyperbolic space that
was given by Theorem IV should not be confused waithther one that one can derive
from the aforementioned Chasles Ansatz, which, Weweis arrived at much more
simply, when one replaces any imaginary point ef $phere with the real points of the
two associated generators of the sphere, whichasseciated with that point in some
well-defined way. Both maps go to each other tghoua simple involutory

() Cf., Math. Ann.39 (1891), pp. 595, and the author’s extension of it in AbhKd&achs. Ges. d. W.
20 (1893), pp. 229.
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transformation. The different images of one and #mespoint of the sphere are, in fact,
catheti Katheten of a right-angled triangle that is inscribed in thbeye, in the sense of
Euclidian geometry (the hypotenuse is a diameter ofpherg). In the event that the
curve does not reduce to a generator of the spherendige of an analytic curve on the
sphere will now become a congruence of arrows that ateslianmproper-conformal
map of the sphere; the image of an irreducible circlebeil e.g., the congruence that is
determined by an improper circle transformation. If osgumes that the points of the
curve considered are pair-wise conjugate-imaginary themgbkeciated conformal map
will become involutory. If the curve has a real evolntimoreover, then the map will go
to theconformal reflection in a real analytic curtbat was treated by H. A. Schwarz.

We shall not go further into this matter, and remarly timht the arrow congruences
that are defined by improper-conformal maps deserve ardlosstigation in the sense
of non-Euclidian geometry, as well as also in thesseof the theory of enveloping
groups, which one can derive from the behavior of the itaa[d.

V.

Examples of the map for non-analytic manifolds.
Concluding remarKks.

If one restricts oneself teynecticfigures in the geometry of rays and arrows — i.e.,
ones whose properties under maps in the plane or ogptiere can be expressed by
analytic equations — then one will consider a group of geometrice¢hep that already
inherently have the simplicity and completeness tlaér realms of geometry first take
on by the introduction of imaginary elements, and thugoap of theorems that do not
demandhe introduction of imaginary elements. As a resuie will expand the circle of
figures under investigation from the outset, and, as shehintroduction of imaginary
elements can bpreferablewith the aforementioned restriction, since importaats —
e.g., the property of the synectic congruences as congau@fhdeanslations — might
otherwise escape notice. In the application to orgimgometry to doubly-extended
manifolds, one must naturally employ bi-complex quarstitie

If we consider only real figures in ray space, as wd alsd do in what follows, then
the circle of geometric constructions thus circumsttivill encompass real hyperbolic
geometry, among other things. One will generally be &bk what kind of figures of
plane geometry are then associated with the real fgareay space. A guestion of this
kind will be answered partially by the following theorem:

If one subjects the manifold of real points of a sphere or a suifadnie of this
manifold to an imaginary analytic proper surface-preserving transformation then t
image that is exhibited from Theorem IV of the doubly-extended non-amagnifold
that thus arises will be an analytic, non-synectic, normal congruenceerlhglic space,
or a part of one.

Whether the converse theorem is also correct, @thvn one can findll real, non-
synectic, normal congruences of this kind can, in fact baldecided on the basis of a
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special examination. Thus, much can be said of theHatttnormal congruence (which
can be either non-synectic or synectic) can, in amnie have nabsoluteinvariants
under the action of the group of proper surface-preservingftnanations.

We would like go further into a group of theorems that lba connected to known
projective-geometric investigations.

We consider certain special line surfaces, congrueranebs,complexes, and then
assume a standpoint that is different from the usual dfamely, we will always look at
only the part of such a manifold that enters the intesiohyperbolic space, and will
likewise calculate those points of the absolute sarfaself at which they will be
contacted by lines of the manifold in question. The menstructure, which we will
hereinafter regard as manifolds of (realys— with our definition of the word — are the
loci of the principal axes of linear families of threads (linear ptaxes) in hyperbolic

space(’).

We next set down a lengthy sequence of geometric theotbat refer to this
structure.

We will call the always-real line surfaeeor for that matter, the part of such a surface
that does not lie outside the spherthat are composed of the principal axes peacil
of non-coaxial linear complexegsay chain

There areo’ such chains, each of which consists of the normaisray — viz., the
axis of the chain — and is determined uniquely by any three mutdisliyict rays of it,
such as three arbitrary normals to an arbitrary aXikey will then be permuted with
each other through the dual-projective and anti-projectargstormations, and they will
all be equivalent to each other under the transformsd this group. Among them, one
finds, in particular, all cylinders of rotation (i.e., conegh improper vertices), and
furthermore, all pencils of rays that have their iced in the interior of the absolute
surface, and furthermore, any pair of pencils of raystiba its vertex in the interior of
the absolute surface, and also any pair of pencilsysfima perpendicular plane whose
vertex is found on the poles of that plane that liesiole the absolute surfac8,(and
finally, any pencil of rays with improper vertices.

Secondly, we consider the congruence of principal axesreélnet (i.e., bundle) of
linear complexes (whose individuals can nowhere be argaingec’ pencils of coaxial
complexes). Such a congruence can consist of normala tndividual ray. We shall
exclude theseo? congruences, which can be regarded as degenerate forgeneral
congruences. We would like to call the remaining cimen congruences.

There arex® chain congruences, and they will likewise be permutedsttively
amongst each other by the dual-projective and anti-gregetransformations. A single
chain congruence goes through any four rays, no three chwkiong to the normal net

() Cf., Sturm Liniengeometrie,lin which the main facts were considered only in Eudiidipace, and
the literature that was cited there (pp. 175), whichnifrtunately, unavailable to the author, for the most
part.

The ray chain, or for that matter, the line surftcat it represents a piece of, is of degree four in the
general case; it is the so-called projective genataz of the much-examinedylindroid. In the same
sense, the chain congruence latgr alia, order and class three, while the chain complex is qtiadr

(® Such a pair of pencils of rays is, from what wasl,s@i be regarded as single algebraic (irrreducible)
manifold here whose two components are connected byntpmper rays.
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of a ray. Such a congruence has a single ray in comvitbrthe normal net to a ray, in
general, but an entire ray chain in common with thenab net toc? of the rays that are
“adjoint” to the congruence. Any two rays of the carggrce can be linked by a single
ray chain that is contained in the congruence. The axg®séo’ ray chains define a
second chain congruence that has an invertible relatiomstighe first one, and which
we can thus call iteeciprocal congruence.The common normal to any two rays of the
one congruence is a ray of the other congruehceThe chain congruence can also be
explained as the locus of common normals to the raysofchains that have a ray in
common, and indeed* generators are possible. It is, moreover, the loctiseoflouble
elements for an involutory dual anti-collineation, andetermines one conversely.

One chain congruence, in particular, is any ray bundle haa its vertex in the
interior of the absolute surface, and furthermore, igaré of all rays in a plane,
combined with the figure of all rays that perpendiculathi plane?). By contrast, by
our definition, a pencil of rays with an improper verierot a chain congruence.

Thirdly, we consider the complex of the principal agés real spray (i.e., a fourth-
order linear system) to be a linear complex whose iddali members cannot be
distributed intow? pencils of coaxial complexes. We call one such coxmplehain
complex.

There areo’ chain complexes, and each of them is, as we would tbkeay,
reciprocal to a certain ray chain. Namely, it consists inttitality of all normals to the
rays of the chain. It then follows that the chaomplexes are permuted transitively
amongst themselves under dual projectivities and antiginajees.

The chain complex contains a “singular” ray, nam#ig, axis of the reciprocal ray
chain. It contains three different kinds of ray chairf: chains of the first kind are
determined by any two rays of the complex that do natrigeto the normal net of a ray
of the reciprocal chain. By contrast? ray chains of the second kind are contained in
any of these nets, but do not, in turn, contain thgusam ray. The intersection of both
manifolds can regarded as a third manifold that conefsts’ chains, each of which is
determined by two rays of a normal net that is containesd complex and the singular
ray of the complex.

The chain complex contains’ chain congruences that all have the singular ray of the
complex in common with each other. Such a congruence isvdegéel by three rays of
the complex, none of which can be the singular rayunally, and which also cannot
belong to the same normal net.

A chain complex generally has one chain of the finstl kn common with the normal
net to a ray. In special cases, only the singularacagyen the entire normal net, belongs
to the complex.

The multitude of these line-geometric theorems can oblyidaes regarded asew.
All of them, and many others of their kind, can beaoi#d, howeverwith no further

7

() The common normals to any two generators of theeddnd of a rectilinear surface of order 2 that
enters the interior of the absolute surface lie irhairc congruence (without this always being fulfilled
completely, moreover), apart for some exceptional caseghe limiting case of the Euclidian space, this
yields the analogously-definethnsversal congruences E. Waelsch (Nova Acta Leopoldina, 1888, Bd.
52, no. 6).

(® This figure can also be regarded an (analytic) continuu
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assumptionsfrom a theory ¥) that has been developed already on the basis of our
Theorem Il and the following simple remark:

Any ray chain is the image of a one-dimensional (v. Staudt) chain fronctoreje
geometry, any chain congruence is the image of a two-dimensional one, alyj &ngal
chain complex is the image of a three-dimensional (so-called degendhrate)

We do not have to refer to this, in itself, intenegtconnection, moreover: The basis
for parallel theorems emerges, in fact, by the samsiderations.

Ordinary projective geometry escapes some of thedstheorems, due to the nature
of things, namely, the invariance of the reciprocaltie@iships:

Ray chains Chain complex
Chain congruence Chain congruence
Chain complex Ray chain

under contragredient dual-projective transformations.

Here, we break off this summary, which would lead iib rebre things, in order to
considerEuclidian geometryn conclusion.

Applications to Euclidian geometry of the kind thabuld be of interest to the
empiricist that we mentioned at the outset can be nimadearious ways using the
relationships that were described.

For example, the theorem that was presented in § %himyh, a connection exists
between (non-synectic) normal congruences in elligtace and the surface-preserving
map of two spheres, immediately implies a methodHerimtegration of the differential
equations on which the surface-preserving map depends. Timeoton between
curvature lines and isometric curves of the map thadesswvithin it will be proved quite
fruitfully on both sides. As is known, one can regen& the spherical and pseudo-
spherical geometry in Euclidian geometry in such a wayt the concept of angle
overlaps with the ordinary concept of angle. The glitdines then appear as circles that
intersect a sphere in diameters in the first case ightl angles, in the second. Triply-
orthogonal systems go to other ones under this map, andlspegtems of the kind are
obtained from the families of parallel surfaces in -Baelidian space and its normal
congruences that are associated with developable surf&mscial orthogonal systems
will be determined by proper-conformal maps between pie€es sphere or a plane.
These maps, and thus also the associated orthogoterinsydelong to each other pair-
wise, apart for an exceptional case; they are linked avitiird one that is determined by
differentiation, etc.

Other applications can be obtained from passage tontitethat was mentioned in
the beginning.

For example, the theorem on synectically-relateddimeongruences (8 3) does not
generally take on a form that is as simple in Euclidiaace. Parallel bundles of various

() We refer to the investigations of chains and gerstrattures of the kind that C. Segre carried out.
(“Un nuovo campo di ricerche geometriche,” Atti dell’Aesnia delle Science di Torino, v. 25, 1890; cf.,
also Math. Ann40 (1892), pp. 413et seg) The two-dimensional chains have already been exanbyed
C. Juel (Acta Math., v. 14, 1890). These worthwhile pagees to have attracted no attention whatsoever
up to now.
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normal congruences to developable surfaces enter in pfabe synectic congruences.
In general, the methods that were developed in § 3 capgieGto Euclidian space with
certain, generally inessential, alterations (In this connection, one also infers new
problems that are peculiar to Euclidian geometry. Bample, the totality of all
transformations of straight lines that permute the abroongruences of developable
surfaces amongst themselves do not exhaust the grougetiregs the limiting case of
our group of synectic and anti-synectic transformatiofise transformations in question
define a much more encompassing group that can, more@veeplkesented by explicit
formulas, and likewise their subgroup that additionadlyes normal congruences of a
general kind to other ones.

What seems especially noteworthy to us is the manifbfthibe and infinite groups
in line space that is defined ®ymple geometric properties that is produced by our
considerations. Line geometry has space for an abunddrgmometric and analytical
theories, only one of which is Plicker line geometryt biaave been predominantly stated
in the context of algebraic investigations up to néy (The author believes that the
construction of such theories, to some of which we Isdneavn a navigable path, could
be called an advance in geometry.

Finally, we would like to refer, by way of appendix, &oconnection that exists
between some of the questions that we generally onlghbd against and the geometry
of contact transformations. Namely, one has theaerdinarily fruitful and important,
due to its relationship witlgeometrical optics theorem that any transformation of
straight lines that takes normal congruences to othes snene-to-one and invertibly
linked with a family ofeo’ contact transformations that convert parallel sagainto
other ones.

() Cf., the author'sGeometrie der Dynamemvhere related investigations of other things were als
carried out.

() The general projective group in four-dimensional spacgroup with 24 parameters) can also be
mapped into line space in an apparently simple way. ddoeses a general or special thread arbitrarily.
Any two lines that do not belong to this thread (andraepolar related) then define a single second-
degree surface that has a family of generators in the thiBael group in question includes the totality of
all transformations that take three lines that belorthesame surface to other ones.

Line geometry yields still other remarkable groups iraiye For example, one comes to such a group in
a four-fold extended manifold when one starts with the (1@mater) group of all transformations of
Euclidian space that convert normal congruences of btrhigps into other ones, and then introduces the
pencil of parallels as its space element.

[The author has pursued some of the suggestions on Enadjjdametry that were made in the present
article further in the meantime. Cf., the prelimmppaommunication “Ein neuer Zweig der Geometrie,”
Jahresbericht XI, pp. 97-123, Nov, 1901. — One can also contipatrevith the previous attempts: Joh.
Petersen, “Géométrie des droites dans I'espace nortiencliKopenhagener Akademieberichte 1900, pp.
306, et seq.
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Appendix tothearticle: On non-Euclidian and line geometry.

By E. STUDY in Greifswald.

The connection between the theory of conformal naaqusthe surfaces of curvature
zero in non-Euclidian space that was given in thedaticle was already known at the
time of publication (March, 1900). The theorem impliedfasind, in a somewhat
different form and based in another way, in the Gernditioa of the lectures on
differential geometry of L. Bianchi (Leipzig, 1899) on page 640.

We will take this opportunity to explain the extension@duss’s method of the
spherical map to non-Euclidian geometry that was predetitere by yet another
application.

It is known that Gauss presented three different espas for the curvature of a
surface in hidDisquisitiones generalegach of which can be employed as the definition
of that quantity. The curvature appears once as théngnvalue of the ratio of two
surface areas, then as the reciprocal value of the praxfutite principal radii of
curvature, and finally, as a bending invariant, it is exqgedy the coefficients of the
guadratic differential form that serves to represeatdatt length element, and by certain
derivatives of these quantities with respect to the boear coordinates that are
ordinarily denoted by, v.

The fact that the third of these definitions can &eied over to non-Euclidian space
without alteration is self-explanatory. Bianchi prdvbat the quantities thus-defined can
then be likewise expressed through the principle curvaadiethat belong to them. By
contrast, as it seems, an analogue to the firstjrafatt, original, Gaussian explanation
for curvature is still lacking up to now. This analogue willv, as we supposed from the
outset, also be easily obtained by the method of s@hen@ges. Since they are real
only for non-Euclidian spaces of positive curvature, vite immediatelyrefer to just that
assumption. Moreover, for the sake of ease of notatve set the known curvature equal
to positive unity. Furthermore, we speak onlyaoflytic surfaces, and indeed, for the
sake of brevity, onlyeal ones.

We next recall the characteristic properties of the spherical images of such a
surface. The normal to the surface at a point of redpglhavior will be oriented, so it is
converted into a “spear;” i.e., its so-called posithr@ction will be assigned. One then
draws two spears that are left-paratactic and rightgetia to the normal through an
arbitrarily-chosen point (or also through two differentnpg), and as is described more
precisely inloc. cit., they will be associated with points of two spheresadfus one (in
Euclidian space). Therefore, the normal congruencthefsurface, and thus also the
(oriented) surface itself, can be mapped to a familyp®point-pairs of the two spheres.
These either trace out (namely, on the surface ofature zero) two analytic curves or
they mediate a proper surface-preserving map of the twaoesph@he spherical images
have no further special properties: Any curve-pair ang analytic proper surface-
preserving map of the two spheres determine a unique fafrplgrallel surfaces in non-
Euclidian space (which can be easily determined by a quadratiowe, it is naturally
excluded that a curve or a point will appear in place efidace of the family. The
character of the map employed will not be influenced byctioice of the auxiliary point
that is employed in the construction.
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One now imagines a bounded surface patch of eréavhose sign is determined by
the positive direction of the surface normal) in @&adly-chosen neighborhood of a point
in which the surface considered behaves regularly. esponding surface patch on any
surface that is parallel to the given one will be defimemediately by the association of
common normals, in particular, a surface patch oftaicearea; onthe surface that has
the given distance of/ 2 from it, so it is absolute-correlative to it.

If one now bends the given surface then not only does the surfac&;areaain
preserved, as is self-explanatory, but also the value of the surfaee FRarwill be
unchanged.

Furthermore, the sumM F3 does not change when one displaces both surfaces in
the family of parallel surfaces while preserving its distan¢e.

Moreover, this sum measures the surface area of any of the twacgpimaages that
belong to the family of parallel surfaces (or to their common normal conge)e

Finally, the curvature of the surfaces that are considered to bewbipetorrelative
to each other at any pair of associated points, and thus the curvatures sd-ttzdled
first and third quadratic differential forms that belong to the given surfagé be
represented by the two limiting values:

+
lim i lim

1 FS

F+F,

As one sees, the concept of th&al curvatureof a surface patch (with the associated
consequences regarding geodetic polygons) can be carriedoonen-Euclidian space
unchanged.

The author has thought about going further into the ptiegesf the spherical images
in a paper that is still in preparation. For a suitabalytic representation of the so-
called union of surface elements, the foundations ¢déreifitial geometry of curves and
surfaces can be given a common expression. The thabghtsre based in Lie’s sphere
geometry can be made more precise and developed furthke idirection of metric
geometry. In that way, the author arrived iater alia, the insight that the quadratic
differential forms that characterize a surface, uftm, by the fundamental theorem of
surface theory that Bianchi adapted to non-Euclidian sgacebe expressed in an
essentiallywell-definedway bylinear differential forms. The coefficients of theserfus,
which are, moreover, always imaginary in the ordinacdysidered cases, are linked by
equations that have, in a certain sense, a simplactste than the equations that were
cited by Gauss and Codazzi. It might indeed be considerdse an all-the-more-
rewarding problem to develop the general theory of susf&cen the starting point that
was indicated, which then offers the opportunity to deriveym@ew theorems, one of
which we have communicated here. A corresponding theniso possible in the
limiting case of Euclidian space, moreover.

Greifswald, 10/5/1902.



