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 The present essay (which shall be followed by a second one) relates to the elements 
of sphere geometry (which is called “higher” by some).  The algebraic facts that are the 
roots from which it grows shall be illuminated from a different side.  The ideas that are 
expressed can be easily arranged in such a way that they can also serve as an introduction 
into that sphere of ideas.  Whoever is already familiar with projective geometry will 
already be sufficiently prepared, and if he is not entirely foreign to quaternions then he 
will experience only minor difficulties.   Only the nucleus of the facts shall be dealt with, 
and in the simplest way possible. 
 
 A prior investigation (1) embarked upon the geometry of circles, which includes most of space.  This 
time, in essence, only the spheres will be considered (2). 
 As before, I have initially left all metric notions out of the discussion, which is similar to the usual 
presentation of projective geometry.  That possibility not only exists, but it is also a requirement for a 
healthy methodology.  The creators of the older designs, S. LIE and F. KLEIN, sought to introduce their 
concepts as “elementary” ones, namely, with the help of sphere radii and angles.  However, their 
definitions were very sketchy, and if extended, they would lose their apparent simplicity and lead to a 
seemingly abstruse theory. 
 Metric notions and other details, among which are the special properties of real figures, are excluded 
completely from the present examination (3). 
 
 At the center of all consideration, one will find the orthogonal transformations of 
three and four variables, or rather, their systems of coefficients, together with the up-till-
now scarcely-observed degeneracies in such systems.  Their connection with sphere 
geometry is generally of a formal nature.  It is only when one makes a special choice of 
coordinates that they come to light.  The group property of orthogonal transformations 
does not come into play.  Meanwhile, the overview and implementation of the formal 
apparatus will be eased considerably by the exploitation of such relationships.  Therefore, 
just about everything that will be used at the onset has long since existed in the theory of 
the simplest orthogonal transformations.  Entire systems of statements can then be 

                                                
 (1) Math. Annalen 89-91(1922-1924).  
 (2) The text in large print contains the actual train of thought and defines a connected whole by itself.  
 (3) For them, see § 16 and § 17 of the cited treatise.  [Math. Annalen, 91 (1924); in particular, 
propositions XXXIIIa, XXXV, XXXVI.] 
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phrased in fewer words.  Likewise, the well-known parametric representation of the 
aforementioned transformations (which one obtains most conveniently from quaternions) 
also yields, with no further discussion, the connection between the projective geometry of 
a space R3 and sphere geometry.  The basic concepts that are called point, line, plane, and 
facet (element) will be assigned, with no gaps, to concepts that belong to “sphere space” 

2
3M  as “images,” namely − with my terminology that will be explained (repeatedly) later 

on – the concepts of X-line, oriented sphere, Y-line, and leaf, resp. 
 
 Things are even simpler in the geometry of circles.  An 2

2
M  (e.g., a sphere) enters in place of 2

3
M .  

There, the basic concepts are “the oriented element” and “the oriented circle.”  The oriented elements 
contain the generators of the sphere, which are also not “unions,” while the point (even in a complex 
domain) belongs to the oriented circles.  The images of the oriented circles are the lines in a linear complex, 
while the oriented elements have the pencils of such lines for their images. 
 It seems very profitable to me to express the basic ideas of sphere geometry that S. LIE sketched out 
more cleanly.  It probably has a substantial interest that a complete, and likewise simple, duplicate of 

ordinary projective geometry is already present in the geometry of a quadratic point manifold 2

3
M . 

 Modern geometry, especially higher geometry, knows many of these so-called conversion principles, 
very few of which have been sufficiently investigated.  What follows here is also a term in a sequence that 
extends to infinity.  However, the recursion does not have the same simplicity for more than three (real or 
complex) dimensions, and since it casts light upon the circumstances that belong to the best known of 
modern geometries, it can serve as one of the most instructive examples. 
 
 In the cited papers, whose contents have also served as the starting points for more recent authors, the 

point continua R3 and 2

3
M , and therefore, the open continuum of elementary geometry, were often lumped 

together.  The enumerated counterparts to the concepts of projective geometry were either missing, or they 
entered by way of concepts that were only very imprecisely correlated with those statements.  
Correspondingly, the algebraic apparatus broke down, and they, or some arbitrarily-chosen fragment of the 

continua R3 or 2

3
M , would then appear. 

 While recognizing the value of the blueprint that originated with S. LIE, I have nonetheless regarded it 
as necessary to subject its implementation by him and others to a very disparaging criticism (1).  As a result 
of an adaptation of KLEIN’s lectures by W. BLASCHKE (1926), I must now once more underscore the 
statements that I made at the time.  That mathematician (one of my former students!) should recognize that 
he has a description of the error before him, along with its correction. 
 The fact that his textbook, which is intended for students (!), dodges the concepts of real and 
imaginary, and of “space” and coordinate transformations defies description.  Indeed, I believe that one can 
even give rise to ghosts with the help of such a methodology.  Hence, the intersection figure of two spheres 
in § 29 is a (more or less) real circle, and in § 39, it consists of a circle and an imaginary specter that can 
certainly so-to-speak “materialize” as also real and “empty” (cf., pp. 50).  Something must be said about 
taking care in one’s statements, especially in the use of words such as “always,” “all,” “each,” or “any.” 
(“Mathematics in négligée”)  Since man indeed never says what he thinks, but often thinks what he says, a 
poorly (indeed, not at all) defined fragment of a putative “geometry in all space” can emerge (pp. 4).  What 
is now being offered to us for the third time is so abortive that such a key notion as the equal status of 
points and planes under the line-sphere transformations does not come to light (2).  As before, everything 
carries the stamp of the most hurried sort of writing. 
 Only at a single place (pp. 249) does it almost appear as if the author succumbed to a fit of pronounced 
conscientiousness.  Namely, at that point, an attempt was made “incidentally” (!) to give a belated (!) 

                                                
 (1) Jahresbericht der Deutschen Mathematikervereinigung 25 (1916).  (Which was not cited by 
BLASCHKE, and with good reason.) 
 (2) See propositions XXIII, XXVII, XXXI in the treatise that was cited above (and also be 
BLASCHKE).  
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precise version at least one of many to generally-held assertions.  In general, that is also once more a nasty 
accident (!).  However, the reader indeed learns when he can teach himself – namely, in the case where he 
(unlike the author of those lectures) should feel an irresistible urge to go deeper into the basic questions of 
sphere geometry… 
 That kind of mathematics – viz., mathematics composed of half-truths, abuse of terminology, and 
incantations – is truly irksome: 
 
 1. The mathematician who deals in approximations does not mean what he says, but something 
somewhat different. 
 2. The difference between those statements and their meanings does not come across for him very 
often. 
 3. He has said everything that actually matters.  Period. 
 
 Honi soit qui mal y pense! (†) 
 Naturally, one cannot at all understand mathematicians who seek to evade every earnest criticism, or 
put even more simply, who can glide over them, while not remotely appreciating the ground rules of 
science. 
 The usual error that appears to be isolated is very harmless in comparison to that demanding (indeed, 
sometimes downright violent) kind of writing, which can be referred to, without exaggeration, as a 
systematization of the error. 
 In the future, these lectures will probably also find mostly relatively-uncritical readers.  For that very 
reason, but also to spare the readers the necessity of looking things up, which is my wish for them, I have, 
moreover, once more analyzed some of the alleged facts upon which sphere geometry allegedly rests. 
 
 

I.  
 

The manifold 2
4M . 

 
 We consider a non-singular quadratic manifold 2

4M  in a domain of rank six; i.e., in a 

projective continuum R5 of five complex dimensions, represent it by an equation of the 
special form: 
(1)     2 2 2 2 2 2

0 1 2 3 4 5− + − + −z z z z z z  = 0. 

 
 We then understand A00, A11, …, A33 and B00, B11, …, B33 to mean the system of 
coefficients of two ternary, homogeneous, orthogonal transformations, so that each of the 
two systems of equations: 
 A00 x1 = A11 x0 + A12 x2 + A13 x4 , 

(2.l)    A00 x3 = A21 x0 + A22 x2 + A23 x4 , 

 A00 x5 = A31 x0 + A32 x2 + A33 x4 , 

 
 − B00 y1 = B11 y0 + B12 y2 + B13 h4 , 

(2.r) − B00 y3 = B21 y0 + B22 y2 + B23 h4 , 

 − B00 y5 = B31 y0 + B32 y2 + B33 h4 , 

 
                                                
 (†) Translator’s note: “Shame upon those who think evil!”  (This is also the motto of the British Order 
of the Garter.) 
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will yield one of the 2 ⋅⋅⋅⋅ ∞2⋅⋅⋅⋅3 planes that lie on 2
4M , and indeed, in the first case, we will 

obtain what we would like to call a left plane Eξ , and the second, a right plane Eφ .  The 
Grassmann coordinates of those planes, whose specification is essential for all that 
follows, can be calculated with no further assumptions.  In the first case, they will be 
pair-wise equal to each other, and in the second, pair-wise equal and opposite (1), and 
indeed we will obtain the coordinates of Eξ as the ratios (2): 
 

(3.l)  

024 00 135

124 11 035 014 12 235 021 13 435

324 21 105 034 22 125 023 23 145

524 31 130 054 32 132 025 33 134

,

, , ,

, , ,

, , .

A

A A A

A A A

A A A

= =
= = = = = =
= = = = = =
= = = = = =

X X

X X X X X X

X X X X X X

X X X X X X

 

 
 When one temporarily sets iklY  in place of – Yikl , for the sake of better clarity, one 

will likewise find the system of coordinates of Eφ : 
 

(3.r)  

024 00 135

124 11 035 014 12 235 021 13 435

324 21 105 034 22 125 023 23 145

524 31 130 054 32 132 025 33 134

,

, , ,

, , ,

, , .

B

B B B

B B B

B B B

= =
= = = = = =
= = = = = =
= = = = = =

Y Y

Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y Y Y

 

 
 We will then reduce the twenty GRASSMANN coordinates of a plane Eξ or Eφ to half 
that number, when we employ either the symbols that appear in the left version of (3) or 
the ones that appear in the right version, and we then have the theorem that in the case of 
the left (right, resp.) planes Eξ (Eφ , resp.), those coordinates will be equal to the 
coefficients of a proper (improper, resp.) homogeneous, ternary, orthogonal 
transformation, in succession (3). 
 The non-vanishing of the quantities A00, B00 is assumed here, which has the 
consequence that the system of equations (2) will define a non-closed continuum of 
planes Eξ and Eφ on 2

4M  that does not exhaust the totality of those planes then.  However, 

the equations (3) that one derives from (2) are not subject to that restriction.  Rather, one 
has the theorem: 
 

                                                
 (1) This theorem can obviously be extended to an indeterminate even number of variables, and we shall 
make some occasional applications of that fact. 
 (2) For the laws of constructing those formulas, see the treatises on the KUMMER configuration and the 
PASCAL hexangle, Leipziger Berichte, 1892 and 1895. 
 (3)  This theorem, and even some others, can be extended to an indeterminate number of variables 

mutatis mutandis; i.e., to the theory of a non-singular 2

2m
M .  For more details, see Math. Annalen 91 

(1924), pp. 102 (remark).  Moreover, it is naturally irrelevant which family of planes on 2

4
M  one would 

wish that the proper orthogonal transformations should correspond to. 
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 The same equations (viz., twenty linearly-independent quadratic equations) exist 
between the GRASSMANN coordinates of a left (right, resp.) plane on the quadratic 
manifold 2

4M  that exist between the coefficients of a homogeneous, ternary, proper 

(improper, resp.) orthogonal transformation, and no further dependencies of any sort. 
 
 Along with the proof of this statement, we shall point out the richer content in it.  
Indeed, with the help of EULER’s known formulas, we can express the quantities A00, 
Aik, and B00, Bik, and in essentially only one way, in terms of two systems of 
homogeneous parameters: 
(4)     ξ0 : ξ1 : ξ2 : ξ3 , φ0 : φ1 : φ2 : φ3 , 
by way of: 
 A00 = 2 2 2 2

0 1 2 3ξ ξ ξ ξ+ + + , 

 A11 = 2 2 2 2
0 1 2 3ξ ξ ξ ξ+ − − , 

(5.l) ………………………., 
 A23 = 2 3 0 12( )ξ ξ ξ ξ+ , A32 = 2 3 0 12( )ξ ξ ξ ξ− , 

 ……………………………………………………, 
 
 B00 = 2 2 2 2

0 1 2 3φ φ φ φ+ + + , 

 B11 = 2 2 2 2
0 1 2 3φ φ φ φ+ − − , 

(5.r) ………………………, 
 B23 = 2 3 0 12( )φ φ φ φ+ , B32 = 2 3 0 12( )φ φ φ φ− , 

 ……………………………………………………, 
 
 We now consider the parameters ξi , φk to be the homogeneous coordinates of a point 
and a plane, resp., in a projective continuum R3 that shall be called the image space from 
now on.  We then calculate the (so-called PLÜCKER) coordinates of the connecting lines 
and intersection lines of two points ξ, ξ′ and two planes φ, φ′, resp.: 
 
 Ξ01 = 0 1 1 0ξ ξ ξ ξ′ ′−  = Φ23,  Ξ23 = 2 3 3 2ξ ξ ξ ξ′ ′−  = Φ01 , 

 Η01 = 2 3 3 2φ φ φ φ′ ′−  = Ψ23,  Η23 = 0 1 1 0φ φ φ φ′ ′−  = Ψ01 . 

 
 We then bring the (PLÜCKER) equation that exists between such line coordinates: 
 

Z01 Z23 + Z02 Z31 + Z03 Z12= 0 
 

into the form (1) by means of the substitutions: 
 

(6)    0 01 23 2 02 31 4 03 12

1 01 23 3 02 31 5 03 12

Z Z , Z Z , Z Z ,

Z Z , Z Z , Z Z .

= + = + = +
= − = − = −
z z z

z z z
 

 
The bundle of lines through a point ξ will then always correspond to a plane Eξ on 2

4M , 

and likewise the line field in a plane φ will correspond to a plane Eφ .  In order to find the 
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GRASSMANN coordinates of, say, the plane Eξ , one needs only to connect the point ξ to 
the three corners of the coordinate tetrahedron that is being used with lines, and after 
referring to formulas (6), looking for the corresponding points z′, z″, z″′ on the manifold 

2
4M .  If the corners employed were, say, (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 1 : 0) then 

one would obtain just the expressions (5.l) with the factor ξ0 as the coordinates of the 
connecting plane Eξ of z′, z″, z″′.  One will obtain the same expressions, with the factors 

ξ1 or ξ2 or ξ3 , when one employs one of the other triples of corners of the coordinate 
tetrahedron.  However, since the quantities ξ0 , ξ1 , ξ2 , ξ3  cannot all simultaneously have 
the value zero as homogeneous coordinates, the general validity of formulas (3.l) is then 
proved, and one likewise proves the validity of formulas (3.r). 
 Now, it is clear that a point ξ and a plane φ that are not united will correspond to 
planes Eξ and Eφ , resp., on 2

4M , that have no common point, and that when ξ and φ are 

united, the planes Eξ and Eφ will intersect in a line.  A necessary and sufficient condition 
for this “united position” of Eξ and Eφ is then the existence of the equation: 
 

(7)    0 0 1 1 2 2 3 3( ) 0.ξ φ ξ φ ξ φ ξ φ ξ φ= + + + =  

 
 One likewise explains how any two left planes Eξ and Eη will intersect in the point 
that corresponds to the connecting line of ξ and η, and that correspondence will also be 
true for two right planes Eφ  and Eχ . 
 The point ξ and the plane φ in united position define a figure with five complex 
constants that BIANCHI called a facet (and LIE called it a “surface element,” or more 
briefly, an “element”), and they collectively determine a pencil of lines that will map to a 
line Z on 2

4M .  Conversely, every line Z on 2
4M  naturally corresponds to a facet that is 

the image of the figure that consists of two planes Eξ and Eφ in united position, and thus Z 

is also their line of intersection.  We desire to calculate the GRASSMANN coordinates of 
the line Z when the facet (ξ, φ) is given, and conversely, to find the coordinates of the 

facet (ξ, φ) when the coordinates of Z are given. 
 This problem is similar to the one that was treated before, from which one obtained 
the dependencies ξ ↔ Eξ , φ ↔ Eφ , and it is likewise elementary.  However, the 
necessary calculation is more tedious in the present case. 
 In order to be able to grasp it briefly, I shall next introduce the following system of 
symbols: 
 C00 =    ξ0 φ0 + ξ1 φ1 + ξ2 φ2 + ξ3 φ3 = Ω00 , 
  
 C01 = − ξ0 φ1 + ξ1 φ0 − ξ2 φ3 + ξ3 φ2 = Ω24 , 
 C02 = − ξ0 φ2 + ξ1 φ3 + ξ2 φ0 − ξ3 φ1 = Ω40 , 
 C03 = − ξ0 φ3 − ξ1 φ2 + ξ2 φ1 + ξ3 φ0 = Ω02 , 
 
 C10 =    ξ0 φ1 − ξ1 φ0 − ξ2 φ3 + ξ3 φ2 = Ω35 , 
 C20 =    ξ0 φ2 + ξ1 φ3 − ξ2 φ0 − ξ3 φ1 = Ω51 , 
 C30 =    ξ0 φ3 − ξ1 φ2 + ξ2 φ1 − ξ3 φ0 = Ω13 , 
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(8) 
 C11 =    ξ0 φ0 + ξ1 φ1 − ξ2 φ2 − ξ3 φ3 = Ω01 , 
 C12 =    ξ0 φ2 + ξ1 φ1 − ξ2 φ2 − ξ3 φ3 = Ω01 , 
 C13 = − ξ0 φ3 + ξ1 φ2 + ξ2 φ1 + ξ3 φ0 = Ω21 , 
 
 C21 = − ξ0 φ3 + ξ1 φ1 + ξ2 φ1 − ξ3 φ0 = Ω01 , 
 C22 =    ξ0 φ0 − ξ1 φ1 + ξ2 φ2 − ξ3 φ3 = Ω01 , 
 C23 =    ξ0 φ1 + ξ1 φ0 + ξ2 φ3 + ξ3 φ2 = Ω21 , 
 
 C31 =    ξ0 φ2 + ξ1 φ3 + ξ2 φ0 + ξ3 φ1 = Ω03 , 
 C32 = − ξ0 φ1 − ξ1 φ0 + ξ2 φ3 + ξ3 φ2 = Ω25 , 
 C33 =    ξ0 φ0 − ξ1 φ1 − ξ2 φ2 + ξ3 φ0 = Ω45 . 
 
 In regard to that, one should immediately note that these equations can be solved for 
the products ξi φk .  For example, one will have: 
 

C00 + C11 + C22 + C33 = 2ξ0 φ0 . 
 
 The dependencies that exist between the sixteen quantities Cik (viz., 36 linearly-
independent quadratic equations) are then linear transformations of the ones that exist 
between the products ξi φk .  They will then differ from the latter only in form.  If they are 
fulfilled then one can always calculate the homogeneous coordinates of a point ξ and 
plane φ from them, and when the equation C00 = 0 exists, moreover, those figures will 
collectively define a facet. 
 However, the property of the quantities Cik that is important here can be expressed in 
the theorem: 
 
 When the square-root quantity: 
 

N Nξ φ⋅  = 2 2 2 2 2 2 2 2
0 1 2 3 0 1 2 3ξ ξ ξ ξ φ φ φ φ+ + + + + +  

 
is non-zero, the quantities Cik , together with one or the other of the values of 

N Nξ φ⋅ , will define the system of coefficients of any quaternary, proper, 

homogeneous orthogonal transformation.  However, in general, the dependencies 
between the coefficients Cik will be exhausted by the homogeneous equations that exist 
between the coefficients of such a transformation. 
 
 In fact, the quaternion formula: 
 

N Nξ φ⋅ ⋅⋅⋅⋅ ω* = ξɶ ω φ, 
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by which, one can indeed express every proper orthogonal transformation in terms of four 
variables ω0 , ω1 , ω2 , ω3 , delivers precisely that system of coefficients (1).  If Nξ ⋅⋅⋅⋅ Nφ = 
0 then one will obtain a system of quantities Cik that will also be useful from now on, but 
which no longer belong to a transformation.  Whether the one or the other occurs is 
immaterial here. 
 
 Note that when Nξ ≠ 0, Nξ ≠ 0, the ratios A00, Aik and B00, Bik – i.e., the system of coefficients of the 
ternary transformations: 

Nξ ⋅⋅⋅⋅ λ* = ξ λ ξ,  Nφ ⋅⋅⋅⋅ ρ* = φɶ ρ φ , 
 
that are invariantly-coupled to the quaternary transformations – can also always be calculated without 
having to go the way of the products ξi φk .  Namely, any two complementary two-rowed determinants from 
the matrix of quantities Cik are equal to each other.  If one now chooses the nine possible types of two pairs 
of such determinants in such a way that all sixteen quantities Cik are employed in that way then sums and 
differences of them will be equal to the quantities A11, …, A33, B11, …, B33, multiplied by the factors Nφ or 
Nξ, resp.  For example, one has: 

Nφ ⋅⋅⋅⋅ A11 = B00 ⋅⋅⋅⋅ A11 = 00 01 02 03

10 1111 13

C C C C

C C C C
+  = 2022 23 21

32 33 30 31

C C C C

C C C C
+ , 

 

Nξ ⋅⋅⋅⋅ B11 = A00 ⋅⋅⋅⋅ B11 = 00 01 02 03

10 1111 13

C C C C

C C C C
−  = 2022 23 21

32 33 30 31

C C C C

C C C C
− . 

 
 Moreover, we will not employ this proposition and everything that is connected with it here (2).  
Another property of the quantities Cik can also be mentioned only as an appendix: 
 The equations Cik = 0 or Ωαβ = 0, when considered in isolation and interpreted in the projective 
continuum R3, represent the group of sixteen two-sided collineations that is linked with any KUMMER 
configuration, and as a result, with ∞2⋅⋅⋅⋅3 of them (3). 
 
 In the present investigation, the quantities Cik will now be considered to be ratios, and 
the fifteen GRASSMANN coordinates of any line on 24M  will be used for their 

representation.  C00 is then to be set equal to zero, which will have the effect that the 
quantities C11, C22, C33 can be written a little more easily; e.g.: 
 

C11 = 2 (ξ0 φ0 + ξ1 φ1) = − 2 (ξ2 φ2 + ξ3 φ3). 
 
 One will get the desired coordinates from elementary calculations that are similar to 
the ones above in the following compilation: 
 

                                                
 (1) The appearance of quaternary, orthogonal transformations in this context can be excluded from the 
outset.  However, I shall omit an explanation of that fact, which would seem to necessitate a good number 
of words that are not required here. 
 (2) Cf., Am. J. Math. 29 (1906) or (1907).  
 (3) See the previously-cited paper in Leipziger Berichte, 1892.  Further groups of similar structure 
(which can all be represented in a similar way) were determined exhaustively in the Göttinger Nachrichten 
from the year 1912. 
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(10) 
24 01 24 40 02 40 24 01 24

25 10 35 01 11 01 21 12 21 41 13 41

51 20 51 03 21 03 23 22 23 43 23 43

13 30 13 05 31 05 25 32 25 45 33 45

(0) (2) (4)

0

(1)

(3)

(5)

C C C

C C C C

C C C C

C C C C

= = − = = − = = −
− = = = = = = = =
− = = = = = = = =
− = = = = = = = =

Z U Z U Z U

Z U Z U Z U Z U

Z U Z U Z U Z U

Z U Z U Z U Z U

 

 
 The symbols Uik that are appended, which can naturally be replaced with the symbols 

− Uik , mean the GRASSMANN coordinates of the polar figure to the line Z in relation to 

the manifold 2
4M , and therefore the coordinates of a certain line space R3 .  For the sake 

of simplicity, we shall write them with two indices, instead of four.  (e.g., Uαβγδ = Uεζ , if 

αβγδεζ is an even permutation of 012345)  Of the quantities Zik (and likewise, of the 

quantities Uik), fifteen times six of them – namely, the ones that contain four indices – 

will satisfy the PLÜCKER equation, and in addition, as in the case of C00 ≠ 0, twenty-one 
quadratic equations will exist between them that are linearly-independent of them and 
each other. 
 That proves: 
 
 The fifteen ratios Zik (= ± Ωαβ) are the coordinates of the intersecting line of the 

planes Eξ and Eφ , and the fifteen ratios are the coordinates of the polar of Z, and 

therefore of the linear space R3 that connects the planes Eξ and Eφ . 

 
 The association of the figures Eξ and Eφ , and Z or U that lie in the space R5 with the 

figures ξ, φ, and (ξ, φ) in the image space R3 is birational and completely free of 
singularities. 
 
 This last fact is obviously very essential.  The simplicity of the following 
developments rests upon it. 
 If one performs a collineation or a correlation on the image space then that will 
induce a proper or improper collineation, resp., of the manifold 2

4M , and the converse is 

likewise true.  The groups Γ15, Η15, and G15, H15 that come under consideration are 

holomorphic.  Since the collineations and correlations in R3 are capable of two 
essentially-different representations by matrices with sixteen quantities, the same thing 
will be true for the automorphic collineations of 24M .  However, our investigation has 

produced not only that fact (which is sufficiently well-known), but a further-qualified 
formal apparatus that we will need henceforth (1). 

                                                
 (1) The representation of automorphic collineations of our 2

4
M  that is borrowed from projective 

geometry has still not attained its formally-simplest expression, moreover.  See Journal für Mathematik 157 
(1926), pp. 58, 59. 
 For the anti-collineations and anti-correlations that appear in that context, see Math. Annalen 91 
(1924). 
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2. 
 

The manifold 2
3M . 

 
 We can now derive a further group G15, H15, and indeed a group of non-projective 
transformations, from the last group that was considered G15, H15, simply by choosing 

any linear space R4 in the space R5 that does not contact 2
4M , and then intersecting the 

planes Eξ and Eφ with that R4 .  The figures of intersection, or traces, of Eξ and Eφ will be 
lines X and Y that lie in the intersection of R4 and 2

4M , and thus on a non-singular 23M , 

and the planes Eξ and Eφ are associated with each other in a one-to-one invertible and 
everywhere continuous way.  If the planes Eξ and Eφ were then exchanged with each 
other by a transformation of G15, H15 then the lines X and Y would be exchanged 

correspondingly, and in that way, the group G15, H15 would arise as the one whose 
(simplest) space-element would seem to be the 2 ⋅⋅⋅⋅ ∞∞∞∞2⋅⋅⋅⋅3 lines X and Y.  The manifold 2

3M , 

as the locus of the lines that lie in it, will be doubly-covered (with two sheets) when one 
each of its lines can either take on the role of a X-line or also the role of a Y-line (1).  

The X-lines and Y-lines will be permuted amongst themselves by the transformations of 

G15, each sheet by itself, but the two sheets will transform according to a rule of a 
different sort – viz., contragrediently, as we would like to say.  Namely, as one will see 
with no further discussion, each transformation of G15 and the permutation of the X and 

Y lines that it implies will correspond to a collineation in the image space R3 that 

permutes the points ξ and planes φ correspondingly.  Similarly, a transformation of the 
family H15 on 2

3M  will act as a transformation of the X and Y-lines that permutes the two 

sheets of lines with each other (viz., X ↔ Y*, Y ↔ X*), and that transformation will 

have a correlation (viz., ξ → φ *, φ → ξ *) as its image in R3 .  Naturally, the group G15, 
H15 will also be mapped holomorphically to the groups Γ15, Η15 in that way. 
 We shall now explain the concept of united position of an X-line and a Y-line by way 

of the united position of the associated planes Eξ and Eφ .  Since Eξ and Eφ intersect each 
other in a line Z then, two position relationships for the united lines X and Y will be 

possible: They can either have a uniquely-determined point z in common or they can 

overlap each other.  That latter possibility will occur when Z lies in R4, and therefore 

coincides with X and Y.  With no further discussion, it is clear that: The united position 

of an X-line and a Y-line is a property that is invariant under transformations of G15, 

H15, while the overlapping of two such lines (on different sheets) is not.  Furthermore, a 
subgroup G10, H10 of G15, H15 will be defined by the further demand that the overlapping 
of two lines X and Y should also be invariant, and that subgroup will reduce to the group 

                                                
 (1) A similar situation necessarily exists in radially-projective geometry.  [Geometrie der Dynamen, 
1903, Third Section.] 
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G10 of automorphic collineations of 2
3M , to which it is meromorphic, due to the 

indistinguishability of the two sheets. 
 It further follows immediately that: 
 
 Two lines X and Y in united position have a well-defined facet (ξ, φ) as their image 

in the projective continuum R3, and in particular, two lines X and Y that overlap each 

other will have an image that is a facet whose point ξ and plane φ belong together as the 
zero-point and zero-plane relative to a certain linear complex or the null systems that is 
linked with it. 
 
 Naturally, by means of this association or mapping, the group G10, H10 will 
correspond to the group Γ10, Η10 of automorphic collineations and correlations of the 
complex or null-system, and in particular, the exchange of the two sheets (X ↔ Y) will 

correspond to the correlative reflection (ξ ↔ φ) in the complex, and the pairing of ξ and 
φ is by the associated null-system.  We imagine that the linear complex has been 
definitely chosen and call it the principal complex of the image space R3 . 
 The problem now arises of carrying out what was just now developed conceptually in 
terms of algebraic calculations.  However, that is an easy thing to do, on the basis of the 
presentation in § 1. 
 We assume that the R4 that is employed in our construction is given by the equation: 
 

(11)    0 01 23Z Z 0,= + =z  

 
which merely means a specialization of the coordinate system.  We then have the 
equation of our 2

3M : 

(12)    − 2 2 2 2 2
1 2 3 4 5+ − + −z z z z z  = 0, 

 
and likewise the associated principal complex, as well as the null-system that is coupled 
with it: 

(13a) 0 1 2 3 1 0 3 2: : : : : : .ξ ξ ξ ξ φ φ φ φ= − −  

 
 For the sake of what will follow, we shall also express that association – hence, the 
correlative reflection in the principal complex – in line coordinates: 
 
(13b)  Ξ01 : Ξ02 : Ξ03 : Ξ23 : Ξ31 : Ξ12 = Η23 : − Η02 : − Η03 : Η01 : − Η31 : − Η12 . 
 
 Only the basic point (1 : 0 : 0 : 0 : 0 : 0) of the coordinate hexatope in the space R5 
does not belong to the space R4 .  When one suppresses the index 0, the ratios X0αβ and 

Y0αβ  will immediately yield the coordinates of the traces X and Y of Eξ and Eφ : 
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(14.l)    

24 00

35 11 14 12 21 13

51 21 34 22 23 23

13 31 54 32 25 33

,

, , ,

, , ,

, , ,

A

A A A

A A A

A A A

=
= = =
= = =
= = =

X

X X X

X X X

X X X

 

 

(14.r) 

24 00

35 11 14 12 21 13

51 21 34 22 23 23

13 31 54 32 25 33

,

, , ,

, , ,

, , .

B

B B B

B B B

B B B

=
= = − = −
= = − = −
= = − = −

Y

Y Y Y

Y Y Y

Y Y Y

 

 
 When A00 and B00 do not vanish, we will then be dealing with two proper orthogonal 
transformations. 
 The lines X and Y will lie united when (ξ φ) = 0 in (7), and when the proportion 

(13a) does not exist, they will have a well-defined point of intersection z whose 

coordinates one extracts from equations (10): 
 

(15)    

1 02 2 03

1 11

3 21

5 31

0 *

* * *

* * *

* * *

C C

C

C

C

= − =
=
=
=

z z

z

z

z

 

 
 The connecting plane of the lines X and Y also remains well-defined in the case that 

was excluded here.  If the lines X and Y overlap each other then it will be the contact 

plane of 2
3M  along X or Y, and thus, the polar of the two overlapping lines relative to 

2
3M .  It is the intersecting plane – or trace – of the linear space R3, or “flat (Flach)” U of 

formulas (10).  Its coordinates (which are denoted with two indices, instead of three) are 
then to be extracted from the same Table (10): 
 

(16)   

24 01

35 10 21 21 41 13

51 20 23 22 43 23

23 30 25 32 45 33

0 * *

*

*

*

C

C C C

C C C

C C C

= −
= = =
= = =
= = =

U

U U U

U U U

U U U

 

The sixteen quantities: 

(17)    

24 4 2

35 1 21 41

51 3 23 43

23 5 25 45

0 − −U z z

U z U U

U z U U

U z U U
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then satisfy the same thirty-six homogeneous quadratic equations that exist between the 
coefficients Cik of a quaternary, proper orthogonal transformation that is specialized by 
the assumption C00 = 0.  Of them, we need only the ones that are homogeneous in z, as 

well as in U.  They are initially equations in just the U:  viz., the five PLÜCKER 

equations, and a further one that says that the plane U contacts the manifold 2
3M  

 
(18)  2 2 2 2 2 2 2 2 2 2

24 35 51 13 21 23 25 41 43 45+ + + − − − − − −U U U U U U U U U U = 0. 

 
 Furthermore, equation (12) is contained in it.  Of the remaining equations, five of 
them are bilinear in z and U and have four terms; those equations say that z lies on U.  

Ten more equations are bilinear on z and U and have three terms; as a result of them, z is 

the contact point, or in the limiting case, which can be included here, one of the contact 
points of U with 2

3M . 

 If a plane U in the space R3 is given by the prescription that is included in that then 

the pair of lines X and Y will always be determined by it, as well, by the lines at which 

the plane cuts the manifold 2
3M .  However, those lines, as a rule, cannot be rationally 

separated.  The question then arises of how one can find them individually. 
 We shall also provide some information about our formulas in regard to that. 
 In might happen, to begin with, that U is a singular contact plane of 23M , so its lines 

of intersection X and Y will overlap.  X and Y will then be identical with the polar of U 

relative to 2
3M , if one overlooks their distribution on the two sheets.  One infers their 

coordinates (naturally, except for the proportionality factors, which they do not depend 
upon) from the following table, in which X and Y have been replaced with Z, which 

coincides with them: 

(19)   

24 24

35 35 21 21 41 41

51 51 23 22 43 43

12 12 25 32 45 45

0 * *

*

*

*

= −
= − = =
= − = =
= − = =

Z U

Z U Z U Z U

Z U Z U Z U

Z U Z U Z U

 

 
 In fact, when one or the other of the two reciprocal substitutions: 
 

φ0 ↔ – ξ1 , φ1 ↔ – ξ0 , φ2 ↔ – ξ3 , φ3 ↔ – ξ2 
 
have been performed, one will obtain precisely the corresponding ratios Xik = Yik (14) 

from the quantities Uik or – Uik that are enumerated in (16).  At the same time, the 

remaining coordinates of the linear R3 in the space R5 that belong to U [whose locations 

in (19) are denoted by asterisks] all take the value zero. 
 

(20)    01 02 03 04 05 0,= = = = =U U U U U  
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and conversely, the case that is now being treated will occur when equations (20) are 
verified.  The elimination of the quantities U0k will yield: 

 
 The necessary and sufficient condition for a prescribed plane U in the space R4 to be 

a singular contact plane of 2
3M  consists of saying that its coordinates must fulfill the 

equations: 

(21)  
2 2 2 2 2 2 2 2 2 2
24 35 51 23 21 23 25 41 43 45
2 2 2 2 2 2 2 2 2 2
24 35 21 43 51 23 43 13 25 45

,

.

= + + = + + = + +
= + + = + + = + +

U U U U U U U U U U

U U U U U U U U U U
 

 
 The plane U will then be cut out by an R3 in the space R5 that contacts the manifold 

2
4M  along a line Z in the space R4 . 

 In general, however, the two lines of intersection of a contact plane U of 2
3M will be 

different from each other.  U is then the trace of two linear 3′R , 3′′R , each of which 

contacts the manifold at all points of a line (Z′ : Z″) and goes through it along a pair of 

planes ( , , , )E E E Eξ φ ξ φ′ ′ ′′ ′′ .  (In the aforementioned limiting case, the two pairs of planes 

merge together, so Eξ′  =Eξ′′ , E′ = Eφ′′ .)  If the two lines of intersection are known and 

distributed on the two sheets of lines on 23M , and therefore denoted by X and Y 

individually, then the one will appear to be the trace of a well-defined plane Eξ , and the 
other one, the trace of a well-defined plane Eφ .  The splitting of the linear spaces 3′R , 

3′′R , and thus, the decision for a well-defined singular contact R3 of 2
4M , will however 

be effected in such a way that one seeks to fill up the gaps (viz., the asterisks) in the 
coordinate table (19), which are not zero, as a rule, by conferring the table (10).  Since 
one must have: 
 2 2 2 2 2 2

35 51 13 21 23 25+ + − − −U U U U U U  = 2
40U , 

 2 2 2 2 2 2
35 51 13 41 42 45+ + − − −U U U U U U  = 2

02U , 

(22)  2 2 2 2
51 13 21 41+ − −U U U U  = 2

01U , 

 2 2 2 2
13 35 23 43+ − −U U U U  = 2

03U , 

 2 2 2 2
35 51 25 45+ − −U U U U  = 2

05U , 

 
the squares of the five quantities U0k will be known already.  If they are all equal to zero 

then one will be addressing the special case that was spoken of above.  However, if at 
least one if the 2

0kU  are non-zero then all of the quantities U0k will be determined 

uniquely by means of the bilinear equations that exist between the Uik , after deciding 

upon a single value for the root.  With that, a particular space R3 will be chosen from the 

two linear space 3′R , 3′′R . 

 If all fifteen quantities Uik are known then, as we have seen, so are the products ξi φk , 

and with them, the dual ratios ξi , φk , as well as the ratios A00, Aik and B00, Bik , and 
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therefore, ultimately the planes Eξ and Eφ whose traces are the lines X and Y.  A change 

of sign in all of the quantities U0k obviously means the projective reflection in the plane 

R4 and its pole (1 : 0 : 0 : 0 : 0 : 0), and thus, the exchange of Eξ = Eξ′  and Eφ = Eφ′  with  

Eξ′′  and Eφ′′ , and thus the exchange of X and Y. 

 Finally, Table (15) also provides us with the traces of the line Z, and therefore the 

contact point of the plane U and the point of intersection of X and Y, when it is defined: 

 

(23)   1 2 3 4 5 01 02 03 04 05: : : : : : : .= − −z z z z z U U U U U  

 
 In fact, when that point is defined, it will then have as its image the likewise-well-
defined line: 
 Ξ01 = ξ0 φ0 + ξ1 φ1 , Ξ02 = − ξ0 φ3 + ξ2 φ1 ,      Ξ03 =    ξ0 φ2 + ξ3 φ1 , 
 Ξ23 = ξ2 φ2 + ξ3 φ3 , Ξ31 =    ξ3 φ0 − ξ1 φ2 ,      Ξ12 = − ξ1 φ3 − ξ2 φ0 , 
 
which belongs to the facet (ξ, φ) and lies in the principal complex Ξ01 + Ξ23 = 0. 
 
 If, from now on, we say leaf (Blatt) to mean the figure of the plane U and its lines of 

intersection with 2
3M , which are referred to as left and right, according to the schema – 

hence, X and Y – then we can summarize what we have proved as follows: 

 
 Any plane U that contacts the manifold 2

3M  will belong to two leaves that are not 

distinct from each other only in the case of a singular plane U (which contacts 2
3M  in a 

line).  The singular contact planes then define the branching figure for the double 
covering of the contact planes of 23M  with the leaves. 

 
 Any leaf corresponds to a well-defined facet in image space R3, and conversely 
(1). 
 
 Overlapping leaves correspond to facets that are paired with each other by the null 
system of the principal complex in image space, and conversely. 
 If the plane U is given by the ratios of its ten coordinates Uik [that must satisfy the 

equation (18)] then the separation of the two associated leaves will result when one 

                                                
 (1) Math. Ann. (1925), pp. 107, Proposition XXVII. 
 S. LIE phrases this as: “every” element (i.e., every facet) in the image space corresponds to “one” 
element in the sphere space, and conversely.  In KLEIN-BLASCHKE, in the sphere space, in place of an 
element (although it does not quite follow), one will find an oriented (i.e., “directed”) element, whose 
wording must also refer to the “total space,” and in turn, give a theorem that is false.  No less than three so-
called proofs of this are presented, in which some very remarkable things come about (such as the line-
sphere transformation as a “surface transformation”). 
 Let me say that I have produced a “closer examination” of those “relationships.”  That implies a 
misleading of the reader, who naturally cannot guess that I find myself to be in contradiction to 
BLASCHKE, and indeed, it seems to me, at some very essential points. 
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determines the five more quantities U0k that can therefore serve as coordinates of a leaf, 
along the ten given quantities. 
 
 Each individual quantity U0k is the root of a purely-quadratic equation.  Rational 

dependencies exist between those five roots in such a way that each of the quantities U0k 

that is non-zero will be determined uniquely from the remaining ones.  If all of the 
quantities U0k are equal to zero then only one leaf (hence, a singular one) will belong to 

the plane U. 

 
 Furthermore, it emerges from what was said that when determining the leaves that 
belong to a plane U, it is impossible to always rely upon the same aforementioned roots, 

or also to replace all of them with a single square root. 
 
 Henceforth, we shall assign the symbol U  to a leaf, in order to distinguish it from its 

plane U, and call the transition from a leaf to the one that lies above it (and is different 

from it, as a rule), the inversion of the leaf, and it will have the coordinates ikU , − 0kU , 

or ones that are proportional to them.  Inversion corresponds to the correlative reflection 
in the principal complex. 
 
 One can also represent the lines X, Y by systems of linear equations, instead of 

coordinates.  One then has only to express the idea that in image space, a line Z of the 
principal complex Z01 + Z23 = 0 lies united with a point or a plane, and then introduce the 
point-coordinates of the space R5 : z0 (= 0), z1 , z2 , z3 , z4 , z5 .  Equations of the form: 

 

(24.l)    

4 1 1 2 3 3

4 0 2 2 0 3

1 0 2 1 4 3

3 0 0 2 4 2

* 0,

* 0,

* 0,

* 0,

z z z

z z z

z z z

z z z

ξ ξ ξ
ξ ξ ξ
ξ ξ ξ
ξ ξ ξ

+ − =
− − + =
− + − =

− + =

  (z = x) 

 

(24.r) 

4 1 1 2 3 3

4 0 2 2 0 3

1 0 3 1 4 3

3 0 1 1 4 2

* 0,

* 0,

* 0,

* 0,

z z z

z z z

z z z

z z z

φ φ φ
φ φ φ
φ φ φ
φ φ φ

+ + =
− − + =
− − − =

− + =

  (z = y) 

 
will then arise in which (for a suitable determination of a proportionality factor) the 
coordinates zk (or xk , yk) will be connected with the coordinates xk (or xk, yk) by the 

equations: 

(25)  1 4 2 0 1 3 0 1 4 2 3 5 2 32 , , , .z z z z z z z z z= = − = + = + = −z z z z z  
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 If the figures ξ and φ are given then equations (24.l) and (25.r) will yield the 
associated lines X and Y (or X and Y, here) as the loci of the points z = x and z = y (or z = 

x and z = y), in which one must observe that despite the surplus in these equations, none 
of them are dispensable (1).  Equations (25) also already contain the corresponding 
dependencies between the line coordinates Xik and Xik, Yik and Yik that belong to the two 

coordinate systems {z} and {z}, and therefore they again deliver formula (14) for us.  

Moreover, if a point z (or z) of the space R4 is given then equations (24) will imply 

nothing contradictory only when their common determinant or its square root, namely: 
 
(26)   z0 z1 – z2 z3 + 2

4z = 2 2 2 2 21
1 2 3 4 54{ }− + − +z z z z z , 

 
has the value zero, and thus, if the point z (or z) lies on 2

3M .  Both systems of equations 

will then yield the image of the given point, namely, a line in the principal complex, in 
one case, as the locus of its points, and as the locus of its planes, in the other. 
 Equations (12) yield plane coordinates Uαβ that are naturally likewise connected with 
the coordinates Uik that used here by a linear transformation (2). 

 
 

3. 
 

Spheres and oriented spheres 
 

 We saw before what kind of figures in the “sphere space” 2
3M  have points and planes 

in the projective continuum R3 for their images.  Here, we are dealing with something 
even simpler that does, however, require a more careful treatment (like all mathematics). 
 The manifolds 2

4M  and 2
3M  differ from real spherical manifolds in a (Euclidian or 

non-Euclidian) space R5 or R4 only by their unusual choice of coordinates, and thus 
basically not at all.  Therefore, e.g., the intersections of 2

3M  with planes can properly be 

called circles (e.g., regular, simple, and doubly-singular circles).  The intersection of 2
3M  

with lines R3 or surfaces in the space R4 will be called spheres.  A sphere u is then 

defined by a linear equation in point coordinates x1, …, x5 : 

 
u1 x1 + u2 x2 + u3 x3 + u4 x4 + u5 x5 = 0. 

 
 Since the relationship of pole and polar exists between points and surfaces in R4, one 
can also put the last equation into the following notation (which is probably a bit more 
suitable): 

                                                
 (1) For S. LIE and some more recent authors, only a kind of grotesque mutation of the system of 
equations (24.l) appears: 

(X + iY) + xZ + z = 0, z (X − iY) − Z − y = 0. 
 (2) Cf., Math. Ann. 91 (1924), pp. 113.  
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(27)  * − z1 x1 + z2 x2 − z3 x3 + z4 x4 – z5 x5 = 0 {z1 = − u1, z2 = − u2, etc.} 

 
 Like all non-singular second-order surfaces, our “spheres” also carry two families of 
∞2⋅⋅⋅⋅1 lines, and they can be distributed on the sheets of the X and Y-lines in two kinds of 

ways.  Along with the concept of sphere, one can mention yet another concept that shall 
be referred to as an “oriented sphere.”  Here, I would like to use the term union, which 
shall be explained later, since it is less biased, at least, for certain manifolds of leaves.  
Let me explain: 
 
 If each of ∞2⋅⋅⋅⋅1 X-lines lie united with each of ∞2⋅⋅⋅⋅1 Y-lines (1) then the ∞2⋅⋅⋅⋅2 leaves (X, 

Y) that one derives from them will define a union that shall be called an “oriented 

sphere.” 
 
 It follows from this that, first of all, any oriented sphere will again give rise to another 
one under each transformation of the group G15, H15 .  Secondly, one has that there are 
two kinds of oriented spheres.  The one of them, which shall be called regular, doubly-
cover a unoriented sphere.  The other kind, which we shall called singular, are nothing 
but the points of 2

3M  when they are likewise considered to be loci (unions) of ∞2⋅⋅⋅⋅2 leaves.  

Namely, one can associate each point z to all of the ∞2⋅⋅⋅⋅2 leaves that have their proper 
point at z when they are regular and one of their points at z when they are singular.  
Thirdly, one sees that the unions of the second kind are limiting case of those of the first 
kind, and collectively define the branching manifold of the double covering of the regular 
spheres.  Fourthly, not only are manifolds of ∞2⋅⋅⋅⋅2 points linked with the regular oriented 
spheres, which are just the associated unoriented spheres, but also with the singular ones: 
viz., the null spheres.  Any singular leaf on a singular sphere has, in fact, ∞2⋅⋅⋅⋅2 points, and 
they collectively define a cone, namely, the associated null cone. 
 Under these circumstances, it is advisable to introduce the term point sphere, along 
with the word “null sphere.”  The word “point sphere” will then mean precisely the same 
thing as the word point (on 2

3M ), insofar as only the latter word (which is proper here) 

will be employed to refer to the associated unions of ∞2⋅⋅⋅⋅2 leaves.  The term “point sphere” 
will then express the idea that the point, as a union, means a special case of an oriented 
sphere.  Hence, from now on, the “null sphere” will refer (only) to the unions of ∞2⋅⋅⋅⋅1 
singular leaves that have points at the point z. 
 The point sphere then has ∞2⋅⋅⋅⋅2 leaves, like a regular sphere, and those leaves also 
define a single analytic continuum in which, however, along with the leaf (X, Y), the 

inverted leaf (X′ = Y, Y′ = X) will also appear; they will then differ from the regular, 

oriented spheres in that way.  The ∞2⋅⋅⋅⋅1 singular leaves of the associated null sphere will 
then function as the branching manifold in this figure.  The point-sphere is also 
distinguished from the regular, oriented sphere by the fact that it contains singular leaves.  
The condition for the presence of a point-sphere is obviously: 
 

                                                
 (1) Naturally, that means the analytic continua of X-lines and Y-lines. 
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(28)    2 2 2 2 2
1 2 3 4 5− + − +z z z z z = 0. 

 
Obviously, one likewise has the theorem: 
 
 An oriented sphere has a line in the space R3 for its image, and conversely, each of 
those lines will correspond to an oriented sphere. 
 
 The point-spheres or points correspond to the lines in the principal complex. 
 
 Here, we then once more arrive at the association that we already expressed by 
equations (24) and (25). 
 
 It still remains for us to assign coordinates to the regular, oriented spheres.  We get 
them from the remark that the leaf (27) will be cut by two spaces 4′R , 4′′R  that contact 

2
4M .  We obtain the contact point with no further discussion by extracting a square root: 

 

(29)    2 2 2 2 2
0 1 2 3 4 5 .= − + − +z z z z z z  

 
 In general, we will consider the ratios: 
 
(30)     z0 : z1 : z2 : z3 : z4 : z5 

 
that are explained by that fact to be the coordinates of an oriented sphere. 
 
 In fact, with their help, we can distinguish the two overlapping oriented spheres.  We 
already know the image of the point z in space R5, namely, on the basis of equations (6), 
or then on the basis of the equations: 
 

(31)   01 0 1 02 0 3 03 4 5

23 0 1 31 2 3 12 4 5

2 , 2 , 2 ,

2 , 2 , 2 .

Z Z Z

Z Z Z

= + = + = +
= = − = −
z z z z z z

z - z z z z z
 

 
Moreover, we know the conditions for a point ξ or a plane φ to lie united with the line Z.  
Thus, we also have, however, the conditions for a given line on 2

3M  to belong to the 

oriented sphere z as an X-line or a Y-line: We have separated the two families of lines on 

an initially unoriented sphere by determining the root z0 . 

 
 We shall now say that two oriented spheres contact each other when they have a leaf 
in common with each other.  If we correspondingly say that two lines in image space 
contact each other when they – as unions of facets (ξ, φ) – have a facet in common, and 
thus, when they cut each other, it will then follow that: 
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 Oriented spheres that contact each other have lines that contact (cut) each other for 
their images. 
 
 We already know the condition for this positional relationship between oriented 
spheres z′, z″.  Namely, it consists of the fact that the connecting line for the two points z′, 
z″ is a line Z that lives in 2

4M : 

 
 The condition for the positional relationship in the last theorem is: 
 

0 0 1 1 2 2 3 3 4 4 5 5′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −z z z z z z z z z z z z  

(32)     
= 2 01 23 02 31 03 12 23 01 31 02 12 03{ }Z Z Z Z Z Z Z Z Z Z Z Z′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′+ + + + +  = 0. 

 
 Any two distinct contacting spheres then contact each other in a single leaf, and they 
will be contained in a pencil of oriented spheres that contact pair-wise that the leaf 
determines.   ∞2⋅5 exemplars of that pencil exist, like the plane pencils of lines in R3 that 
are their images.  However, like the associated ∞2⋅5 leaves, they will overlap each other in 
pairs, by which, a branching manifold will once more appear that corresponds to the ∞2⋅3 
facets in the principal complex.  Furthermore, (as is self-explanatory) one will get: 
 
 In order for two (or more) oriented spheres to contact each other, it is already 
sufficient that they should have an X-line or a Y-line in common with each other. 

 
 With that, I believe that I have established the elementary facts upon which any 
further development in sphere geometry must rest.  We shall speak on that subject, and 
especially on the general concept of a union of leaves, and on the representation of the 
line-sphere transformation as a type of contact transformation (1) in a second article. 
 However, it would first be good for us to clarify the great distinction that exists 
between the contact of oriented spheres and the concept of the contact of spheres, per se. 
 If we have two unoriented spheres – i.e., the intersection of 2

3M  with linear spaces 

3′R , 3′′R  – then we will have two kinds of pencils λ′ u′ + λ″ u″, and three kinds of contact 

to distinguish: 
 
 (a) The plane of intersection U of u′ and u″ can meet 2

3M  in a pair of different lines.  

The pencil λ′ u′ + λ″ u″ will then contain two coincident null spheres.  The regular 

spheres of the pencil can be oriented in two ways, and they will then yield two 
analytically non-coincident overlapping pencils of oriented spheres.  Both pencils each 
contain the same null sphere once.  One can then have that: 
 
  (a1) The given spheres are both regular, or 
  (a2) One of them is the null sphere of the pencil. 

                                                
 (1) But not exactly with the definition that LIE gave.  
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In the second case, one is dealing with improper contact, which consists of saying that 
the vertex of the null sphere is contained on the other sphere. 
 (b) The lines that were mentioned in (a) coincide.  The entire pencil then consists of 
null spheres, and any two of them will contact each other infinitely many times.  By 
contrast, the associated point-spheres contact each other only simply.  Now, as a union 
of leaves, a point-sphere is the same thing as a point: 
 
 We see that two distinct points in sphere space can contact each other.  Namely, they 
will always do that when their connecting line is a null line (which lies on 2

3M  ). 

 
 That then shows once more the very essential difference between the concepts that 
are linked with the word “contact”:  In projective geometry, two distinct points can never 
contact each other. 
 We also already know the condition for two unoriented spheres to contact each other.  
It consists of the demand that their plane of intersection should contact 2

3M .  We then 

come to the theorem: 
 
 The algebraic expression whose vanishing indicates to the contact of two spheres will 
be decomposed into two factors by the orientation process. 
 
 In fact, on the basis of what we have established: 
 

2 2 2 2 2 2 2 2 2 2
24 35 51 13 21 23 25 41 43 45+ + + − − − − − −U U U U U U U U U U  

= 2 2 2 2 2 2 2 2 2 2
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= 2 01 23 02 31 03 12 23 01 31 02 12 03{ }Z Z Z Z Z Z Z Z Z Z Z Z′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′+ + + + +  
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(cf., no. 13b).  The meaning of the vanishing of the second of those factors is immediate. 
 Finally, we might draw attention to the following situation: 
 Whereas, up to five unoriented spheres can alternately contact each other in such a 
way that no two of the ten contact points lie on a null line (1), for more than two oriented 
spheres that contact each other pair-wise, either the contact points must always be 
contained along the same X-line or the same Y-line, or both of them must occur at the 

same time. 
 We already have that triples of mutually-contacting sphere might not always be 
oriented in such a way that contact still takes place after their orientation. 
 
                                                
 (1) The corresponding 2 ⋅⋅⋅⋅ 5 lines in R3 define a “double-five” with a collineation group of icosahedral 
type.  
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 The ideas that were just presented are also so simple that other authors, beginning with S. LIE, have 
also created some confusion that cannot persist without consequences.  One correctly recognizes that 
oriented or unoriented regular spheres must correspond to one or two lines in image space, respectively.  
However, those spheres would not be regarded as unions of leaves (which is a concept that is lacking), but 
as unions of oriented or unoriented “elements.”  Now, as such, the null spheres are reducible figures in both 
cases; the lines in image space that allegedly correspond to them must then likewise decompose into two 
pieces!  Instead of inferring the conclusion from this that something was amiss, one will find that the cone 
that the null-sphere consists of has been almost completely thrown out, and merely its vertex seems to 
remain on the image surface, which actually seems very much like sleight-of-hand.  The fact that this 
mistake has not come to light so far is probably due, for the most part, to the incompleteness in the 
algebraic apparatus that excludes any effective controls.  (See, e.g., KLEIN-BLASCHKE, §§ 70, 71.)  In 
addition, one would still have to consider that from the elementary definition of the concept of a sphere, 
two arbitrary spheres will already contact each other, at least doubly, and even infinitely many times in 
some situations, and that this type of contact cannot also be simply spirited away. 
 Things are no better with a different process by which one comes to grips with these things.  (See, e.g.,  
KLEIN-BLASCHKE, §§ 65, 66.)  Even in that case, one has bridled the horse from behind.  Meanwhile, 
the seed of a useful thought is also present this time.  It can perhaps be phrased as: 
 

 Instead of first intersecting the manifold 2
4

M  with a linear R4 and then linking sphere geometry with 

Euclidian or non-Euclidian geometry by projecting the 2
3

M that is obtained, one can invert the sequence of 

operations of intersecting and projecting without altering the results. 
 

 In that way, one will arrive at a MÖBIUS point-continuum 2

4
M , with a group 

15
G′ , 

15
H ′  of conformal 

transformations (1), and then at a sphere space that can likewise be regarded as a MÖBIUS continuum 2

3
M .  

For example, Euclidian geometry can just as well find its place there as in projective geometry.  However, 
one finds distinctions there that arise from just the various extensions of the “proper point” to a closed 

continuum.  For example, a plane in 2
3

M  is something completely different from a plane in the projective 

continuum R3, although both concepts completely overlap each other in the domain of proper points.  Those 
figures are already topologically different: As point-loci, non-isotropic planes have the same connection to 
sphere geometry as regular spheres, and isotropic planes have the same connection as null-spheres.  
(However, the associated union of ∞2⋅⋅⋅⋅2 leaves has the same connection as a regular sphere.)  The 
CHASLES mapping process (viz., “isotropic projection”), which derives a point (x, y, z, ir ) in space R4 
from the usual representation of a sphere (x, y, z, r) in “space” (R3), is achieved only for fragments of the 

continua 2

4
M  and 2

3
M , which is as it should be.  For example, planes cannot be oriented with the help of 

their “radii.” 
 

___________ 
 

 

                                                
 (1) Math. Zeit. 18, 21 (1923-24).  Journal für Mathematik 157 (1926), 35-39.  


