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SIMPLIFIED FOUNDATION FOR
LIE’'S SPHERE GEOMETRY I.

By. E. STUDY.
in Bonn

Translated by D. H. Delphenich

The present essay (which shall be followed by a stooe) relates to the elements
of sphere geometry (which is called “higher” by som&he algebraic facts that are the
roots from which it grows shall be illuminated from afeliént side. The ideas that are
expressed can be easily arranged in such a way thatahealso serve as an introduction
into that sphere of ideas. Whoever is already famivith projective geometry will
already be sufficiently prepared, and if he is notrelyt foreign to quaternions then he
will experience only minor difficulties. Only the neadls of the facts shall be dealt with,
and in the simplest way possible.

A prior investigation {) embarked upon the geometry of circles, which includes ofaspace. This
time, in essence, only the spheres will be consitiéfe

As before, | have initially left all metric notiormut of the discussion, which is similar to the usual
presentation of projective geometry. That possibility oy exists, but it is also a requirement for a
healthy methodology. The creators of the older dssi§nLIE and F. KLEIN, sought to introduce their
concepts as “elementary” ones, namely, with the helpptfere radii and angles. However, their
definitions were very sketchy, and if extended, they wdose their apparent simplicity and lead to a
seemingly abstruse theory.

Metric notions and other details, among which arespiezial properties of real figures, are excluded
completely from the present examinatioh (

At the center of all consideration, one will findet orthogonal transformations of
three and four variables, or rather, their system®efficients, together with the up-till-
now scarcely-observed degeneracies in such systems. ddmeiection with sphere
geometry is generally of a formal nature. It is onlyaw one makes a special choice of
coordinates that they come to light. The group propdriyrthogonal transformations
does not come into play. Meanwhile, the overview anglementation of the formal
apparatus will be eased considerably by the exploitatienai relationshipsTherefore,
just about everything that will be used at the onset has long sintedexighe theory of
the simplest orthogonal transformationsEntire systems of statements can then be

() Math. AnnalerB9-91(1922-1924).

(®) The text in large print contains the actual train ofigtht and defines a connected whole by itself.

() For them, see § 16 and § 17 of the cited treatise. thjMannalen,91 (1924); in particular,
propositions XXXIllla, XXXV, XXXVI.]
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phrased in fewer words. Likewise, the well-known parame&presentation of the
aforementioned transformations (which one obtains ms¢eniently from quaternions)
also yields, with no further discussion, the conneéchietween the projective geometry of
a spacds; and sphere geometry. The basic concepts that ked paint, line, planeand
facet(element) will be assigned, with no gaps, to concdyaslielong to “sphere space”

MZ as “images,” namely with my terminology that will be explained (repeasgdéater
on —the concepts &f-line, oriented sphere, Y-lin@andleaf, resp.

Things are even simpler in the geometry of circles. I\Afu (e.g., a sphere) enters in placemf.

There, thebasic conceptsre “the oriented element” and “the oriented circl&he oriented elements
contain the generators of the sphesajch are also not “unions,’while the point (even in a complex
domain) belongs to the oriented circles. The imag#seobriented circles are the lines in a linear complex,
while the oriented elements have the pencils of sues for their images.

It seems very profitable to me to express the basasidé sphere geometry that S. LIE sketched out
more cleanly. It probably has a substantial intetleat a complete, and likewise simple, duplicate of

ordinary projective geometry is already present in the gégrof a quadratic point manifolt 32

Modern geometry, especially higher geometry, knows nedrifiese so-called conversion principles,
very few of which have been sufficiently investigat&that follows here is also a term in a sequence that
extends to infinity. However, the recursion does not llagesame simplicity for more than three (real or
complex) dimensions, and since it casts light upon theumistances that belong to the best known of
modern geometries, it can serve as one of the masiétige examples.

In the cited papers, whose contents have also servbe agarting points for more recent authors, the
point continuaR; and Mj, and therefore, the open continuum of elementary gepnveere often lumped

together. The enumerated counterparts to the conceptsjettpre geometry were either missing, or they
entered by way of concepts that were only very imprecisayrelated with those statements.
Correspondingly, the algebraic apparatus broke down, anddahegme arbitrarily-chosen fragment of the

continuaR; or M 32 would then appear.

While recognizing the value of the blueprint that origgdawith S. LIE, | have nonetheless regarded it
as necessary to subject its implementation by him #retto a very disparaging criticism). (As a result
of an adaptation of KLEIN'’s lectures by W. BLASCHKE (1926must now once more underscore the
statements that | made at the time. That mathemaifoize of my former students!) should recognize that
he has a description of the error before him, alonly igtcorrection.

The fact that his textbook, which is intended for stud€htsdodges the concepts of real and
imaginary, and of “space” and coordinate transformatiofiesléescription. Indeed, | believe that one can
even give rise to ghosts with the help of such a metbggiolHence, the intersection figure of two spheres
in § 29 is a (more or less) real circle, and in § 39ritststs of a circle and an imaginary specter that can
certainly so-to-speak “materialize” as also real &rdpty” (cf., pp. 50). Something must be said about
taking care in one’s statements, especially in theofiseords such as “always,” “all,” “each,” or “any.”
(“Mathematicsin négligé&) Since man indeed never says what he thinks, beh dfinks what he says, a
poorly (indeed, not at all) defined fragment of a putdtjeometry in all space” can emerge (pp. 4). What
is now being offered to uler the third timeis so abortive that such a key notion as the equal sthtus
points and planes under the line-sphere transfornsatioss not come to light)( As before, everything
carries the stamp of the most hurried sort of wgitin

Only at a single place (pp. 249) doealihostappear as if the author succumbed to a fit of pronounced
conscientiousness. Namely, at that point, an attemptnvese “incidentally” (!) to give a belated (1)

() Jahresbericht der Deutschen Mathematikervereinig@mg1916). (Which was not cited by
BLASCHKE, and with good reason.)

() See propositions XXIll, XXVII, XXXI in the treatisehat was cited above (and also be
BLASCHKE).
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precise version at least one of many to generallg-as$ertions. In general, that is also once moretg nas
accident (!). However, the reader indeed learns wheraiméeach himself — namely, in the case where he
(unlike the author of those lectures) should feel anigtible urge to go deeper into the basic questions of

sphere geometry...
That kind of mathematics — vizmathematics composed of half-truths, abuse of terminology, and

incantations- is truly irksome:

1. The mathematician who deals in approximations doesnean what he says, but something

somewhat different.
2. The difference between those statements andrigginings does not come across for him very

often.
3. He has said everything that actually matters.oBeri

Honi soit qui mal y pensgl)

Naturally, one cannot at all understand mathematicidrts seek to evade every earnest criticism, or
put even more simply, who can glide over them, while nototely appreciating the ground rules of
science.

The usual error that appears to be isolated is verylass in comparison to that demanding (indeed,
sometimes downright violent) kind of writing, which can keferred to, without exaggeration, as a
systematization of the error.

In the future, these lectures will probably also findstly relatively-uncritical readers. For that very
reason, but also to spare the readers the necessitykirid things up, which is my wish for them, | have,
moreover, once more analyzed some of the alleged factsapdm sphere geometry allegedly rests.

The manifold M.

We consider a non-singular quadratic manifdd in a domain of rank six; i.e., in a

projective continuunRs of five complexdimensions, represent it by an equation of the
special form:

(1) 3o~ 3 t3,-35%3.-3.=0.

We then understandoo, Ai1, ..., Asz and Bgo, B, ..., Bsz to mean the system of
coefficients of two ternary, homogeneous, orthogonaktoamations, so that each of the
two systems of equations:

Acor1 =A11x0 t A2 + Aizta,
(21 Acorz =Ao10 + A2 + Aozta,
Aoors =Az1x0 + Ao 2 + Asa s,

—Boo®1 =Bi119o + Bia2 + Bz s,
(2r) —Boo93 =B2190 + Bo2ao + Bz s,
— Boots = Bsz11o + Ba2a 2 + Baz s,

(") Translator’s note: “Shame upon those who think ev{IThis is also the motto of the British Order
of the Garter.)
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will yield one of the 23* planes that lie oM 2, and indeed, in the first case, we will

obtain what we would like to cadl left plane E, and the second,raght plane E,. The
Grassmann coordinatesf those planes, whose specification is essentialafb that
follows, can be calculated with no further assumptiofis.the first case, they will be
pair-wise equal to each other, and in the second, pag-agual and opposité),(and
indeed we will obtain theoordinates of Eas the ratios’:

%024 = AOO = % 135
(3|) %124 = All: % 035 % 014: A12: % 236 % 021__ A 1’3_r % 435
%324 = A21 = % 105 % 034: A22: % 126 % 02? A 2’3_r % 145
%524 = A31 = % 130 % 054: A32: % 132 % 025: A 33: % 134

When one temporarily se®,, in place of <), for the sake of better clarity, one
will likewise find the system afoordinates of E:

@024 = BOO = @ 135
@124 = Bll = @ 035 @ 014: B 12: @ 235 @ 02
@324 = BZl = @ 105 @ 034: B 22: @ 125 @ 02
@524 = BSl = @ 130 @ 054: B 32: @ 132 @ 02
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We will then reduce the twentyRASSMANNoordinates of a plartes or E,to half
that number, when we empl@jtherthe symbols that appear in the left version ofqg3)
the ones that appear in the right version, andh&e have the theorem that in the case of
the left (right, resp.) planeks (E,, resp.), those coordinates will be equal to the
coefficients of a proper (improper, resp.) homogese ternary, orthogonal
transformation, in successio?).(

The non-vanishing of the quantitie®%y, Boo IS assumed here, which has the
consequence that the system of equations (2) wiihd a non-closed continuum of

planesEs andE,on M? that does not exhaust the totality of those pldnes. However,

the equations (3) that one derives from (2) aresnbject to that restriction. Rather, one
has the theorem:

() This theorem can obviously be extended to an indeterenévan number of variables, and we shall
make some occasional applications of that fact.

(®) For the laws of constructing those formulas, se¢rtfaises on the KUMMER configuration and the
PASCAL hexangle, Leipziger Berichte, 1892 and 1895.

() This theorem, and even some others, can be extendad indeterminate number of variables

mutatis mutandisi.e., to the theory of a non-singuldd’ . For more details, see Math. Annal@h

(1924), pp. 102 (remark). Moreover, it is naturally irrelewahich family of planes ori\/l42 one would
wish that the proper orthogonal transformations shouiespond to.
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The same equations (viz., twenty linearly-independent quadratic equatxies) e
between the GRASSMANN coordinates of a left (right, resp.) plane ajudldeatic

manifold M that exist between the coefficients of a homogeneous, ternary, proper
(improper, resp.) orthogonal transformation, and no further dependencies of any sort

Along with the proof of this statement, we shall patt the richer content in it.
Indeed, with the help of EULER’s known formulas, we eaxpress the quantitiefoo,
A, and Boo, B, and in essentially only one way, in terms of two esyst of
homogeneous parameters:

(4) $o:é1:8: 43, DA GG,
by way of:

AOO: g()2+§(12+§(22+§(321

A= E+E-E2-EZ,

G ) ,
A23: 2(5253+§(0§(1)1 A’BZZ 2(5253_5051)1

Boo= @+ +&+95,

Bu=@g+4 - -4,

(Br)

We now consider the parametérs @ to be the homogeneous coordinates of a point
and a plane, resp., in a projective continugthat shall be called thenage spacérom
now on. We then calculate the (so-called PLUCKE®rdinates of the connecting lines

and intersection lines of two poinfsé”and two planeg ¢, resp.:

Z01= &6 6,60 = P, Z23=§,6,-¢,&, = Do,
Huo=@@d-g¢ =Ws  Hx=q@d-a¢ =Yo.

We then bring the (PLUCKER) equation that exists betvgereh line coordinates:
Zo1 Zoz+ Zo2 Za1+ Z03 Z12= 0

into the form (1) by means of the substitutions:

3072wty 3,7 Lt Ly 37~ L 0t L

(6) _ _ _
217520 Loyy 33572y Ly 35=L gLy,

The bundle of lines through a poiéitvill then alwayscorrespond to a plarigs on M7,
and likewise the line field in a plagewill correspond to a plang,. In order to find the
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GRASSMANN coordinates of, say, the pléag one needs only to connect the painod
the three corners of the coordinate tetrahedron shaeing used with lines, and after

referring to formulas (6), looking for the correspondingnp®j’, 3", 3" on the manifold
MZ. If the corners employed were, say, (0:1:0 (@),0:1:0),(0:0:1:0)then

one would obtain just the expressiond)(Wwith the factoré, as the coordinates of the
connecting plan&g of 3', 3", 3"'. One will obtain the same expressions, with theofact

& or & or &, when one employs one of the other triples of a@rmd the coordinate
tetrahedron. However, since the quantiesé:, &, & cannot all simultaneously have
the value zero as homogeneous coordinates, the geaédityvof formulas (3) is then
proved, and one likewise proves the validity of formy&as).

Now, it is clear that a poinf and a planep that are not united will correspond to

planesE¢s andE,, resp., onM?, that have no common point, and that wifeand g are

united, the planeg&s andE, will intersect in a line. A necessary and sufficieahdition
for this “united position” oEs andE,is then the existence of the equation:

(7) (Ep=¢ép+ép+é,p,+&8p,=0.

One likewise explains how any two left plartesandE, will intersect in the point
that corresponds to the connecting lineéand 77, and that correspondence will also be
true for two right planeg, andE, .

The pointé and the planap in united position define a figure with five coragl
constants that BIANCHI called facet (and LIE called it a “surface element,” or more
briefly, an “element”), and they collectively detene a pencil of lines that will map to a

line 3 on MZ. Conversely, every ling on M? naturally corresponds to a facet that is
the image of the figure that consists of two plaeandE,in united position, and thys

is also their line of intersection. We dedmecalculate the GRASSMANN coordinates of
the line 3 when the facefé, ¢ is given, and conversely, to find the coordinates of the

facet($, @ when the coordinates 3fare given.

This problem is similar to the one that was trédiefore, from which one obtained
the dependencie§ - Es, @ « E,, and it is likewise elementary. However, the
necessary calculation is more tedious in the ptessse.

In order to be able to grasp it briefly, | shadixhintroduce the following system of
symbols:

Coo= ébop+tép+é @+ E&E@=Qu,

Co=-éba+é&@p-S@t+&@=0Qu,
Coo=-ébp+t+é&@a+E&@— & @ =00,
Ca=-ébpr-éip+& @+ & @=Qo,

Cio= bp-bsp-&E@+é@=0ss,
Co= bp+téep-Sp-&E@=0s,
Coo= éopp-é1p+é&p—E&@=Qus,
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(8)
Cu= épt+tép-&Epp—-&E@=Qo0,
Co= éb@pt+tébp-Sep-&E@g=Q0n,
Cas=-b@p+té&p+téa+&E@=Qon,

Cah=-b@p+téa+éa—E@w=Qo0,
Co= ébp-bp+té&o—&E@g=Q0,
Cu= bp+tép+t&@+E&E@=00,

Ca1= bptép+té& @+ & e=Q0s,
Co=-"bpa-ésp+té @+ E&E@=0Qss,
Caz= - p-E@p+E@=Qus.

In regard to that, one should immediately note thesé¢ equations can be solved for
the products ¢ . For example, one will have:

Coo+Ci11+Cp+Cs3=25 .

The dependencies that exist between the sixteen quar@iti€siz., 36 linearly-
independent quadratic equations) are then linear transformatif the ones that exist
between the products . They will then differ from the latter only in fornif they are
fulfilled then one can always calculate the homogenemasdinates of a poinf and
plane ¢ from them, and when the equati@g, = O exists, moreover, those figures will
collectively define a facet.

However, the property of the quantiti€g that is important here can be expressed in
the theorem:

When the square-root quantity:

JNEQ Ng = | & + &2+ &2+ 2 g2+ 97+ 92+

is non-zero, the quantitiesC, together with one or the other of the values of
JNEQ/ Ng, will define the system of coefficients of any quaternary, proper

homogeneous orthogonal transformation. However, in general, the dependencies
between the coefficientsc@vill be exhausted by the homogeneous equations that exist
between the coefficients of such a transformation.

In fact, the quaternion formula:

JNEQ/Npw = f wa
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by which, one can indeed express every proper orthogamalfdrmation in terms of four
variablesay , a1 , a , a3 , delivers precisely that system of coefficier)s (f Né INg=

0 then one will obtain a system of quantit@sthat will also be useful from now on, but
which no longer belong to a transformation. Whetlmer dne or the other occurs is
immaterial here.

Note that whemN¢ # 0, N¢é# 0, the ratioshgo, Ak andBgg, Bix — i.e., the system of coefficients of the
ternary transformations:

NEDW =& 1 ¢ NgOs = @p o,

that are invariantly-coupled to the quaternary transfaomst— can also always be calculated without
having to go the way of the produdsg . Namely, any two complementary two-rowed determintots

the matrix of quantitie€ix are equal to each other. If one now chooses the ngsipotypes of two pairs
of such determinants in such a way that all sixteen giemtl§ are employed in that way then sums and
differences of them will be equal to the quantitdes ..., Ass, Biy, ..., Bss, multiplied by the factordlgor

N¢ resp. For example, one has:

Co Cot|,.|Co Cus| _|C C c
N@A; = Byg (A1 = 00 o1f | ~oz 03| — | 22 23| C, 1 |
Clo Cll C11 C13 C32 C33 C30 C31
Coo Ca| |Co Co| _|C C c
NEB1y = Ago [Bir = 00 01| _| “o2 03| — 29 23| C?o 1 .
Clo Cll C11 C13 C32 C33 C30 C31

Moreover, we will not employ this proposition and eweinyg that is connected with it herd).(
Another property of the quantiti€ can also be mentioned only as an appendix:

The equation<y = 0 or Qs = 0, when considered in isolation and interpreted inpitegective
continuumRs, represent the group of sixteen two-sided collineatioas ithlinked with any KUMMER

configuration, and as a result, witf® of them ¥§).

In the present investigation, the quantit@&swill now be considered to be ratios, and
the fiteen GRASSMANN coordinates of any line d; will be used for their

representation.Cy is then to be set equal to zero, which will have tthecethat the
guantitiesCy1, Cy2, Cs3 can be written a little more easily; e.g.:

Cu=2Gpap+isa)=-2ELpt+éa).

One will get the desired coordinates from elementalgutzaions that are similar to
the ones above in the following compilation:

() The appearance of quaternary, orthogonal transfornsaiiothis context can be excluded from the
outset. However, | shall omit an explanation of that, fevhich would seem to necessitate a good number
of words that are not required here.

() Cf., Am. J. Math29 (1906) or (1907).

() See the previously-cited paper in Leipziger Berichte, 1892rther groups of similar structure
(which can all be represented in a similar way) wtermined exhaustively in the Géttinger Nachrichten
from the year 1912.
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(0) (2) (4)
0 3,0 =Co= U5 | 3407 Coom U | 3,7 Cof U 54
(10) (@) [ =35=Cpu=Uz| 3=Cp= U | 3.,7Ci7 U3 £C 73 U 4
(B)| 35:=Cp0= M5 | 30s=Cp= U5 3.7C, 7 U 43 5C 7 U 4
(B) | =3157C30=My3| 305=Ca= U 5|3 ,5Co7 U 43 5C 7 U 4

The symboldly that are appended, which can naturally be replaced kaéteytmbols
- i, mean the GRASSMANN coordinates of the polar figurtheoline3 in relation to
the manifoldM?, and therefore the coordinates of a certain line sfface For the sake
of simplicity, we shall write them with two indiceisistead of four. (e.glape = LUe, if
apyoel is an even permutation of 012345) Of the quantipiggand likewise, of the
guantitiesily), fifteen times six of them — namely, the ones t@ttain four indices —

will satisfy the PLUCKER equation, and in addition,irashe case o€y # 0, twenty-one
guadratic equations will exist between them that are Iy@adependent of them and
each other.

That proves:

The fifteen ratio3ik (= £ Qgp are the coordinates of the intersecting line of the
planes E and E,, and the fifteen ratios are the coordinates of the polaB,oand
therefore of the linear spac®; that connects the planes &nd E,.

The association of the figur&s and E,, and 3 or 4 that lie in the spac&s with the

figures & @ and € ¢ in the image space sRs birational and completely free of
singularities.

This last fact is obviously very essential. The sioyli of the following
developments rests upon it.
If one performs a collineation or a correlation oe tmage space then that will

induce a proper or improper collineation, resp., of the mianié’, and the converse is
likewise true. The groupBis, His, and &15 $15 that come under consideration are

holomorphic.  Since the collineations and correlatiamsR; are capable of two
essentially-different representations by matrices witteen quantities, the same thing

will be true for the automorphic collineations bf;. However, our investigation has

produced not only that fact (which is sufficiently wellekwm), but a further-qualified
formal apparatus that we will need hencefotjh (

() The representation of automorphic collineationsoaf Mj that is borrowed from projective
geometry has still not attained its formally-simpkegpression, moreover. See Journal fiir Mathendatik
(1926), pp. 58, 59.

For the anti-collineations and anti-correlations thppear in that context, see Math. Anna$h
(1924).
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2.
The manifold M?.

We can now derive a further gro@s, His, and indeeda group of non-projective
transformations from the last group that was considered, $15 simply by choosing
any linear spac®, in the spaceés that does not contad#l;, and then intersecting the
planesEs andE,with thatRs . The figures of intersection, traces,of Ef andE, will be
lines X and®) that lie in the intersection & and M2, and thus on a non-singul ?,
and the plane&s andE, are associated with each other in a one-to-onetibigeeiand

everywhere continuous way. If the plartesand E, were then exchanged with each
other by a transformation abis, $H15 then the linesX and Q) would be exchanged

correspondingly, and in that way, the groGps, His would arise as the one whose
(simplest) space-element would seem to be &% linesX andQ). The manifoldM?,

as the locus of the lines that lie in it, will be doubly-coveith two sheets) when one
each of its lines can either take on the role o¢-tine or also the role of &-line (4.
The X-lines and))-lines will be permuted amongst themselves by the tramsfions of

Gis, each sheet by itself, but the two sheets will fans according to a rule of a
different sort — viz.contragrediently as we would like to say. Namely, as one will see
with no further discussion, each transformatiorGef and the permutation of ti# and

) lines that it implies will correspond to a collineatiin the image spacB; that

permutes the pointé and planesp correspondingly. Similarly, a transformation of the
family $15 on M2 will act as a transformation of theandQ)-lines that permutes the two

sheets of lines with each other (vit,~ 2,2 - X'), and that transformation will

have a correlation (vizé — @', ¢ » &) as its image ifRs . Naturally, the grouss,
H1s will also be mapped holomorphically to the grolips His in that way.
We shall now explain the conceptwfited position of ak-line and a¥)-line by way

of the united position of the associated plaBgandE,. SinceEsandE, intersect each
other in a line3 then, two position relationships for the united litésand$) will be

possible: They caeither have a uniquely-determined poiptin commonor they can
overlap each other. That latter possibility will oceunen 3 lies in R4, and therefore
coincides withx and®). With no further discussion, it is clear th@he united position
of an X-line and a?%)-line is a property that is invariant under transformations af, G

His, while the overlapping of two such lines (on different sheets) is Ftthermore, a
subgroupGio, Hio of Gis, His Will be defined by the further demand that the overlapping
of two linesX and®) should also be invariant, and that subgroup will redu¢kegroup

() A similar situation necessarily exists in radiallyjeative geometry. Geometrie der Dynamen
1903, Third Section.]



E. Study — Simplified foundations for Lie’s sphere geometry 11

®10 of automorphic collineations oM?, to which it is meromorphic, due to the

indistinguishability of the two sheets.
It further follows immediately that:

Two linesX and®) in united position have a well-defined fa¢ét ¢) as their image
in the projective continuumsRand in particular, two linest and %) that overlap each

other will have an image that is a facet whose péiahd planegbelong together as the
zero-point and zero-plane relative to a certain linear complex or tHesgslems that is
linked with it.

Naturally, by means of this association or mapping, gneup Gio, Hio will
correspond to the group:o, Hio of automorphic collineations and correlations of the
complex or null-system, and in particular, the exchawigine two sheets{{ -~ 2)) will

correspond to the correlative reflectich< ¢ in the complex, and the pairing éfand
@ is by the associated null-system. We imagine that litear complex has been
definitely chosen and call it thincipal complexof the image spade; .

The problem now arises of carrying out what was just developed conceptually in
terms of algebraic calculations. However, that i®asy thing to do, on the basis of the
presentation in § 1.

We assume that the, that is employed in our construction is given by tipeagion:

(11) 30 =20t Z5=0,

which merely means a specialization of the cootdinsystem. We then have the
equation of ouM ?:

(12) ~31+357 351337 35=0,
and likewise the associated principal complex, ai as the null-system that is coupled
with it:

(13a) $0:61:$ TR P P,

For the sake of what will follow, we shall alsopeass that association — hence, the
correlative reflection in the principal complexin line coordinates:

(13b) EOl . Eoz . 503 . 523 . 531 . Elz = H23 = Hoz L H03 . HOl L H31 L le .

Only the basic point (1 : 0: 0: 0 : 0 : 0) oétboordinate hexatope in the spéte
does not belong to the spaRe. When one suppresses the index 0, the ratigsand

oo Will immediately yield thecoordinates of the trace® and®) of Esand E;:
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X0 = Aoy
(14)) Xs= A Xu=Ap X = Ag
X = A X3= Ay X 5= Ay
XisT A Xg= Ay X 5= Ag
D4 = By
(141) D3s=Biy Du="Bu D= 3

_Bl
2)51: le’ 2)34:_822 2 23:_823
2)13 = 831’ 2)54: _Bsz 2 25— Ba

3

WhenAg, andBgp do not vanish, we will then be dealing with twaper orthogonal
transformations.

The linesX and¥) will lie united when €@ = 0 in (7), and when the proportion
(13a) does not exist, they will have a well-definpdint of intersection; whose
coordinates one extracts from equations (10):

0 * 5=7Cq | 5,5 Cos
* =C * *
(15) _ » 11 _ _
3. =Cy
* 13 =Cy * *

The connecting plane of the lingsand®) also remains well-defined in the case that
was excluded here. If the linésand®) overlap each other then it will be the contact
plane of M2 alongX or ), and thus, the polar of the two overlapping linglative to

MZ. Itis the intersecting planeor trace— of the linear space for “flat (Flach)” 4 of

formulas(10). Its coordinates (which are denoted with indices, instead of three) are
then to be extracted from the same Table (10):

O i"l24 = COl * *
(16) u35 C10 * uZl: C:21 u 41_ C13
uSl_CZO * u23:C22 u43_ C23
u23:C30 * 1125:C32 u45: C33

The sixteen quantities:

0 |~y | =34 32

(17)

=
=

23 u 43
25 u 45

=
=
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then satisfy the same thirty-shomogeneouguadratic equations that exist between the
coefficientsCy of a quaternary, proper orthogonal transformation ighapecialized by
the assumptioi©y = 0. Of them, we need only the ones that are homogsnie;, as

well as iny. They are initially equations in just ti& viz., the five PLUCKER
equations, and a further one that says that the planoatacts the manifolé 2

(18) 1154 + il§5+ u§1+ uia_u 221_il 223_il 225_i1 241_i1 243_il = 0.

Furthermore, equation (12) is contained in it. Of theaiaing equations, five of
them are bilinear i andil and have four terms; those equations say ghats onil.
Ten more equations are bilinear pandil and have three terms; as a result of thers,
the contact point, or in the limiting case, which t@nincluded here, one of the contact
points oftl with M2,

If a planeil in the spacd; is given by the prescription that is included in that then
the pairof linesX and?Q) will always be determined by it, as well, by the lia¢svhich

the plane cuts the manifol?. However, those lines, as a rule, cannot be rdtjona

separated. The question then arises of how one cathéndindividually.
We shall also provide some information about our forswulaegard to that.

In might happen, to begin with, thetis a singular contact plane M2, so its lines
of intersectiorX and®) will overlap. X and?) will then be identical with the polar of

relative to M7, if one overlooks their distribution on the two siseeOne infers their

coordinates (naturally, except for the proportionalitytdes; which they do not depend
upon) from the following table, in whiclk andQ) have been replaced with which

coincides with them:

0 324:_1124 * *
(19) 335:_1135 : 32121121 3 41:il 41
351:_1151 32321122 3 43:il 43
312:_1112 * 32521132 345:il 45

In fact, when one or the other of the two recipt@ubstitutions:

Bo—6, @Ao—-<, Beo-8 @GBo-&

have been performed, one will obtain precisely ¢beesponding ratioXix = Qi (14)
from the quantitiesly or — Lk that are enumerated in (16). At the same time, th
remaining coordinates of the line&g in the spacés that belong td.l [whose locations
in (19) are denoted by asterisks] all take theevalero.

(20) Upy = oo = U 5= U o= U =0,
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and conversely, the case that is now being treatedoadlir when equations (20) are
verified. The elimination of the quantitigg, will yield:

The necessary and sufficient condition for a prescribed glamethe space Rto be

a singular contact plane oM’ consists of saying that its coordinates must fulfill the
equations:

2 (2 2 2 2 2 2 2 2 2
i”l24_i”l35+1'151+i"l23_1'121+i"l 23+i"l 25_1"l 4l+i"l 4?1’[ 45

21
( ) u§4:u§5+u221+u313:u251+u223+u243:u211;:*_1’[Zzg_u245

The planell will then be cut out by afR; in the spac&s that contacts the manifold
M? along a lin€3 in the spac®, .

In general, however, the two lines of intersectiom @bntact planél of M2 will be
different from each other.il is then the trace of two lineaR;, M3, each of which
contacts the manifold at all points of a lig ( 3") and goes through it along a pair of
planes (E;,E,, E, E;). (In the aforementioned limiting case, the two pairplanes
merge together, s&, =E;, E'=E;.) If the two lines of intersection are known and
distributed on the two sheets of lines &}, and therefore denoted By and 9

individually, then the one will appear to be the trata well-defined plan&,, and the
other one, the trace of a well-defined pldfe. The splitting of the linear spacé¥,,

R, and thus, the decision for a well-defined singular caBacof M7, will however

be effected in such a way that one seeks to fill upgdps (viz., the asterisks) in the
coordinate table (19), which are not zero, as a rule, bfeoung the table (10). Since
one must have:

Llgs'*’thzsl'*'Llia_uzzl_uzzg_u22.‘ = uio’
u§5+u§1+uia_uil_uiz_u2¢u = 1152,
(22) il§1+ilfs—i1221—i124] = ugl’
ilfg+il§5—il§3—i12452 1153,
il§5+il§l—il§5—i13£ = 1155,

the squares of the five quantitigg will be known already. If they are all equal toaer
then one will be addressing the special case that waeismd above. However, if at
least one if thes(?, are non-zero then all of the quantitiisc will be determined

uniquely by means of the bilinear equations that exist betweenlitheafter deciding
upon a single value for the root. With that, a particsfaceRs will be chosen from the
two linear spac®;, R;.

If all fifteen quantitieslix are known then, as we have seen, so are the praflygts
and with them, the dual ratio$ , @& , as well as the ratio&y, Ax andBgo, Bk , and
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therefore, ultimately the plan&s andE,whose traces are the lingsand¥). A change
of sign in all of the quantitiedo obviously means the projective reflection in the plan
Ry and its pole (1:0:0:0:0:0), and thus, the exchahg§g = E; andE,= E, with
E; and E;, and thus the exchangeXfand?).

Finally, Table (15) also provides us with the traces eflie 3, and therefore the
contact point of the plari and the point of intersection &fand®), when it is defined:

(23) 31032033034 35 = Mot — M ol U o 8 o A

In fact, when that point is defined, it will thérave as its image the likewise-well-
defined line:

Zn=bptéa, Ze=—-begt+téa, == bepté&a,
Zn=b@pt&Ee, Za= Se-bde, Zo=—bde-&o,

which belongs to the facef,(¢ and lies in the principal complég;, + =»3 = 0.

If, from now on, we saleaf (Blatt) to mean the figure of the platieand its lines of
intersection withM 7, which are referred to as left and right, accaydin the schema —
hence X and?Q) — then we can summarize what we have proved asvi&l

Any planedl that contacts the manifolt? will belong to two leaves that are not

distinct from each other only in the case of a singular ptarfeshich contactsM? in a
line). The singular contact planes then define the branching figure fodahéle
covering of the contact planes B with the leaves.

Any leaf corresponds to a well-defined facet in image spaé&, and conversely

).

Overlapping leaves correspond to facets that are paired with each othée ull
system of the principal complex in image space, and conversely.
If the planei is given by the ratios of its ten coordinatég [that must satisfy the

equation(18)] then the separation of the two associated leaves will result when one

() Math. Ann. (1925), pp. 107, Proposition XXVII.

S. LIE phrases this as: “every” element (i.e., eviaget) in the image space corresponds to “one”
element in the sphere space, and conversely. In MIEEIASCHKE, in the sphere space, in place of an
element (although it does not quite follow), one wilidian oriented (i.e., “directed”) element, whose
wording must also refer to the “total space,” and in,tgive a theorem that is false. No less than three so
called proofs of this are presented, in which some wenyarkable things come about (such as the line-
sphere transformation as a “surface transformation”)

Let me say that | have produced a “closer examinatiortha$e “relationships.” That implies a
misleading of the reader, who naturally cannot guess Itatd myself to be in contradiction to
BLASCHKE, and indeed, it seems to me, at some vesgregil points.
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determines the five more quantitigg that can therefore serve asordinates of a leaf,
along the ten given quantities.

Each individual quantityly is the root of a purely-quadratic equation. Rational
dependencies exist between those five roots in such a way that ¢laehlyoéntitiestox
that is non-zero will be determined uniquely from the remaining onesll &f the
guantitiesilox are equal to zero then only one leaf (hence, a singular one) will belong to

the planeil.

Furthermore, it emerges from what was said thia¢n determining the leaves that
belong to a planel, it is impossible to always rely upon the same aforementioned roots,

or also to replace all of them with a single square root.

Henceforth, we shall assign the symlaolto a leaf, in order to distinguish it from its
planeil, and call the transition from a leaf to the one let above it (and is different
from it, as a rule), thewversionof the leaf, and it will have the coordinatéls, , — 4, ,

or ones that are proportional to themyversion corresponds to the correlative reflection
in the principal complex.

One can also represent the lir€sQ) by systems of linear equations, instead of
coordinates. One then has only to express the ideanth@atge space, a ling of the
principal complexZy; + Z»3 = 0 lies united with a point or a plane, and then intredbe
point-coordinates of the spaBe: 30 (= 0),31, 32, 33, 34, 35- Equations of the form:

* 2451'*'7152_ %53201
_2450 * _2252'*' 2053201
_2150+Z2§(1 * - 2453201
Zé~%$,t 25, * =0,

(24)) (z=x%)

8+ 30,+ 20,=0,

(24r)

_ 4% *
LB Lh

*

LB~-L0t 29,

-yt Zo¢3:O1

- 24¢3:O1
*  =Q,

z=y)

will then arise in which (for a suitable determioat of a proportionality factor) the
coordinatesz (or X« , Y«) will be connected with the coordinatgs(or rx, y«) by the

equations:
(25)

3 =22,

3= %~ 4, 33= 4t 4 3,5

Zt Z 3~

£ £
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If the figures & and ¢ are given then equations (B4and (25:) will yield the
associated line¥ and?) (or X andY, here) as the loci of the points ¢ and; =y (orz=

x andz =), in whichone must observe that despite the surplus in these equatares,

of them are dispensablg). Equations (25) also already contain the corresponding
dependencies between the line coordinXfeand Xi, Yi andQ)i that belong to the two
coordinate systemszf and {3}, and therefore they again deliver formula (14) for us.
Moreover, if a pointz (or 3) of the spaceR, is given then equations (24) will imply
nothing contradictory only when their common determimatnits square root, namely:

(26) -2+ 2= -3+35-32+3%,

has the value zero, and thus, if the pgilbr 2) lies onM 7. Both systems of equations

will then yield the image of the given point, namelyjre in the principal complex, in
one case, as the locus of its points, and as the ddatssplanes, in the other.

Equations (12) yield plane coordinatégg that are naturally likewise connected with
the coordinates$ly that used here by a linear transformatin (

3.

Spheres and oriented spheres

We saw before what kind of figures in the “sphere spa¢é”have points and planes

in the projective continuur®; for their images. Here, we are dealing with something
even simpler that does, however, require a moreuddareatment (like all mathematics).

The manifoldsM? and M? differ from real spherical manifolds in a (Euclidian o
non-Euclidian) spac&s or R, only by their unusual choice of coordinates, and thus
basically not at all. Therefore, e.g., the intetises of M2 with planes can properly be
calledcircles (e.g., regular, simple, and doubly-singular circles)e iftersection oM}
with lines PR3 or surfacesin the spacdr, will be calledspheres. A sphereu is then
defined by a linear equation in point coordinates.., rs :

urrrtus ra+tusra+us rat+us ps = 0.

Since the relationship of pole and polar exists betweenispand surfaces iRs, one
can also put the last equation into the following notafwhich is probably a bit more
suitable):

() For S. LIE and some more recent authors, only a kingrotesque mutation of the system of
equations (24) appears:
(X+1Y) +xZ2+z=0, z(X-iY)-Z-y=0.
() Cf., Math. Ann.91 (1924), pp. 113.
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(27) *—31r1+ 320233 3+ 34La—3505=0 {31 =—ug, 32 =—uy, etc.}

Like all non-singular second-order surfaces, our “sphealssy’ carry two families of
«? lines, and they can be distributed on the sheets o thed9)-lines in two kinds of

ways. Along with the concept of sphere, one can mente another concept that shall
be referred to as an “oriented sphere.” Here, | waké&ltb use the terranion which
shall be explained later, since it is less biased, at,léar certain manifolds of leaves.
Let me explain:

If each ofeo®® %-lines lie united with each @ 9)-lines (*) then thew?? leaves(X,
) that one derives from them will define a union that shall be called aweried
sphere.”

It follows from this thatfirst of all, any oriented sphere will again give rise to another
one under each transformation of the gr@ip, His . Secondlyone has that there are
two kinds of oriented spheres. The one of them, whlell be calledegular, doubly-
cover a unoriented sphere. The other kind, which vedl shlledsingular, are nothing

but the points oM? when they are likewise considered to be loci (uniofs)*? leaves.

Namely, one can associate each paind all of thew®? leaves that have their proper
point atz when they are regular and one of their pointg athen they are singular.
Thirdly, one sees that the unions of the second kind are lingtieg of those of the first
kind, and collectively define tHeranching manifoldf the double covering of the regular
spheres.Fourthly, not only are manifolds a$?2 points linked with the regular oriented
spheres, which are just the associated unoriented sphetedso with the singular ones:
viz., the null spheresAny singular leaf on a singular sphere has, in fa€t, points, and
they collectively define a cone, namely, the assediatill cone.

Under these circumstances, it is advisable to introthuedermpoint sphere along
with the word “null sphere.” The word “point sphere” Milien mean precisely the same

thing as the worgboint (on M?), insofar as only the latter word (which is proper here)

will be employed to refer to the associated unions“Bfleaves. The term “point sphere”
will then express the idea that the point, as a umimegns a special case of an oriented
sphere. Hence, from now on, the “null sphere” will refer (only) to the unimige®®
singular leaves that have points at the point z

The point spherethen has»?? leaves, like a regular sphere, and those leaves also
define a single analytic continuum in which, howevernglavith the leaf X, 2)), the

inverted leaf &' =%, 9’ = X) will also appear; they will then differ from thegrdar,

oriented spheres in that way. Teé&" singular leaves of the associatadl spherewill
then function as the branching manifold in this figure. Twant-sphere is also
distinguished from the regular, oriented sphere by tttetif@t it contains singular leaves.
The condition for the presence of a point-sphere isonisly:

1y Naturally, that means trenalytic continua ofx-lines and)-lines.
y
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(28) 535 +353.+3=0.
Obviously, one likewise has the theorem:

An oriented sphere has a line in the spagddrits image, and conversely, each of
those lines will correspond to an oriented sphere.

The point-spheres or points correspond to the lines in the principal complex.

Here, we then once more arrive at the associatiah we already expressed by
equations (24) and (25).

It still remains for us to assign coordinates to #wgutar, oriented spheres. We get
them from the remark that the leaf (27) will be cut by tspacesRk), 2, that contact

MZ. We obtain the contact point with no further dissian by extracting a square root:

(29) 30 =+ 32— 32+32—32+32,

In general, we will consider the ratios:
(30) 30:31:52:3313435
that are explained by that fact to be the coordinates of an oriented sphere.

In fact, with their help, we can distinguish thetoverlapping oriented spheres. We
already know the image of the popin spaceRs, namely, on the basis of equations (6),

or then on the basis of the equations:

220, =30%31 2Zp=30%3s 2Zy=34t s

(31) B B
2Z,;=30— 30 22573, 33 2= 3i5 s

Moreover, we know the conditions for a pobr a planepto lie united with the lin&.
Thus, we also have, however, the conditions foivargline on M? to belong to the
oriented spherg as anX-line or a®)-line: We have separated the two families of lines on
an initially unoriented sphere by determining tloetr;o .

We shall now say thatvo oriented spheres contact each otiwien they have a leaf
in common with each other. If we correspondingdy shattwo lines in image space
contact each othewhen they — as unions of facets ¢ — have a facet in common, and
thus, when they cut each other, it will then folltvat:



E. Study — Simplified foundations for Lie’s sphere geometry 20

Oriented spheres that contact each other have lines that contact (chtptweer for
their images.

We already know the condition for this positionalatenship between oriented
sphereg’, 3". Namely, it consists of the fact that the conmegtine for the two pointg,

3" is a line3 that lives inM?:

The condition for the positional relationship in the last theorem is:

32) 31(1) _ 31 311+ 3123112_ 3133113+ 31 45"4_ 31 é"!
(32)
= 2 {Z(’)l Z;3+ Z’OZ Z"31+ 203 Z,12-+_ 223 ZO]-.i_ Z31203_ ZlZ Z}): = 0

Any two distinct contacting spheres then contact edbér in a single leaf, and they
will be contained in gencil of oriented spherethat contact pair-wise that the leaf
determines. «?® exemplars of that pencil exist, like the plane perafilines inRs that
are their images. However, like the associat&lleaves, they will overlap each other in
pairs, by which, @ranching manifoldvill once more appear that corresponds toctfig
facets in the principal complex. Furthermore, (a&el&explanatory) one will get:

In order for two (or more) oriented spheres to contact each othas dready
sufficient that they should have &Adine or a$)-line in common with each other.

With that, | believe that | have established the etdgarg facts upon which any
further development in sphere geometry must rest. Ws# speak on that subject, and
especially on the general concept afrdaon of leavesand on the representation of the
line-sphere transformation as a typeofitact transformatioff') in a second article.

However, it would first be good for us to clarify theegt distinction that exists
between the contact of oriented spheres and the corfdiyet @ontact of sphereger se

If we have two unoriented spheres — i.e., the intésectf M7 with linear spaces
R;, R; — then we will have two kinds of pencilsu’ + A" u”, and three kinds of contact
to distinguish:

(@) The plane of intersectiaott of u' andu” can meetM? in a pair of different lines.
The pencilA” v + A" u" will then contain two coincident null sphereslhe regular

spheres of the pencil can be oriented in two ways, theg will then yield two
analytically non-coincident overlapping pencils of otéghspheres.Both pencils each
contain the same null sphere on¢@ne can then have that:

(@) The given spheres are both regular, or
(@) One of them is the null sphere of the pencil.

() But not exactly with the definition that LIE gave.
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In the second case, one is dealing witiproper contagtwhich consists of saying that
the vertex of the null sphere is contained on therctpkere.

(b) The lines that were mentioned &) (coincide. The entire pencil then consists of
null spheres, and any two of them will contact each other infinitelgyniimes. By
contrast, the associated point-spheres contact each other only sitdply, as a union
of leaves, a point-sphere is the same thing as a point:

We see that two distinct points in sphere space can contact each bigraely, they
will always do that when their connecting line is a null line (which éieM 2 ).

That then shows once more the very essentialrdiftee between the concepts that
are linked with the word “contact™ In projective geetny, two distinct points can never
contact each other.

We also already know the condition for two unomehspheres to contact each other.

It consists of the demand that their plane of intise should contacM?. We then
come to the theorem:

The algebraic expression whose vanishing indicates to the contact gitter@s will
be decomposed into two factors by the orientation process.

In fact, on the basis of what we have established:

2 2 2 2 2 2 2 2 2 2
1124+Ll35+1151+i113—1121—i1 23_il 25_il 41_il 43_i1 y

_ 92 2 2 2 2 2 2 2 2 2
- 324+335+351+313_ 21 23_3 25_5 41_3 43_3 L

(33) ={3030 731317 3232733353343 B
{30 30+ 313132323335 343 473 %

= 2 {Z(')l Z;3+ Z'OZ Z"31+ 203 Z’12+ Z23 ZO]-.i_ 23120? Z12 Z})I

P {Z('n ng_ Z102 Z"31_ 203 le+ 223 201_ Z31205 Z12 Z}x

(cf., no. 13b). The meaning of the vanishing of the seobtitbse factors is immediate.

Finally, we might draw attention to the following sitioa:

Whereas, up to five unoriented spheres can alternateiiact each other in such a
way that no two of the ten contact points lie amid line (), for more than two oriented
spheres that contact each other pair-wise, either déact points must always be
contained along the samgline or the sam@&)-line, or both of them must occur at the
same time.

We already have that triples of mutually-contactipdnese might not always be
oriented in such a way that contact still takes p&fter their orientation.

() The corresponding PF lines inR; define a “double-five” with a collineation group of ichealral
type.
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The ideas that were just presented are also so simpletttetauthors, beginning with S. LIE, have
also created some confusion that cannot persist withmmgequences. One correctly recognizes that
oriented or unoriented regular spheres must corresponaetorotwo lines in image space, respectively.
However, those spheres would not be regarded as unioeaves! (which is a concept that is lacking), but
as unions of oriented or unoriented “elements.” Nasiuech, the null spheres aeelucible figuresn both
cases; the lines in image space that allegedly corrdgpothem must then likewise decompose into two
pieces! Instead of inferring the conclusion from thid #mmething was amiss, one will find that the cone
that the null-sphere consists of has been almost epetplthrown out, and merely its vertex seems to
remain on the image surface, which actually seemg narch like sleight-of-hand. The fact that this
mistake has not come to light so far is probably dae,tie most part, to the incompleteness in the
algebraic apparatus that excludes any effective cont(&8ee, e.g., KLEIN-BLASCHKE, 88 70, 71.) In
addition, one would still have to consider that from ¢lementary definition of the concept of a sphere,
two arbitrary spheres will already contact each otheldeast doubly, and even infinitely many times in
some situations, and that this type of contact cannobalsimply spirited away.

Things are no better with a different process by twioice comes to grips with these things. (See, e.g.,
KLEIN-BLASCHKE, 88 65, 66.) Even in that case, one hagléd the horse from behind. Meanwhile,
the seed of a useful thought is also present this timmanlperhaps be phrased as:

Instead of first intersecting the manifoMf with a linear R and then linking sphere geometry with

Euclidian or non-Euclidian geometry by projecting tmajthat is obtained, one can invert the sequence of
operations of intersecting and projecting without altering the results.

In that way, one will arrive at a MOBIUS point-contimudt;, with a groupG/,, H, of conformal
transformations'j, and then at a sphere space that can likewise be rdges@eMOBIUS continuurﬁni.

For example, Euclidian geometry can just as well fingblase there as in projective geometry. However,
one finds distinctions there that arise from just thdous extensions of the “proper point” to a closed
continuum. For example, a planeimj is something completely different from a plane in thgqative
continuumRg, although both concepts completely overlap each othaeiddmain of proper pointdhose
figures are already topologically differers point-loci, non-isotropic planes have the same odioreto
sphere geometry as regular spheres, and isotropic planestlimvsame connection as null-spheres.
(However, the associated union of2 leaves has the same connection as a regular sphdtee)
CHASLES mapping process (viz., “isotropic projectipnihich derives a pointx(y, z ir) in spaceR,
from the usual representation of a spherey,(z r) in “space” Rs), is achieved only for fragments of the
continuaﬁmf1 and zm§ which is as it should be. For example, planes cannoti®eted with the help of

their “radii.”

() Math. Zeit.18, 21 (1923-24). Journal fir Mathematlls7 (1926), 35-39.



