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Abstract. It will be shown that the quantum theory of wave fidimls to the same expressions for
the interaction of charges as the classical treatoferetarded potentials.

The interaction operator has the following form: Redr(or advanced) potential of one charge at the
position of the second one, times the second chafgmelof those two charges can emit radiation in the
first approximation then one must choose the retardezhpat of that charge or the advanced potential of
the other.

The present Part | contains the complete discussion fmalar field. The generalization to a four-
vector field is touched upon only briefly, and will bedted in a second part.

Introduction

Whether or not the quantum theory of wave fields castagreat internal
contradictions at the present time, it is still tihegke practical means of describing the
corpuscular nature of radiation and matter.

On the one hand, it follows from quantum electrodyrantinat there exist discrete
light quanta— i.e., the result that radiation of frequenigg can be emitted or absorbed
only in amounts olfiksC.

On the other hand, one can derive thessical resultof the retarded interaction
between two charges.

In many cases, we are interested in only the secommgyoof the field. Since that
retarded interaction does not contain Planck’s consitamust be possible to show that
all of the laws of interaction that follow from a ouam theory of wave fields are
identical with the corresponding classical results.

We would like to prove this for a scalar figddvhose field equation has the form:

(O -1 A=-4m. (0.1)

On the basis of electrodynamics, we &gH) the potentialandJ(x) thecharge x is
the position four-vector, whose components»re ct, andx, X, X3, the last three of
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which we denote by. The wave equation (0.1), whose static solution fooiat charge
at rest at the coordinate origin reads:

A==, (0.2)

defines the starting point of YUKAWA's field theor{][ which explains nuclear forces
by means of the existence of a new field whose paiichech is associated with it by
the quantum theory of wave fields) has the nidg<. | is then the reciprocal Compton
wave length of that new particle. From the rangeumfear forces, that mass will have
the order of magnitude of 100 electron masses. In whatv®g we will show that the
existence of charged and uncharged particles must be requiteaiged particles were
observed by various authors in cosmic rays. One witl fnore details on this in the
notices of YUKAWA [1], KEMMER, BHABHA, and the author?.

1. Theretarded and advanced potential.

We look for a solution of (0.1). In order to do that developJ(x) in a Fourier
integral with the integrand(k), wherek means the four-vector with the (real) temporal
componentk, and spatial componenks= (ki, ko, ks). dxX’, dk* anddx®, dk* mean the
four-dimensional and three-dimensional volume elemamtspace (the space of wave
vectors, resp.). Therefore, let:

xm:deémﬂxm. (1.1)

If one developsA(x) in an analogous way then it will follow by comparing the
coefficients that one has the relation:

A(K) = ﬂ(k)z (1.2)
(k,K)+ 1
for the coefficient®\(k), in which k, X) and k, k) are scalar products of four-vectors.
We sayeigenvectors of the fiehen we mean vectors whose temporal components

obey the relation:
Ko = +ky(K)= %4/ (K,K)+I2 . (1.3)

In this, K, k) is the scalar product of the spatial park @fith itself.

We assume thakk) has no singularities for reklvalues. The integrand(k) in the
expression forA(x) will then possess singularities on the r&ghxis for bothk, =
iEO(k). Since, by assumption)(k) possesses no singularities in the immediate
neighborhood of the re&b-axis, we can already deform the path of integratio(1.1)

over kg from — o to + « before the comparison of coefficients. If we denthat
deformed path by (..) then can write the solutib(0dl) as:
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AAy) = [ ok [ dk, AR &
(-)
=[x 39 D(y- 3. (1.4)

In this, D™)(2) is a function that is defined by the Fourier gres:

(= 2 kw1
D (z)—(zﬂ)sg)e (k,k)+|2dK1' (1.5)

In order to derive the second identity in (1.4)eanakes use of the four-dimensional
o-function:
ak) = ()™ j dx*&®x), (1.6)
with the property that:
j dk* (k) AK) =f(0) or
K

0, (1.7)

according to whether the poikt= 0 lies inside or outside of the path of integmraK in
(2.7), respectively.

ko - plane
RN 7~ N\
3 k
ey

Figure 1.

If one chooses the integration paths to be thepgatbs that are denoted by (+) and
(-) and run completely in the positive (negativeprealf-plane (Fig. 1), and considers
that:
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(ais a small, positive quantity in this)

dk e‘::m I|m£ 2ljdk0 smklzoxO I d'%}

then one will obtain the following expression B

DY =¢70) | d|k|'|‘; W lcos(k 1k +5% ¥ cosh A1+ % (L8)
with:
1 1 >
g =2 1/2, gO=: -1/2 for % =0, resp.
0 -1 <

Therefore, in formula (1.4A™ is determined by only the charge distribution in the past,
and A”) is determined by only the one in the future. As a genetializdrom
electrodynamics, they will be referred to as temrdedand advancedpotential, resp.
D™ andD® themselves are the retarded (advanced, resp.) poteftaisoint charge at
the origin that is non-zero only at the time powt 0, and whose spatial integral has the
value unity. From their derivatioR™ andD" are invariant functions.

Forl = 0 (viz., the electrodynamic case), one will have:

D®(x) = l%ld(lx ES'S) (5= one-dimensionad-function).

We then define the likewise-invariant function:

D(x) = DY(x) - DM(x)

K lcosk 1k k% ¥ cosk Al {k% . (1.9)

|
d|k
j||k0

which goes to the Heisenberg-Pauli invaridfiinction forl = 0. With its help, one can
write the retarded and advanced potentials indaha:f

Ay) = [ ¢ [ dg D(y- 3 T 3. (110)
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In general, retarded and advanced potentials are twaetffeexpressions then.
However, there are special charge distributions whosedt coefficientsl(k) vanish for
those k that are eigenvectors of the field. It is not neagsdo deviate from the
integration path (1.4) in this case; i.e., both integnapaths will give the same value.
The advanced potential of that special charge distribigiequal to the retarded one.

MJLLER [3] showed that the electrodynamical interaction of telectrons in
guantum theory can be regarded by using the following tieraAnsatz: One measures
the retarded or advanced potential of the first elecataime position of the second one
and multiplies it with the charge of the second etacttrThis argument will, in fact, lead
to a symmetric expression for free electrons, siheeRourier-analyzed matrix element
of the current will contain no eigenvectors of the field.

The Breit interaction 4] can then be obtained from the M@LLER Ansatz by
developing it in 1¢, and its reduction to the large components for Diractians will, in
fact, yield the correct spin-spin and spin-orbit coupliobBauli’s theory of spin.

If one recalls the prescription that this interactmsatz can be employed for the
calculation of eigenvalues in the first approximation thewilit follow that only static
charge distributions will come under consideration, amerefore the retarded and
advanced potentials will, in fact, be the equal.

Later on, HULME b] showed that M@LLER'’s prescription can be replaced wit
stronger one whenever the one particle is capable ddtiragt Namely, the retarded
potential of that radiating particle must then be choae the location of the second
particle, and multiplied by the charge of the second geytior else the advanced
potential of the non-radiating particle at the locatidrthe radiating one, and multiplied
by its charge.

In what follows, we will once more find Hulme’s sharpenof Mgller’s prescription
as the result of a more general quantum-theoretic agunits classical analogue is just
this appearance of eigenvectors of the field in the “miXeatge density” of the one
particle.

2. Lagrange and Hamilton function of thefield.

For the sake of generality, the field and the chargdl §le regarded as complex.
Formula (0.1) will then follow from the Lagrange function

L= j dx L,
with the Lagrange density function:
| [
£:—i ai,% +1°A"A o1 A'J+ a—A,S +con;. (2.1)
8|\ dax o0x 2 0Xx

(conj. means the complex conjugate of the exprassiobrackets), in the usual way
(when one consides andA to be two independent functions). In placelobne will
find the expression:
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Jert=J - (%,sj. (2.2)

If one letsJ denotecharge then (on dimensional grounds) the four-veck&can be
regarded as theolarization. (2.2) is then theffective chargén eq. (0.1).
The conjugate momenta follow in the usual way:

|
_5;_05_ i, 65. _ 1 0A +_1$)D, (2.3)
OA 0A | 0x aaA 8mc dx, 2c

0x

and there is a corresponding expressionPfor The Hamilton function is calculated by
using the relation:

H=-L+ [ dC(AP+ A'P) =W+V. (2.4)

In this, W andV are the volume integrals of the energy densitieandV, which have the

forms ():
]
w=L|[ A OA) 12a%a | + 87 PP (2.5)
8| | 0x 0X
and
1| \oq.[0A . -
V:—E A+ a,S +conj,| + 4rc (PS + conj.). (2.6)

The canonical equations follow from the functioddlerentiation of the Hamiltonian
functional with respect t&* (P, resp.), which is defined by the second and ttarch of
eg. (2.3):

. _ OH .
A=="— =81cF -4rc 2.7
3P 9 (2.7)
and
pr=-9H_ 1 5l J—(i,sj . 2.8)
oA~ 8m 2 0X
() Formula (2.4) will yield only a supplementary termtoé form:
+2m[dx*S’ S (2.6a)

that depends upon only the matter (and is therefore superflutius field equations), in addition to tié
andV that were written down. However, as will be showrPart Two, that term will be necessary if the
equations of motion for matter are to make sense.
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Differentiating (2.7) with respect to time and elimingti®” from (2.8) then gives, in
fact, eq. (0.1) with the effective charge that wasngefiin (2.2) in place af.
3. Quantization of thefield theory.

The quantization of the scalar field theory was cdrraut by PAULI and
WEISSKOPF §]. The operator identities:

P=(i/h)[H,Pl=-dH/ A

L (3.1)
A=(i/h)[H, A=J0H/OoP
follow for each analytic functiond of the operator® andA when one has:
[P(X), A(X)] = (h/i) o(x —X), (3.2)

and when the starred operatérsandP” commute with the un-starred ongandP. In
this, a square bracket means:
[a, b] =ab —ba

Therefore, the equations of motion (2.7) and (2.8) atdlow for the quantum-
theoretic operators when we employ the operaton:tfdrlat follows from the classical
equations (2.4), (2.5), and (2.6) when one replaceB the, P, andA with operators that
fulfill (3.2).

The same thing will be true when we employ an opekator which one has:

| __ o159
(i/h)[K,P7 = 5K/5A—2[J (GX,SD,

(i/h)[K,Al= OK/ISP=-4mcS,

(3.3)

instead ol. This equation can also be regarded as the definititmeatharge quantities
JandS

JandSare functions of the canonical variables that desthibestate of matter. If we
denote them by andq then the (classical) equations of motion for mastell follow
from:

D= (i/h)[K, pl,
p (! K, ol (3.4)
g=(i/h)[K, q].
The quantum-theoretic problem consists of solviieggSchrddinger equation:
(H +_—hij P(t) = 0. (3.5)
i ot

We shall follow a method that was proposed by DIRROCK, and PODOLSKIT]:
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A function (functional, respY'(T, t) for which one has:
W(T, ) =¥(t) (3.6)
is introduced, along with an operat¢f (T, t) that likewise satisfies the relation:
K’(T,t) =K. (3.7)
In (3.7), it was assumed that the operdtodoes not contain timeexplicitly. K’ will

then depend upon andt explicitly, in general. Now, if the functio® simultaneously
satisfies the two equations:

CY = (w +Th%j W' (T, t) =0, (3.8)
, h o
CW' = (K (T,t)+i—aj W (T, t)=0 (3.9)

then the Schrddinger equation will follow from tiits the one-side® with H = W + K
that was defined by (3.6).

Now, in order for the two eq. (3.8) and (3.9) te ®imultaneously soluble, the
operatorsCr andC; must commute. This condition:

[Cr, Cd = [W, K'(T, )] +

hoK'(TY _ (3.10)
= .

represents a differential equation for the depecygle the operatoK’onT. When one
considers the initial condition (3.7), its solutioil be:

K/(T,t) =W DIhK gWt=D/h, (3.11)
Eqg. (3.8) can be solved formally by:
W(T, t) =" W' o). (3.12)

The function ¢(t), which depends upon only time, then satisfies fo#owing
Schrédinger equation, which follows from (3.9),1B), and (3.12):

AP
(K *Taj U0 =0 (3.13)

in whichK"(t) means the operator:

K"(t) — eth/h K e—th/h. (314)
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The Hamilton operatoK ” in eq. (3.13) is then the original operakarin which the
operatorA(x) has been replaced with the operaibix, t), which can be calculated from
A(xX) by the same unitary transformation (3.14) that produ€édt) from K. If one

ignores the operator characterfothen (3.13) will be the Schrédinger equation of matter

under the influence of a given potential fi&lt(x, t) that depends upon timexplicitly.
The same thing is true fé. In order to have an explicit form for the new @ers
A" andP”, we develofA” in a series:

oA’ t? 92 A

A" (%) =A (% 0) + = (x,0)+ 5~ (x,0) +

In this, one has the following relations that fallirom (3.14):
A’(x, 0) =A (x),

oA’ _ _OW _ 2 o
—t(x, 0)=G/h) [W,AKX)]= > - 8rrc” P (X),

aA"( 0) = (/h)? [W, [W, A (X)]] = 877¢2 (i / h) [W, P],

2 OW >
=-8mc*——=c* (A*—1%) A (X
SAD @7 -1%) A (%),
etc. If one then introduces the symbolic operator:

b(x) = -A+12, (3.15)

which acts upon only the paramexethen one will generally get:

aZn A"

t2n

(, 0) = (c b(x))™" A(x),

(3.16)
62n+1A"

a 2n+1

——(x, 0) = 87c? (ich) * (ich)™ P'(x).

To abbreviate the series development of the symbmbieratorb, we introduce the
expressions col€t) = cos b x) and sin bct) = sin @ %). One can then write:

A (x,1) = A (X) = cos b(X) Xo) AX) + 877¢? b(x)™* sin B(X) Xo) P*(X). (3.17)

In what follows, we will always employ the symb&({x) for A"(x, t), in whichx again
means the world vector.
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This potential that depends upon the world vegtobeys well-defined commutation
relations. Leix andy be two events, so:

[AX), AW = [AK)", AY) 1= 0, (3.18)

sinceA(x) andP(x)” commute in (3.17).
If one employs the commutation relation (3.2) anadtsjugate, and one writes tbe
function in the form of its Fourier development [tmaBgue of (1.6)]:

ax) = (277 | dk*e®
then, upon considering that: _
b(x) €9 =k, (k) e« (3.19)

[in which ko(k) again means the (positive) square root of (1.3)], one halle the
commutation relation:

[AK)", AK)] = - 2hi—° D(x— ). (3.20)

In this, D is once more the invariant function that is defined byrasrier representation
(1.9).

The P"(x, t) that can possibly enter inth can be expressed by a series that is
analogous to (3.17). One then finds that:

L O _ gyt OAY”

—_— 3.21
ot 0%, (3:20)

P'(x,t) =P(X) = 3

In particular, if the part oK that represents the interaction of field and matees the
form V, whose density is given by (2.6), then the coweasing density®"(x, t) will be

given by the invariant expression:

D"(x, ) = - % [AK) I) + (agix)

,S(x)j+ conj.]. (3.22)

J(X) andS(x) are the (scalar) charge and the four-vectorsopdlarization at the location
X. In the event that it does not depend upon thenpial A, as in Dirac’s theoryt will
not appear explicitly in it, as before.

4. Derivation of the interaction operator in configuration space.

If one describes the matter, not by a matter fibigt by the coordinates (s = 1, 2,
..., n) of n particles (viz., configuration space) then ther8dmger functions?, W', and
{ that we employed in paragraph 3, will become fiometls of the functiong\(x) and
functions of theg®. The Hamilton operator of matt&rwill then be decomposed into a
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sumY K® in whichK?® (along with the field operators) contains only operatbet act
upong®. EachK® will itself decompose into a teri® (q°) that contains only operators
that act upom® and a term:

V2 (Q°, A'(x, 1)) =V (1)

that contains field operators that contain timexplicitly, according to the foregoing
paragraph, in addition to the operators that act gpon
We solve the Schrodinger equation (3.13):

N0 L (Reva ) e
(K +TEJ Y= (R+V+i atjz// 0 (4.1)

[in which, K means the sum of th¢®, andR (V, resp.) means the sum of tR& (\V°,
resp.)] by an approximation procedure. In it, we imagirae theperturbing term Vis
proportional to a small number, in which we develop.

Therefore, let:

=Y+t gt (4.2)

in which ™ is proportional to then™ power of that small number. If one sets the factors
of the individual powers equal to zero then one will obthe following system of
equations from (4.1):

ho) o
R+—— |¢°=0,
(7T

(mﬂi YV =0, (4.3)

The solution® + ¢! + 2 of the three equations that were written down in (4.8 th
gives thesecond approximatioto the solution of (4.1). Along with the effect of the
matter on the field, it already contains the reactd the field that is generated by the
matter on that matter. Therefore, the interacbdriwo particles with each other is
contained ints first approximation If we succeed in finding a relation:

V() pt= > Uyl (4.4)

then we can combine the last two equations in the sybtainwas written down in (4.3)
into the equation:

R+Th§(¢l+¢/2) +[V+22uf5j¢/°:o, (4.5)

by addition.
If one develops the solution to the equation:
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(R+V+22Urs+i—h§j¢/:0, (4.6)

in which one thinks o¥ andX>. U " as being multiplied bthe samesmall parameter,
then one will get the first equation in (4.3) for thestfiequation (fory®), while one will
get eq, (4.5), withy', in place ofy® + 2, as thefirst approximationy' [in which the
Roman index means the development in the perturbing\feerd " in (4.6)]. Thus, the
first approximatiorof (4.6) will be identical with theecond approximatioof the correct
eg. (4.1). However, it is clear that the higher approtiona of (4.6) will lead to
incorrect expressions fag; i.e., ones that do not satisfy the Schrodinger equatidhe
problem.
Obviously, the term:
U®+U® r#s 4.7)

will then represent thmteraction energy in the first approximatidetween the particles
r ands.

In order to discover a relation (4.4), we consider tfstesn of equations of the-
equations:

(RS+VS(t3+Th%j¢/(t1, Lttt =0. (4.8)

If we find the solution to this many-timed systdman the function:

Wt ..., =) (4.9)

will represent a solution to the problem (4.1} is the “particle time” of tha™ particle.
However, equations (4.8) are not, in fact, simudtarsly soluble. One will find more
details on this in BLOCH§]. Nonetheless, we will see that it is solublethie first
approximation, and we will, in fact, ascertain &tien (4.4).

In order to do that, one must demand the existefigeLorentz system in whicR®
contains no explicitly time-dependent forces. Mally, that is the case for free particles,
and likewise for a bound electron in the rest systé the atomic nucleus. There then
exist eigensolutions for which one has:

fR)u,, =u,_, Ohw (4.10)

[if f(2) is an arbitrary function afthat is representable by a series developmertig uJ
are functions that are independent ofttheThe time-dependent functions:

=y, , 2" (4.11)

V- Vp vy

then fulfill (4.8) in the first approximation.
We now consider the expression:
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S

S h o 1 n
f(R o jw(t, 1), (4.12)

in whichw is an arbitrary function of thg® andt®, and a functional of the field variables
whose time-dependency is representable in the form:

w=Y e 2y, (4.12b)
@ @,
(4.12) will then become the sum:

Y2 (R - o) w, ., -

«

The integral then has the following meaning:

jdqS = j do'y,. . f( R*+i—h%j W

St
= .[ quZ"'Ze g (f(R-l)* y.,)* W, .
2] @,

In this,f " is the Hermitian conjugate of the operatoif f(2) is a real function theh™ =
f(R*— h X)), sinceR’ is a Hermitian operator. Thus, the integral can bittem:

[dof .= [dF> Y f(he-w)) & ¢, w ., (4.13)

Since every function of the operatBf + h @ / i at° that is representable as a series
development is therefore well-defined, the equationhefsystem that is analogous to
(4.3), which will be contained in (4.8) by developigg can be solved in the first
approximation by:

-1
wlz—Z(Rwi—ha‘?rj Vit ¢°. (4.14)
On the other hand, we have the relation:

WO, ) = e R 0y (4.15)

This is easy to verify when one pays attention to faw that° must be a linear
combination of eigenfunctions, , whose coefficients have the time-dependency of

expE 2 i v t).
The operator:

Vn
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Us = — {(Rr +i_h%j_ VE(E) V(1) e‘isz(tm_t)} (4.16)

tl=t2=...ot

will actually have the property (4.4) then.

According to the derivation of the operatd?, we can apply this only in the first
approximation. Thus, we are interested in only matribas are time-independent. If
one calculates the matrix element (

Uz, = [ dd- | dd| dA@_,_%( m?a?fj V(Y V(D ., (4.17)

which is many-timed, for the time being, and employs réiation (4.13) then it will
contain the factor:
i ei(v;—(q )" |:é'(v’s—a)s)tS

b W —a) (4.18)

The « t° come from the development of:

w=V () V () v,., ...t
according to (4.12a).
With the help of the expression:
i (Vip)t +oo o
lim——— = lim [ dtd"",
=0 i(Vxiy) y=0 4

which has been made convergent, this factor catpheerted into an integral, and one
will obtain the form:

US (- t") = Tdtfj dql.--j dq‘j dA@_anh V(Y VD y,- (4.19)

If we consider the condition that only time-indegent matrix elements play a role then
that will mean that only terms whose exponents dbeyelation:

(Vo—a) +(V.-a)+ > (V= tn) =0 (4.19a)

mEs, r

will be employed. If one chooses thg , to be an orthogonal system of functions in
the usual way then one must haye = vy, since the operator will contain no operators

() | dAmeans integration over the function spaA¢e (e.g., the space of light quanta).
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that act uporg™ for m # r, s. Therefore, ¢ — @) can be replaced with (V.- «w)

everywhere. In eq. (4.18), that means that the integexldt’ in (4.19) can be replaced
with:

j

Therefore, if one adds the matrix elemenf to that ofU * in order to obtain that of the
interaction operator (4.7), and makes use of the sedaihese alternatives then one will
find that the time-free matrix elements of the intéican operator will be equal to the
operator:

[ at éR'“’-“'—h[VS( ), VI(£)] &R (4.20)
t

Now, if V ° has the form:

0A(X)"

VS=- J. d[( A R° F(X)] +(T, S‘(x)j + conj. + terms M\,

in which J ® andS ® mean the charge and polarization operaitorthe absence of fields
(their variation in the absence of a field is includedhia “+ terms inA?”), then it will
suffice to consider only the terms that are lineaf im (4.20). It would be incorrect to
include the higher-order terms, since we would like to ciemgihe small quantities that
we are developing only up to the second power in our appragimatocess. The
expressiond ° andS*® will then no longer contain field operators, and Wikn commute
with the field operators.

We introduce the operator:

J S (y) = eiR'(yo—Ct)/ ChJS(y) e— iR(y- o/ CI‘, (421)

whose expectation values yield the expectation valudgeaftharge of the particteat the

positiony at the timeyy / ¢ (which is generally different from the timehat enters into
the Schrddinger equation) (viz., tleperator of the retarded charge Due to the

commutation relations (3.18) and (3.20), the interactionatpercan be written in the
form:

OA ()"
0x

U +uUs=- %j dxs{JS(x)Ar(&%( S(x),

with ():

j + conj.} : (4.22)

() In the temporal part of the scalar product, one mutsidly have:

-%Ide:(x)if dxa‘;j ¥(I(Y D),
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A = jdyoj & [Jf(» o x- y+[ sy V)B

One can convert the second term in the integrangdstial derivatives, since the-
function will vanish on the outer surface of tharfa@imensional half-space, and one will
obtain:

A= [ dy] &L, (9 O Y, (4.23)
where: N
Jer (V) =) - (ais ( y)j (4.24)
y

means the effective charge of the particlet the positiory at the timey, / ¢ that was
defined in (2.2).

However, (4.23) is nothing but the classical folan@l.10) for the retarded or
advanced potential in operator form.

The operator (4.22) no longer contains any figieérators, and will lead to Mgller’s
prescription with no further assumptions. Obvigusihe retarded and advanced
potentials are equal with that.

However, if the particle can radiate then that will mean that the functjgrin (4.14)
will be infinite; i.e., the term withv; = « that enters into the denominator of (4.18).

That will always be the case when the Fourier agslpf the matrix element of the
operator] " (X) contains the eigenvectors of the field that waeéned in paragraph 1 for
certain transitions. The first approximation givas essential contribution to the
perturbation of the wave functiop®. The initial state will be decay exponentiallif
one carries out the calculation that one alreadyihahe zeroth approximation, which
one can write:

i.e., 0 / 0%o appears aftedy, under the integral sign If one puts itin front of the integral signas in
formula (4.22), then due to the relations:

D(X), —9 = 0; {a's)fox)} =~ 4713 (x); {"'3)2")} =0,

one will obtain a supplementary term of the form:
- 2nj dx (S(x) S (x)°+conj.),

which will drop out, in contrast to the term that wasitianed in the rem. on pp. 6 (2.6a).
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=) Upt™
Vo =U,, €™  OF-v, +iy,t)
with (4.25)
F(V,t):{ ?/t fort <0,
e” fort<O,

in place of (4.11), then, as one easily convinces onbgeFourier representation (or
integration over time in the usual way), (4.18) willdea

- lh [ dtF; - +iyty @@ (4.183)
tf

Formula (4.19) will then remain true when one keeps onlysipe —c for the upper
integration limit.
As before, the formula (4.17) fds™ contains the factor (4.18) with theand s
switched. If one now adds the term:
ige
h i, -w)

i (Ve—ws)t®

to that factor then one will convince oneself that #dsition will makeno contribution
to the time-independent matrix element when sfﬁqaarticle cannot radiate. Singe
means a quantity that is vanishingly small in comparisow te i , the energy relation

(4.19a) will be true, as before, which will once morevalone to express (4.18), when
provided with a supplementary term (wglandr switched), as an integral ovet" from
t"to— o,

The operator (4.23) that appears in (4.22) will then cordaip the limit— o, and
according to the definition (1.10), it will be the retatdeotential operator of the"
(radiating) particle§).

5. Derivation of theinteraction operator in ordinary space.

The representation of matter by the coordinates siatial pointsy® is possible only
when the number of particles of matter quanta remainsepred. However, as both
experiment and theory show, that is not the case (&am.production). One then appeals
to the field representation of matter, whose simpfesin is the representation by a
Schrédinger scalar field(x). Its quantization was given by PAULI and WEISSKOPF
[6]. Another possibility (which is the only one that thef-integer spin of matter quanta
permits) is the Dirac representation in terms of a-fmmponent field spinog? (X) (a =
1, 2, 3, 4). The quantization of the Dirac field bringgaiardifficulties with it (e.g., the
theory of holes). That hole representation does ppear explicitly in method of
guantization that was proposed by MAJORAMNA [
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The Schrédinger equation (3.13) can also be decomposed figll representation
of the form (4.1), except th& andV will no longer be sums af termsR® andV®, but
spatial integrals of certain densities:

R= j dx® R (%), v:j dC D(x, t) . (5.1)

The argument that led up to formula (4.4) remains va)id By contrast, (4.4) must
be replaced with the demand that there exists an opé&tgt, y) for which one has:

D) = [y AKX Y) Y- (5.2)

Eq. (4.6) then includes a double integral over the opefdtary), instead of the double

sum overU . Corresponding to the functiap (t, ..., t"), one introduces a functional
(t(x)) that satisfies the equation:

U dx35(x—y)9%(x)+'[ dx35(x—y)©(x,t(y))+_—hij w=0. (5.3)
i ot(y)

In this, o (x) shall fill up a finite domain, for now. The time-freggenfunctions of the
zeroth approximation of equation (5.3) are then the eigenfunctions of theabpes that
correspond to the energy of the matter that is coetiain a volume around the positipn
that is defined by thé-function. t(y) is referred to as the “local time,” in analogy he t
“particle time.” One can now easily perform the restthe calculations in complete
analogy to the ones in the foregoing paragraphs and obtain:

U= —Ej dXS{J(x) A% +( %), aA(X)j+ conj.} , (5.4)
4 0X yoct

with
A = [ dy, | dy* Jerr () D(x-Y), (5.5)
X
instead of (4.22), after the transition to tbdunction. In this,J(y) and Sy) are once

more the retarded charge operators of the zergthoajation A& = 0), which are
obtained from the operatod§y) andSy) by:

J(Y) = eiR(yo—Ct)/ hCJ(y) e— iR y- ¢/ h(. (56)

The factor 1/ 4 in (5.4) comes from the fact thaindy are integrated over all of space,
and therefore, each volume element will be courtigide. Naturally, it will be
impossible to isolate the self-energy term that eoime about in (4.22) by omitting the

() Naturally, the Schrodinger functigfiis now a functional of (x) andg (x).
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termr = s Due to the non-commutation of the charge operatotis @ach other, in
addition to (5.4), one will obtain terms that are mntipnal to the squares of the field
operators, and which contribute to the self-energy, @abborption and emission, and
the Compton effect.

6. Generalization to multi-component fields.

The generalization to multi-component tensor fields lba achieved formally quite
simply by giving further tensor indices £ J, andS ; e.g., the four-vector field4;, J;,
andSy.

However, the energWV will then lose its positive-definite character. Tluain be
remedied only by introducing auxiliary conditions.

For the casé= 0, the auxiliary condition in matter-free space iswn to be 7]:

(i,Ajz//: 0. (6.1)
ox

It is compatible with itself and its complex congug (i.e., for two eventsandy).
For the casé = 0, it is not possible to find an auxiliary conditi However, if one
introduces a scalar fielB that satisfies a field equation of type (0.1) wikie samd,

along with the fieldA, then:
[(i,AjHBJz/I: 0 (6.2)
0x

will yield a positive-definite energy, and it wille compatible with itself and its complex
conjugate.

In the absence of matter, the auxiliary conditionsst be changed in a certain way in
order for them to remain preserved in the courdent.

Maxwell's equations follow in a known way from {§. Among other things, they
say that a photon possesses a further degree aedoine beyond its impulse: viz., its
polarization. That is possible in only two waysg(e left and right-circular), so the
photon has only two possible orientations for ;s Certain Maxwell-like equations
follow from (6.2) that were discussed by PROCWI[ The field knows three linearly-
independent forms of polarization, which corresgotw a particle with three possible
orientations to its spin. Naturally, the eigeneslof the spin are the whole-number
multiplesh, 0, and -h of h.

In Part Two, the Proca field shall be treatedrag@plication of the method that was
proposed here.

As Herr Dr. N. KEMMER has kindly informed me, vaus papers by him and other
authors 1] will appear that treat the Proca field and itplagation to the interaction
between neutrons and protons.

The advantage of the present method lies in tttetfiat it allows one to calculate the
retarded interaction terms (and naturally, the reiarded ones, as well) without going
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into the quantum structure of the fields explicitly anthaut any special assumptions on
the representation of matter.

In agreement with Kemmer, it seems possible to na¢ @éhcomplex Proca field
(whose particles are “heavy electrons” and “heavy @pttrons”) and a Proca field
(whose particles are uncharged) might describe the nuoleas completely.

Institut de Physique, Université de Genéve.
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